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Abstract

Background: Flow cytometry is a widespread single-cell measurement technology with a multitude of clinical and
research applications. Interpretation of flow cytometry data is hard; the instrumentation is delicate and can not render
absolute measurements, hence samples can only be interpreted in relation to each other while at the same time
comparisons are confounded by inter-sample variation. Despite this, most automated flow cytometry data analysis
methods either treat samples individually or ignore the variation by for example pooling the data. A key requirement
for models that include multiple samples is the ability to visualize and assess inferred variation, since what could be
technical variation in one setting would be different phenotypes in another.

Results: We introduce BayesFlow, a pipeline for latent modeling of flow cytometry cell populations built upon a
Bayesian hierarchical model. The model systematizes variation in location as well as shape. Expert knowledge can be
incorporated through informative priors and the results can be supervised through compact and comprehensive
visualizations.
BayesFlow is applied to two synthetic and two real flow cytometry data sets. For the first real data set, taken from the
FlowCAP I challenge, BayesFlow does not only give a gating which would place it among the top performers in
FlowCAP I for this dataset, it also gives a more consistent treatment of different samples than either manual gating or
other automated gating methods. The second real data set contains replicated flow cytometry measurements of
samples from healthy individuals. BayesFlow gives here cell populations with clear expression patterns and small
technical intra-donor variation as compared to biological inter-donor variation.

Conclusions: Modeling latent relations between samples through BayesFlow enables a systematic analysis of
inter-sample variation. As opposed to other joint gating methods, effort is put at ensuring that the obtained partition
of the data corresponds to actual cell populations, and the result is therefore directly biologically interpretable.
BayesFlow is freely available at GitHub.
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Background
In a flow cytometer a number of characteristics for each
individual cell in a sample of ∼ 104 to ∼ 106 cells are
quantified as they pass through the cytometer in a fluid
stream. The data that are obtained are most often sum-
marized by grouping cells into cell populations; proper-
ties of these cell populations are used in many clinical
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applications—for example monitoring HIV infection and
diagnosing blood cancers—and in many branches of med-
ical research [1, 2]. Defining the cell populations based on
themeasured characteristics is in state-of-the-art analyses
still done manually by trained operators looking at two-
dimensional projections of the data. The importance of
automated methods has risen along with an increase of
the dimension of typical flow cytometry data sets due to
developments in flow cytometry technology [3] and the
emergence of studies with large numbers of flow cytom-
etry samples [4]. Furthermore, manual so called gating of
cell populations is a subjective process where operators
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have to take more or less arbitrary decisions for example
when there are overlapping populations [5].
Automatic cell population identification is hard since

flow cytometry measurements are not absolute, while
at the same time different samples cannot be directly
compared due to technical variation—especially appar-
ent when samples are analyzed at different laboratories
[5]—and intrinsic biological variation within and between
subjects. Despite this, research into automated popula-
tion identification methods has focused on individual or
pooled flow cytometry samples, sometimes attempting to
align data at first through normalization procedures [6].
Automatedmethods with the aim to replacemanual gat-

ing must be able to treat multiple samples jointly and take
variation between samples into account, while at the same
time make it possible for the user to monitor that varia-
tion so that it is not too high for the application at hand.
For example it needs to be decided if a shift in location
of a population in a sample can be seen as technical vari-
ation and accepted or if the changed marker expression
means that it is a different cell phenotype. These kinds
of methods also need to be able to take prior informa-
tion into account—in manual gating the experience of the
operator can be necessary to define a population. We have
developed BayesFlow, a method which models variation
in cell population location as well as shape, can include
prior information for example about cell population loca-
tion, and gives a result that can be assessed in compact
and comprehensive visualizations.
Partitioning the cell measurements in a sample into

cell populations is essentially a clustering problem. In
the context of flow cytometry data analysis clustering is
called automated gating, as opposed to the manual gat-
ing performed by operators. Model-based clustering using
mixture models has been the most used approach for
automated gating [7–12]. Mixture models are very well
suited to describe flow cytometry data because they have
a natural biological interpretation based on the cell pop-
ulations. Examples of other approaches that have been
used for automated gating are grid based density cluster-
ing [13], spectral clustering [14], hierarchical clustering
[15, 16] and k-means clustering [17, 18]. An evaluation
of a wide range of automated gating methods was per-
formed in the FlowCAP I challenge [19]. The discrepancy
with manual gating was often quite large even for the
best methods, with average F-measures around 0.9 for
both completely automated and manually tuned methods.
Large discrepancies between manual and automatically
gated samples can be acceptable since the arbitrary
decisions taken in manual gating means that the gates
could just as well have been set another way. How-
ever, it is important that the gating is consistent between
samples so that they can be compared against each
other.

Joint identification of cell populations in a collection
of samples can be accomplished by pooling the samples
[12, 15] or matching populations identified separately in
the samples [10, 20]. However, in the first approach no
variation between samples is taken into account and in the
second approach no information is shared between sam-
ples. Recently a third approach has been explored, where
a Bayesian hierarchical model is used to share informa-
tion between samples while at the same time allowing for
variation. This was first utilized for flow cytometry gating
by Cron et al. [21], with a hierarchical Dirichlet process
model with fixed locations and shapes of cell populations.
An extension of this model, also modeling variation in cell
population locations has been used to create ASPIRE, a
method for anomalous sample detection [22].
BayesFlow follows this third approach, but use a dif-

ferently structured model than what has been used pre-
viously, favoring explicit modeling instead of implicit,
parametric instead of non-parametric (or massively para-
metric). This follows the philosophy that mathematical
models can never perfectly fit reality, thus it is impor-
tant to be able to convey the constructed model and its
parameters and in what ways it simplifies the data.
For example, in addition to variation in location

BayesFlow explicitly models variation in cell popula-
tion shape, whereas ASPIRE models shape variations
implicitly by combining Gaussian components with the
same shape. This means that an aberrant shape varia-
tion of a cell population in a sample can be detected in
BayesFlow by examining the parameters of the model,
which is not possible in ASPIRE. Perhaps more impor-
tantly, BayesFlow gives a parsimoniousmodel whichmuch
fewer parameters—each individual parameter for the
components in BayesFlow can be assessed through com-
pact visualizations and thus undesired behaviors can be
detected and corrected for by change of setup. Moreover,
a restriction in ASPIRE which is avoided by BayesFlow
is that the variation of component location within and
between samples is connected to the shape of the
components.
In BayesFlow, the cells in a sample are clustered using

a multivariate Gaussian mixture model (GMM), where
K components describe true and artificial cell popula-
tions and one component describes outliers. Artificial cell
populations are measurements that cluster together and
behave otherwise like real cell populations, but arise for
example from dead cells, non-specific binding of markers
or doublets; doublets are pairs or groups of cells that pass
through the flow cytometer at the same time. Measure-
ments which are not clearly grouped but spread out over
the measurement space, for example due to measurement
noise, are modeled as outliers.
For each component not representing outliers its mean

and covariance matrix is linked to a latent cluster which
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collects corresponding components across all samples.
In practice this is done by assuming a normal prior for
the means and an inverse Wishart prior for the covari-
ance matrices of the components linked to a given latent
cluster. The parameters of sample and latent compo-
nents are jointly estimated by Markov Chain Monte Carlo
(MCMC) sampling. The variation in location and shape
between corresponding mixture components across sam-
ples is controlled by the priors on parameters of the latent
clusters. The location of component means and shape of
components can also be restricted if there is prior infor-
mation supporting this. To allow for that flow cytometry
data frequently have missing cell populations, we include
the possibility that not all components are present in every
sample.
A challenge that has to be addressed when analyzing

flow cytometry data is that cell populations can be skewed
and/or have heavy tails and are then not well described by
a single Gaussian component [7, 10, 23]. To handle this we
use multiple components to model such populations, an
approach that have often been employed for flow cytom-
etry data [9, 12, 24, 25] and has the further advantage
that the number of cell populations can be automati-
cally detected.Wemerge Gaussian components into super
components with a procedure based on a systematic study
of methods for merging mixture components [26].
Results from the MCMC sampling and subsequent

merging are evaluated in a number of quality tests. This
is a crucial step since what is deemed as a good clustering
is application dependent. In some settings a given amount
of variation in location or shape is expected from bio-
logical or technical reasons, whereas in others the same
variation would indicate a different population. This also
means that it is necessary for the user to choose prior
parameters for their application. To simplify this process
we have derived parametrizations so that the same value
of the parameters gives a similar effect of the prior on data
sets of different sizes.
We verified the ability of the sampling scheme to recover

model parameters by fitting the model to a small three-
dimensional synthetic data set with 1.2 million cells in
total and a large synthetic data set with in total 28 mil-
lion cells in 8 dimensions. Then we applied BayesFlow
to one of the datasets in the FlowCAP I challenge, the
GvHD dataset, which contains samples from patients who
have had organ transplants and might have early signs of
graft-versus-host disease. We show that BayesFlow does
not only give a result which has the same degree of
accordance with manual gating as the best performing
methods in FlowCAP I—which is much higher than what
is obtained for other methods based on joint gating with
Bayesian hierarchical models—it does also give a more
similar treatment of different samples than manual gating
and the best methods from FlowCAP I. Finally we applied

BayesFlow, ASPIRE [22] and HDPGMM [21] to a data set
with replicated samples from four healthy individuals. The
ratio between intra-donor technical variation and inter-
donor biological variation was similar between BayesFlow
and HDPGMM, which was lower than for ASPIRE. More-
over, BayesFlow was the only of the three methods which
gave cell populations with clear expression patterns.

Methods
Model
Let Yij denote vector valued measurement number i in
sample j. Here i ∈ {1, . . . , nj}, where nj is the number of
cells in sample j, and j ∈ {1, . . . , J}, where J is the num-
ber of samples. We let the dimension of the observations
be denoted d. With K mixture components describing cell
populations the probability density for cell measurement i
of a flow cytometry sample j is modeled as

f (Yij) =
K∑

k=1
πjkN

(
Yij;μjk ,�jk

) + πj0N
(
Yij;μj0,�j0

)
,

(1)

whereN(Y;μ,�) denotes the probability density function
of the normal distribution with mean μ and covariance
matrix � evaluated at Y. To facilitate interpretation, the
number K should be chosen as small as possible, given
that themodel pass quality requirements (described under
Quality control). The last component represents outliers
and its parameters μj0 = μ0 and �j0 = �0 are identical
across samples. Outliers are often modeled by a uniform
density over the measurement space [27]; however due to
the curse of dimensionality [28], this is not well behaved
when we have more than a few dimensions, in which case
a Gaussian should perform better. Noise coming from for
example dead cells can also be captured in artificial cell
populations, and can be excluded in downstream analyses
based on the expression patterns.
The vector π j = {πj0, . . . ,πjK } contains the mixing

proportions, i.e. the proportion of cells described by the
component. To connect cell populations between samples
we use a latent layer, assuming that for a given k each μjk
and �jk is drawn from a normal and an inverse Wishart
distribution respectively. Specifically, in our model, for
k = 1, . . . ,K ,

μjk|θk ,�θk ∼ N(θk ,�θk ),
�jk|�k , νk ∼ IW (�k , νk)

(2)

where θk ,�θk ,�k and νk are hyper-parameters describing
latent cluster k. These parameters describes the variability
between flow cytometry samples, in contrast to μjk ,�jk
which describe the distribution of cell measurements
within a sample. The normal and inverseWishart distribu-
tions are conjugate priors to the mean and the covariance
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respectively of the normal distribution, enabling efficient
sampling, however they are not jointly conjugate.
We call θk and �k/(νk − d − 1) the latent cluster mean

and latent cluster covariance matrix respectively, since
they are the a priori expected values of μjk and �jk .
For the hyper-parameters describing the latent clusters

and the mixing proportions we use the following prior
distributions:

θk|tk , Sk ∼ N(tk , Sk), π j ∼ D(a), (3)
�θk |Qk , nθk ∼ IW (Qk , nθk ), νk|λk ∼ exp(−λk),
�k|Hk , n�k ∼ W (Hk , n�k ),

whereW denotes the Wishart distribution and D denotes
the Dirichlet distribution, which is conjugate prior to
the multinomial distribution. For each νk we assign a
exponential prior on the positive natural numbers. The
complete structure of the model is displayed through a
directed acyclic graph (DAG) in Fig. 1.
The parameters tk and Sk define the prior belief of the

locations of the latent means θk , whereas the parame-
ters Qk and nθk control the spread of mixture component
means within a latent cluster and are hence important
to control the variation across samples. A large nθk along
with a small Qk forces the μjk together; it makes large
deviations between �θk and Qk unlikely. The parameters
Hk and n�k control the expected values and the varia-
tion of latent covariance matrices as well as the variation

Fig. 1 Directed acyclic graph describing the Bayesian hierarchical
model. Square boxes indicate that the values are known

amongmixture component covariancematrices in a latent
cluster. If n�k is large each �jk will be close to �k/(νk −
d − 1) for any k, since a high n�k makes high νk more
probable.
Finally, to simplify sampling from the posterior distribu-

tion of the parameters, we add an component assignment
variable xij ∈ {0, 1, . . . ,K} describing which compo-
nent Yij is drawn from. To comply with (1), the a priori
uncertainty of component membership is modeled by
xij ∼ Mult(π j, 1), where Mult denotes the multinomial
distribution.
The resulting posterior distribution of all the param-

eters, denoted jointly by �, and x given the data Y is
given in the Additional file 1: Section A. In Section B we
describe the Markov chain Monte Carlo (MCMC) sam-
pling scheme used to generate posteriors for our model
parameters.
The computational bottleneck of the sampling scheme

is the sampling of x, with a computational complexity
bounded by O(Jd3K maxj nj). To handle high dimensions
diagonal covariance matrices can be used instead, in
which case the complexity is bounded by O(JdK maxj nj).
However, for datasets with more than 20 dimensions
the mathematical feasibility of using Gaussian mixture
models without any prior dimension reduction needs
to be seriously considered first, due to the curse of
dimensionality [28].

Absent components
In some flow cytometry data sets not all cell populations
are present in all samples. In our model this corresponds
to that πjk = 0 for some (j, k). However, mixture compo-
nent parameters for empty clusters will still affect themix-
ing of the MCMC for the parameters of the latent cluster.
It can also happen that if a cluster is empty that the mix-
ture component moves and split a neighboring cluster in
two. To avoid this in such data sets we extend themodel by
introducing a variableZj ∈ {0, 1}K that says which compo-
nents are active in sample j. This has the further advantage
that when sampling from the posterior distribution of the
model we get the probability for each cluster that it is
present in a sample.We impose a prior on Zj which is pro-
portional to exp

(
−cs

∑K
k=1 Zj

)
I
(∑K

k=1 Zj > 0
)
where I

denotes the indicator function and cs > 0. The prior
makes the model prefer fewer activated clusters so that if
there is a very small cluster the likelihood will be larger
if it is inactivated, which prevents spurious clusters. The
strength of this prior can be adjusted to the expected size
of the smallest clusters.
The changes to (1–3) required by this extension are

straightforward but inference of the model becomes a bit
more involved since removing components reduces the
dimension of the model. To accommodate for this we have
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included a reversible jump step in our sampling algorithm.
Details are given in the Additional file 1: Section B.

Merging latent clusters
To determine the “correct” number of clusters in a data
set directly from the data is an ill-defined problem,
since what should be considered to be a separate cluster
depends on the interpretation of the data. Nevertheless,
there are many different criteria which can be used to
guide the decision about the number of populations [26,
29]. We use overlap between components—measured by
Bhattacharyya distance—and unimodality of the resulting
super clusters—measured by Hartigan’s dip test [30]—to
determine which latent clusters to merge and to indicate
our confidence in the mergers.
In an evaluation of criteria for merging Gaussian

components to represent more complex distributions,
the Bhattacharyya distance performed well [26]. Bhat-
tacharyya distance merges clusters according to a pattern-
based cluster concept as opposed to a modality-based
concept [26]. With a pattern-based cluster concept a
small dense cluster inside a sparse cluster—for exam-
ple a well specified cell population inside a region with
sparse outliers—will be considered to be different clusters.
This would not be the case for the modality-based clus-
ter concept as long as the generating probability density is
unimodal.
The Bhattacharyya distance between N(μ1,�1) and

N(μ2,�2) is

dbhat = 1/8 · (μ1 − μ2)
��̄

−1
(μ1 − μ2)

+1/2 · log
(
|�̄|/√|�2||�2|

)
,

(4)

where �̄ = (�1 + �2)/2 [31]. In order to measure
Bhattacharyya distance betweenmixtures of Gaussian dis-
tributions, which is necessary for deciding if super clusters
should be merged with other clusters, we approximate
eachmixture with a Gaussian distribution. Themeans and
the covariance matrices are estimated using a soft cluster-
ing of the data points inferred from the sampling of xij,
detailed in the Additional file 1: Section C.
However, it is not obvious how to set a threshold

for dbhat, since the appropriate threshold depends on
the distribution of the data [26], which is unknown.
Because of this we use a low soft threshold d1 and a
high hard threshold d2. Two clusters closer to each other
than d1 are always merged, two clusters whose distance
is between d1 and d2 are only merged if they fulfill
an additional criterion based on Hartigan’s dip test for
unimodality.
Unimodality is an appealing heuristic for defining cell

populations, and it has frequently been used for auto-
mated gating [9, 12, 18]. It has two main limitations.

The first one, that populations intuitively should be sepa-
rate if they have very different densities—even when they
overlap so that their combined distribution is unimodal—
can be bypassed by combining unimodality with a pattern-
based merging criterion such as Bhattacharyya distance.
The second one, that it is difficult to determine if a
multi-dimensional empirical distribution is multimodal, is
usually handled by considering one-dimensional projec-
tions [12, 26]. This is the approach we take here, using
Hartigan’s dip test of unimodality for each of the pro-
jections onto the coordinate axes where Bhattacharyya
overlap is low, and for the projection onto Fisher’s dis-
criminant coordinate. If for a proposed merger, any of
these projections is found to be multimodal, the clusters
are not merged. Further details of the merging procedure
are given in the Additional file 1: Section C.

Quality control
To verify that the output of BayesFlow fulfills the user’s
requirements, a number of checks are performed:

• Convergence of the MCMC sampler is established by
viewing trace plots of sampled parameters.

• To ensure that variation of the two different
populations are not confused with each other, we
require that the Bhattacharyya distance as well as the
Euclidean distance from each sample component to
its corresponding latent component should be smaller
than these distances to any other latent component
which does not belong to the same super cluster.

• To ensure that the obtained clusters should not be
divided further, Hartigan’s dip test is computed for
the projections onto the coordinate axes of all super
clusters. Projections which have a dip test p-value
below 0.28—the threshold for merging components
(see Additional file 1: Section C)—are visualized
using histograms of quantiles of the weighted data
belonging to the cluster.

• To ensure that the model fits the data reasonably
well, samples from the posterior predictive is
compared to the true data in one- and
two-dimensional histograms.

• To ensure that there are no outliers among the
cluster centers, the centers for each cluster are
plotted together along one dimension.

• Additionally, to detect components with aberrant
shapes, the eigenvectors corresponding to the largest
eigenvalues, multiplied with the corresponding
eigenvalues, can be viewed.

If any of the quality criteria is not met, the simula-
tion should be rerun, either using the same or differ-
ent parameters. Even if the same parameters are used a
different result can be obtained due to randomness in the
initialization.
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(a) (b)
Fig. 2 a One and two dimensional histograms for one synthetic flow cytometry sample containing 15,000 data points; b histograms of 15,000 data
points drawn uniformly from the pooled data from the synthetic data experiment

Experiments
Simulated data
In order to verify that the proposed sampling scheme can
find the correct model parameters, the MCMC algorithm
was applied to two simulated datasets. The first dataset
was three-dimensional, which enables direct visual eval-
uation. It had four latent clusters across eighty artificial
flow cytometry samples; each sample had 15,000 cells giv-
ing a total of 1.2 million cells. One of the latent clusters
was present only in eight samples and another one was
present in 24 samples, so that the ability to find rare cell
populations was tested. Moreover, the cluster which was

present in only eight samples contained only 1 % of the
total number of cells, thus also the ability to find small cell
populations was tested. The parameters and the algorithm
used for generating the data are given in the Additional
file 1: Section D.1.
The second data set was designed to test the ability to

handle large data. It was eight-dimensional, with eleven
latent clusters and 192 artificial flow cytometry samples.
Each sample had measurements of 150,000 cells, giving a
total of 28 million cells. Four of the eleven clusters were
missing in half of the samples. Additional file 2 contains a
python script and data for regenerating this data set.

(a) (b)
Fig. 3 a One and two dimensional histograms of 15, 000 posterior draws of Y for the flow cytometry sample displayed in Fig. 2 a; b histograms of
15, 000 posterior draws of Y drawn uniformly from all the flow cytometry samples, thus matching Fig. 2 b
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Fig. 4 BayesFlow component parameter representations of inferred latent clusters (first column) and mixture components (second column) together
with histograms of real data (third column) and synthetic data generated from the model (fourth column) for healthyFlowData. The center of each
ellipse is the mean and each semi-axis is an eigenvector with length given by the corresponding eigenvalue of the projected covariance matrix. For
the latent clusters the parameters (θ k ,

1
(νk−d−1) �k) are shown, for the mixture components the parameters (μjk ,� jk) are shown. Each component

or cluster is depicted with the same color as in Fig. 5; different shades of same color corresponds to latent clusters that have been merged

Prior parameters and initial values for the MCMC
sampler are given in the Additional file 1: Section D.1.
All priors were chosen to be non-informative. The out-
lier component was not used for inference in the small
dataset, but it was used for the large dataset. The MCMC
sampler ran first for a number of burn-in iterations, then
the posterior distribution was explored in a number of
production iterations. During the production iterations,
apart from sampling parameters of the model, a value of
Y was also drawn, i.e. a sample from the posterior pre-
dictive. For the first synthetic data set 10,000 burn-in and
100,000 production iterations were used. For the second,

larger, data set we used 5,000 burn-in iterations and 5,000
production iterations.
For the second data set the MCMC sampler was run

on Amazon Cloud, using 192 cores. Each iteration took
on average one second, so that about 2.7 h was needed in
total.

Flow cytometry data
We analyze two flow cytometry data sets with BayesFlow:
the data set GvHD from the FlowCAP I challenge—
with four markers, 12 samples and approximately 13,000
cells per sample—and a data set obtained from the R
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Fig. 5 Summary statistics of inferred cell populations in BayesFlow, ASPIRE and HDPGMM, ordered by population size. For HDPGMM, the six largest
components after merging are shown, the remaining components have together at most 0.0013 of the cells in a sample. The noise component in
BayesFlow has at most 0.004 of the cells in a sample. a Locations μjk of mixture components that represent each population, in each sample, cf.
Fig. 13. b Box plots of the soft clusters in the pooled data, cf. Fig. 13. c Population proportions across flow cytometry samples
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package healthyFlowData [32] with technical replicates of
PBMC samples from healthy donors—in total 20 sam-
ples with approximately 20,000 cells, also measured with
four markers. In the GvHD dataset we can compare the
gating obtained from BayesFlow with manual gating pro-
vided from FlowCAP as well as automated gating from a
wide range of other methods. In healthyFlowData we can
instead compare gating between technical replicates to see
if samples are treated in a consistent manner.
For the healtyFlowData dataset we used an exploratory

approach with non-informative priors. We ran multiple
simulations and gradually increased the number of com-
ponents until we passed the quality criteria described
under Quality control; we finally arrived at using K = 25
components. For the GvHD data set we started with an
exploratory approach and gradually increased the num-
ber of components, but in the quality checks we noted
one population in one of the samples which was very
hard to capture. Then we decided to use an informa-
tive approach for this population. Using a scatter plot,
Fig. 6, we set boundaries for this population in the dimen-
sions given by the CD4 and the CD8b marker and com-
puted its mean and empirical s covariance matrix. We
used the mean to set an informative prior for θk and
the mean and the empirical covariance to initialize the
component. Prior parameters in both the informative and
non-informative case are described in the Additional file
1: Section E.2.
BayesFlow applies three data preprocessing steps: 1)

Data points with extreme values in at least one dimension
(larger than 0.999 times the largest data point or smaller

Fig. 6 Cell population which is hard to detect in the GvHD dataset

than 1.001 times the smallest data point) are removed.
Such data points can lead to components with singular
covariance matrices, and a well designed flow cytometry
experiment should not have significant populations with
such values. 2) The data is scaled using the 1 and 99 % per-
centiles q0.01 and q0.99 of the pooled data, with the same
scaling for all samples, so that q0.01 = 0 and q0.99 = 1
for each marker for the pooled data. This is done in order
to be able to set informative priors in an intuitive way.
3) Before testing which components should be merged,
a very small amount of noise is added to the data (stan-
dard deviation 0.003). This is since the discreteness of
the original flow cytometry measurements can lead to a
striped pattern in the flow cytometry data [33] and also
when it is not visible to the human eye it disturbs the dip
test.
After preprocessing, parameters for the MCMC sam-

pler were initialized by running the EM algorithm on the
pooled data, followed by the initialization scheme used for
the large synthetic dataset, detailed in the Additional file
1: Section D.4. We ran 16,000 burn-in iterations and 4,000
production iterations of the MCMC sampler for both
experiments. The burn-in period consisted of five phases:
In the first phase, the priors on variation in location and
shape were modified to force clusters together. Before the
second phase, priors parameters were set to normal again.
After the second phase, components which were consid-
ered to be outliers were turned off. They were forced to
stay off during a short third phase, but from the forth
phase and onwards components were allowed to turn on
and off. Label switching was allowed during the initial four
phases in order to escape non-desired local minima, but
then disallowed. The values of parameters controlling the
simulation during the burn-in and production period are
given in Additional file 1: Table S1.
We also applied the two other joint gating meth-

ods based on Bayesian hierarchical models: ASPIRE [22]
and HDPGMM [21]. For ASPIRE parameters were cho-
sen according to the strategy recommended by Dundar
et al. [22]; details are given in the Additional file 1:
Section E.5. For each run we used in total 15,000 itera-
tions, of which 14,000 were set as burn in iterations. For
HDPGMM default parameters were used, with a burn-in
period of 3,000 iterations and a production period of 100
iterations.
We ran BayesFlow and ASPIRE on a 3.2 GHz quad

core CPU. A BayesFlow run took 0.5 h for the GvHD
dataset and 1.4 h for healthyFlowData. ASPIRE took
in total 2.4 h for the GvHD dataset and 6.6 h for
healthyFlowData per run. Four runs of ASPIRE was
needed to determine the κi parameters. HDPGMM was
run on a dual core GPU. It needed 0.72 h for the GvHD
dataset and approximately 1 h for the healthyFlowData
dataset.
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Results
Simulated data
We begin by analyzing the smaller data set. In Fig. 2
we show univariate and bivariate histograms of all syn-
thetic cell measurements pooled together, as well as the
corresponding histograms of the data from a single flow
cytometry sample where all four clusters are present. Note
that the data when pooled together has a complicated den-
sity, as it is in fact a mixture of 232 multivariate normal
densities.
In Fig. 3 we show the same univariate and bivariate

histograms, but this time with samples from the poste-
rior predictive distribution of Y. From the synthetic cell
measurements generated from the inferred models of the
datasets it is clear that the inferred models are accurate
and capture the variation across samples, which a model
only of pooled data cannot do.
Figure 7 displays dots at the posterior mean locations of

the mixture component centersμjk whose posterior prob-
ability of being active is greater than 1 %; the true locations
of the active clusters are displayed as circles. The model is
able to detect which clusters that are active and which are
not, and to find the location of the component means.
Finally in Figs. 8 and 9, the marginal posterior distri-

butions of the latent cluster parameters θk and �k , sub-
tracted by their true values, are presented. In Fig. 8 the dot
represents the difference between the median of posterior
distribution and the true value of each θk . The vertical

Fig. 8 The difference between the true value of each entry in each θ k
and the approximated marginal posterior distribution generated by
the MCMC sampler in the small synthetic data experiment. The black
dot represents the median and the vertical line goes between the 2.5
and 97.5 % quantiles. The light gray horizontal line is the 0 line

lines represent the 2.5 and 97.5 % quantiles. Fig. 9 displays
results for each latent covariancematrix�k/(νk−4) in the
same way. From Figs. 8 and 9 we see that the true parame-
ters of both the means and the covariances are all between
the 2.5 and 97.5 % quantiles of the posterior distribution.
The true and estimated cluster centers of the eight-

dimensional data set cannot be displayed efficiently with
just three dimensions at hand, but a three-dimensional
projection is shown in Fig. 10. The average error in
Euclidean distance in the full eight-dimensional space is
0.007, which can be compared to the average error had
the latent mean across samples been used, namely 0.110,
which is the best that could have been obtained from
a model not including variation between samples. The
outlier component was used for inference in the results
presented here, but omitting it has very small effect.

Fig. 7 The posterior mean of the mixture component centers, μjk (dots), and the true cluster centers (circles) in the small synthetic data experiment
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Fig. 9 The difference between the true value of each of the entries in �k/(νk − 4) and the approximated marginal posterior distribution generated
by the MCMC sampler in the synthetic data experiment. The black dot shows the median, and the black vertical line goes between the 2.5 and
97.5 % quantiles. The light gray horizontal line is the 0 line

In Fig. 11, we show the posterior distribution of the
latent cluster means where again the dot represents the
difference between the median of posterior distribution
and the true value of each θk . The vertical lines are the
2.5 and 97.5 % quantiles. The posterior samples have been
divided by the standard deviation of the true θk so that the
scales across the clusters are equal. Some of the credibility
intervals do not contain zero, but this is explained when
studying the intervals that would have been obtained if the
true μk were used (shown in red), since they are almost
identical.
We thus see that cluster centers and credibility intervals

for latent clusters are captured well in both synthetic data
sets.

Flow cytometry data
GvHD
For the analysis of the GvHD dataset we did twelve runs
of BayesFlow in the informed setup described above.

Seven were excluded due to confusion between popu-
lations, i.e. at least one sample component was clos-
est to the wrong latent component; of the remaining
five, one more run was excluded since it has not con-
verged, and another two because of multimodal clus-
ters. This leaved two runs that passed the quality
control. Additional file 1: Figs. S2 and S3 show trace
plots and projections of clusters with high dip test values
respectively.
Table 1 reports the accordance with manual gating for

the two BayesFlow runs as well as what is obtained from
ASPIRE and HDPGMM, as well as the top two perform-
ing methods for this data set in FlowCAP: flowMeans and
SamSPECTRAL.
One of the two BayesFlow runs has the highest accor-

dance with manual gating, the other one is on par with
flowMeans and SamSPECTRAL, which is considerably
higher than ASPIRE and HDPGMM. However, as can be
seen in Fig. 12, the gating of different samples is arguably

Fig. 10 The posterior mean of the mixture component centers, μjk (dots), and the true cluster centers (circles) in the large synthetic data experiment
for the first three dimensions
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Fig. 11 The difference between the true value of each entry in each θ k and the approximated marginal posterior distribution generated by the
MCMC sampler in the large synthetic data experiment. The black dot represents the median and the vertical line goes between the 2.5 and 97.5 %
quantiles. To get the axis on the same scale for all the clusters, they are scaled by the standard deviation of μk . The light gray horizontal line is the 0
line. The red dot and lines is the same however where one uses the true μk to estimate θ k , rather then the μk obtained by taking the posterior
means of the mixtures

most consistent for BayesFlow as compared to manual
gating, flowMeans and SamSPECTRAL.
To get a further understanding of the variability between

samples in BayesFlow, summary statistics for the obtained
components and cell populations are shown in Fig. 13.

healthyFlowData
We did 18 runs of BayesFlow with K = 25. Ten of these
were excluded due to confusion between populations,
moreover two runs were excluded since they had clusters
with clearlymultimodal distributions. For the six runs that
passed the quality control, 3–6 components were turned
off across all samples; they are excluded from visualiza-
tions. Additional file 1: Figs. S1, S3 and S4 show trace
plots, projections of clusters with high dip test values and
eigenvectors of covariance matrices respectively.

Table 1 Accordance with manual gating for GvHD data set. For
HDPGMM we also report the result when components are
merged according to our merging procedure. When this
procedure is applied to the results obtained by ASPIRE, no
components are merged, i.e. the original result is identical to
what is obtained after mergeing

Method F-measure Precision Recall

BayesFlow run 1 0.91 (0.86, 0.95) 0.96 0.89

BayesFlow run 2 0.87 (0.82, 0.92) 0.95 0.84

ASPIRE 0.67 (0.63, 0.72) 0.86 0.63

HDPGMM 0.35 (0.30, 0.39) 0.98 0.23

HDPGMMmerged 0.60 (0.54, 0.66) 0.95 0.48

flowMeans 0.88 (0.82, 0.93) 0.93 0.86

SamSPECTRAL 0.87 (0.81, 0.93) 0.96 0.83

Ensemble FlowCAP 0.88

In Fig. 4 we visualize model fit and inter-sample vari-
ation for the first of the six runs that passed the quality
control by plotting latent and sample components as well
as histograms of real data and synthetic data generated
from the model, for two different samples and for the
pooled data. We can thus see how shape variations are
captured by the model.
The output of BayesFlow, ASPIRE and HDPGMM can

be compared in Fig. 5. The merging procedure we used
for BayesFlow has been applied for both ASPIRE and
HDPGMM, however for ASPIRE no components were
merged by this. In BayesFlow each of the populations cor-
respond to clear expression patterns, which is not the case
for the other methods. For example the first population is
clearly CD4+CD8- T-cells whereas for both ASPIRE and
HDPGMM this population contains both components
which are CD8- and components which are CD8+.
We also compare intra-donor variation of cell popula-

tion size to inter-donor variation for the six BayesFlow
runs, as well as for ASPIRE and HDPGMM in Fig. 14. For
ASPIRE there are inter-donor distances which are clearly
smaller than some intra-donor distances, which is not the
case for BayesFlow and HDPGMM.

Discussion
From different runs of BayesFlow we can get different rep-
resentations of data, as in the case of the GvHD dataset.
This is because with highly overlapping populations there
might be multiple models representing the data equally
well. But since all samples are gated jointly in every run,
the gated populations can still be compared across sam-
ples. The user might have a preference for one represen-
tation or the other though, and informative priors can be
used to guide BayesFlow to a preferred representation.
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Fig. 12 Gated events according to four methods (BayesFlow, manual and the two top performers in FlowCAP I) of the twelve samples in the GvHD
dataset, projected onto the two first dimensions. For BayesFlow, the run with least accordance with manual gating, run 2, is shown. Similar plots for
ASPIRE and HDPGMM as well as BayesFlow run 1 are shown in the Additional file 1: Figure S6
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Fig. 13 Summary statistics of the six cell populations obtained by BayesFlow (run 2) in the dataset GvHD. The outlier component has at most 0.0019
of the cells in a sample. a Each panel displays the locations μjk of all mixture components that represent the population, across all samples. Different
shades of a color represent different latent components k. b Box plots of the soft clusters in the pooled data. The boxes go between the quantiles
qkm,0.25 and qkm,0.75, the whiskers extend to qkm,0.01 and qkm,0.99. The α-quantile for (merged) component k in dimensionm, qkm,α , is here defined as
qkm,α = mini′ j′ {Yi′ j′m : α <

∑
ij:Yijm<Yi′ j′m wijk}. c Population proportions in each of the twelve flow cytometry samples

BayesFlow is not aimed at discovery of rare cell
populations, but it can be used together with an algorithm
specifically designed for detecting rare cell populations in
a sample, such as SWIFT [12], and then use informative
priors to find how this population occurs across an entire

set of samples, in a similar way as was done in the GvHD
dataset.
How much clusters should be merged is a decision that

needs to be taken by the interpreter of the data. In some
settings one might want to be restrictive with merging

Fig. 14 Distances within (w) and between (b) donors as measured by 
1 distance between vectors of population sizes. For the six BayesFlow runs
and HDPGMM there is very little or no overlap between within-donor and between-donor distances, whereas for ASPIRE there is clear overlap
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and then use higher thresholds. In others one might want
additional mergers after viewing joint one-dimensional
projections of the clusters.
The BayesFlow pipeline does not in itself include

any compensation or any of the non-linear transforma-
tions which are often used for flow cytometry data,
such as logicle. Compensation is a linear transforma-
tion and Gaussian Mixture Models are invariant under
linear transformations, so they perform equally well on
uncompensated and compensated data. Non-linear trans-
formations such as logicle can make Gaussian pop-
ulations non-Gaussian, which makes inference harder.
The flow cytometry data we used for the experiments
had already been compensated, the healthyFlowData
data set had also been transformed with an asinh
transform; details are given in the Additional file 1:
Section E.1.
BayesFlow finds a joint representation of an entire set of

samples. In order for this representation to be reasonable
there has to be sufficient correspondences between sam-
ples. Even if for a data set with very little correspondences
a joint model could be obtained by using a very large num-
ber of components, it would hard to gain any insights
from such a model. In such a case an entirely computa-
tional pipeline without the cell population identification
step would be preferred.
BayesFlow can be computationally intensive if many

runs are needed to pass the quality control. For these cases
it would be desirable to complement BayesFlow e.g. with
initializationmethods that would allow passing the quality
control more often, so that few runs in BayesFlow would
be needed. Fast initialization methods and early quality
checks aiming at this would therefore be of interest for the
community and is something that we propose for further
study.

Conclusions
In this paper we have presented a new Bayesian hierarchi-
cal model designed for joint cell population identification
in many flow cytometry samples. The model captures
the variability in shapes and locations of the populations
between the samples and we have demonstrated its use in
an exploratory as well as in a partly informed setting with
some prior information. We showed that for synthetic
datasets generated from the model, the parameters were
recovered with high accuracy through a MCMC sampling
scheme. The model was then applied to a real flow cytom-
etry data set where a manual gating was available, and
it was shown to have very high accordance with manual
gating as compared to other automated gating methods,
while at the same time the gating was more consistent
across samples than either the manual gating or other
automated gating methods. When applied to another flow
cytometry data set with technical replicates of blood from

healthy donors, BayesFlow gave a parsimonious repre-
sentation of the data, which enables visualization and
monitoring of its parameters. The obtained cell popu-
lations had clear expression patterns as opposed to the
clusters obtained by ASPIRE and HDPGMM, where for
example CD4+CD8- T-cells where in the same cluster
as CD4+CD8+ T-cells. The population sizes obtained by
BayesFlow and HDPGMM respectively had lower intra-
donor variation compared to inter-donor variation than
what was obtained from ASPIRE.
Many approaches of automated gating of multiple flow

cytometry samples in parallel have been aimed at find-
ing features of the data so that either samples can be
classified into groups, e.g. cancer or normal, or they can
be used to predict an outcome such as expected time to
progression of disease. Features are often designed based
on characteristics of cell populations, but usually not so
much attention has been given to ensure that they repre-
sent actual cell populations. BayesFlow takes the opposite
approach and gives a representation of the data according
to cell populations, with the same cell populations across
the entire set of samples (except when some populations
only occurs in a subset of the samples). The advantages to
this approach are among others that the result is directly
biologically interpretable and that a rich output is given
which can be explored in many different ways which are
familiar to someone who is used to manual gating. In
this way we can join the objectivity and ability to work
in high dimensions and with many samples of automated
gating with the flexibility in interpretation of manual
gating.

Additional files

Additional file 1: Supplementary material. The supplementary material
contains the posterior in BayesFlow, the MCMC sampling scheme,
additional details on the merging of components, information about the
data generation, priors and initialization for the synthetic data example;
parameters used for ASPIRE, additional details on healthyFlowData, the
priors and the initialization procedure used when studying this data set
and further results pertaining to the real flow cytometry data set, including
fitting Gaussian mixture models to individual samples of healthyFlowData
with the EM algorithm and scatter plots of GvHD for ASPIRE, HDPGMM and
BayesFlow run 1. (PDF 7505 kb)

Additional file 2: Data generation files. A Python script for generating
the large synthetic dataset, along with means, covariances and weights
needed for this. (ZIP 10kb)
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