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Abstract

The Nearest neighbour search (NNS) is an important problem in
a large number of application domains dealing with multidimensional
data. In concurrent settings, where dynamic modi�cations are allowed,
a linearizable implementation of NNS is highly desirable to discover the
latest nearest neighbour of a given target data-point.

In this paper, we introduce the LockFree-kD-tree (LFkD-tree): a
lock-free concurrent kD-tree, which implements an abstract data type
(ADT) that provides the operations Add, Remove, Contains, and
NNS. Our implementation is linearizable. The operations in the LFkD-
tree use single-word read and compare-and-swap (CAS) atomic prim-
itives, which are readily supported on commonly available multi-core
processors. We experimentally evaluate the LFkD-tree using several
benchmarks comprising real-world and synthetic datasets. The exper-
iments show that the presented design is scalable and achieves sig-
ni�cant speed-up compared to the implementations of an existing se-
quential kD-tree and a recently proposed multidimensional indexing
structure, PH-tree.

Keywords: concurrent data structure, kD-tree, nearest neighbor search,

similarity search, lock-free, linearizability





1 Introduction

1.1 Background

Given a dataset of multidimensional points, �nding the point in the dataset at the smallest distance from
a given target point is typically known as the nearest neighbour search (NNS) problem. This fundamen-
tal problem arises in numerous application domains including data mining, information retrieval, machine
learning, robotics and image search. A variety of data structures, which store multidimensional points, are
available in the literature to solve the NNS in a sequential setting. An excellent collection can be found in
Samet's book [1]. Several of them have been adapted to perform parallel NNS over a static data structure,
e.g. [2]. However, both sequential and parallel designs primarily consider NNS queries without accommodat-
ing dynamic addition or removal (together called modi�cation) in the data structure. Chan et al. [3] presented
a randomized data structure that provides worst-case O(log2 n) NNS for two-dimensional data, subjected to
dynamic modi�cations. Nevertheless, e�cient multidimensional data structures for NNS admitting dynamic
modi�cations have attracted limited attention as yet.

The growing availability of multi-core processors has brought about an emphasis on designing scalable
concurrent data structures. Furthermore, the surge in the popularity of in-memory databases has led to
signi�cant interest in the index structures that can support NNS with dynamic concurrent add and remove
operations. In Appendix A, we narrate an interesting real life application which requires a concurrent dynamic
data structure for real-time NNS queries in multidimensional datasets.

Considering operations in a concurrent data structure, linearizability [4] is the hallmark for consistency.
It relates the externally observable behaviour to the sequential speci�cation of an operation. Intuitively, a
concurrent data structure is linearizable if every execution provides time-points, called linearization points,
between the invocation and response of each operation, where it seems to take e�ect instantaneously. Thus,
forming a sequence of concurrent operations, described by the real-time order of the linearization points, we
observe that concurrent operations meet their sequential speci�cations. A linearizable NNS is highly desirable
to discover the latest point available in the dataset in a global real-time order which is the nearest neighbour
of the target point.

In real life applications that employ NNS, most often the notion of distance is a metric which satis-
�es triangle inequality, for example, Hamming distance for string data, Hausdor� distance for image data
and Euclidean distance for real number data. In one-dimensional metric spaces, the triangle inequality
(d(x, y)≤d(z, x) + d(z, y)) holds as an equality. Consequently, arrangements of one-dimensional data-points
in the sorted order of their (signed) distance from di�erent arbitrary reference points are same. Given an
ordered data structure (e.g. sorted list, search tree, etc.) of one-dimensional points, on termination of a search
query, we can always �nd two consecutive nodes which store the two nearest neighbours of the target point.
In linked-lists and skip-lists it is trivial and in BSTs requires maintaining a successor link. Thus, performing
an NNS in a one-dimensional dataset is analogous to a general exact match point query.

However, in multidimensional metric spaces, the triangle inequality is strict for non-collinear points.
Hence, the arrangements of data-points in sorted order of distance from di�erent arbitrary reference points are
not same. Consequently, we do not have a multidimensional �ordered� data structures. Typically, a hierarchical
tree-based multidimensional data structure stores the points following a space partitioning scheme. Such data
structures provide an excellent tool to prune the subsets of the dataset which do not contain the nearest
neighbour. Thus, an NNS query iteratively scans the dataset using such a data structure. The iterative scan
procedure starts with an initial guess, at every iteration visits a subset of the data structure (e.g. a subtree
of a tree) that can potentially contain a better guess and is unvisited until the latest iteration, updates the
current guess if required, and thereby �nally returns the nearest neighbour.

In a concurrent setting, performing an iterative scan along with concurrent modi�cations in the data
structure faces an inescapable challenge. Consider the case of an operation op performing an NNS query
in a multidimensional data structure that stores points from Rd and where Euclidean distance is used. Let
a={ai}di=1 ∈ Rd be the target point of the NNS. Let us assume that k∗={k∗i }di=1 ∈ {k : k is key of a node}
is the nearest neighbour of a at the invocation of op. In a sequential setting, where no addition or removal
of data-points occurs during the lifetime of op, k∗ remains the nearest neighbour of a at the return of op.
However, if a concurrent addition is allowed, a new node with key k∗∗ may be concurrently, and possibly
before op read node containing k∗, added to the data structure in a subset which may already have been
visited or got pruned by the completion of the latest iteration step. Thus, op would not visit that subset
again. Now, if k∗∗ was closer to a compared to k∗, and op returns k∗, which was possibly not the nearest



neighbour of a when read by op, we can not determine a linearization point between the invocation and
return of op. Clearly, the iterative scan method used in a sequential setting, which usually is implemented
using a recursive tree traversal, is not directly adaptable to a concurrent implementation with linearizability.

Now considering the modify operations in a concurrent data structure, the traditional approach to ac-
commodate them is by way of mutual exclusion using locks. But, in an asynchronous shared-memory system,
where an in�nite delay or crash failure of a thread is possible, a lock-based concurrent data structure is vul-
nerable to pitfalls such as deadlock, priority inversion and convoying. On the other hand, in a lock-free data
structure, threads do not hold locks and at least one non-faulty thread is guaranteed to �nish its operation
in a �nite number of steps. Therefore, lock-free data structures foster both scalability and fault tolerance.

In recent years, a number of practical lock-free search data structures have been designed: skip-lists [5,6],
binary search trees (BSTs) [7�10], k-ary search tree [11], B+tree [12], etc. Despite the growing literature on
lock-free data structures, the research community has largely focused on one-dimensional search problems. To
our knowledge, no complete design of any lock-free multidimensional data structure exists in the literature.

One of the most commonly used multidimensional data structures for NNS is the kD-tree, introduced by
Bentley [13]. In principle, a kD-tree is a generalization of the BST to store multidimensional data. Friedmann
et al. [14] proved that a kD-tree can process an NNS in expected logarithmic time assuming uniformly
distributed data points. Successively, many e�orts, including the approximate solutions, have contributed to
improving the performance of NNS in kD-trees [15�18]. Furthermore, various parallel kD-tree implementations
have been presented, speci�cally in the computer graphics community, where they focus on accelerating
the applications such as ray tracing in single-instruction-multiple-data (SIMD) programming model [19�
22]. Nonetheless, these designs do not �t in a concurrent setting where we desire linearizable NNS with
concurrent addition and removal of data. For robotic motion planning, Ichnowski et al. [23] used a kD-tree of
3-dimensional data in which they add nodes concurrently. However, this design does not support Remove and
the canonical implementation of NNS is not linearizable. We note that the list of lock-free one-dimensional
search data structures includes a number of BSTs [7�10]. We can use a lock-free BST as a foundation to
design a lock-free kD-tree.

Contributions: We describe a linearizable implementation of an abstract data type (ADT) that pro-
vides Add, Remove, Contains and NNS operations for a multidimensional dataset. To illustrate the
implementation, we present LockFree-kD-tree (LFkD-tree) - an e�cient concurrent lock-free kD-tree. LFkD-
tree requires atomic single-word read and compare-and-swap primitives. For experimental validation of the
LFkD-tree, we use a 2-dimensional real-world dataset and several synthetic datasets representing extreme
cases. We evaluate our implementation against an existing sequential kD-tree implementation and a recently
proposed multidimensional index structure - PATRICIA-hypercube-tree implementation [24].
1.2 A high-level summary of the work

The main challenge in implementing a linearizable NNS is to ensure that it does not remain oblivious
to concurrent modi�cations in the data structure. Please note that; an iterative scan of a data structure,
because of the involved (often aggressive?) pruning, may not necessarily be obtaining a snapshot : an atomic
view of all the nodes currently present, but still involves �scan�. In the literature, there exist algorithms
to implement shared wait-free multi-writer multi-word snapshot objects which support concurrent scan and
update operations [25�29]. An update writes a new value at a word in shared memory, and scan returns
an atomic view of all the words. These algorithms provide a synchronization method, which ensures that at
the linearization a scan does not �miss� any linearized concurrent update in the multi-word object to re�ect
in its output. However, these algorithms do not o�er themselves to be directly emulated in lock-free data
structures. The main reason is that they do not provide a direct �read� operation which could be emulated
to implement linearizable Contains operations, without using the costly scan.

In general, the existing concurrent data structures do not support atomic snapshots. Exceptions are -
lock-based BST by Bronson et al. [30] and lock-free Trie by Prokopec et al. [31]. Avani et al. [32] presented
a linearizable range search algorithm for one-dimensional datasets using a lock-free k-ary search tree, which
can be used to obtain a snapshot by allowing a range to cover the entire dataset. Building on the snapshot
object of Jayanti [26], Petrank et al. presented a method to support atomic snapshots in lock-free ordered
data structures [33], and illustrated it in linked-list and skip-list. Their approach enables a scan operation
to avoid restart due to a concurrent modi�cation, as is the case in [32], which would otherwise make it
poorly scalable. Essentially, they augment a data structure with a pointer to a special object called snap-
? The hierarchical space-partitioning schemes mainly focus on improving on the sizes of the pruned subsets to speed-up the
NNS queries. See [1] for various space-partitioning methods, speci�cally for moderately high-dimensional datasets.



collector that provides a platform for a modify or a Contains operation to report a possible modi�cation
to a concurrent scan operation. Concurrent scanners use a single snap-collector to return the same snapshot.
Nevertheless, directly using a scan of a multidimensional data structure for an NNS will be too naive an idea
as it completely discards the advantage of an e�cient hierarchical space partitioning structure.

Our work proposes a solution based on augmenting a concurrent multidimensional data structure with
a pointer to a special object called neighbour-collector that provides a platform for reporting concurrent
modi�cations that can otherwise invalidate the output of an NNS if it were to satisfy linearizability. In
e�ect, an operation NNS(a) �rst searches for an exact match of a in the data structure, and if succeeded
returns the same data. However, if an exact match is not found, before starting the iterative scan, NNS(a)
announces the target point i.e. a and the current best guess for the nearest neighbour using a pointer to a
new active neighbour-collector. On completing the iterative scan, it deactivates the neighbour-collector. A
concurrent operation, after completing its own necessary steps, checks for any active neighbour-collector, and
if found, reports its output if it was a better guess than the current best guess available at there. Finally,
NNS(a) outputs the nearest neighbour as the better guess between the collected and the reported neighbour.

However, unlike the snapshot algorithm in [33], here we can not use a single neighbour-collector for con-
current NNS operations with non-coinciding target points. At the same time, we must allow every NNS

operation to continue its iterative scan, after announcing it, as soon as it begins. To handle multiple concur-
rent announcements, we use a lock-free linked-list of neighbour-collector objects. The multidimensional data
structure stores a pointer to one of the ends of this list, say the head. A new neighbour-collector is allowed to
be added only at the other end, say the tail. Thus, before announcing a new iterative scan, an NNS operation
goes through the list and checks whether there is an active neighbour-collector with same target point. If in
the list such an active neighbour-collector is found, it is used for the concurrent coordinated iterative scans.
A neighbour-collector is removed from the lock-free linked-list as soon as the iterative scan at it gets over.
Thus, at any point of time, the length of the list is equal to the number of active NNS operations.

Although it is not necessary for di�erent concurrent NNS operations with coinciding target points to use
a single neighbour-collector and perform coordinated iterative scan, but we can observe that this approach
helps to speed up the operations in quite an interesting way. Typically, a subset of the dataset is pruned
during the iterative scan depending on whether the distance of the target point from a bounding box covering
the subset is greater than that from the current best guess. Now, if the current best guess at a neighbour-
collector is the outcome of already pruned many subsets, an NNS that starts its iterative scan at a later
point, or is slow (or even delayed), will be able to complete much faster.

The design of the LFkD-tree is based on the lock-free BST of Natarajan et al. [9]. To perform an iterative
scan, we implement an e�cient fully non-recursive traversal using parent links, which is not available in [9].
Thus, to manage an extra link in each node, our design requires extra e�ort for the lock-free synchronization.
The modify operations use single-word-sized atomic CAS primitives. The helping mechanism is based on the
operation descriptors at the child-links. Thus, the concurrent modify operations get better progress conditions.
Additionally, extra object allocations for synchronization is avoided. The Contains do not perform helping
and are wait-free for a �nite dataset. The linearizable implementation of NNS is not con�ned to the LFkD-
tree, and it can be used in a similar concurrent implementation of any other multidimensional data structure
available in [1]. Consequently, we describe the NNS operations independently and comprehensively. Other
operations in the LFkD-tree, which are very similar to the same in lock-free BST of [9], are described at a
high level in the main paper and their detail discussion is included in Appendix C.

We implemented the LFkD-tree algorithm in Java. The implementation code is available at [34].

In section 2, we present the design of the LockFree-kD-tree. In section 3, we describe the implementation
of linearizable NNS. In section 4, we detail the experimental evaluation. Section 5 concludes the paper.

2 LockFree-kD-tree Implementation

2.1 Design of the LFkD-tree

The LFkD-tree is a point kD-tree in which each node, that stores data, is assigned at most one data-point.
Typically, to partition Rd, we use axis-orthogonal hyperplanes that is given by xi=c, 1≤i≤d. The structure
and consequently the NNS performance of a kD-tree heavily depends on the splitting rule - the procedure
to select the partitioning hyperplanes. Traditionally, in a sequential setting, to construct a kD-tree from
static data, the partitioning hyperplanes are chosen to coincide with points that belong to the given dataset.
This arrangement allows each node, as in an internal BST representation [10], to be used for storing data.
However, removing a node from an internal BST is costly, more so in a concurrent setting [8,10]. With this in



mind, we opt for an external BST representation [7,9] to design the LFkD-tree. In this design, only leaf-nodes
contain the data-points and internal-nodes route a traversal, see �g. 1 (b). More importantly, it gives us the
�exibility to compute c and i : 1≤i≤d for a hyperplane xi=c, which may not coincide with a data-point.

To compute the values of c and i, in the scenarios where the entire dataset is available beforehand, a
number of splitting rules exist in the literature [14, 15]. These rules focus on the hierarchical partition of a
closed hyperrectangle that covers the entire dataset and not only tries to balance a kD-tree but also optimize
its depth. In a concurrent setting, where we do not have knowledge of the entire dataset in advance, the
partitioning hyperplane needs to be computed dynamically and in a very localized fashion. For the LFkD-
tree, we formulate a simple and practical splitting rule, the local-midpoint rule, as given in the section 2.2.
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Fig. 1: LFkD-tree Structure

Every leaf-node of a LFkD-tree Υ , contains a unique
data point as its key, whereas, an internal-node corre-
sponds to a partitioning hyperplane. Without ambigu-
ity, we denote a leaf-node containing key k={ki}di=1∈Rd

by N(k) (or N({ki}di=1))� and an internal node associated
with a hyperplane xi=c, by N(i, c). Every internal-node
has three links connected to its left-child, right-child and
parent. We indicate the link emanating from a node N
and incoming to a node M by N;M. Access to Υ is given
by the address of (pointer to) a unique node root. A node
N is said to be present in Υ , denoted by N∈Υt, if it can be
reached following the links starting from root. For every
internal-node N(i, c), Υ maintains the following invariants:
(i) a node N({ki}di=1) belongs to the left subtree, if ki<c, (ii) a node N({ki}di=1) belongs to the right subtree, if
ki≥c and (iii) both subtrees are themselves LFkD-tree. (i) and (ii) together are called the symmetric order
of the LFkD-tree. Figure 1 illustrates the structure of a subtree of a LFkD-tree corresponding to a sample
2-dimensional dataset.

2.2 Sequential Speci�cation of the ADT Operations

LFkD-tree implements an abstract data type kDSet that provides operations Add, Remove, Contains
and NNS. For each of the operations, we start with a query : start from the root, traverse down Υ , at each
internal node decide left / right child direction using the symmetric order and thus arrive at a leaf-node.

To perform Add(a), a∈Rd, if the query terminates at a leaf-node N(b), b∈Rd, and b = a (an element-wise
comparison of keys), Add(a) returns false. However, if b 6= a, we allocate a new internal-node N(i, c) with its
child links connected to two leaf-nodes N(a) and N(b). If p(N(b)) was the parent of N(b) at the termination of
query, we connect the parent link of N(i, c) to p(N(b)). We update the link p(N(b));N(b) to point to N(i, c)
and return true. To compute i and c, we employ the local-midpoint rule as given below.

Local-midpoint rule: 1≤i≤d is the index of coordinate axis along which a and b have the maximum
coordinate di�erence; if there are more than one such axis then select the one with the lowest index. Take the

hyperplane as xi =
a[i]+b[i]

2 .

To perform Remove(a), if the leaf-node where the query terminates at, has the key a, i.e. N(a)∈Υ , we
modify the link from the grandparent of N(a), denoted by g(N(a)), to its parent, to connect the sibling of
N(a), s(N(a)), to g(N(a)); and return true. If N(a)/∈Υ , Remove(a) returns false. To perform Contains(a),
using a similar query we check whether N(a)∈Υ and return true or false accordingly.

The operation NNS(a) is non-trivial. On termination of the initial query, if we reach at N(b) and b = a,
clearly the nearest neighbour of a, available in the dataset stored in Υ , is a itself. However, if b 6= a, we
take b as our current best guess and check whether the other subtree of p(N(b)) (the current subtree consists
the single node N(b)) stores a better guess. Suppose that p(N(b))=N(i, c). Now, any point on the other side
of the hyperplane xi=c will be at least at a distance |ai−c| from the target point {ai}di=1. Therefore, if
|ai−c|>||a, b||2, we must prune the other subtree i.e. one rooted at s(N(b)), otherwise we visit it in the next
iteration. A subtree once visited is not visited again and thus we traverse back to the root of Υ . At the
termination of the iterative scan of Υ , the current best guess is returned as the nearest neighbour of a.

2.3 Lock-free Synchronization

As the basic structure of our LFkD-tree is based on an external BST, for the lock-free synchronization
in the LFkD-tree, we build upon the lock-free BST algorithm of [9]. The fundamental idea of the design is
a lazy remove procedure that is essentially based on a protocol of atomically injecting operation descriptors



on the links connected to the node to be removed, and then modifying those links to disconnect the node
from the LFkD-tree. If multiple concurrent operations try to modify a link simultaneously, they synchronize
by helping one of the pending operations that would have successfully injected its descriptor.
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Fig. 2: LFkD-tree Structure

More speci�cally, to Remove the node
N(a), as shown in the �g. 2(b), we use
a CAS to inject operation descriptors at
the links p(N(a));N(a), g(N(a));p(N(a)) and
p(N(a));s(N(a)), in this order. We call these
descriptors mark, tag and flag respectively.
An operation descriptor works as an infor-
mation source about the steps already per-
formed in Remove(a) and thus a concurrent
operation, if obstructed at a link with de-
scriptor, helps by performing the remaining
steps. In particular, a mark at a link indicates
that the next step would be to inject a tag
at the link g(N(a));p(N(a)), whereas, a tag
indicates that the next step is to inject the
descriptor flag at the link p(N(a));s(N(a)).
Finally, a flag indicates the completion of
steps of injecting operation descriptors and thereafter the required link updates are done. The helping mech-
anism ensures that the concurrent Add and Remove operations do not violate any invariant maintained
by the LFkD-tree. The steps are shown in the �g. 2(c). An Add operation uses a single CAS to update the
target link only if it is free from any operation descriptor, otherwise it helps the concurrent pending Remove
operation. A Contains or NNS operation does not perform help; thus is wait-free for a �nite dataset.

We call the CAS step that injects a mark at p(N(a));N(a) the logical remove of a. After this step, a
Contains(a) that reads p(N(a));N(a) returns false. Accordingly, Add(a) performs helping to complete the
pending Remove(a), if it reads p(N(a));N(a) with a mark descriptor, and then reattempts its own steps. The
helping mechanism guarantees that a logically removed node will be eventually detached from the LFkD-tree.

To realize the atomic step to inject an operation descriptor, we replace a link using a CAS with a single-
word-sized packet of a link and a descriptor. Given a pointer delegates a link, a well-known method in C/C++
to pack extra information with a pointer in a single memory-word is bit-stealing. In a x86/64 machine, where
memory allocation is aligned on a 64-bit boundary, three least signi�cant bits in a pointer are unused. The
three operation descriptors used in our algorithm �t over these bits.

For ease of exposition, we assume that a memory allocator always allocates a variable at a new address
and thus an ABA?? problem does not occur. Additionally, we assume the availability of a lock-free garbage-
collector. Furthermore, to avoid null pointers at the beginning of an application, we use a subtree containing
an internal-node and two leaf-nodes which work as sentinel nodes. See �g. 2(a). The keys in the sentinel
nodes maintain ∞0>∞1>∞2>ki, 1≤i≤d, for any data point {ki}di=1 stored in the LFkD-tree. The sentinel
internal-node N(1,∞1) works as the root of the LFkD-tree and the entire dataset is stored in its left subtree.

The focus of the paper is on the linearizable NNS. Therefore, we skip the detail description of the
operations Add, Remove and Contains to Appendix C. The full correctness proof is given in Appendix E,
but here as a precursor we state the linearization points of the operations Add, Remove and Contains.
2.4 Linearization points of the Add, Remove and Contains operations

For a successful Add operation, execution of the CAS, where a new internal-node is added, is the lineariza-
tion point. For an unsuccessful Add and a successful Contains, it is at the point where we read the address
of the leaf-node with matching key. For a successful Remove operation, the CAS that replaces a descriptor-
free pointer with marker i.e. the logical remove step is the linearization point. Linearization arguments for
an unsuccessful Remove and a similar Contains have two cases - (a) if there existed a node N containing
the query key in the LFkD-tree at the invocation but was logically or completely removed by a concurrent
Remove operation before the return of Search(), the linearization point is placed just after the linearization
point of that Remove operation (b) if no node containing the query key existed in the LFkD-tree at the
invocation of the Remove or Contains, the invocation point itself is taken as the linearization point.
?? ABA is a shortcut for stating that a value at a shared variable can change from A to B and then back to A, which is a

fundamental problem to a CAS-based lock-free algorithm, and if not remedied, it can corrupt the semantics of the algorithm.



3 Linearizable Nearest Neighbour Search
In this section, we begin with the algorithm that addresses the case where concurrent NNS operations

have coinciding target points. We build on it to present the algorithm for general cases without any restriction.
But, �rst we present the node-structures in the LFkD-tree, which will help in the subsequent discussion.

The classes INode and LNode, which represent an internal- and a leaf- node respectively, are shown in lines 1
and 2 in algorithm 1. Every INode, in addition to the �elds i and c that represent the associated hyperplane,
has three pointers lt, rt and pr that delegate the left-child, right-child and parent links, respectively. A LNode
contains only an array k to represent a data-point k={ki}di=1∈Rd. The node-pointer root, line 3, delegates
address of the sentinel node N(1,∞1). As a convention, if x is a �eld of a class C, we use pc·x to indicate the
�eld x of an instance of C pointed by pc. Note that, INode∗ and LNode∗ inherit Node∗.
1 class INode {� A subclass of Node.

long i; double c; Node∗ lt, rt, pr;
}� Node∗: A Node-pointer.

2 class LNode {� A subclass of Node.

double[] k; � k is an array.
}

3 root := INode∗(1, ∞1, null, null, null);

root·lt := LNode∗({∞2}d);
root·rt := LNode∗({∞0}d);

Algorithm 1. The node structure in the LFkD-tree

Now, before describing the NNS algorithms, we discuss the linearizability of the operations.
3.1 Linearization argument

Consider the concurrent modi�cations in the LFkD-tree, when an NNS operation, say op, performs its
iterative scan. We can ensure, by checking whether IsMark() returns true, that the key of a leaf-node which
was logically removed, is never collected as a current guess for the nearest neighbour. Similar to a Contains
operation, we can place the linearization point of op at the point where it reads the pointer to the leaf-node,
say N, whose key is returned as the nearest neighbour. Now, if N is logically removed after it was read by op,
by a concurrent Remove operation, say op1, which returns before the return of op, we still do not loose the
linearizability argument, simply because linearization point of op1 is ordered after that of op.

1 class Nebr {�Neighbour
Node∗ a; double d;

}� Nebr∗: Nebr-pointer.

2 class NbrClctr{�Neighbour-collector
double[] tgt; bool isAct;
Nebr∗ col, rep; NbrClctr∗ next;

}� NbrClctr∗: NbrClctr-pointer.

3 ncp := NbrClctr∗(null, false, null, null, null);
NNS(double[] k)

4 pa := root; a := pa·lt; cD := L;

5 hi := {∞0}d; lo := {−∞0}d;
6 〈pa, a〉 := Seek(pa, a, k , hi, lo);
7 dst := IsMark(a) ? ∞ : ||k , a·k||2;
8 if dst 6= 0 then
9 return NNSync(pa, a, dst, k , hi, lo);
10 else {Sync(pa, a); return k ;}

Seek(Node∗ pa, Node∗ a, double[] k ,
double[] hi, double[] lo)

11 · · · ; return 〈pa, a〉;�See appendix D.

Collect(Node∗ pa, Node∗ a, double[]
k , double[] hi, double[] lo, double
dst, NbrClctr∗ nn)

12 while pa 6= Ptr(root) and dst 6= 0 do
13 〈pa, a〉 := NextGuess(pa, a, dst , k , hi , lo);
14 if ChkValid(pa, a) then
15 dst := AdNebr(a, nn, col);
16 return nn;

NextGuess(Node∗ pa, Node∗ a, double
dst, double[] k , double[] hi, double[] lo)

17 · · · ; return 〈pa, a〉;�See appendix D.

NNSync(Node∗ pa, Node∗ a, double dst,
double[] k , double[] hi, double[] lo)

18 while true do
19 on := ncp;
20 if on·isAct = false then
21 cN := Nebr∗(a, dst);
22 nn := NbrClctr∗(k , true, cN, cN, null);
23 if CAS(ncp·ref, on, nn) then break;
24 else
25 if ChkValid(pa, a) then
26 dst := AdNebr(a, on, col);
27 nn := on; break;
28 nn := Collect(pa, a, dst, k , hi, lo, nn);
29 Deactivate(nn); return Process(nn);

AdNebr(Node∗ a, NbrClctr∗ nn, bool nt)
�nt (Neighbour-type): col or rep.

30 while true do
31 nbr := (nt = col) ? nn·col : nn·rep;
32 if nn·isAct and !IsFinish(nbr) then
33 〈dst, nb〉 := NearNbr(a, nn);
34 if nb = null then return dst;
35 if nt = col then
36 res := CAS(nn·col·ref, nbr, nb);
37 else res := CAS(nn·rep·ref, nbr, nb);
38 if res then return dst;
39 else return 0;

Sync(Node∗ pa, Node∗ a)
40 if ncp·isAct then
41 〈d, nb〉 := NearNbr(a, ncp);
42 if nb 6= null and ChkValid(pa, a) then
43 Report(a, ncp);

NearNbr(Node∗ a, NbrClctr∗ nn)
44 distTgt := ||a·k, nn·tgt||2;
45 col := nn·col; rep := nn·rep;
46 if distTgt<col·d and distTgt<rep·d then
47 return 〈distTgt, Nebr∗(a, distTgt)〉;
48 else return 〈distTgt, null 〉;

Process(NbrClctr∗ nn)
49 if nn·rep·d < nn·col·d then
50 return nn·rep·a;
51 else return nn·col·a;

Deactivate(NbrClctr∗ nn)
52 BlockNebr(nn, col);
53 nn·isAct := false;
54 BlockNebr(nn, rep);

BlockNebr(NbrClctr∗ nn, bool nt)
�nt (Neighbour-type): col or rep.

55 nbr := (nt = col) ? nn·col : nn·rep;
56 while !IsFinish(nbr) do
57 if nt = col then
58 CAS(nn·col·ref, nbr, Finish(nbr));
59 else CAS(nn·rep·ref, nbr, Finish(nbr));
60 nbr := nt = col ? nn·col : nn·rep;

ChkValid(Node∗ pa, Node∗ a)
61 k := a·k; ch := Child(pa, Dir(pa, k));
62 while Ptr(ch)·class 6= LNode do
63 ch := Ptr(Child(ch, Dir(ch, k)));
64 if IsMark(ch) then return false;
65 return ch = a ? true: false;

Report(Node∗ a, NbrClctr∗ nn)
66 AdNebr(a, nn, rep);

Algorithm 2. Linearizable NNS operations with single target point in LFkD-tree

However, in case of a concurrent Add operation, say op2, we may be at the risk of returning not the
latest nearest neighbour and thereby invalidating the linearizability, as explained in the section 1.1. Thus,
op2 essentially needs to report its modi�cation to op, after completing its own steps. Now, suppose that op2
got delayed after adding a new node N to the LFkD-tree and could not report it to op. If in the meantime
a concurrent Contains operation, say op3, read N and returned as usual, we may again loose linearizability
because to an outside observer the addition of a better guess is visible, possibly before the return of op, by



way of op3, although op did not return it. Therefore, op3 also needs to report its output to op. Now, given
that op2 and op3 are made to report their output to op, we need to change the linearization point of op. To
maintain the order, we put the linearization point of op just after that of op2 or op3, if op happens to return
the nearest neighbour which was a report by one of them.

Please note that, we need to be careful about unnecessary reporting, which may possibly be harmful
as well, in the following sense. Suppose that op2 and op3 both got delayed after their linearization. Now,
if invocation of op happened after that, op is guaranteed to read N, if N contained the nearest neighbour
of the target point. But, if in between the linearization of op3 and invocation of op, a concurrent Remove
operation removed N, op will certainly not read it, and a reporting may render the linearization point of op to
be shifted to even before its invocation, which is undesired. To avoid this situation, before every reporting,
we �rst ascertain whether the node to be reported is logically removed by calling the method IsMark().

3.2 Concurrent NNS with coinciding target point

3.2.1 Overview:

When concurrent NNS operations have coinciding target points, they can output same result by adopting
a single atomic step, which is performed during the lifetime of one of them, as the linearization point for
each of them; the real-time order amongst them can be taken as the order of any �xed step for example
their invocation step. Thus, essentially they require a single iterative scan. Principally, it is similar to the
linearizable snapshot algorithm of [33]. The pseudo-code of the algorithm is given in algorithm 2.

The class Nebr, line 1, represents a packet of a data-point, as contained in a leaf-node pointed by the
node-pointer a, and its distance, given as d, from the target point of an NNS. The class NbrClctr, line 2,
represents a neighbour-collector : the platform for collecting and reporting the nearest neighbour. NbrClctr
contains pointers to two Nebr instances: col points to one that contains collected data-point during iterative
scan by an NNS operation and rep points to one that contains a data-point reported by a concurrent
operation, in addition to the target point tgt. It also contains a boolean isAct, which if set true, implies an
active neighbour-collector; and a neighbour-collector-pointer nxt, which is used in algorithm 3. The LFkD-tree
is augmented with a pointer ncp, line 3, initialized to point to an inactive neighbour-collector.

3.2.2 The coordinated iterative scan:

The operation NNS, line 4 to 10, starts with calling the method Seek(), line 6, to perform the initial query
to arrive at a leaf-node. Now, if the pointer to leaf-node a is free of descriptor mark, which indicates the the
node pointed by a is not logically removed, and if the query key k matches at the leaf-node, which is checked
by the distance between k and the key at the leaf-node, k itself is the nearest neighbour available in the
dataset and NNS returns, line 10. Otherwise, NNS calls the method NNSync(), which performs further steps
and returns the nearest neighbour, line 9. The arrays hi and lo are used to support non-recursive traversal,
which we describe in the Appendix D. NNSync() and the methods called subsequently are described here.

The method NNSync(), line 18 to 29, starts with checking whether ncp points to an active neighbour-
collector, and if it does not, it allocates a new active neighbour-collector and attempts a CAS to modify ncp
to point to the new one, line 23. In case ncp was pointing to an active neighbour-collector, the current best
guess of nearest-neighbour, as contained in the leaf-node, is attempted to be added to that. On an active
neighbour-collector, the method Collect() is called to perform a coordinated iterative scan, line 28.

Collect(), line 12 to 15, calls the method NextGuess(), line 13, to perform next iteration that can
better the current best guess of the nearest neighbour. We describe NextGuess() in the Appendix D. Before
attempting to add the new guess, contained in a leaf-node, to the neighbour-collector using the method
AdNebr(), it is always checked whether the leaf-node is logically removed by calling the method ChkValid().
Please note that, given a (possibly stale) pointer to a leaf-node, we can not directly check whether it was
logically removed. Therefore, we also supply the pointer to the parent and thus the method ChkValid(),
line 61 to line 65, performs a query to get the latest pointer to the leaf-node considering the fact that a new
internal-node may get added between the parent of the leaf-node and the leaf-node to be reported.

AdNebr(), line 30 to 39, is called to add a collected or reported neighbour to an active neighbour-collector.
It calls the method NearNbr(), shown in line 44 to 47, which returns a new neighbour only if the distance of the
new guess is less than the distance of the already collected or reported neighbours to the neighbour-collector.

After completion of the iterative scan, the method Deactivate() is called by NNSync() at line 29.
Deactivate(), line 52 to 54, other than setting the IsAct to false, also injects a descriptor finish at both the
neighbour-pointers of the neighbour-collector using the method BlockNebr(). BlockNebr(), line 55 to line 60,
performs a CAS to replace a neighbour-pointer with one that has the descriptor finish over it, see lines 58



and 59. It ensures that each of the concurrent NNS operations using same neighbour-collector have same
view of it after linearization. The method IsFinish() returns true when called on a neighbour-pointer with
descriptor finish. Thus, AdNebr() can not add a new neighbour in a neighbour-collector if the corresponding
pointer is injected with finish, see line 32.

Finally, the method Process(), line 49 to 51, is called by NNSync() to select the better candidate between
the reported and the collected neighbours of the target point, which is returned to the caller NNS to output.

Note that, once a neighbour-collector is deactivated by an NNS, the method AdNebr() returns 0, line 39.
This in turn, immediately terminates the While loop in Collect() at the line 12. Thus, as mentioned in
section 1.2, we can observe that the coordination among the concurrent iterative scans at the same neighbour-
collector helps a delayed NNS operation to complete faster.
3.2.3 The reporting methods:

The method Sync(), line 40 to 43, is used by an Add or a Contains operation after their completion, see
algorithm 4 at lines 33 and 48. It �rst checks the active status of the neighbour-collector and then calls the
method NearNbr() to create a neighbour. If the point to be reported is not better than the current best guess
available, NearNbr() returns null and in that case Sync() returns without any change. Otherwise, it checks
whether the leaf node with the point to be reported is logically removed by calling the method ChkValid(),
and then calls the method Report(), which in turn calls AdNebr() to add the reported neighbour, line 66.
3.3 A general case of Concurrent NNS with multiple target points

3.3.1 Overview:
To allow multiple concurrent NNS with non-coinciding target points to progress together, we need to

have as many active neighbour-collectors as the number of di�erent target points. Essentially, we need to
have a dynamic list of neighbour-collectors. In this list, before adding a new neighbour-collector, an NNS

must scan through it so that if there was already an active neighbour-collector with a matching target point,
coordination among the concurrent iterative scans with coinciding target points can be achieved. For each
of the operations in the LFkD-tree to be lock-free, we ensure the lock-freedom of this list as well. Hence, we
augment the LFkD-tree with a single-word CAS based lock-free list of neighbour-collectors.

The linearization points remain unchanged as before: the concurrent NNS with coinciding target points
share an atomic step during the lifetime of one of them as their linearization point with some order among
themselves; other operations linearize as described in the section 2.4.

1 tail := NbrClctr∗(null, false, null, null, null);
2 head := NbrClctr∗(null, false, null, null, tail);

Sync(Node∗ pa, Node∗ a)
3 n := head·nxt;
4 while n 6= tail do
5 if n·isAct then
6 nb := NearNbr(a, n);
7 if nb 6= null and ChkValid(pa, a) then
8 Report(a, n);
9 else break;
10 else n := Ptr(n·nxt);

Clean(NbrClctr∗ pre, NbrClctr∗ nn)
11 nxt := nn·nxt;
12 while !IsMark(nxt) do
13 CAS(nn·nxt·ref, nxt, Mark(nxt));
14 nxt := nn·nxt;
15 if CAS(pre·nxt·ref, nn, Ptr(nxt)) then
16 return Process(nn);
17 else return null;

Finalize(Node∗ pa, Node∗ a, double
dst, double[] k , double[] hi, double[] lo,
NbrClctr∗ p, NbrClctr∗ c, enum md)

18 if md = COLLECT then nn := c; pre := p;
19 else if md = INIT then
20 nn := Allocate(a, dst , k , c); pre := c;
21 if nn 6= null then mode := COLLECT;
22 if md = COLLECT then
23 nn := Collect(pa, a, dst , k , hi , lo, nn);
24 Deactivate(nn); md := CLEAN;
25 if (val := Clean(pre, nn)) 6= null then
26 return 〈val, md〉;

Allocate(Node∗ a, double dst, double[]
k , NbrClctr∗ c)

27 cNb := Nebr∗(a, dst);
28 nn := NbrClctr∗(k , true, cNb, cNb, tail);
29 if CAS(c·ref, on, nn) then return nn;
30 else return null;

NNSync(Node∗ pa, Node∗ a, double dst,
double[] k , double[] hi, double[] lo)

31 nn := null; mode := INIT;
32 retry:

33 while true do
34 p := null; c := head; n := c·nxt;
35 while Ptr(n) 6= tail do
36 if n = nn and mode = CLEAN then
37 if (val := Clean(c, nn)) 6= null then
38 return val;
39 else goto retry;
40 else if k = n·tgt and n·isAct then
41 nn := n; mode := COLLECT; break;
42 else {p := c; c := n; n := n·nxt;}
43 if mode = INIT and IsMark(n) then
44 CAS(p·nxt·ref, c, Ptr(n)); goto retry;
45 if mode 6= CLEAN then
46 〈val, mode〉 := Finalize(pa, a, dst , k ,

hi , lo, p, c, mode);
47 if val 6= null then return val;
48 else return Process(nn);

Algorithm 3. Linearizable NNS operations with multiple distinct target points in LFkD-tree

3.3.2 Algorithm:
The pseudo-code of the algorithm is given in algorithm 3, in which every method is absolutely same as

that in algorithm 2, except NNSync() and Sync(). The list is initialized with two sentinel nodes pointed by tail
and head, with head·nxt set as tail, as given in lines 1 and 2. A new neighbour-collector is added to this list
at one of the ends only, which is just before the node pointed by tail. The method of maintaining this list is
similar to the lock-free linked-list of Harris et al. [35], except the fact that no addition happens anywhere in
the middle of the list. Removal of a neighbour-collector, say one pointed by c, takes two successful CAS steps:
�rst we inject a mark descriptor at the c·nxt using a CAS and then modify the pointer p·nxt to n with a CAS, if



p and n happened to be the pointers to the predecessor and successor, respectively, of the neighbour-collector
pointed by c. We use the method Mark() to get a word-sized packet of a neighbour-collector-pointer and the
descriptor mark, whereas, the method Ptr() masks the descriptor o� such a packet and does not change a
neighbour-collector-pointer. Adding a neighbour-collector takes a single successful CAS similar to [35].

The method NNSync(), line 31 to 48, as called by NNS after the initial query in algorithm 2, starts with
traversing the list. We maintain an enum variable mode that indicates the stages of NNSync(). Initially, the
mode is INIT. During the traversal, if an active neighbour-collector with matching target point is found, the
mode is changed to COLLECT and traversal terminates, line 41. Otherwise, the traversal terminates in the
mode INIT itself. On the termination of the traversal in the mode INIT, it is checked whether the neighbour-
collector, where traversal terminated (in this case c), is already logically removed, line 43, and if it is, a CAS
is attempted to detach it from the list and the traversal is restarted, line 44.

After that, if the mode is INIT or COLLECT, the method Finalize() is called. Finalize(), line 18 to 26, if
called in the mode INIT, allocates a new neighbour-collector by calling the method Allocate(), otherwise uses
the input neighbour-collector. If Allocate() could not add a new neighbour-collector, it returns null and the
entire process restarts from scratch with a fresh traversal. After successfully adding a new neighbour-collector
to the list or asserting that it needs to use an existing one, Finalize() calls the methods Collect() and
Deactivate() similar to those in algorithm 2. On deactivating the neighbour-collector, the method Clean()
is called to remove it from the list and return the value of the nearest neighbour.

Clean(), line 11 to 17, performs the two CAS steps to remove the neighbour-collector and calls the method
Process(), line 16, to compute the nearest neighbour. However, if after injecting mark, it could not modify
the nxt pointer of the predecessor, it returns null, which again causes a fresh traversal in the mode CLEAN in
Finalize(). A traversal in mode CLEAN, if �nds the deactivated neighbour-collector, calls the method Clean(),
line 38, to redo the remaining steps and return the nearest neighbour. If the traversal terminates in the mode
CLEAN, that implies that a concurrent NNS would have detached the deactivated neighbour-collector and
therefore Process() is called to �nish, line 48.

4 Experimental Evaluation

4.1 Experimental Setup

We implemented the LFkD-tree algorithm in Java using RTTI. We used AtomicReferenceFieldUpdater
for CAS. The test environment comprised a dual-socket server with a 2.0GHz Intel (R) Xeon (R) E5-2650
with 8 physical cores each (32 hardware threads in total with hyper-threading enabled). The server has 64
GB of RAM, runs Ubuntu 13.04 Linux (Kernel version: 3.8.0-35-generic x86_64) with Java HotSpot (TM)
64-Bit Server VM (build 25.60-b23), and we compiled all the implementations with javac version 1.8.0_60.

1. Levy-Kd: A Java implementation of sequential kD-tree of [36] by Levy [37] that supports Remove oper-
ation (mostly the available kD-tree implementations do not support Remove).

2. LFKD: Our implementation of the LFkD-tree with NNS.
3. PH-tree: A multi-dimensional storage and indexing data structure by Zäschke et al. [24] that supports
Remove operations. The implementation is single-threaded.

We performed evaluation using a 2D real-world dataset and a set of synthetic benchmarks. For the real-
world dataset, we used the United States Census Bureau 2010 TIGER/Line KML [38] dataset that consists
of polylines describing map features of the United States of America. TIGER/Line is a standard dataset used
for benchmarking spatial databases. Two synthetic datasets represent more extreme cases. The SKEWED
dataset described by Arge et al. [39] in which di�erent dimensions have di�erent distributions. The CLUSTER
dataset [24] is an extension of a synthetic dataset previously described by Arge et al. [39]. It consists of 10000
clusters of points evenly spaced on a horizontal line. A detailed description of the datasets can found in
Appendix B.

Workload and Methodology: We run each test for 5 seconds and measured throughput as the total
number of operations per microsecond executed by all threads in this time duration. We run each experiment
in a separate instance of the JVM, starting o� with a 2-second �warm-up� period to allow the Java HotSpot
compiler to initialize and optimize the running code. During this warm-up phase, we performed random
Add, Remove and Contains operations, and then �ushed the tree at the end of the period. At the start
of each execution, the data structure is pre-�lled with a set of keys in the selected key-range. To simulate
the variation in contention and tree structure, we chose following combination of workload con�gurations:
i) dataset space dimension ∈ {2, 3, 4, 5}, ii) number of key entries ∈

{
{0-106}, {0-107}

}
, iii) distribution of

(Add-Remove-NNS) ∈ {(05, 05, 90), (25, 25, 50)}, and iV) number of threads ∈ {1, 2, 4, 8, 16, 32}. We have



not included Contains operations in experiment because essentially it would increase the proportion of
exact-match NNS. All executions use the same set of randomly generated points for the selected workload
characteristics. The graphs present statistical averages of throughput over 6 runs of each experiment.
4.2 Observations and Discussion
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Fig. 3: Performance on the SKEWED(6) and CLUSTER datasets. A column corresponds
to a dimension of the data.

For the TIGER/Line dataset,
LFKD has signi�cantly higher
performance than both the
PH-tree and the Levy-Kd
for all workload distributions
(2.5× for the single thread
case), see Figure 4. This per-
formance scales up with in-
creasing thread count (with
the LFKD up to 19× in the
NNS dominated workload).
Additionally, the graphs show
that the PH-tree outperforms
the Levy-Kd only for work-
loads that do not involve
NNS. Figure 3(a) and 3(b)
depict the throughput of dif-
ferent implementations for the
SKEWED and CLUSTER datasets respectively. Each row represents a combination of the range of key (k=N,
N being the maximum) and the associated workload distribution while each column the dimensionality of
key (d=dimension). We observe that our LFKD outperforms other designs and scales well up to 32 threads
(when CPU saturates with threads) for lower dimensions of the key. As we increase the key dimension, the
performance degrades for workloads dominated by the NNS. This degradation with increasing key dimen-
sions is expected in kD-trees due to the curse of dimensionality [1]. This performance pattern is identical for
di�erent key ranges. However, the LFKD still achieve speedup over the single threaded implementations.

We observe that for NNS dominated workload(90% NNS, 5% Add and 5% Remove), the LFKD achieves
speedups up to 66× for SKEWED and up to 150× for CLUSTER datasets over the sequential implemen-
tations. These observations, can be partially attributed to the local-midpoint rule, which carries the essence
of the sliding-midpoint-splitting rule of [15] that was designed for the purpose of handling the extreme case
such as a CLUSTER distribution, to a concurrent setting.
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Fig. 4: 2-D TIGER/Line dataset.

For a workload with increased modify operations ( 50% NNS,
25% Add and 25% Remove), the performance of LFkD-tree is
degraded by increasing key dimension. The absolute throughput
�gures are higher for the NNS dominated workload in lower di-
mensions than in mixed workloads. This is because the modify op-
erations incur higher synchronization (con�icts, expensive atomic
operations, and helping) overhead compared to search operations.
However in higher dimensions, the throughput of theNNS is lower
as the number of visited nodes increases tremendously with di-
mension.
5 Conclusion and Future Work

For a large number of applications, which require data-structures supporting dynamic modi�cations along
with nearest neighbour search, research community has largely focused on improving the design of sequential
data-structures. The approximate solutions of this problem, which are popular, do not address the issue
of providing concurrency support. We introduce LFkD-tree, a lock-free design of kD-tree, which supports
linearizable nearest neighbour search operations with concurrent dynamic add and remove of data. We provide
a sample implementation which shows that the LFkD-tree algorithm is highly scalable.

Our method to implement linearizable nearest neighbour search is generic and can be adapted to other
multi-dimensional data structures. We plan to design lock-free data structures which are suitable for nearest
neighbour search in high dimensions, for example, the ball-tree. We also plan to extend our work to k-nearest
neighbour (kNN) search.
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A A real-life application
Let us consider a web application that provides support for a real-time dynamic speed dating. The

requirements of this application are as following:
(a) Users can join and leave dynamically in real time.
(b) Users respond to a set of 5 multiple choice questions and based on the response their pro�le is created as

a 5-tuple. A user is indexed by his / her pro�le.
(c) Users query for the most similar matching pro�le in real time.
(d) The application aims to utilize the multiple cores of a commonly available shared memory machine to

get speedup.
(e) In the fully asynchronous setting of the application, the concurrent operations must return consistent

result. Additionally, progress guarantee is desired, that is, if multiple concurrent threads are assigned
to the tasks of add, remove and similarity match queries by users, the application should tolerate any
number of crash failure of individual threads.
We face many similar instances in our day-to-day experience with web based software. Given a 5-tuple

a={ai}5i=1 representing the pro�le of a user querying similarity match, the problem here is to �nd the pro�le
of a user, represented by b={bi}5i=1, such that d(a, b)≤d(a, k) ∀ k={ki}5i=1, where d() is a real-valued metric
and k represents a 5-tuple corresponding to an active user. The problem becomes challenging because of
the dynamic nature of the application. Furthermore, desiring speedup along with consistency and progress
guarantee broadens the challenge.

Although the above problem statement is hypothetical but to our surprise we found that the sequential
kD-tree used for throughout comparison in this work is perhaps being used in a similar web application as
mentioned here http://home.wlu.edu/~levys/software/kd/. This clearly motivates our work which can
most certainly speedup such an application with a provable progress guarantee.
B Datasets
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Fig. 5: Synthetic dataset.

We performed evaluation using a 2D real-world dataset and a set of synthetic benchmarks. For the real-
world dataset, we used the United States Census Bureau 2010 TIGER/Line KML [38] dataset that consists
of polylines describing map features of the United States of America. TIGER/Line is a standard dataset
used for benchmarking spatial databases. For this evaluation, we extracted points representing the mainland,
resulting in 18.4 ∗ 106 unique 2-dimensional points, with x-y coordinates that lie between -124.85 6 x 6
-66.89 and 24.40 6 y 6 49.38 (ignoring the third dimension with all points 0.0).

To investigate more extreme cases, two synthetic datasets were utilized. The SKEWED data simulates
datasets in which di�erent dimensions may have varying distributions. The SKEWED (c) dataset contains
uniformly distributed points which fall within 0.0 and 1.0 in every dimension that have been skewed in the
y-dimension as depicted in �g. 5. For each point in the dataset, the y value is replaced with the value yc.
In the �g. 5, we show examples for SKEWED(1) which is intuitively uniform distribution in all dimensions,
SKEWED (3) and SKEWED (6).

The CLUSTER dataset [24] is an extension of a synthetic dataset previously described by Arge et al. [39].
In this evaluation we used clusters of 1000 points evenly spaced on a horizontal line. Each of the clusters is
�lled with evenly distributed points and stretches 0.00001 in every dimension. Figure 5 depicts an example of
the cluster dataset with 49 points per cluster. The line of clusters falls within (0.0, 1.0) along the x-axis and
is parallel to every other dimensional axis with a 0.5 o�set. For this dataset, we generated up to 50,000,000
unique points.

During our experimental evaluation, we observed that skewness of the data does not a�ect the performance
of the LFKD �g. 6. On the contrary, as depicted in �g. 7 the throughput performance for the Levy-Kd drops



as we increase the skewness of the data. The observed di�erent behaviour can be attributed mainly to the
local-midpoint splitting rule in the concurrent setting.

d = 2 d = 3 d = 4 d = 5

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0
5

�

0
5

�

9
0

2
5

�

2
5

�

5
0

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Number of threads (2
x
)

T
ro

u
g
h
p
u
t(

o
p
s
/µ

s
)

LFKD(1)

LFKD(6)

Levy�Kd(1)

Levy�Kd(6)

Ph�tree(1)

Ph�tree(6)

Fig. 6: SKEWED(1) and SKEWED(6) datasets: System
throughput

05−05−90 25−25−50

0.05

0.10

0.15

0.20

0.05

0.10

0.15

0.20

k
=

5
e
+

0
5

k
=

5
e
+

0
6

2 3 4 5 2 3 4 5

Key Dimension

T
ro

u
g
h
p
u
t(

o
p
s
/µ

s
)

Levy−Kd(1) Levy−Kd(6)

Fig. 7: System throughput for Levy-kd as we
vary the dimension for skewness value 1 and
6. Each row representing a key range and
each column associated workload
distribution.

C Linearizable Add, Remove and Contains operations

C.1 Overview

In a sequential setting, when Remove(a) modi�es the link g(N(a));p(N(a)), no operation is executed
concurrently with a possibility to modify either p(N(a));N(a) or p(N(a));s(N(a)). However, in a concurrent
setting, where these pointers are shared by multiple operations, an Add operation can concurrently modify
any of these pointers. It may result into the newly added node not being a part of the LFkD-tree. Similarly,
if s(N(a)) is an internal-node, a concurrent Remove operation trying to remove a child of s(N(a)) may end
up connecting p(N(a)) to the sibling of the removed child which results into a wrong outcome. Essentially,
for a correct concurrent implementation of modify operations in a LFkD-tree, we need to keep the pointers
p(N(a));N(a) and p(N(a));s(N(a)) �xed when g(N(a));p(N(a)) is updated to g(N(a));s(N(a)). Addition-
ally, because we maintain parent pointers, we also need to keep the pointer g(N(a));p(N(a)) �xed when
s(N(a));p(N(a)) is updated to s(N(a));g(N(a)), in case s(N(a)) is an internal node.

For a lock-free synchronization we can not use locks to keep these shared pointers �xed. Instead of locks,
we design the helping protocol for operations. Basically, the idea is: whenever an operation encounters a
shared pointer �xed (although not by a lock) by a concurrent modify operation, i.e. obstructed, it takes
necessary steps to complete the pending operation and thereby avoids the obstruction in its own progress.
This ensures that no non-faulty thread is blocked due to a delayed or crashed thread and thereby provides
progress guarantee.

Ellen et al. [7] suggested to put operation descriptors, using CAS, at the nodes g(N(a)) and p(N(a)) by
a Remove operation and at p(N(a)) by an Add operation, before updating the necessary pointers. An
operation descriptor stores information about the changes that a modify operation needs to make. If CAS
fails, appropriate helping is performed, using the information from the descriptor, before a reattempt.

Natarajan et al. [9] suggested that instead of putting the descriptors at the nodes g(N(a)) and p(N(a)),
putting them at the links p(N(a));N(a) and p(N(a));s(N(a)) improves performance. Both these designs use
single-word-sized CAS to put descriptors and update the pointers.

Our design is based on [9]. In section 2.3, we described the basics of a lock-free implementation of Add,
Remove and Contains operations. Here we describe the algorithm with a pseudo-code.

C.2 Linearizable Add, Remove and Contains operations

We have already described in section 2.3 the operation descriptors and their denotation about the di�erent
steps of a Remove operation. In algorithm 4, we use the methods IsMark() and IsFlag() to check whether a
pointer has descriptor mark and flag, respectively. And, to pack these descriptors, we use the methods Mark()
and Flag(), respectively. To get the value of a pointer free from all descriptors, which gives a node-address,



� Return a child-direction.
1 Dir(Node∗ N(i,c)·ref, double[] k)
2 return k [i ] < c ? L : R;

� Directions - L: left, R:

right; implemented as a boolean.

� Return a child-pointer.
Child(Node∗ pa, dir cD)

3 return cD = L ? pa·lt : pa·rt;
ChCAS(Node∗ pa, Node∗ exp, Node∗
new , dir cD)

4 if (cD = L) and pa·lt = exp then
5 return CAS(pa·lt·ref, exp, new);
6 else if (cD = R) and pa·rt = exp then
7 return CAS(pa·rt·ref, exp, new);
8 else return false;

Search(Node∗ pa, Node∗ a, double[] k)
9 while Ptr(a)·class 6= LNode do
10 pa := Ptr(a); a := Child(pa, Dir(pa, k));
11 return 〈pa, a〉;

� Crates a new internal-node.

NewNode(Node∗ a, Node∗ b, Node∗ p)
12 ka := a·k; kb := b·k;
13 i := {i : 1≤i≤d and

|ka[i]−kb[i]|≥{|ka[j]−kb[j]|}dj=1};
� Local-midpoint rule is applied.

14 c :=
ka[i]+kb[i]

2
;

15 left := (ka[m] < kb[m] ? a : b);
16 right := (ka[m] > kb[m] ? a : b);
17 return INode(m, c, left, right, p);

AddNode(double[] k)
18 pa := root; a := pa·lt;
19 while true do
20 〈pa, a〉 := Search(pa, a, k);
21 if !IsMark(a) then
22 if k = Ptr(a)·k then
23 return 〈Ptr(pa), Ptr(a), false〉;
24 if IsFlag(a) then pa := Help(pa, a);
25 else
26 n := LNode(k); cD := Dir(pa, k);
27 newNd := NewNode(a, n·ref, pa);
28 if ChCAS(pa, a, newNd·ref, cD) then
29 return 〈newNd·ref, n·ref, true〉;
30 else pa := Help(pa, a);
31 a := Child(pa, Dir(pa, k));

Add(double[] k)
32 〈pa, a, result〉 := AddNode(k);
33 Sync(pa, a); return result;

Remove(double[] k)
34 pa := root; a := pa·lt;
35 while true do
36 〈pa, a〉 := Search(pa, a, k);
37 if !IsMark(a) then
38 if k 6= Ptr(a)·k then return false;
39 if IsFlag(a) then pa := Help(pa, a);
40 marker := Mark(a); cD := Dir(pa, k);
41 else if ChCAS(pa, a, marker, cD) then
42 Help(pa, a); return true;

43 else return false;
44 a := Child(pa, Dir(pa, k));

Contains(double[] k)
45 pa := root; a := pa·lt;
46 〈pa, a〉 := Search(pa, a, k);
47 if !IsMark(a) then
48 Sync(Ptr(pa), Ptr(a));
49 return k = Ptr(a)·k ? true : false;
50 else return false;

Algorithm 4. The Add, Remove and Contains operations in LFkD-tree

we use the method Ptr(). The steps in helping by an operation at a leaf-node-pointer, which has been injected
with the descriptor mark or flag, are performed in the method Help(). The steps of the method Help() are
presented in algorithm 5 in the next section.

The method Search(), line 9 to 11, which performs a query, returns the pointers to the leaf-node and its
parent, where the query terminates. The method AddNode(), line 18 to 31, attempts to add a new node in
the LFkD-tree. It starts with calling Search(), line 20. If the returned leaf-node-pointer a is found containing
mark, it indicates that the node containing the query key is logically removed, and therefore, the method
Help() is called to help the concurrent pending Remove operation, line 30. Otherwise, the node pointed by
a is checked whether it contains the query key, line 22, and if found, false is returned, line 23. AddNode() also
outputs the descriptor-free pointers to the leaf-node and its parent where the query terminated. However, if
the leaf-node did not contain the query-key, it is checked whether a has the descriptor flag, which indicates a
pending Remove of the sibling of the node pointed by a; and if flag is found, Help() is called, line 24. Only
in the case a is descriptor-free, the method NewNode() is called to allocate a new node, and a CAS executed
in the method ChCAS(), called at line 28, modi�es a to add the new node. On that, return includes true.

The operation Add, line 32 to 33, calls AddNode() to get the pointer to the node and its parent, either
added by itself or already present there, containing its query key, and the result of addition accordingly.
Thereafter, Add calls the method Sync(), line 33, and outputs the result. We describe Sync() in the section 3.

The Remove operation, line 34 to 44, performs query in a similar way calling Search(), line 36. At the
return of Search(), if a is found to have mark, it indicates that even if the query key k was present in the
LFkD-tree, has already been logically removed and therefore Remove returns false, line 43. If a is free of
mark, we check if the node pointed by a contains the query key, and if not, Remove returns false, line 38.
However, if the pointer a is found to have the descriptor flag, it indicates a pending Remove of the sibling
of the node pointed by a, and therefore we call the method Help() to perform helping steps. After return
of Help(), the steps are reattempted. Finally, if a was descriptor-free, mark is injected on it via the method
ChCAS(), line 41, and if it succeeds, the Help() is called to take further steps and true is returned, line 42.

A Contains, line 45 to 50, by calling Search(), returns true only if the pointer a does not have mark and
the query key matches at the leaf-node pointed by a at line 49; else it returns false, line 50. Similar to Add,
Contains also calls Sync(), which will be explained in the section 3.
C.3 The Helping steps

In algorithm 5, the method Help(), line 1 to 6, is called at a pointer to a leaf-node which had been
injected with either the descriptor mark or flag. Therefore, it �rst decides the type of descriptor, and then
accordingly calls either HelpMrk(), line 5, or HelpFlg(), line 6.

The method HelpMrk(), line 7 to 10, �rst calls ApndTag() to �x the g(N(a)), pointed by ga. And then calls
HelpTag() to complete the remaining steps of Remove. To distinguish between the tag put by the Remove
of left and right child of p(N(a)), we use two types of tag: ltag and rtag. In the method ApndTag(), line 13



Help(Node∗ pa, Node∗ a)
1 cD := (a·k[pa·i] < pa·c) ? L : R;
2 if IsFlag(a) then
3 ga := pa·pr; sa := Child(pa, !cD);
4 pD := (a·k[ga·i] < ga·c) ? L : R;
5 return HelpFlg(ga, pa, sa, pD);
6 else return HelpMrk(pa, a, cD);

HelpMrk(Node∗ pa, Node∗ a, dir cD)
7 ga := ApndTag(pa, a, cD);
8 pD := Dir(ga, a·k); pl := Child(ga, pD);
9 if Ptr(pl) = pa then HelpTag(ga, pl, pD);
10 return ga;

HelpTag(Node∗ ga, Node∗ pl, bool pD)
11 pa := Ptr(pl);

sD := (TagDir(pl) = L ? R : L);
12 HelpFlg(ga, pa, ApndFlg(pa, sD), sD);

ApndTag(Node∗ pa, Node∗ a, dir cD)
13 while true do
14 ga := pa·pr; pD := Dir(ga, a·k);
15 pl := Child(ga, pD);
16 if Ptr(pl) = pa then
17 if IsTag(pl) then
18 if TagDir(pl) = cD then return ga;
19 else HelpTag(ga, pl, pD);
20 else if IsFlag(pl) then
21 grGa := ga·pr;
22 HelpFlg(grGa, ga, pa, Dir(grGa, a·k));
23 else if ChCAS(ga, pl, Tag(pl, cD), pD)

then
24 return ga;

25 else if pl = a then pa := ga;
26 else return ga;

ApndFlg(Node∗ pa, dir sD)
27 while true do
28 sa := Child(pa, sD);
29 if IsMark(sa) then return sa;
30 else if IsFlag(sa) then return Ptr(sa);
31 else if IsTag(sa) then

HelpTag(pa, sa, sD);
32 else if ChCAS(pa, sa, Flag(sa), sD) then
33 return sa;

HelpFlg(Node∗ ga, Node∗ pa, Node∗
sa, dir pD)

34 if Ptr(pl := Child(ga, pD)) = pa then
35 if Ptr(sa)·pr = pa then
36 CAS(Ptr(sa)·pr·ref, pa, ga);
37 ChCAS(ga, pl, sa, pD);
38 return ga;

Algorithm 5. Help() Method of Algorithm 4

to 26, if the link was found already tagged, the type of tag (ltag or rtag) is read using the method TagDir.
And, if the link was found to be tagged by a Remove of the other child of p(N(a)), �rst that Remove is
helped and then we reattempt, line 19, otherwise we return ga, line 18. However, if the link g(N(a));p(N(a))
is found flagged, line 22, it indicates a pending Remove of s(p(a)) and therefore we help it before reattempt.
On successfully tagging the link g(N(a));p(N(a)), we return the pointer ga, line 24. Also, if g(N(a)) is found
not connected with p(N(a)), we return ga, line 26, and Remove operation terminates because it indicates
the completion.

The method HelpTag(), line 11 to 12, reads the direction of the child whose Remove had tagged the
link g(N(a));p(N(a)) (represented by pl), line 11, flags the (sibling) link calling ApndFlg() and �nally calls
HelpFlg() to perform the remaining steps, see line 12.

In ApndFlg(), line 27 to 33, if the link p(N(a));s(N(a)) (represented by sa) was found marked, line 29,
we return this link as it is, because it is guaranteed that the Remove operation that marked this link, will
perform helping before reattempting its CAS to put a tag in the method ApndTag(). In that case, the marked
link is further carried to the method HelpFlg() and connected to p(N(a)). If p(N(a));s(N(a)) is found �agged,
we return s(N(a)), represented by the value of sa without any descriptor i.e. Ptr(sa), line 30. On a successful
CAS to flag the link, we return address of s(N(a)) represented by sa, line 33.

Finally, the method HelpFlg(), line 34 to 37, if required, connects the pr pointer of s(N(a)) to g(N(a)),
see line 36. And lastly, node a is detached from the LFkD-tree by connecting s(N(a)), represented by sa, to
g(N(a)) using a CAS at line 37.

D The Non-recursive Traversal

Seek(Node∗ pa, Node∗ a, double[] k , double[] hi, double[] lo)
1 cD := (a·k[pa·i] < pa·c) ? L : R;
2 while Ptr(a)·lt 6= null do
3 pa := Ptr(a); cD := Dir(pa, k);
4 a := Child(pa, cD);
5 if cD = L then hi [pa·i] := pa·c;
6 else lo[pa·i] := pa·c;
7 return 〈pa, a〉;

NextGuess(Node∗ pa, Node∗ a, double dst, double[] k ,
double[] hi, double[] lo)

8 cD := (a·k[pa·i] < pa·c) ? L : R;
9 leafKey := a·k;

10 while pa 6= root do
11 if cD = L then ntVsted := (pa·c≥hi [pa·i]);
12 else ntVsted := (pa·c≤lo[pa·i]);
13 if |pa·c− k [pa·i]| < dst and ntVsted then
14 cD := (cD = L ? R : L); a := Child(pa, cD);
15 Seek(pa·ref, a·ref, cD ·ref, k , hi)lo;
16 leafKey := a·k;
17 if (leafdst := ||k , leafKey||2) < dst then
18 if !IsMark(a) then {dst := leafdst; break;}

19 else
20 a := pa; pa := pa·pr; cD := Dir(pa, leafKey);
21 if cD = L then
22 if pa·c > hi [pa·i] then hi [pa·i] := pa·c;
23 else
24 if pa·c < lo[pa·i] then lo[pa·i] := pa·c;
25 return 〈pa, a〉;

Algorithm 6. Non-recursive traversal

The main tool of the non-recursive traversal for the iterative scan is to keep track of an (orthogonal)
axis aligned bounding box (AABB) of the points in the subtrees, both visited and pruned. An AABB is
described by its two corner points. We use the variables hi and lo throughout the algorithms to represent



the two corner points. Initially, in to begin the query in the operation NNS, the corner points are taken as
{∞0}d and {−∞0}d, see line 5 in algorithm 2, which cover the entire dataset.

The method Seek(), line 2 to 7, which is called by NNS for the initial query at line 6 in algorithm 2,
starts with the initial AABB as described by the two arrays hi and lo with their initial values, and performs
a query absolutely similar to the method Search() to arrive at a leaf-node. At the termination of Seek(),
the arrays AABB represent the bounding box that covers every data-point that can be in the sub-tree of the
parent of the leaf-node, where it terminates, which has the same direction as the leaf-node with respect to its
parent. We follow the convention that an array is always passed by reference and therefore any modi�cation
at any element in a method call persists even after the return of the method call. Thus, at the return of
Seek(), if the query point did not match at the key of the leaf-node, we go to perform further iterations
using the method NextGuess() with the current bounding box which represents the rectangular region of the
Euclidean space that we have covered.

The method NextGuess(), line 8 to 25, performs an iteration for a better guess of the nearest neighbour
given the distance of the current guess from the target point. We input the pointers to the current leaf-node
and its parent along with the AABB described by its two corners. The �rst step is to �nd the direction of
the current sub-tree and then decide whether the other sub-tree of the parent is visited or not, see lines 8, 11
and 12. Basically we check whether the axis-orthogonal hyperplane associated with the parent node is beyond
the AABB. Having done that, we check whether the unvisited AABB on the other side of the hyperplane
should be visited by checking its distance from the target point and comparing it with the current distance
as input, see line 13. Now, if we need to visit the other sub-tree, the method Seek() is called to perform the
query and update AABB, line 15, else we traverse back to root. When we traverse back to root, the AABB
is widened to cover both sub-tree rooted at an internal node, see lines 22 and 24.

Thus, the method Collect() repeatedly calls NextGuess() to perform an iterative scan of the LFkD-tree,
see line 13 in algorithm 2.
E Correctness and Lock-freedom

Shared Memory System: We consider an asynchronous shared memory system U which comprises a
set of word-sized objects V and a �nite set of processes P and supports primitives read, write and CAS
(compare-and-swap). U guarantees that the primitives are atomic i.e. they take e�ect instantaneously at
an indivisible time-point [40]. Each object v∈V has a unique address, commonly known as a pointer to v,
denoted by v·ref. CAS(v·ref, exp, new) compares the value of v with exp and on a match updates it to new in a
single atomic step and returns true; else it returns false without any update at a. Let |P|=n. Processes p∈P
communicate by accessing the objects v∈V using a primitive. A con�guration Ut of U speci�es the value of
each of v∈V and the state (values of local variables, etc.) of each of p∈P at time t. The initial con�guration
U0 represents the initial value of each of v∈V and the initial state of each of p∈P.

Abstract Data Type: In this paper, by multidimensional data we mean a point from the real space Rd

and by distance we mean Euclidean distance ||a, b||2 ∀ a, b∈Rd. Let FRd
be the set of all countably �nite

subsets of Rd. Let k∈Rd and A∈FRd
. Let B:={true, false}. An abstract data type (ADT) kDSet is speci�ed

as a set of mappingsM = {Add,Remove,Contains,NNS} as de�ned below:

De�nition 1 (ADT Operations:).

1. Add : Rd×FRd 7→ B×FRd
s.t. Add(k,A)=(true,A ∪ k) if k/∈A and Add(k,A)=(false,A) if k∈A.

2. Remove:Rd×FRd 7→B×FRd
s.t. Remove(k,A)=(true,A/k) if k∈A and Remove(k,A)=(false,A) if k/∈A.

3. Contains : Rd×FRd 7→ B×FRd
s.t. Contains(k,A)=(true,A) if k∈A and Add(k,A)=(false,A) if k/∈A.

4. NNS : Rd×FRd 7→Rd×FRd
s.t. NNS(k,A)=(a∗,A) where a∗ ∈ A ∧ ||a∗, k||2 ≤ ||a, k||2∀a∈A.

Data Structure: A LFkD-tree Υ stores points from a dataset A∈FRd
. The state of Υ in con�guration

Ut, denoted Υt, stores points from At∈FRd
. For an unbounded and dynamic design, Υ is constructed using

nodes and links that are assembled of the objects v∈V. In section 2.1, we described the structure of the
LFkD-tree in detail. The access of Υ is availed by root - the address of a �xed sentinel node. The left (right)
-subtree of a node N, denoted by N·L (N·R), is the set of nodes comprising of the left (right) -child and all
its descendants.

Operation Descriptors: An operation descriptor is a boolean variable. A link represented by a pointer,
which occupies a single object v∈V, is called to be injected with a descriptor des if a test for des on the link
returns true. A descriptor des can be mark, flag, ltag or rtag. We call a link clean if it is not injected
with any descriptor. At any time t≥0, a node N is said to be present in Υt, denoted by N∈Υt, if it can be



reached following links starting from root and the link that connects its parent to itself is not injected with
the descriptor mark. If Υt stores At then N∈Υt =⇒ N·ref·ky∈At.

Implementation: An implementation IO of kDSet is an algorithm, which implements mappings O⊆M
using operations on Υ . We call the implementation full if O=M, otherwise it is called partial. We assign the

operations same name as its corresponding mapping. Thus, a mapping op(k,A), where op:Rd×FRd 7→B×FRd
,

k∈Rd and A∈FRd
, is implemented by an operation op(k) that outputs true or false and makes appropriate

changes in Υ storing A. A NNS(k,A) is implemented by NNS(k), which outputs a point a∗∈Rd according
to the mapping de�nition.

Operation Steps: A process p∈P performs an operation op as a set of steps. If op is large, often we group
a subset of steps in op as a method, which is called from inside of op. A step s=〈v, g, h, p〉, where g and h are
the values of the object v before and after the execution of s, comprises at most one execution of a primitive
and can contain some calculations over process-local variables of p. The execution-point of s is the point on
a real time-line where its atomic primitive takes e�ect. We denote the invocation and response steps of op
by si(op) and sr(op), respectively. The execution-points of si(op) and sr(op), denoted by ti(op) and tr(op),
are called the invocation point and response point respectively. IO also speci�es the initial con�guration U0.

Execution History: An execution α of IO is a (�nite or in�nite) sequence of steps performed by the
processes p∈P, starting from U0. A history H of α is its subsequence consisting of the invocation and response
steps. A subhistory of H is its subsequence. A process subhistory of H, denoted by H|p is its subsequence
containing steps executed by a p∈P. We call historiesH andH′ equivalent, denotedH≡H′, if ∀p∈P,H|p=H′|p.
In H, a response step of an operation op matches an invocation step if the two are performed by the same
process. A history is called sequential, if the �rst step is an invocation and every invocation step, except
possibly the last one, follows by a matching response step. We assume that every history H is well-formed :
∀p∈P, H|p is sequential. An operation in a history is e�ectively the pair of its invocation and response steps.
Let op1 and op2 be two operations in H. We call op1 precedes op2 in H, denoted op1−→H op2, if t

r(op1)<t
i(op2).

We call two operations op1 and op2 concurrent in H, if neither precede the other. H is called concurrent if
it contains at least one pair of concurrent operations.

Extension and Completion of History: We call an invocation s pending in H, if H does not contain
a matching response to it. An extension of H, denoted ext(H), is obtained by appending matching response
steps to every pending invocation in H. A completion of H, denoted by complete(H), is obtained by dropping
the pending invocation steps from H.

Consistent Sequential History: A sequential speci�cation of IO is a set of sequential histories. Let
si(op), sr(op)∈S, where S is a sequential history. Let Υti(op) and Υtr(op) be the states of Υ at ti(op) and tr(op),
which store the datasets Ati(op) and Atr(op), respectively. We call the operation op consistent with respect to
the ADT kDSet in S if the output arguments at the response and Atr(op) satisfy the corresponding mapping
de�nition of kDSet. The sequential history S is consistent if each operation in it is consistent.

De�nition 2 (Linearizability:). A history H is linearizable if ∃He=ext(H) and a consistent sequential
history S s.t. (a) complete(He) ≡ S and (b) op1−−→He

op2 =⇒ op1−→S op2. We call an implementation IO
linearizable if every execution history of IO is linearizable.

The most common approach to prove linearizability is: (a) de�ne linearization point of each operation op
as the execution-point of a step, called linearization, which should be between the invocation and response
point of op then (b) in an arbitrary history H append appropriate response (in any arbitrary order) of
all the operations which have performed their linearization to obtain ext(H), then (c) drop the invocation
steps without a matching response to obtain complete(ext(H)), and (d) construct a sequential history S
by arranging the invocation-response pair of operations according to their linearization points. It is easy to
argue that complete(ext(H)) ≡ S. And, �nally, show that the constructed sequential history S is consistent.

In section 2.4, we already mentioned the linearization points of the operations in the implementation
IO, where O={Add,Remove,Contains}, of the kDSet. In section 3.1, we discussed the arguments that
determine linearization steps of NNS operations when target points are coincident. We also stated in sec-
tion 3.3 that the linearization point of an NNS operation remains unchanged even if the target points of the
concurrent NNS operations do not coincide. Here we list out the linearization points of the operations as the
following:

De�nition 3 (Linearization points:).



1. For a successful Add operation, it is at line 5 or line 7 in the method ChCAS(), which is called at line 28
in the method AddNode() and which in turn was called by Add.

2. For a successful Remove operation, it is at line 5 or line 7 in the method ChCAS(), which is called at
line 41 in Remove.

3. For an unsuccessful Add and a successful Contains operation it is at line 10 in the method Search()
called from these operations.

4. For an unsuccessful Contains and Remove operation, it can be either just after the linearization point
of a concurrent Remove operation or at the invocation point of these operations, as stated in section 2.4.

5. For a NNS operation, if it returns a data-point which was contained in a collected-neighbour, the lin-
earization point is at line 3 in algorithm 6 in the method Seek() called from the NNS.

6. For a NNS operation, if it returns a data-point which was contained in a reported-neighbour, the lineariza-
tion point is just after the linearization point of either Contains or Add that reported the neighbour.

It is easy to observe in algorithm 4 that these linearization points are in between ti(op) and tr(op) for
respective op∈O={Add,Remove,Contains,NNS}.

Now with that, given any concurrent execution historyH of an implementation IO, whereO⊆{Add,Remove,
Contains,NNS}, we form an equivalent sequential history S by following the steps as described above. And
thus it remains to be shown that such a sequential history will be consistent.

To do that, we essentially show that the invariants of the LFkD-tree, as stated in section 2.1 are main-
tained, and the sequential speci�cations as described in section 2.2, are satis�ed by the consistent operations.
Because the implementation of the lock-free list of neighbour-collectors is orthogonal to the implementation
of the LFkD-tree, we also need to show that the invariants of the list, as stated in section 3.3, are maintained
by the NNS operations. Therefore, here we state the invariants and present some observations and lemmas
which help us to show that the invariants are maintained.

Given a LFkD-tree Υ , for every internal-node N(i, c) and a leaf node N({ki}di=1), Υ maintains the following
invariants:

INV 1 A node N({ki}di=1) belongs to the left subtree, if ki<c.

INV 2 A node N({ki}di=1) belongs to the right subtree, if ki≥c.

INV 3 A node N({ki}di=1) belongs to the right subtree, if ki≥c.

A LFkD-tree state Υt that satis�es the invariants 1 to 3 is called a valid state. Now, for the list of the
neighbour-collectors, we denote a neighbour-collector by NC({ki}di=1) if the target point that it contains is
{ki}di=1. A neighbour-collector list maintains following invariant:

INV 4 In the list there can not be two neighbour-collectors NC({ki}di=1) and NC({ji}di=1) such that ki =
ji ∀ i : 1≤i≤d.

To prove that the above invariants are maintained throughout the algorithms, we present following ob-
servations and lemmas.

Observation 1 The �elds k and i are never changed in a Node.

Observation 2 Any link in a LFkD-tree is updated only using a CAS.

Observation 3 The sentinel nodes are never removed.

Observation 4 The pr pointer of the node root is never dereferenced.

Going through the pseudo-code we can observe that once we allocate a node, we never call any store step
on the �elds k and i and any pointer update is done using a CAS. The choice of keys in the sentinel nodes
veri�es the third observation. The pr pointer of an internal node is dereferenced only if a Remove operation
on any of its children is called. Thus the observation 3, implies the observation 4.

Lemma 1. In each call of Dir(), line 2, variable N(i,c)·ref represents a pointer which is clean and points
to an internal-node and thus is not null.



Lemma 2. In each call of Child(), line 3, pa is clean and points to an internal-node and thus is not null.

Lemma 3. In each call of ChCAS(), line 4 to 8, pa is clean and points to an internal-node, whereas new is
clean and points to a leaf-node; thus pa and a are both not null.

Lemma 4. In each call of Search(), line 9, pa is clean and points to an internal-node, whereas a is clean
and points to a node (internal or leaf); thus both are not null.

Lemma 5. In each call of Search(), line 9, pa and a satisfy a = pa·lt | pa·rt.

Lemma 6. In each call of HelpMrk(), line 7, pa is clean and points to an internal-node, whereas a is clean
and points to a leaf-node; thus both are not null.

Lemma 7. In each call of HelpFlg(), line 34, ga and pa are clean and point to two di�erent internal-nodes,
whereas sa is eitherpoints to a leaf-node and thus are not null.

Lemma 8. In each call of HelpTag(), line 11, ga is clean and points to an internal-nodes, whereas pl is
either ltag or rtag and points to an internal-node and thus are not null.

Lemma 9. In each call of ApndTag(), line 13, pa and a are clean. pa points to an internal-nodes, whereas
a points to a leaf-node and thus both are not null.

Lemma 10. In each call of ApndFlg(), line 27, pa is clean and points to an internal-node and thus is not
null.

Lemma 11. A pointer once injected with a descriptor mark, flag, ltag or rtag is not injected with any
descriptor ever after.

The lemma 1 to 10 provide a base to prove that at no point an implementation of the presented algorithm
faces a segmentation fault due to the dereferencing of a null pointer during the operations Add, Remove
and Contains. To prove these lemmas we inspect the pseudo-code algorithms 4 and 5. At each call of the
utility methods we �nd that the inputs to the utility methods follow the requirements of these lemmas. A
listing of the lines of the pseudo-code containing call of these methods veri�es this claim. The statements
of this set of lemmas is what we need to prove the next set of lemmas which provides the veri�ed base for
postconditions of the LFkD-tree operations.

Lemma 12. At the termination of Search at line 11,

(a) pa points to an internal-node and is clean.
(b) a points to a leaf-node and can be either clean or mark or flag.
(c) pa and a satisfy a = pa·lt | pa·rt.
(d) a·k[pa·i] ≥ pa·c =⇒ a = pa·rt.
(e) a·k[pa·i] < pa·c =⇒ a = pa·lt.

Following from the lemmas 4 and 5, the while loop ensures that the variable a always points to one of the
child-pointers of the node pointed by pa; this ensures the validity of the lemma 12 (a), (b) and (c).

Now, Following the lemma 11 shows that the CAS steps are performed orderly in a Remove operation.
It is easy to verify that if the CAS steps are orderly in a Remove operation, it does not result into the
malformation of the LFkD-tree. Also, for an Add operation, because the single CAS that it requires can not
happen over a link with descriptor.

Now, the keys in the sentinel nodes vacuously prove the following lemma 13, which provides base condition
for an induction to prove the theorem 1.

Lemma 13. Initially, the LFkD-tree consisting of the sentinel nodes satis�es the invariants as stated in
section 2.1.



Now we are prepared to prove theorem 1. We use induction to prove it. Using lemma 13, when no update
has happened, the nodes in the LFkD-tree satisfy the invariants. It is straightforward to observe that no
Contains or NNS operation involves a write (CAS) step and therefore they do not change the state of the
LFkD-tree. From lemma 12, at the end of every call to Search, which satis�es the symmetric order of the
LFkD-tree, a CAS to Add does not violate the invariant 1 to 3. For a Remove operation, after the CAS to
logically removing the node i.e. mark CAS, the order of CAS do not let any update operation let the node
reappear in the LFkD-tree following the lemma 11.

Thus if the state of the LFkD-tree was consistent before the application of an update operation, it remains
so after its linearization. Using induction the theorem 1 follows.

Theorem 1. At any time t ≥ 0 the LFkD-tree state Υt is a valid state.

Now considering the neighbour-collector-list, its semantics are absolutely same as those of Harris's lock-
free linked list [35] and which was further improved my Micheal [41]. A very sophisticated proof of the state
change and thus validity of the list algorithm was provided by Micheal [41]. The invariant maintained our list,
invariant 4, can be proved along the same lines and we skip the detail here. Now, we prove the linearizability
of the implementation IM as given below.

Theorem 2. (Correctness) The operations Add, Remove, Contains and NNS are linearizable with re-
spect to the abstract data type kDSet.

Proof. We show that a sequential history S obtained by following the steps: (a) in an arbitrary history
H append appropriate response (in any arbitrary order) of all the operations which have performed their
linearization steps as de�ned in de�nition 3 to obtain ext(H), (b) drop the invocation steps without a
matching response to obtain complete(ext(H)), and (c) construct S by arranging the invocation-response
pair of operations according to their linearization points, is consistent.

Let Sn be a sub-history of S that contains the �rst n complete operations. Let An be the dataset which
was added to the LFkD-tree by the successful Add operations in Sn. Let Bn be the dataset which was
removed from the LFkD-tree by the successful Remove operations in Sn. Let Cn = An/Bn. We use (strong)
induction on n to show that Sn is consistent ∀ n≥1.

Suppose that Sn is consistent ∀ n : 1≤n≤i. Let the (i + 1)th operation in Sn be op(k), where k∈Rd.
Then for Si+1 we prove the following:
1. Let op(k) be an Add operation.

(a) Let op(k) returns true. We show that if op1(k) is an Add operation such that op1(k) −−−→Si+1

op(k) and

op1(k) returns true then ∃ a Remove operation op2(k) such that op1(k) −−−→Si+1

op2(k) −−−→Si+1

op(k) and

op2(k) returns true.
Suppose there does not exist such a Remove operation. Now, following lemma 12, at the termination
of Search(), line 10 in algorithm 4, pa;a is a leaf-node pointer. Now using the construction of Si
and de�nition 3-(1), at the linearization of op, it performed a successful CAS at the link pa;a which
must have been clean. Using the same argument op1 also performed a successful CAS at the link
pa;a which must have been clean. Now because op1 linearized before op, the set of nodes that the
Search() called from op, terminates at, by the consistency of Si op must �nd k being the key at that
leaf-node. Now unless the link pa;a was already injected with the descriptor mark, op would not have
continued beyond the termination of Search() and reading the descriptor at it and thereby returning
false. Therefore, there must have been a Remove operation which marked the link pa;a before op
read and thus it had the linearization point before that of op. This is a contradiction.

(b) Let op(k) returns false. We show that ∃ an Add operation op1(k), which returns true, such that
op1(k) −−−→Si+1

op(k) and @ a Remove operation op2(k), which returns true, such that op1(k) −−−→Si+1

op2(k) −−−→Si+1

op(k).

Suppose the contrary. Then at the termination of Search(), line 10 in algorithm 4, by de�nition 3-(3)
the link pa;a is clean and a·k = k. But, following (a) as above and the consistency of Si, there must
exist an op1(k) in Si which returns true and that does not precede an op2(k) which returns true- which
contradicts our assumption.



Now, it is easy to see that after the linearization of an Add operation that returns true, the node added
by it is reachable from root following the links and thus that node belongs to the LFkD-tree which in
turn implies that k ∈ Ci+1. Thus, combining this fact with (a) and (b) together, the mapping de�nition
of Add, de�nition 1-(1), is satis�ed. Thus, Add is consistent in Si+1.

2. Let op(k) be a Remove operation.

(a) Let op(k) returns true. We show that if op1(k) is a Remove operation, which returns true, such
that op1(k) −−−→Si+1

op(k) then ∃ an Add operation op2(k), which returns true, such that op1(k) −−−→Si+1

op2(k) −−−→Si+1

op(k).

We use similar argument as given in (1) to prove it.
(b) Let op(k) returns false. We show that one of the following is true:

i. If op1(k) is a Remove operation, which returns true, such that op1(k) −−−→Si+1

op(k) then @ an Add

operation op2(k), which returns true, such that op1(k) −−−→Si+1

op2(k) −−−→Si+1

op(k).

Suppose the contrary is true. Then, because op1(k) return true, by the construction of Si+1 and
the de�nition of the linearization point de�nition 3-(2), either a leaf-node does not exist with key
k or the link to it is injected with mark. Now if that is the case and op also returns true, then there
must have been a link to a leaf-node with key k which was clean. But that was possible only if an
Add existed before op, which added a leaf-node with key k. This contradicts our claim.

ii. There @ an Add operation op1(k), which returns true, and op1(k) −−−→Si+1

op(k).

We can observe that at the linearization of op(k), the link to the leaf-node with key k gets injected with
mark and thus after that k/∈Cn. Combining this fact with (a) and (b) satis�es the sequential speci�cation
of Remove- de�nition 1-(2). Thus, Remove is consistent in Si+1.

3. Let op(k) be a Contains operation.

(a) Let op(k) returns true. We show that ∃ an Add operation op1(k) such that op1(k) −−−→Si+1

op(k) and @

a Remove operation op2(k) such that op1(k) −−−→Si+1

op2(k) −−−→Si+1

op(k).

The arguments are similar to (1)(b) above.
(b) Let op(k) returns false. We show that one of the following is true:

i. If op1(k) is a Remove operation, which returns true, such that op1(k) −−−→Si+1

op(k) then @ an Add

operation op2(k), which returns true, such that op1(k) −−−→Si+1

op2(k) −−−→Si+1

op(k).

ii. There @ an Add operation op1(k), which returns true, and op1(k) −−−→Si+1

op(k).

The arguments are similar to (2)(b) above. Combining (3)(a) and (3)(b), Contains is consistent in
Si+1.

4. Let op(k) be a NNS operation that returns k∗. We show that (a) there ∃ op1(k∗) such that op1(k
∗) −−−→
Si+1

op(k) and (b) if there ∃ op1(k∗∗), which returns true, where op1 is eitherAdd orContains and ||k∗∗, k||2 <
||k∗, k||2 such that op1(k

∗∗) −−−→
Si+1

op(k) then there ∃ a Remove operation op2(k
∗∗), which returns true,

such that op1(k
∗∗) −−−→

Si+1

op2(k
∗∗) −−−→

Si+1

op(k).

To prove (a), it is easy to see that if such an Add did not exist preceding op then at the linearization of
op it can not read a leaf-node containing k∗. Therefore, (a) is true.
Now, for (b), suppose the contrary is true. Thus, if there did not exist a Remove operation op2 then at
the linearization of op, which is either at the termination of the method Seek() called by itself or at the
termination of the method Search() called by reporting Contains or at the CAS step performed by a
reporting Add operation, the leaf-node containing k∗∗ must have been connected by a clean link. But
then either op would have read the clean link to the leaf-node with k∗∗ or the operation reporting to it
would have done the same. Thus the method Process() that is called by NNS before its return, by virtue
of ||k∗∗, k||2 < ||k∗, k||2, would have returned k∗∗ which in turn would have been returned as the nearest
neighbour of k by op. Which is a contradiction. Thus, NNS is consistent in Si+1.

By (1) to (4), Si+1 is consistent whenever Sn is consistent ∀n : 1≤n≤i. Therefore, using (strong) induction,
Sn is consistent for every positive integer n.



Theorem 3. (Lock-freedom) The LFkD-tree operations Add, Remove, Contains and NNS are lock-free
and thus the presented algorithm implements a lock-free LFkD-tree.

Proof. We take the NNS operation separately because it also involves the steps related to the lock-free list.
By the description of the algorithm, a non-faulty thread performing a Contains will always return unless
its search path keeps on getting longer forever. If that happens, an in�nite number of Add operations would
have successfully completed adding new nodes making the implementation lock-free. So, in the context of
Add, Remove and Contains, it will su�ce to prove that the modify operations are lock-free.

Suppose that a process p∈P performs a modify operation op on a valid state of LFkD-tree Υt and takes
in�nite steps and no other modify operation completes after that. Now, if no modify operation completes
then Υt remains unchanged forcing p to retract every time it wants to execute its own modi�cation step on Υt.
This is possible only if every time p �nds the injection point of op with descriptor mark, flag, ltag or rtag.
This implies that a Remove operation is pending. It is trivial to observe in the method Add that if it gets
obstructed by a concurrent Remove, then before retrying after recovery from failure, it helps the pending
Remove by executing all the remaining steps of that. We can also observe that whenever two Remove
operations obstruct each other, one �nishes before the other. It implies that whenever two modify operations
obstruct each other one �nishes before the other and so Υt changes. It is contrary to our assumption. Hence,
by contradiction we show that no non-faulty process shall remain taking in�nite steps if no other non-faulty
process makes progress where the executed operation is either Add or Remove.

Now we consider a NNS with concurrent Add, Remove or Contains operations. We consider the case
where concurrent NNS operations do not necessarily have coinciding target points; this case obviously covers
the case when they do have coinciding target points. We can see that a Remove operation does not have to
report to a concurrent NNS operation. Moreover, an Add or a Contains operation to perform a reporting,
needs to �rst traverse through the unordered list and then possibly perform a CAS if required to report.
Now, unless the number of NNS operations keep on increasing in�nitely, the total length of the unordered
list will be �nite and thus the traversal path for an Add or a Contains operation to report will be �nite.
Now, at each neighbour-collector, where the reporting is required, if a CAS to report fails, that implies that a
concurrent Contains or Add operation succeeds. Similarly, when a CAS by a NNS operation fails, it indicates
that a CAS by a concurrent NNS operation succeeded. Finally, a CAS to add a new neighbour-collector only
indicates that either a new neighbour-collector by a concurrent NNS has been successfully added or a NNS
operation has terminated. In case of a CAS failure to add a new neighbour-collector, a NNS operation always
helps a concurrent pending NNS operation before reattempting, in case it �nds the link with descriptor mark.
It shows that in all cases at least one non-faulty thread succeeds with respect to execute a NNS operation
concurrent to any other LFkD-tree operation. Thus we arrive at the theorem 3.

This concludes the proof of the presented algorithm.


