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Abstract During the 15-day-longglobal very longbaseline
interferometry campaign CONT14, a terrestrial monitoring
campaign was carried out at the Onsala Space Observatory.
The goal of these efforts was to monitor the reference point
of the Onsala 20 m radio telescope during normal telescope
operations. Parts of the local site network as well as a number
of reflectors that were mounted on the 20 m radio telescope
were observed in an automated and continual way using
the in-house-developed software package HEIMDALL. The
analysis of the observed data was performed using a new
concept for a coordinate-based network adjustment to allow
the full adjustment process in a true Cartesian global refer-
ence frame. The Akaike Information Criterion was used to
select the preferable functional model for the network adjust-
ment. The comprehensive stochastic model of this network
adjustment process considers over 25 parameters, and, to
describe the persistence of the observations performed dur-
ing the monitoring with a very high measurement frequency,
includes also time-dependent covariances. In total 15 indi-
vidual solutions for the radio telescope reference point were
derived, based onmonitoring observations during the normal
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operation of the radio telescope. Since the radio telescope
was moving continually, the influence of timing errors was
studied and considered in the adjustment process. Finally,
recursive filter techniques were introduced to combine the 15
individual solutions. Accuracies at the sub-millimeter level
could be achieved for the radio telescope reference point.
Thus, the presented monitoring concept fulfills the require-
ment proposed by the global geodetic observing system.

Keywords Radio telescope ·VLBI ·Reference point deter-
mination · Monitoring · Uncertainty · Bundle adjustment ·
Least-squares analysis · Akaike Information Criterion

1 Introduction

The increasingly complex and environmentally stressed
world requires accurate global Earth observations to sup-
port decision making for a sustainable development and
the benefit and survival of human society. The prerequisite
for such global Earth observations is an accurate and reli-
able global terrestrial reference frame. Recently, the United
Nations (UN) highlighted the importance of a global ter-
restrial reference frame and adopted a corresponding UN
resolution on a global geodetic reference frame for sustain-
able development (United Nations 2015).

A global geodetic reference frame is realized by combin-
ing results from a variety of space geodetic techniques. It
is published by the International Earth Rotation and Refer-
ence Systems Service (IERS) as the International Terrestrial
Reference Frame (ITRF), see e.g. Altamimi et al. (2011).
To combine the measurements performed by the different
space geodetic techniques, so-called co-location stations that
host equipment for more than one technique are crucial. The
local-tie vectors between the reference points of the space
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Fig. 1 Left: Local sky coverage at Onsala during one of the 24 h long CONT14 sessions.Middle: Azimuth as a function of time during this session.
Right: Elevation as a function of time during this session

geodetic equipment need to be known with high accuracy.
Rothacher et al. (2009) advise that measurements of local-
tie vectors should be performed with 1 mm accuracy in a
fully automatedway and on an almost continuous basis, since
local ties may change over time. The determination of local-
tie vectors involves determining the reference points of the
space geodetic equipment as, e.g. radio telescopes used for
VLBI observations. In general, the determination of the ref-
erence point of a radio telescope is a demanding engineering
task. However, it is a particular challenge for the upcoming
VGOS (VLBI Global Observing System) (Petrachenko et al.
2009) that prepares for so-called 24/7 operations, i.e. 24 h a
day, 7 days a week. The VGOS radio telescopes will be in
operation continually and there will hardly be time available
for dedicated survey campaigns to determine radio telescope
reference points and local-tie vectors.

During a geodetic VLBI session, a network of sev-
eral radio telescopes observes a number of extragalactic
radio sources to achieve interferometric measurements [e.g.
Sovers et al. (1998)]. The radio telescopes are located far
away from each other, often on different tectonic plates,
and thus form very long baselines. The telescopes simul-
taneously observe identical radio sources, one at the time.
During the observations, the radio telescopes need to com-
pensate for the rotation of the Earth to keep tracking the
radio sources. The radio telescopes have, therefore, to con-
tinually change their local azimuth and elevation orientation
slightly. The Earth rotates by roughly 15 arcsec per second,
and this rotational velocity maps into the azimuth and eleva-
tion speed of the radio telescopes. The exact tracking speed
in azimuth and elevation that is necessary to follow a radio
source depends on the location of the particular radio tele-
scope and the local azimuth and elevation direction of the
radio source. For example, for a radio telescope on the equa-
tor and a radio source in the equatorial plane the elevation

speedwould be 15 arcsec per secondwhile therewould not be
any movement in azimuth. The observation of one particular
radio source usually takes between about 15 seconds and 5
minutes. The exact observation time is calculated in advance
during the preparation of the observing plan, the so-called
schedule, and is a function of the known signal strength of
the particular radio source to be observed and the sensitiv-
ity of the involved radio telescopes. Once a radio source has
been observed, the radio telescopes point at the next radio
source in the schedule, thus they change from one tracking
direction to another. The movement between two tracking
directions occurs at relatively high speed, for example, at
the Onsala 20 m telescope with 3◦/s in azimuth and 1◦/s in
elevation. The arc length between different observing direc-
tions usually is rather large to achieve beneficial geometrical
conditions for the analysis of the VLBI data. During a 24-h-
long observing session, in total on the order of 400–500 radio
source observations in different azimuth/elevation directions
are performed at a single radio telescope. Thus, the local sky
at a radio telescope is covered rather homogeneously with
observations in many different azimuth/elevation directions,
which is a benefit for the analysis of theVLBIdata. In general,
each azimuth/elevation direction during a 24-h-long observ-
ing session is unique and not covered twice. The involved
radio telescopes are continually changing their azimuth and
elevation orientation, either while observing (tracking) a par-
ticular radio source and compensating for Earth rotation, or
switching (slewing) between different radio sources.

The left graph in Fig. 1 depicts as an example the local
sky coverage, i.e. the directions that the Onsala radio tele-
scope was pointing at, during one of the 15 sessions of 24 h
observations length that were observed during CONT14.1

1 Continuous VLBI Campaign 2014 http://ivscc.gsfc.nasa.gov/
program/cont14/.
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The corresponding azimuth and elevation of the radio source
observations as a function of time are presented in mid-
dle and right graph of Fig. 1, respectively. In total, the
Onsala radio telescope observed radio sources in 446 dif-
ferent azimuth/elevation directions during these 24 h. More
than 57, 16, 10 and 5 % of the radio source observations had
an observation length of 15, 30, 45 and 60 s, respectively.
The remaining 12 % of the observations were longer than
1min, where one single observation was 3 minutes long. The
minimum and maximum arc lengths between two observing
directions were 10◦ and 180◦, and about 13 % of the arc
lengths were 60◦.

Methods and routines have been developed to allow the
determination and monitoring of the radio telescope refer-
ence point during ongoing operations (Lösler et al. 2013).
The current work extends Lösler et al. (2013) consider-
ably by implementing a comprehensive stochastic model that
takes more than 25 uncertainty parameters into account, by
applying a coordinate-based bundle adjustment in combi-
nation with a recursive filter, and by providing the results
for the radio telescope reference point directly in a Carte-
sian global reference frame. The uncertainty budgeting is
derived according to the DIN 1319 (1995) taken into account
uncertainties that are derived by statistical analysis as well as
uncertainties that are derived by non-statistical approaches.
This innovative and advanced monitoring approach was
applied for the first time during the 15-day-long continuous
VLBI campaign in 2014, CONT14. Figure 2 depicts a sim-
plified flowchart of the monitoring and analysis process of
the in-house developed monitoring software HEIMDALL2

to have an impression of the complexity of the automated
IVS reference point determination. The work presented in
this paper focuses on the components that are marked by
black solid boxes. To learn more about the monitoring com-
ponents of the HEIMDALL system the interested reader is
invited to read the prior work of Lösler et al. (2013).

Section 2 describes the general model used to determine
the reference point of a radio telescope. The analysis strat-
egy using the Gauß–Helmert model is explained briefly
in Sect. 3, followed by a description of the coordinate-
based bundle adjustment in Sect. 4. To evaluate a preferable
functional model for the bundle adjustment, Sect. 4.2 intro-
duces the information criteria technique to avoid an over-
parametrization. The ingredients of the complete stochastic
model are explained in detail in Sects. 4–7. Section 8 explains
the recursive parameter estimation, followed by a descrip-
tion of the actual monitoring performed during CONT14 in
Sect. 9. The data analysis is explained in Sect. 10, followed by
the presentation and discussion of the results in Sect. 11. Sec-
tion 12 finally concludes the paper. The Appendix explains

2 High-end interface for monitoring and spatial data analysis using L2-
Norm.

the derivation of a compensation model for polar measure-
ment instruments.

2 Radio telescope reference point determination

The International VLBI Service for Geodesy andAstrometry
(IVS) defines the geometrical reference point of an azimuth-
elevation type radio telescope as the intersection point of the
azimuth and elevation axes (Nothnagel 2009). Depending on
the design and/or actual construction of the radio telescope,
an axis-offset may exist. In this case, the reference point is
defined by the orthogonal projection of the elevation axis
onto the azimuth axis. Usually, the reference point cannot
be materialized for direct measurements, and therefore indi-
rect survey methods need to be applied [e.g. Eschelbach and
Haas (2003), Sarti et al. (2004), Dawson et al. (2007), Leinen
et al. (2007), Lanotte et al. (2008), Lösler (2008), Kallio and
Poutanen (2012), Li et al. (2014), Ning et al. (2015)].

To determine the reference point during normal telescope
operations, a general mathematical model has been proposed
by Lösler (2009). This approach includes the radio telescope
azimuth and elevation angles as additional observations. This
model can be interpreted as a transformation between the
ground-fixed reference systemand the radio telescope system

PObs = PRP + Rx
θR

y
φR

z
α−Oα

Ry
ψ(Eα,ε + Rx

εPTel). (1)

In the above equation α and ε denote the azimuth and ele-
vation angles of the radio telescope, respectively. The vector
PObs represents the observed position in the ground-fixed
system and PTel denotes the corresponding position in the
radio telescope system. Depending on the definition of the
site network, PObs can be a local topocentric position or even
a global geocentric one. The position PTel is defined by the
radial distances to the elevation-axis aε , the radial distances
to the azimuth-axis bα and an elevation orientation angle Oε

PTel = Rx−Oε

⎛
⎝
bα

aε

0

⎞
⎠ . (2)

The non-orthogonality between the azimuth and elevation
axes is parametrized by the angle ψ , and the axis-offset eα,ε

is given by Eα,ε = (
0 eα,ε 0

)T
. Both coordinate systems

become congruent by the rotation sequenceRx
θR

y
φR

z
−Oα

with
the angles θ , φ and Oα , respectively, and a final translation
with vector PRP that represents the reference point which is
defined by the IVSw.r.t. the ground-fixed site network. Since
the observations and the unknown parameters in Eq. 1 cannot
be separated from each other, it is necessary to apply a gen-
eral least-squares adjustment, also known as Gauß–Helmert
model (see Sect. 3), to solve Eq. 1. To study the detailed
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Fig. 2 Simplified flowchart of
the monitoring and analysis
process of the HEIMDALL
system. The grey-dashed boxes
represent components that are
out of scope of the current work,
and most of these are discussed
in detail by Lösler et al. (2013).
The black solid boxes represent
components that are discussed
in the current work

VLBI schedule e.g. CONT14

(Approximate) coordinates of the 
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measurement

Coordinates of the reflectors 
mounted on the radio 

telescope and their orienta�on 
in an ini�al posi�on e.g. 

α=ε=0°

Es�ma�ng predic�ons for the 
points at the radio telescope, 

checking the visibility and deriving 
an observa�on plan for the polar 

measurement instrument

Automated monitoring of the local 
network and observing the 
(predicted) posi�ons on the 

telescope for a defined

Meteorology parameters, i.e. 
air temperature, pressure, 
humidity, carbon dioxide

Time signal for synchronising 
the total sta�on and the radio 

telescope observa�ons

Coordinate based bundle 
adjustment for es�ma�ng the 
coordinates of the epoch in a 

consistent frame

Compensa�on model of the 
total sta�on and auto-

covariance func�ons for the 
considera�on of the 

persistence of the data series

GNSS measurements and/or 
further non-automated 
terrestrial observa�ons

Determina�on of the IVS reference 
point and addi�onal radio 

telescope parameters as a single 
solu�on of the epoch 

measurements

Invar measurements and 
monument temperature for 

compensa�on of thermal 
effects

Radio telescope orienta�on 
angles w.r.t. the reference 

�me of measurement

Combining several epochs by using 
Kalman filter techniques on the 

parameter level, i.e. the es�mated 
coordinates of the IVS reference 

point of the epoch 

Prior results of the IVS 
reference point, i.e. the 

stacked solu�on of filtered 
process

GNSS solu�on of the IVS 
reference point derived by 

semi-kinema�c observa�ons

Current solu�on of the IVS reference point derived based on 
knowledge of the current measurement process and prior 
results including a comprehensive uncertainty budge�ng

derivation and additional graphical material of the reference
point determination model, the interested reader is referred
to Lösler (2008) and Lösler (2009).

Temperature variations affect the telescopemonument and
cause a height variation �hRP of the radio telescope [e.g.
Haas et al. (1999),Wresnik et al. (2007)]. In accordance with
the IVS convention byNothnagel (2009), the height variation
can be expressed as

�hRP(�Ti ) = (γShS + γFhF )�Ti . (3)

Here hS is the height of the reference point with respect to the
foundation of the telescope, hF is the height of the founda-
tion, and γS and γF are the thermal expansion coefficients for

thematerial of the telescope and the foundation, respectively.
The difference between the temperature of the radio tele-
scope structure Ti and a reference temperature T0 is denoted
by �Ti = Ti − T0. Similar to the height component, the
parameters aε and bα (see Eq. 2) are also affected and should
be corrected for thermal effects [cf. Lösler et al. (2013)]

�aε(�Ti ) = γSaε�Ti , (4)

�bα(�Ti ) = γSbα�Ti . (5)

Depending on the geodetic datum, the local (vertical)
height component might be aligned to the zRP-coordinate
of the reference point. In this case, the correction of the ther-
mal expansion can directly be applied to the zRP-component
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of the reference point. However, if a geodetic datum is cho-
sen where the zRP-coordinate is not aligned with the local
(vertical) height component, e.g. using a global geocentric
reference frame, the rotation between the telescope sys-
tem and the local ground-fixed system has to be taken into
account. Then the height variation has to be split up into the
coordinate components of PRP by
⎛
⎝

�xRP
�yRP
�zRP

⎞
⎠

Global

= Rx
θR

y
φ

⎛
⎝

0
0

�hRP

⎞
⎠

Local

. (6)

3 Brief description of the Gauß–Helmert model

The Gauß–Helmert model (GHM) is known as the gen-
eral least-squaresmethod,which solves adjustment problems
with condition equations. The functional model of the GHM
connects the unknown parameters x, the observations l and
their random errors v by n differentiable condition equations
	(x, l+v) = 0 [cf. Neitzel (2010), Koch (2014)]. By provid-
ing appropriate a priori values x0 and v0, the normal equation
system can be written as

[
k
dx

]
= −

[
BQllBT A

AT 0

]−1 [
−Bv0 + 	(x0, v0)

0

]
. (7)

Here, the design matrices A = ∂	
∂x |x0,l0 and B = ∂	

∂l |x0,l0
consist of the partial derivatives of the linearized functional
model with respect to the unknown parameters x and the
observations l, respectively. The vector of Lagrange mul-
tipliers is denoted by k, and the vector of misclosures is
defined by w = −Bv0 + 	(x0, l0). The corrections dx to
the a priori values x0 are determined by solving the normal
equation system and the estimated solutions of x = x0 + dx
and l = l0 + v = l0 + QllBTk are introduced as new
approximations to the next iteration step. This procedure
is repeated until the system of equations converges. The
variance–covariance matrix Qll in Eq. 7 represents the sto-
chastic model of the observations.

Whereas the vector l contains the observed positions
PObs,i as well as the related azimuth angles αi and eleva-
tion angles εi , the vector of unknown parameters x includes
the reference point PRP, the axis-offset eα,ε , the correction
angles that compensate for misalignment of the axes (ψ , θ

and φ), an azimuth zero-point correction Oα as well as the
additional point depending parameters aε , bα and Oε of PTel.
A detailed description of the Gauß–Helmert model in con-
text of the derived reference point determination model (see
Eq. 1) is given by Lösler (2009).

Applying the law of uncertainty propagation, the stochas-
tic dependencies between the estimated parameters x and the
observations l can be derived by

Qlx = −QllBTQ−1
wwAQxx. (8)

Here Qxx = (ATQ−1
wwA)−1 denotes the estimated variance–

covariance matrix of the unknown parameters x and
Qww = BQllBT is the variance–covariance matrix of the
misclosures w [e.g. Höpcke (1980, p. 162)]. The variance–
covariance matrix

Qxxll =
[
Qxx Qxl

Qlx Qll

]
(9)

is essential, if further processing steps are intended, e.g. a
rigorous combination of consecutive adjustment processes,
cf. Sect. 8.

4 Coordinate-based bundle adjustment

The network adjustment is the first step of the processing. As
a result, it provides the spatial coordinates and their corre-
sponding uncertainties as the full variance–covariancematrix
of the observed points. Depending on the extent of the local
network and the accuracy requirements, the influence of the
curvature of the Earth cannot be neglected. To overcome
the influence of the inclination caused by the divergences
of the plumb lines, different analysis strategies have been
developed. Based on a spherical approximation, Schwarz
(1994) suggests a geometric reduction to project the polar
observations to a local Cartesian coordinate system. Another
possibility is to introduce additional parameters that para-
metrize the influence of the plumb line direction [e.g. Heck
(2003, chp. 4, pp. 82 ff.), Awange and Grafarend (2005,
chp. 7, pp. 77 ff.)]. In metrology, coordinate-based algo-
rithms have been developed [e.g. Calkins (2002), Lösler et al.
(2015a)], because most of the instruments used in metrology
and monitoring, e.g. Coordinate Measuring Machines and
laser trackers, are unrelated to the gravity field. A detailed
description of such an algorithm will be given in the next
sections.

4.1 Derivation of the functional model

The process to combine several stand points or even instru-
ments is based on homologous Cartesian coordinates. Each
initialized stand point defines its own local true Carte-
sian coordinate system. Whereas a Coordinate Measuring
Machine provides Cartesian coordinates, laser trackers and
total stations provide polar measurements. The polar obser-
vations of the i th point p of the j th stand point have to be
converted into Cartesian spatial coordinates
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pi, j (�,�, d) =
⎛
⎝
x
y
z

⎞
⎠

i, j

=
⎛
⎝
d sin� cos�

d sin� sin�

d cos�

⎞
⎠

i, j

. (10)

Here, d is the slope distance, and � and � are the yaw and
pitch angles w.r.t. the local stand point coordinate system,
respectively.

To combine the observed coordinates pi, j of the j th stand
point with the ground-fixed global coordinate system Pi ,
a conformal spatial parameters coordinate transformation
can be used [cf. Shen et al. (2006), Lösler and Eschelbach
(2014)], i.e.

pi, j = T j + R jS jPi . (11)

Here, the translation vector is denoted by T, the diagonal
scaling matrix is S, which applies the scaling parameter s
uniformly to all axes by setting S = sE, and R is the rota-
tion matrix. To estimate the global coordinates Pi and the
unknown transformation parameters of each stand point, a
Gauß–Markov model can be used [e.g. Mikhail and Ack-
erman (1976, chp. 5, pp. 101 ff.), Koch (1999, chp. 3,
pp. 149 ff.)], expressed as

Ax = l + v. (12)

The designmatrixA, which contains the partial derivatives of
the linearized functional model with respect to the unknown

parameters x = [
xPT xTT,1 xTT,2 . . . xTT,m

]T
, can be divided

into a coordinate part AP and a part AT, which contains the
transformation parameters of the m stand points. The local
coordinates of each stand point are given by the (reduced)
observation vector l, and the vector v contains the observa-
tional residuals. The equation system, thus, becomes

⎡
⎢⎢⎢⎢⎣

AP,1 AT,1 0 · · · 0

AP,2 0 AT,2
...

...
...

. . . 0
AP,m 0 · · · 0 AT,m

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

xP
xT,1

xT,2
...

xT,m

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

lp,1

lp,2
...

lp,m

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

vp,1

vp,2
...

vp,m

⎤
⎥⎥⎥⎦ . (13)

The stochastic model of the local points is represented by
Qpp. Furthermore, prior results and/or GNSS observations
x̄P and their uncertainties Qx̄Px̄P can be introduced to define
the geodetic datum of the network by

[
AP AT

E 0

] [
xP
xT

]
=

[
lp
x̄P

]
+

[
vp
vx̄P

]
, (14)

and the corresponding stochastic model reads

Qll =
[
Qpp 0
0 Qx̄Px̄P

]
. (15)

Additional restrictions CTx = c can be applied to con-
strain the number of transformation parameters, e.g. to fix
the scale parameter to s = 1, or to rectify the defect of the
normal equation matrix in case of a free network adjustment

[
ATQ−1

ll A C

CT 0

] [
x
k

]
=

[
ATQ−1

ll l
c

]
, (16)

where k denotes the Lagrange multipliers. The adjustment
model becomes bi-linear, if the rotation sequence R in
Eq. 11 is parametrized by a quaternion. Thus, good conver-
gence properties can be expected [cf. Lösler and Eschelbach
(2012)].

4.2 Assessment of the parameter selection for the
functional model

Applying the coordinate-based bundle adjustment as
described in Sect. 4.1, each stand point will be optimally
integrated into the global frame using up to seven parame-
ters. This parametrization is also known as 6-DOF solution,
because in general, the scale parameter is fixed to s = 1. If
the extent of the network is very small, the divergences of
the plumb lines are often neglected, which means that the
rotation angles rx and ry are fixed to rx = ry = 0. Thus, the
number of parameters per stand point is reduced from six to
four (4-DOF).

In our case, the extent of the radome network does not
exceed 25 m. Increasing the number of parameters will
reduce the squared sum of weighted residuals vTQ−1

ll v, but
it also increases the likelihood of an over-parametrization
of the model. This problem is known as a model selection
problem. To get an indication on which model should be
used during the adjustment process, several approaches have
been developed. Comprehensive textbooks on the topic of
model selection are, e.g. Burnham and Anderson (2002) and
Claeskens and Hjort (2008).

Based on information theory, one well-known method is
the Akaike information criterion (AIC).

AIC = −2 logL(x, σ̄ 2; l) + 2(u + 1) (17)

Here, l is the n×1 vector of observations, x is the u×1 vector
of model parameters and σ̄ 2 is the variance factor that max-
imize the likelihood function L(x, σ̄ 2; l), cf. Akaike (1974).
The second term of the equation depends on the number of
model parameters u and can be interpreted as a penalty term.
The preferable model is indicated by the smallest AIC value.
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Due to the penalty term the preferred model has an adequate
number of parameters [e.g. Lehmann and Lösler (2016)].

Assuming observations with a normal distribution, the
likelihood function reads [e.g. Koch (1999, chp. 3.2.4,
p. 161)]

L(x, σ̄ 2; l) = 1

(2πσ̄ 2)n/2 exp
(

− vTQ−1
ll v

2σ̄ 2

)
(18)

which is equivalent to

logL(x, σ̄ 2; l) = −n

2
log (2π) − n

2
log σ̄ 2 − vTQ−1

ll v

2σ̄ 2 .

(19)

The maximum likelihood estimator σ̄ 2 of the unknown vari-
ance factor σ 2 [e.g. Koch (1999, chp. 3.2.4, p. 162)] is given
by

σ̄ 2 = vTQ−1
ll v

n
, (20)

and the likelihood function in Eq. 17 follows by substituting
Eq. 20 in Eq. 19 and becomes

logL(x, σ̄ 2; l) = −n

2
log (2π) − n

2
log

vTQ−1
ll v

n
− n

2
.

(21)

AIC may fail, if the number of observations n is small w.r.t.
the number of parameters u. Thus, the usage of a second-
order improvedAIC is strongly recommended [e.g. Burnham
and Anderson (2002, chp. 7.4, pp. 374 ff.)]

AICc = AIC + 2(u + 1)(u + 2)

n − u − 2
. (22)

Because AICc tends to AIC if n gets large, AICc should
always be used. There are alternative criteria to select the
preferable model but they only differ in the limit range
[cf. Lehmann (2014)].

4.3 Stochastic model for polar measurements
instruments

The stochastic model describes the a priori uncertainties of
the measurement process and allows for combining different
types of observations w.r.t. their uncertainties. In general, the
uncertainties are composed of various factors and statistical
distributions [e.g.Adunga (2007, chp. 5, pp. 93 ff.),DIN1319
(1995), GUM (2008a, b)].

Equation 10 assumes a perfect instrument which means
that:

– the yaw and pitch axes are orthogonal to each other and
have an intersection point,

– the distancemeasurement unit is centered w.r.t. this inter-
section point,

– the target beam is coaxial and orthogonal to the elevation
axis,

– the normal vector of the angle encoder is aligned and
centered to the rotation axis, and

– the angle encoders are free of graduation errors.

Due to manufacturing reasons, deviations from the ideal-
izedmodel are possible, cf. Fig. 3. Ideally, the largest share of
these errors is compensated by the manufacturer’s firmware,
and only a few errors can be, and need to be, rechecked by
the instrument operator. Based on the work of Muralikrish-
nan (2009), Hughes et al. (2011) suggest a compensation
model for a mobile laser tracker, which is also valid for other
polar measurement instruments, e.g. total stations or laser
scanners.

The corrected slope distance d̂ is calculated by adding a
displacement offsetλ and a distance-dependent scaling factor
μ, i.e.

d̂ = (1 + μ)d + λ. (23)

The angle encoder errors are parametrized as Fourier series:

�̂ = � + a�,0 +
nq∑
q=1

(a�,q cos q� + b�,q sin q�), (24)

�̂ = � + a�,0 +
nq∑
q=1

(a�,q cos q� + b�,q sin q�). (25)

Here, aq and bq represent the Fourier coefficients and nq
symbolizes the harmonic order of the Fourier series. Labo-
ratory investigation shows that it is sufficient to restrict the
harmonic order to nq = 2 (Lewis at al. 2011). The coeffi-
cient a�,0 describes an angular zero offset of the yaw angle
encoder. In general, a rectified orientation parameter is intro-
duced during the network adjustment so that a�,0 can instead
be set to zero.

The functional relation between the polar observations and
the Cartesian coordinates can be expressed as

pi, j (�̂, �̂, d̂) = p0 + b(�̂, �̂) + d̂n(�̂, �̂), (26)

with

b(�̂, �̂) = Rz
�̂

⎛
⎝
e�,�

0
0

⎞
⎠

+Rz
�̂
Rx

κR
y

�̂− π
2
Rx−κ

⎛
⎝
td,x − e�,�

td,y

td,z

⎞
⎠ (27)
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Fig. 3 Schematic
representation of deviations of a
polar measurement instrument,
e.g. a total station or a mobile
laser tracker, proposed by
Hughes et al. (2011). See text
for further explanations

and

n(�̂, �̂) = Rz
�̂
Rx

κR
y

�̂− π
2
Rx−κR

z
ν

⎛
⎝
1
0
0

⎞
⎠ . (28)

A detailed derivation of Eqs. 26, 27 and 28 is given in the
Appendix.

The coordinates of the stand point are summarized in
the vector p0, the vector b considers the axis-offset e�,�

and the centering error of the distance measurement unit(
td,x td,y td,z

)T
. The vector n compensates for the trunnion

axis error κ and the horizontal collimation error ν. The dis-
placement offset λ and td,x are aligned to each other, so both
are inseparable. Thus, λ compensates for the misalignment
of the distance measurement unit by constraining td,x = 0.
Even if this model was derived for laser trackers [e.g. Lösler
et al. (2015b)], it is valid for total stations, too.

Equation 26 shows the geometrically related factors of the
instrument, which are equivalent for all registered observa-
tions. In addition to the geometrically related factors, each
measurement can be considered as a realization of a random
experiment. Expanding Eqs. 23, 24 and 25 by a target center-
ing error ζ , a resolution limiting error of the digital output ξ ,
and a random error τ of the individual measurement process,
the functional relations of the polar observations become

d̂ = (1 + μ + τd)d + λ + ζd + ξd , (29)

�̂ = � + τ� + ξ� + ζ�

d
ρ + a�,0

+
nq∑
q=1

(a�,q cos q� + b�,q sin q�), (30)

�̂ = � + τ� + ξ� + ζ�

d
ρ + a�,0

+
nq∑
q=1

(a�,q cos q� + b�,q sin q�), (31)

where ρ = π
200 gon denotes the angle conversion factor

between radian and gon that transforms a small metric value
into its angular representation using its distance d.

Furthermore, the centering error of the instrumentQp0 has
to be taken into account if forced centering is used (Lösler
and Eschelbach 2012). Applying the law of uncertainty prop-
agation to Eq. 26, including Eqs. 29, 30 and 31, provides the a
priori variance–covariance matrixQpp of statically observed
coordinatesp. Table 1 summarizes the parameters of the com-
prehensive stochastic model that we derived for the analysis
of the polar measurements.

If glass body reflectors are used, it is important to align the
normal of the reflector surface to the line of sight, to avoid
systematic lateral εlateral and radial εradial errors [e.g. Pauli
(1969), Rüeger (1996, chp. 10.2.5, pp. 158 ff.)]. The magni-
tude of the errors caused by a misaligned reflector depends
on the reflector type and on the angle of incidence δ:

εradial = d
(
nr −

√
n2r − sin2 δ

)
− e(1 − cos δ), (32)
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Table 1 Parameters of the comprehensive stochastic model for the
least-squares adjustment of polar measurements

Parameter name Abbreviation unit

Centering error cx0 [m]

cy0 [m]

cz0 [m]

EDM scale error μ [ppm]

EDM displacement offset λ [m]

Yaw angle encoder q = 2 a�,1 [gon]

a�,2 [gon]

b�,1 [gon]

b�,2 [gon]

Pitch angle encoder q = 2 a�,0 [gon]

a�,1 [gon]

a�,2 [gon]

b�,1 [gon]

b�,2 [gon]

Trunnion axis error κ [gon]

Horizontal collimation error ν [gon]

Laser beam/axis offset e�,� [m]

Laser beam offset td,y [m]

td,z [m]

Target centering error ζd [m]

ζ� [m]

ζ� [m]

Resolution error ξd [m]

ξ� [gon]

ξ� [gon]

Measurement noise τd [m]

τ� [gon]

τ� [gon]

εlateral = (d − e) sin δ − d sec δG sin(δ − δG). (33)

Here, δG = arcsin sin δ
nr

, e denotes the distance between the
front surface of the prism and the center-symmetric point,
and d denotes the distance between the front surface of the
prism and the corner point of the triple prism. The ratio of the
group refractive indices of glass and air is given by nr ≈ 1.52
[cf. Rüeger (1996, p. 155)].

Figure 4 depicts the resulting systematic errors caused
by the angle of incidence δ for different reflector types. It is
shown, that small size glass body reflectors yield a lower error
level. On the other hand, these reflectors reflect only a small
part of the instrument’s laser beam and the small usable laser
spot size increases the likelihood for measurement failure.
The likelihood of measurement failure is even higher if the
reflector is misaligned.

Misalignment occurs often if standard reflectors are
observed that are mounted at the turnable part of the radio
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Fig. 4 Radial and lateral deviations caused by reflector misalignment
for precision reflector GPH1P, glass ball reflector GBR1.5′′, and glass
ball reflector GBR0.5′′

telescope. In this case, the angle of incidence δ depends on
the radio telescope orientation. If the normal of the reflector
surface is known in a reference position of the radio tele-
scope, these systematic errors can be corrected for all radio
telescope orientations (Lösler et al. 2013). The remaining
residual uncertainty is similar to the centering error ζ and
can be taken into account in the network adjustment process
(Lösler et al. 2015a).

4.4 Time-dependent correlations of the observations

Up to here the measurement process of a single point was
described and the uncertainties of a statically observed posi-
tionwere derived. Besides the random part of the observation
process a time-dependent or so-called signal part is rec-
ommended, and both are assumed to be uncorrelated with
zero means [e.g. Mikhail and Ackerman (1976, p. 399),
Kuhlmann (2003)]. Thus, the resulting variance–covariance
matrix becomes

Qll = Qs + Qpp. (34)

In most cases, the uncertainties Qpp of the measurement
process are known, e.g. by specification of the manufacturer,
or can be realistically assessed, e.g. by calibration reports or
practical knowledge, and introduced during the data analysis,
e.g. the network adjustment. However, statistical temporal
dependencies between the observations are neglected and
Qs ≈ 0 is implied. If high-frequentmeasurements are carried
out during amonitoring process, the so-called persistence of a
series, which describes the temporal or spatial dependency of
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Fig. 5 Examples of typical
auto-covariance functions
analyzed by Taubenheim (1969,
chp. 7.4, pp. 227 ff.), Bähr and
Richter (1975)

the observations (Taubenheim 1969, p. 17), should be taken
into account. Themeasure of the persistence of the signal can
be expressed by the auto-covariance function. For a given dis-
crete series of lengthn the empirical auto-covariance function
is

f (�) = 1

n − � − 1

n−�∑
t

(lt − l̂)(lt+� − l̂), (35)

where lt is an observed value of an equidistant sample l and
l̂ is the average of the sample. To avoid an overestimation,
the order of overlapping should be restricted to � = n

10
[cf. Heunecke et al. (2013, p. 343)].

In practical application it is, in general, not economical to
use empirical covariance functions. Therefore, theoretically
determined covariance functions are derived from a given
data sample by a least-squares adjustment and transferred
to the actual measuring process [e.g. Mikhail and Ackerman
(1976, chp. 14, pp. 393 ff.), Heunecke et al. (2013, chp. 8.4.2,
pp. 317 ff.)]. Suitable functions are discussed by, e.g. Tauben-
heim (1969, chp. 7.4, pp. 227 ff.), Bähr and Richter (1975),
and presented in Fig. 5.

The selected and determined covariance function can be
used as an appropriated approximation of the true covariance
function to derive a theoretical variance–covariance matrix
Qs of the signal.

5 Latency time of polar observations

The observations d, � and � of the polar measurement
instrument relate to different points of time. Depending on
the velocity of the object, latency becomes significant and has
to be taken into account.Whereas the corresponding yaw and
pitch angles can be assumed to be observed synchronously,
the distance measurement has a time difference with respect
to the angular measurements [e.g. Krickel (2004), Stempfhu-
ber (2004)].

The magnitude of this time difference depends on the par-
ticular type of instrument that is used. Modern instruments
trigger the angle encoder with up to 5 kHz, to achieve an
accurate time mapping [e.g. Lienhart et al. (2009)] and an
improved automatic target recognitionwill reduce the center-
ing errors of measurements in motion [e.g. Grimm and Hor-

nung (2015)]. Moreover, the so-called wave-form-digitizing
technique of the electro-optical distance measurement unit
of the used MS50 (Leica) is two times faster than the com-
mon phase-shift measurement systems, which reduces the
recording time [cf. Grimm (2014)].

During the regular observation process of a VLBI session,
the radio telescope compensates for theEarth’s rotationwhile
a radio source is tracked, see Sect. 1. The tracking velocities
of the telescope are sufficiently slow to observe targets that
are mounted on the radio telescope with a total station. If
the latency time δtlat and the corresponding uncertainty uδtlat
are known, the resulting uncertainties can be estimated by
Eq. 1. The coordinates of P̃i,ti and P̃i,ti−δtlat denote the true
positions at the time of measurement ti and the position w.r.t.
the delay, respectively. Inverting Eq. 10, the polar observa-
tions �i,ti , �i,ti and di,ti as well as �i,ti−δtlat , �i,ti−δtlat and
di,ti−δtlat can be derived and recombined. Under the assump-
tion that the angular measurements are related to ti and the
distance measurement is asynchronous, the observed posi-
tion Pi,ti results from�i,ti ,�i,ti and di,ti−δtlat . Therefore, the
error of the latency εlat = Pi,ti − P̃i,ti could be corrected,
if δtlat is known. To derive the uncertainties caused by the
latency time, a Monte Carlo simulation can be applied. For
this purpose, the latency time δtlat is simulatedm = 100,000
times w.r.t. uδtlat . The m × 1 residual vectors εx , εy , εz pro-
vide the 3 × 3 variance–covariance matrix Qlat,i of the i th
position, i.e.

Qlat,i = 1

m

⎛
⎜⎜⎝

εTx εx εTx εy εTx εz

εTyεy εTyεz

symm. εTz εz

⎞
⎟⎟⎠ . (36)

Due to various directions of movement of the radio tele-
scope, the sub-matricesQlat,i have to be derived individually
for eachmeasuredposition.Eachmatrix is unique and reflects
the geometric configuration at the time of observation.

6 Radio telescope angle encoders

In addition to the estimated coordinates, the radio tele-
scope angles α and ε are used as observations to solve
Eq. 1. Thus, the uncertainties of both, the azimuth- and the
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elevation-angle encoder, have to be taken into account. In
most cases, the uncertainties of the radio telescope angles
are assumed to be uncorrelated and only a diagonal vari-
ance matrix is introduced to the least-squares adjustment
[e.g. Lösler (2008), Kallio and Poutanen (2012), Ning et al.
(2015)], but in principle, the construction of an azimuth-
elevation type radio telescope is similar to a total station
as described in Sect. 4. Consequently, the same consider-
ations can be applied. Irregularities in the construction of
the radio telescope like the axis-offset are formulated as
unknown parameters in Eq. 1 and will be estimated within
the least-squares adjustment. Therefore, the angle-encoder
uncertainties can be derived by Eqs. 30 and 31, and provide
the fully populated variance–covariancematricesQα andQε .
Besides a random measurement noise, Qα and Qε take the
resolution of the encoder as well as the production-related
uncertainties into account.

7 Synchronization error

The combination of several sensors requires a timeline of
observations in a consistent temporal reference frame. The
demands on the quality of the synchronization vary. In most
cases, the environmental temperature, that is used for com-
pensating errors of the distance measurement unit of the total
station [e.g. Ciddor (2002)], is not time critical. However, the
synchronization of the total station and the radio telescope
is important for the measurement process and for the data
analysis, in particular if the data are synchronized and ana-
lyzed in post-processing.

Being δtsyn the synchronization error between the total
station and the radio telescope and ti the reference time of
measurement, the uncertainties can be assumed to have a
continuous uniform distribution. Thus, each radio telescope
angle has equal probability within the interval ±δtsyn. The
variances of the azimuth and elevation angles, respectively,
caused by a synchronization error are [e.g. Adunka (2007,
chp. 4.2.1, pp. 66–67), GUM (2008a, p. 13)]

u2αi ,δtsyn = 1

12

(
αti+δtsyn − αti−δtsyn

)2 (37)

and

u2εi ,δtsyn = 1

12

(
εti+δtsyn − εti−δtsyn

)2
. (38)

The azimuth angle αti and the elevation angle εti as well
as the radio telescope’s direction of motion depend on the
currently observed radio source position, thus, the magni-
tude of the uncertainty is changing w.r.t. the observed radio
source. It should be noted that the synchronization error is
not an angle encoder error of the radio telescope. Similar to

the uncertainties caused by the latency time in Sect. 5, the
influence of δtsyn can be derived using Eq. 1, but needs higher
computational effort.

8 Recursive parameter estimation

If observations l are collected gradually, a recursive parame-
ter estimation, i.e. a special case of a Kalman (1960) filter
process, can be used to gradually improve the unknown para-
meters x̂. Instead of Eq. 14, an improvement δxk−1,k of the
current state-vector x̂k−1 can be derived by [e.g. Koch (2007,
chp. 4.2.7, pp. 107 ff.), Teunissen (2009, chp. 2.3, pp. 54 ff.)]

x̂k = x̂k−1 + δxk−1,k = x̂k−1 + Kk−1,k(lk − Ax̂k−1). (39)

Here A is the coefficient matrix that contains the partial
derivations w.r.t. the unknown parameters, and K is the gain
matrix

Kk−1,k = Qx̂x̂k−1A
T(Qllk + AQx̂x̂k−1A

T)−1. (40)

The matrix Qllk is the variance–covariance matrix of the
additional observations lk of the kth state. The correspond-
ing uncertainties of the unknown parameters of the kth state
vector is given by

Qx̂x̂k = Qx̂x̂k−1 − KAQx̂x̂k−1 . (41)

To combine the results of single adjustment processes of
several epochs, Eqs. 39–41 can be simplified to the case
where the parameters are observed directly. Setting A = E,
lk = xk and Qllk = Qxxk , where xk denotes the solution
of the kth monitoring epoch that contains the reference point
and additional radio telescope parameters as well as the coor-
dinates of the marked points of the network, and Qxxk is the
corresponding variance–covariancematrix derived byEqs. 9,
39–41 can be used to combine the single solutions.

9 Monitoring during CONT14

During the global 15-day-long very long baseline interferom-
etry (VLBI) campaign CONT14 in May 2014, a total station
MS50 (Leica) was used to monitor the IVS reference point
of the 20 m radio telescope at the Onsala Space Observatory
during the ongoing telescope operations. The 20 m azimuth-
elevation type radio telescope is enclosed by a protection
radome.Thenetwork inside the radome is realized byfive sta-
ble survey pillars on the radome foundation wall. In addition
to these survey pillars, there are three survey markers with
center holes in the ground of the radome building, and three
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Fig. 6 Survey network inside the radome of the 20 m radio telescope
at the Onsala Space Observatory with observable connections w.r.t. the
survey pillars

additionalmagnetic reflector holders that support 1.5′′ reflec-
tors are mounted at the radome foundation wall and allow for
a combination of the radome network with the local site net-
work outside the building. To monitor the reference point
during CONT14, only the radome network was involved.

Figure 6 depicts the radome network and the observable
connections when the pillars are used as instrument stand
points. To carry out the indirect determination of the ref-
erence point, six 1.5′′ spherical reflectors (GBR1.5′′) with
glass bodies and six Leica GMP104 prisms were mounted
at the elevation cabin and at the counterweight of the radio
telescope. The total station was placed on the survey pillars
and initialization measurements were preformed. To check
the setup of the current stand point, measurements to the
remaining points of the radome network were carried out
continually during the monitoring process. Due to the con-
tinuously (slightly) moving radio telescope during the VLBI
campaign CONT14, see Sect. 1, all measurements were car-
ried out in one face only in a rapid measurement mode. Thus,
the total station was calibrated right in the beginning of the
monitoring, following the calibration procedure that is pro-
posed by the manufacturer using an overdetermined setup.

From a single observation stand point all visible reflectors
on the radio telescope were observed with the total station
once and in one face while the telescope was tracking a radio
source. These observations formed one measurement set.
Which reflector would be visible for each measurement set
was calculated beforehand in HEIMDALL, based on a priori
information on the position of the total station, the position of
the reflectors on the radio telescope, and the tracking orien-
tation of the telescope. Reflectors with unfavorable incident
angleswere not included in themeasurement sets.On average
for about 79 % of the telescope tracking positions, reflectors

were visible and could bemeasured. The number of reflectors
that could be measured in a measurement set also depended
on the time that the radio telescope was tracking a radio
source. The minimum and maximum number of reflectors
measured in a measurement set were 1 and 7, respectively,
while the average number was 3. During the fast slewing
movements when the radio telescope changed its orientation
from one radio source to another, no total station measure-
ments to reflectors on the radio telescope were performed.

A one-sided point distribution of telescope points nega-
tively effects the estimated position of the reference point
[e.g. Lösler et al. (2013), Lossin et al. (2014)]. Therefore, at
least two observation stand points in (nearly) diametrically
opposed order were used per monitoring experiment, but in
most cases the number of stand pointswas larger than two and
an additional scaling parameter as suggested by Lösler et al.
(2013) could be neglected. Table 3 summarizes the network
configuration, the number of pillars used as instrument stand
points, the total number of points that were observed at the
radio telescope during the monitoring epoch, and the degree
of freedom (DOF) of the coordinate-based bundle adjust-
ment. The observation time per stand point varied between
3.5, 6 and 7 h for configurations using five, three and two pil-
lars as instrument stand points, respectively, excluding the
setup time of about 1 h per stand point and maintenance time
between the epochs. In total 15 monitoring epochs were car-
ried out during the ongoing CONT14 VLBI campaign.

In comparison to the number of observed points at the
radio telescope, the degree of freedom is small. The reason
is that eachpoint at the radio telescope could only be observed
once. Thus, the degree of freedom of the bundle adjustment
results entirely from redundant observations to the control
points of the radome network. The estimated variance fac-
tor of the adjustment process can only be derived from the
redundant part of the network. In most cases, this value will
be too optimistic because of an incomplete stochastic model,
an unrepresentative sample of the population, and the sample
size [cf. Hennes (2007), Xu (2013)]. The transferability of
the estimated variance factor to the non-redundant points at
the radio telescope seems thus to be questionable and was,
therefore, discarded.

To validate the number of parameters that are estimated
during the network adjustment w.r.t. the rotation parameters
rx and ry , the AICc was used, see Sect. 4.2. For this purpose,
each network solution was evaluated twice, once with the 4-
DOF approach and once with the 6-DOF approach. Whereas
the 4-DOF solution restricts the number of parameters per
stand point by fixing the rotation parameters rx = ry = 0, the
6-DOF solution contains the rotation parameters rx and ry as
additional parameters. As pointed out, the observed points
at the operating radio telescope cannot be checked redun-
dantly. A single polar measurement, which consists of the
slope distance, the yaw angle and the pitch angle, increases
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Table 2 Comparison of the estimated AICc for each coordinate-based
bundle adjustment, w.r.t. the 4-DOF and 6-DOF solution, respectively

DOY AICc Preferred model

(2014) 4-DOF 6-DOF 4-DOF 6-DOF

126 364.2 330.8 ◦ ✓

127 429.7 440.2 ✓ ◦
128 467.8 398.1 ◦ ✓

129 410.3 236.0 ◦ ✓

130 395.3 378.8 ◦ ✓

131 438.1 351.3 ◦ ✓

132 506.4 417.3 ◦ ✓

133 456.1 441.6 ◦ ✓

134 257.4 292.9 ✓ ◦
135 322.1 113.9 ◦ ✓

136 458.7 432.7 ◦ ✓

137 495.4 304.1 ◦ ✓

138 410.7 158.8 ◦ ✓

139 326.6 67.4 ◦ ✓

140 213.6 178.0 ◦ ✓

The preferablemodel is indicated by the smallerAICc value. The check-
marks in the last two columns show whether the preferred model is the
4-DOF or the 6-DOF solution

the number of observations n and unknowns u by three,
respectively. Thus, the degree of freedom does not change
and these observations do not participate in the squared sum
ofweighted residuals vTQ−1

ll v. In Eq. 20 themaximum likeli-
hood estimator of the variance factor is biased and decreases
while n increases. To reduce the influence of the biased σ̄ 2,
the non-redundant points were excluded during the estima-
tion process of AICc. Table 2 shows the AICc for the 4-DOF
and6-DOFsolution, respectively.The check-marks in the last
two columns showwhether the preferredmodel is the 4-DOF
or the 6-DOF solution. For 13 out of 15 bundle adjustments
the 6-DOF solution is preferred. Thus, to achieve consis-
tency in the adjustment process, we chose to use the 6-DOF
approach for all epochs.

After CONT14we carried out themeasurements for deter-
mining the time-dependent correlations of the total station
observations. A reflector was mounted at the fixed con-
struction near the elevation cabin of the radio telescope and
observed with the total station during a period of 48 h and
with ameasurement frequency of every 30 s.During the regu-
lar monitoring process, the total station aligns in the direction
towards the predicted position of the target, carries out the
automated target recognition and starts themeasurement. The
same procedure, consisting of aligning, targeting and mea-
suring was chosen for the continuous measurements to the
fixed installed reflector to take into account possible swinging
characteristics of the compensator. The recorded data series
was used to derive the temporal dependency of the obser-

vations as described in Sect. 4.4 and introduced to the data
preparation process, cf. Sect. 10.

10 Data preparation for reference point
determination

To derive coordinates P and their uncertaintiesQPP in a con-
sistent reference frame, a network adjustment is needed. In
contrast to the concept presented by Lösler et al. (2013), the
network adjustment module was replaced by the coordinate-
based algorithm described in Sect. 4. The 15 monitoring
epochs were adjusted separately in a free network adjust-
ment, cf. Eq. 16. The geodetic datum was realized by the
ground markers and the pillars.

Initially, a GNSS campaign was carried out outside the
radome to estimate global Cartesian coordinates of a part
of the local site network using the precise point position-
ing (PPP) strategy. Using the wall points in and outside the
radome, the GNSS-PPP solution was transferred by man-
ual terrestrial measurements to the points inside the radome.
Thus, the local network was nearly aligned to a global geo-
centric reference frame. The wall points were excluded as
datum points, because these points were not always visible
at each epoch, but these points were used for improving the
network geometry.

The introduced a priori stochasticmodel of the coordinate-
based bundle adjustment depends on experience, preliminary
investigation, and the accuracy class of the instrument. In
addition to the geometric part Qpp of the stochastic model,
a time-dependent part Qs was introduced. The empirical
covariance function, cf. Eq. 35, was derived by the recorded
48 h measurement series (cf. Sect. 9). Due to small data
gaps, average values of about 5 min were used to estimate
the empirical auto-covariance function of the time series. The
suitable function

f (�) = uae
−ub|�| cos uc� (42)

was selected by plotting the covariance points of the empir-
ical auto-covariance function. The unknown parameters ua ,
ub and uc of the theoretical covariance function were derived
by a least-squares adjustment excluding the value for� = 0,
to take only the course of the signal into account [cf. Mikhail
and Ackerman (1976, chp. 14.5.2, pp. 404 ff.)]. Figure 7
depicts the empirical normalized auto-covariance function
of the polar observations and the corresponding least-squares
fits of a theoretical normalized covariance function.

The polar observations become uncorrelated after latest
1 h. Equation 42 was used to create the variance–covariance
matrix of the signal Qs for the polar observations of each
stand point. The a priori stochastic model of the coordinate-
based bundle adjustment of each stand point resulted from
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Fig. 7 Empirical normalised auto-covariance functions of the polar
observations (black dots) and the corresponding least-squares fits of
theoretical normalized covariance functions (red lines)

applying Eq. 34 and was introduced into Eq. 15. Mea-
sured points, which were observed by the j th stand point,
are correlated to each other by Qpp and Qs. For compar-
ison, in general, the uncertainties of polar observations are
considered as being uncorrelated, and the resulting variance–
covariance matrix is only a block-diagonal matrix with 3×3
sub-matrices on the main-diagonal.

The latency time δtlat between the distance measurement
and the angular measurements of the total station MS50 is
unknown and up to now a correction is impossible. Inves-
tigations by Stempfhuber (2004) show a magnitude of up
to δtlat = 285 ms for older Leica instruments. Further-
more, in most cases δtlat is positive, which means that the
distance measurement is carried out before the angular mea-
surement [cf. Stempfhuber (2004)]. To take the resulting
uncertainties into account, the uncertainty of the latency time
uδtlat = 50 ms was assumed to be uniformly distributed with
an expected value δtlat = 300 ms. The influence of δtlat was
derived by theMonteCarlo simulation as described in Sect. 5.

Figure 8 depicts the 3D point coordinate uncertainty
caused by the latency time of the total station measurements,
derived by Monte Carlo simulations for the first monitor-
ing experiment. The average uncertainty is about 0.025 mm
and values larger than 0.1 mm are the exception. It can
be expected that the latency time of modern instruments is
much smaller because of a higher measurement frequency of
the angle encoders. Thus, the influence of the latency time
becomes smaller and the proposed values are too pessimistic.
The variance–covariance matrix of the observed positions at
the radio telescope is given by

Qxyz = QPP + Qlat. (43)
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Fig. 8 Histogram of the resulting 3D point coordinate uncertainties
caused by latency time of the total station measurements, derived by
Monte Carlo simulation for the monitoring experiment of DOY126
(2014)

The average spatial point uncertainty is 2.3 mm. Com-
pared to the spatial uncertainties of the redundantly observed
control points, which are below the 1 mm level, the uncer-
tainty of radio telescope points appears too large. The reasons
for the comparatively large value are the observation con-
figuration and the lack of control, the assumed a priori
uncertainties in the stochastic model, and the discarding of
the variance factor in the coordinate-based bundle adjust-
ment.

As pointed out in Sect. 7, the synchronization error
between the total station and the radio telescope system
can be expressed as an additional azimuth and elevation
angle encoder error. Due to the inaccuracy of computer
clocks [cf. Stempfhuber (2004)] the synchronization error
is assumed to be 1.5 s, which is a worst-case scenario.
Within the recorded timestamps of the total station, time
frames were defined and corresponding angle encoder values
were selected. These angle encoder values can be interpreted
as boundaries of the interval in Eqs. 37 and 38 to derive
the uncertainty of the synchronization. Figure 9 depicts the
resulting uncertainty of angle encoder readings due to a
synchronization error for the first monitoring experiment.
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Fig. 9 Histogram of the resulting azimuth α angle (top) and elevation
ε angle (bottom) encoder reading uncertainties caused by a clock syn-
chronization error, calculated for themonitoring experiment ofDOY126
(2014)
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Table 3 Overview of the
monitoring campaign during
CONT14 in May 2014

DOY # Instrument stand point on pillar # # # DOF

(2014) SP 801 802 803 804 805 OP SR (%) UP BA RP

126 3 • ◦ • ◦ • 792 94.7 747 78 2197

127 3 ◦ • ◦ • • 825 96.6 790 84 2326

128 3 • ◦ • • ◦ 714 85.4 667 87 1957

129 3 ◦ • • ◦ • 747 96.1 710 69 2086

130 3 • • ◦ • ◦ 826 95.9 805 87 2371

131 5 • • • • • 782 97.1 752 63 2212

132 3 ◦ • • ◦ • 778 95.1 728 78 2140

133 3 ◦ • ◦ • • 840 95.6 804 90 2368

134 2 ◦ • ◦ • ◦ 599 96.2 571 93 1669

135 2 • ◦ • ◦ ◦ 580 97.7 551 63 1609

136 3 • • ◦ • ◦ 831 95.9 782 90 2302

137 3 • ◦ • • ◦ 736 95.2 706 87 2074

138 3 • ◦ • ◦ • 734 95.9 706 81 2074

139 2 • ◦ • ◦ ◦ 588 93.6 569 69 1663

140 2 ◦ • ◦ • ◦ 658 95.2 619 93 1813

# tooc 9 9 9 9 7

For each of the 15 days information is given on the day of year (DOY), the number of stand points (SP), on
which pillar the instrument was placed (filled bullets indicate used pillars), the number of observed points
(OP) at the radio telescope, the success rate (SR) of the OP w.r.t. the predicted points of the schedule, the
number of used points (UP) at the radio telescope for the reference point determination, the degree of
freedom (DOF) for both the bundle adjustment (BA) and the least-squares adjustment of the IVS reference
point (RP), and in the last row the number of total occupations (# tooc) on each survey pillar

Whereas the fraction of the elevation angle is small and
always below 0.0025◦, the fraction of the azimuth angle
holds the larger share on the uncertainty budgeting. The aver-
age uncertainty is about 0.002◦and values larger than 0.005◦
are the exception. A better classification of this uncertainty
results by a conversion into its metric representation. The
average distance between the azimuth axis of the radio tele-
scope and the mounted reflectors is about 3 m and caused a
lateral uncertainty of about 0.002◦ 3000 mm π

180◦ = 0.1 mm.
The variance–covariance matrices Qα and Qε of the

observed radio telescope angles, cf. Sect. 7, were extended by
the diagonal matricesQα,syn andQε,syn, respectively. Corre-
lations between the azimuth and elevation angles as well as
the coordinates are not assumed, which leads to

Qxyz,α,ε =
⎡
⎣
Qxyz 0 0
0 Qα 0
0 0 Qε

⎤
⎦ . (44)

The sub-matrices Qxyz, Qα and Qε in Eq. 44 are fully pop-
ulated variance–covariance matrices.

11 Results of the reference point monitoring

The data prepared in Sect. 10 were introduced to the
IVS reference point determination module of HEIMDALL,

cf. Sect. 2. Each epochwas analyzed individually and yielded
a daily solution. Height variation caused by changes in tem-
perature were monitored by an invar-wire monitoring system
inside the telescope monument, transformed by Eq. 6, and
corrected for during the reference point determination. Fur-
thermore, thermal expansions of the elevation cabin were
compensated using the recorded monument temperature of
the radio telescope and Eqs. 4 and 5.

In total, 15 IVS reference point solutions were derived,
cf. Table 3. The degree of freedom of the adjustment process
is large, because each point is providing redundant informa-
tion for Eq. 1 and can be checked for model-compatibility
during the reference point determination [cf. Lösler (2009)].
The number of excluded points are given in Table 3.

Table 4 summarizes the 15 individual solutions for the ref-
erence point and the estimated axis-offset in a global geodetic
reference frame. The variations of the individual solutions are
below 1mm. To combine the individual solutions, a recursive
parameter estimation was applied as described in Sect. 8.

A precondition for a stability check of the reference point
is that the control points of the local network are stable.
Besides the reference point and the axis-offset, the estimates
of the control points of the corresponding coordinate-based
bundle adjustment were also stacked. These points become
important if the geodetic datumhas to be changed. The uncer-
tainties were derived by Eq. 9. Therefore, time series for all
points were generated and analyzed for deformations.
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Table 4 Overview of the results
during CONT14

DOY xRP (m) yRP (m) zRP (m) eα,ε (m)

126 3370605.7907 711917.7234 5349830.9111 −0.0056

127 3370605.7904 711917.7236 5349830.9111 −0.0058

128 3370605.7910 711917.7234 5349830.9111 −0.0058

129 3370605.7897 711917.7238 5349830.9110 −0.0058

130 3370605.7902 711917.7238 5349830.9107 −0.0060

131 3370605.7904 711917.7238 5349830.9112 −0.0059

132 3370605.7903 711917.7236 5349830.9113 −0.0058

133 3370605.7904 711917.7234 5349830.9107 −0.0059

134 3370605.7901 711917.7237 5349830.9107 −0.0060

135 3370605.7902 711917.7237 5349830.9115 −0.0058

136 3370605.7901 711917.7242 5349830.9107 −0.0059

137 3370605.7904 711917.7231 5349830.9111 −0.0059

138 3370605.7904 711917.7235 5349830.9108 −0.0059

139 3370605.7903 711917.7238 5349830.9108 −0.0058

140 3370605.7902 711917.7241 5349830.9106 −0.0060

Filter solution 3370605.7903 711917.7236 5349830.9110 −0.0059

95 % confidence level 0.0003 0.0002 0.0004 0.0001

For each of the 15 days information is given on the day of year (DOY), the geocentric coordinates of the
IVS reference point (xRP, yRP, zRP), and the axis-offset eα,ε of the Onsala 20 m telescope. The uncertainties
of the individual results are on the order of 0.3, 0.2 and 0.4 mm for the x-, y- and z-component, respectively,
and 0.1 mm for the axis-offset. The filter solution based on the combination of the 15 days and its 95 %
confidence level is given in the last two rows
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Fig. 10 Daily individual solutions (red, with error bars) for the ref-
erence point coordinates and the axis-offset and the corresponding
recursive filter results (blue solid line). The blue-grey uncertainty band
relates to the 95 % confidence level

Figure 10 depicts the individual solutions together with
the filtered solution derived by recursive parameter estima-
tion, and proves the stability of the reference point position.
The uncertainties of the geocentric xRP and zRP components

are slightly larger than for yRP. An analysis of the variance–
covariance matrices shows a large dependency between the
xRP and zRP components. The estimated correlation coeffi-
cient is ρxRP,zRP ≈ 0.8 and results from the selected global
geodetic datum. In a topocentric reference frame the uncer-
tainties of the xRP and yRP components are on the same order
of magnitude, because of the surrounding symmetric obser-
vation configuration, cf. Table 3.

A datum-independent specification of the uncertain-
ties can be derived by a spectral decomposition of the
variance–covariance matrix [e.g. Mikhail and Ackerman
(1976, chp. A6., pp. 451 ff.), Koch (1999, chp. 1.4.2,
pp. 44 ff.)], i.e.

QRP = VDVT. (45)

Here,V andD contain the eigenvectors and eigenvalues of the
matrix QRP, respectively, and represent the orientation and
the dimension of the spatial hyperellipsoid. The maximum
eigenvalue and the corresponding eigenvector specify the
magnitude and the direction of the largest point uncertainty of
the reference point. The maximum uncertainty of the filtered
reference point is umax,95 % = 0.5 mm (95 % confidence
level) and is a better representation of the achieved uncer-
tainties. Moreover, the memory effect of the filter results in
a smooth curve progression. Whereas standard epoch-based
determination of a reference point only uses observations
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of one particular survey epoch, the recursive parameter esti-
mation involves all prior information. Small variations of
the individual solution are attenuated and the robustness of
the solution is increased. The recursive estimates fulfill the
requirements of 1 mm [cf. Rothacher et al. (2009)]. Indepen-
dent of the single-point uncertainty, reliable results can be
expected, if a homogenous point distribution is achieved and
any kind of extrapolation is prevented.

12 Summary and conclusion

A terrestrial monitoring campaign was carried out at the
Onsala Space Observatory during the 15-day-long global
VLBI campaign CONT14. A part of the local site network
at Onsala as well as reflectors mounted on the 20 m radio
telescope were observed during ongoing normal telescope
operations. Based on these observations, in total 15 individ-
ual solutions for the radio telescope reference point were
derived. In contrast to prior investigations, a newly devel-
oped coordinate-based bundle adjustment was applied for
the data analysis. The advanced stochastic model of the
adjustment process is based on the calibration model pro-
posed by Hughes et al. (2011) and regards more than 25
parameters [cf. Lösler et al. (2015a)]. Moreover, the uncer-
tainty budgeting was further extended by additional time-
dependent covariances and it also regards the persistence of
the observations in case of high-frequency measurements.
The functional model of the network adjustment is based on
a bundle adjustment that is detached from the local grav-
ity field [cf. Lösler and Eschelbach (2012)]. To avoid an
over-parametrization, the number of additional parameters
of the functional model of the bundle adjustment was eval-
uated using the information criteria technique AIC. It could
be shown that the 6-DOF solution of the bundle adjustment
was preferred even if the extent of the network is small.

Whereas in conventional approaches the global transfor-
mation process between local and global coordinate frames
is carried out as a final step, in our approach the transfor-
mation into a global reference frame takes place right in the
beginning of the bundle adjustment. Combination of GNSS
observations and classic terrestrial measurements in a global
reference frame permits an adjustment process directly in
the target system, e.g. the ITRF. The bundle adjustment of
the radome network as well as the reference point determi-
nation was carried out in a true Cartesian global reference
frame. The uncertainties of the angle encoders of the radio
telescope were modeled by Fourier series, which provides
full variance–covariance matrices for the azimuth and eleva-
tion angles. Due to the continuously moving radio telescope
during CONT14, additional uncertainties had to be taken
into account. The influence of timing errors was studied and
considered. The 15 individual solutions of the automated

and continual monitoring process were combined by recur-
sive parameter estimation as firstly proposed by Lösler et al.
(2013). Due to the relatively short observation period of just
15 days, an additional variance matrix for the process noise
was discarded. However, for longer observation periods it
would have to be taken into account. The detected variations
of the IVS reference point during the CONT14 campaign are
on the sub-millimeter level and the smoothed filter results
show a straight curve profile.

TheGGOSstrives for sub-millimeter accuracy and contin-
ual determinations of the reference points of space geodetic
instruments [cf. Rothacher et al. (2009)]. The concept pre-
sented in this work fulfills these requirements even during
normal operation of the radio telescope. It thus appears a very
promising and valuable approach for the upcoming VGOS
network with planned 24/7 operations (Petrachenko et al.
2009) and it should be easily possible to extend the concept
also to VGOS twin telescopes [cf. Neidhardt et al. (2011),
Haas (2013)].

Future work will focus on an improved integration of
our system with the radio telescope control to reduce the
uncertainty budgeting caused by timing errors between the
radio telescope and the observation instrument. The latency
time should also be taken into account and the applica-
tion of mobile laser trackers will be evaluated. This type of
instrument has a high internal measurement frequency which
promises to be beneficial in particular for the observation of
moving targets as, e.g. reflectors mounted on a radio tele-
scope in operation. Moreover, the supported reflectors of a
laser tracker are in general glassless and thus the lateral and
radial errors as depicted in Fig. 4 become obsolete. Finally,
the collaboration of classical geodetic survey and GNSS-
based reference point determinations will be addressed.
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Appendix 1: Brief derivation of a compensation
model for polar measurement instruments

Polar measurement instruments like total stations, laser scan-
ners or laser trackers consist of three axes, namely the yaw
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axis, the pitch axis and the axis of the laser beam. The polar
observations d̂ , �̂ and �̂ are transformed into aCartesian rep-
resentation w.r.t. the position and orientation of these axes.

The axes of the instrument can be parametrized by the
vector equation of a straight spatial line, i.e. by a location
point and a direction vector w.r.t. the instrument fixed frame.
Defining an initial position, i.e. �̂ = 0 and �̂ = π

2 , it is
assumed that the yaw axis is aligned to the z-axis, i.e. the
location point is the origin of the coordinate system and the

direction vector is nyaw = (
0 0 1

)T
, the pitch axis and the

beam axis are parallel to the yz-plane and to the xy-plane,
respectively. The location point of the pitch axis is shifted by
the axis offset e�,�, i.e.

e�,� =
⎛
⎝
e�,�

0
0

⎞
⎠ . (46)

The direction of the pitch axis is biased by the trunnion
axis error κ , i.e.

ne�,� = Rx
κ

⎛
⎝
0
1
0

⎞
⎠ . (47)

The axis of the laser beam is shifted by the coordinates of
the distance measurement unit, i.e.

b0 =
⎛
⎝
td,x

td,y

td,z

⎞
⎠ , (48)

and the direction is biased by the horizontal collimation error
ν, i.e.

n0 = Rz
ν

⎛
⎝
1
0
0

⎞
⎠ . (49)

In Eq. 23 the slope distance is corrected by a scaling factor
μ and a displacement offset λ. Obviously, the displacement
error of the laser beam td,x can be omitted because this error
can also be compensated by λ. In this case λ compensates
both, the displacement offset of the measuring beam and the
x-component of the displaced distance measurement unit.

If the telescope of the instrument is rotated by an angle
�̂ around the yaw axis, the location points of the pitch axis
and the beam axis become Rz

�̂
e�,� and Rz

�̂
b0, respectively.

A further rotation by the angle �̂ around the pitch axis must
be parametrized by a rotation sequence, because this rotation
can only be applied in the initial position, i.e. the pitch axis
must be aligned to the y-axis of the instrument frame:

R = Rz
�̂
Rx

κR
y

�̂− π
2
Rx−κR

z
−�̂

(50)

By applying Eq. 50 to the location point of the laser beam,
the rotated position becomes

b(�̂, �̂) = Rz
�̂
e�,� + RRz

�̂
(b0 − e�,�), (51)

which is equivalent to Eq. 27. Analogously, the rotated direc-
tion of the laser beam is obtained by

n(�̂, �̂) = RRz
�̂
n0, (52)

which is equivalent to Eq. 28. By adding the distance d̂ ,
Eqs. 27 and 28 as well as Eqs. 51 and 52 define a straight
spatial line that converts the polar observation into its Carte-
sian representation, w.r.t. the instrument frame, cf. Eq. 26.
The interesting reader is referred to the work of Hughes
et al. (2011) to get a detailed description of the compensation
model.
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