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Calculation of noise barrier performance in a

turbulent atmosphere by using substitute

sources above the barrier

Abstract

The paper presents a model that can be used for calculating the sound reduc-
tion by a noise barrier in a turbulent atmosphere. The field due to the acoustic
source is substituted by a distribution of sources above the barrier (here called
substitute sources). Themean power at the receiver is calculated as line-of-sight
propagation through a turbulent atmosphere from all substitute sources using a
mutual coherence function. In this study the strengths of the substitute sources
are calculated using the Kirchhoff approximation. The calculated results show
good over-all agreement with those from using a parabolic equation method
(PE).

1. Introduction

Screens and buildings along the roadside are used as noise barriers for reducing
the traffic noise in residential areas. For a good prediction of the performance of
noise barriers, the non-homogeneous nature of the outdoor air is needed to be
taken into account [1, 2]. Also for the similar problemwhere upward refraction
causes the acoustic shadowing, it has been shown that almost all of the acoustic
power deep inside the shadow-zone is due to the atmospheric turbulence (e.g.
[3, 4]).
In terms of physical modelling, the problem situation with a noise barrier in

an outdoor environment can be seen as consisting of two interacting processes:
diffraction (due to the barrier) and sound propagation in an inhomogeneous
medium. A direct numerical solution of the whole problem would in general
be very expensive computationally (using e.g. a finite element method), and
therefore a model is preferable where the two processes can be separated to
some extent, without too large approximations. Two previously used models
are a parabolic equation (PE) approach [2] and one based on the scattering
cross-section for an inhomogeneous atmosphere [1, 5, 2]. In this paper a pre-
diction model is presented that is based on the Rayleigh integral. The model is
not limited to low angles, as the PE is. Moreover, it does not demand a step-
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wise solution over distance, as the PE does, but could directly produce a result
for a given geometry and frequency, and also it is numerically faster than the
PE. Compared to the scattering cross-section calculations it is much slower, but
is not limited by the single-scattering approximation.
The approach is that the field at a receiver, due to a source, can be described

as a superposition of fields from a distribution of sources on a surface located
between the source and the receiver. The surface will here be called the substi-
tute surface, and the sources on it substitute sources. (See Figure 1.)
If the substitute surface is located between the barrier and the receiver, there

will be a free path from all substitute sources to the receiver, and the calculation
of the sound propagation along the free path is possible for various types of
inhomogeneous atmosphere. Here, a mutual coherence function for a turbulent
atmosphere is applied.
In this model the turbulent atmosphere is assumed to cause an increased

noise level behind the barrier due to a decorrelation of the contributions from
the substitute sources. This implies that, in the absence of turbulence, the con-
tributions from the substitute sources must be interfering negatively.
The strengths of the substitute sources can, as a first approximation, be cal-

culated as for a barrier in a homogeneous atmosphere. This approximation
would be acceptable for weak inhomogeneity (a weak turbulence) and if the
distance from the source to the barrier is short compared to the total source-
receiver distance.
The numerical results are compared to those from a PE method. In the pre-

sented model, the ground surface used for the PE calculations is taken into
account according to known results for sound propagation near ground in a
turbulent atmosphere [6, 7, 8, 9]. Moreover, due to the comparison, the com-
putations are made for a few single frequencies but for many source-receiver
distances.

2. Theory

The theoretical tools needed for the model can be seen to consist of the fol-
lowing. First, the strengths of the substitute sources need to be determined,
i.e. the normal velocity of the sound field at the substitute surface is needed
as the source distribution for the Rayleigh integral. In this study the normal
velocity is approximated by the free field due to the source, i.e. the Kirchhoff
approximation, and the normal velocity due to the introduction of the barrier is
neglected. Second, the expected power at the receiver of the sum of the waves
propagated through the turbulent atmosphere from all the substitute sources



Paper IV 3

need to be estimated. This is done by calculating themutual coherence between
all substitute sources, using the so-called mutual coherence function (MCF), or
transverse coherence function, for a random medium.
The theoretical description of the problem is held for three-dimensional situ-

ations. The numerical results presented here are, however, for two-dimensional
situations, and the necessary modifications of the theory are shown. The three-
dimensional calculations are computationally muchmore expensive, and there-
fore this first study of the model is held in two dimensions. Moreover, the PE
method used for the comparison assumes that the medium and the boundary
conditions vary only in two dimensions, fulfilling axial symmetry.

2.1. Use of the Rayleigh integral

If the substitute surface (denoted �) is a plane and the particle velocity �� nor-
mal to the plain is known, then the monopole source strengths of the substitute
sources are known, and the response � at the receiver position �� can be calcu-
lated as a Rayleigh integral:

���� �
����
��

�
�

���������� ������� (1)

In equation (1) �� is a point on the surface �, � the angular frequency of a time-
oscillation ���� with time 	, �� the medium density, and � a Green’s function.
For a homogeneous free space (in three dimensions) the Green’s function can
be written

�������� �
�����



� (2)

where
 is the distance between �� and �� and � is the wave number � � �
�,
where � is the sound speed. Instead of the free space Green’s function (equation
2), some other Green’s function can be used if it suits the situation better. For
instance, a sound speed gradient that causes a curving of the sound paths can
be described by an appropriate Green’s function, obtained either analytically
or numerically.
If it is assumed that the barrier has a hard plane surface toward the receiver,

then the surface of integration � can be placed so that it coincides with the
barrier’s surface toward the receiver, as shown in Figure 1. This can lead to a
simplified problem since the particle velocity is zero on the hard barrier surface.
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Figure 1. Geometrical situation with source, barrier, receiver, and the substitute sur-

face �.

The normal velocity �� on the surface � can be seen as consisting of two
parts: the free field contribution ���, set to zero on the barrier, and the contribu-
tion due to the diffraction from the barrier ���

�� � ��� � ���� (3)

The free field velocity contribution ��� can be calculated from the free field
pressure ��, as

��� �
��

����
��� ��� (4)

where � is the unit vector normal to the surface �. The free field pressure ��
can be written

������ �
������


�
� (5)

where
� is the distance from the source to the point �� on the surface �.
It could be noted that the Rayleigh integral can be formulated in the time

domain, which could be an interesting alternative approach (e.g. [10, pp. 409-
410]).
In general, the free field velocity contribution ��� can be obtained straight-

forwardly, while the diffraction contribution ��� is more complicated to obtain.
The model with the substitute surface, without the turbulence, allows for a
study of the error due to omitting ��� (see following Subsection). This approx-
imation �� � ���, the Kirchhoff approximation, is not necessary for the model,
but is used for simplification reasons for the calculations in this paper.
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Figure 2. Geometry for the parameter study.

2.2. The Kirchhoff approximation

To estimate the limitations in geometry and in frequency of the Kirchhoff ap-
proximation, a brief parameter study is performed, where the results are com-
pared to those from using the uniform theory of diffraction (UTD) [11, 12]. (For
the situations studied here, UTD provides very accurate results, which in this
comparison can be seen as the true results.)
In the parameter study a thin hard barrier with height � � ��	� ��
� ���� 
���

or ��	m is placed at a horizontal distance of �� � ��m from the source and �� �

�� m from the receiver. The source is placed at ground level and the receiver is
placed at the height of the screen edge. The different diffraction angles are then
�Æ� 
Æ� �Æ� ��Æ� and �
Æ. See Figure (2). No reflections from a ground surface are
considered and the results are presented as the sound pressure level relative
to free field. The calculations with the Kirchhoff approximation are made for
a coherent line source, i.e. a two-dimensional situation (see Section 3). (The
corresponding three-dimensional results deviate at most about ��� dB, which is
attained only for the largest diffraction angle �
Æ at the lowest frequencies.)
The Kirchhoff approximation is valid when the distances from source and

receiver to the screen are large compared to the height of the screen, i.e. for
small diffraction angles. It should be noted that, strictly, this only holds for a
semi-infinite screen. In real cases the field diffracted at the screen edgemight be
reflected in a ground surface and diffracted again at the edge, and thereby in-
fluence the field at the receiver. These higher-order diffraction terms increase in
strengthwhen the screen height is reduced. Therefore, the error when using the
Kirchhoff approximation or the UTD for a screen on ground can be substantial
for very low screens in comparison to the acoustic wavelength.
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Figure 3. Results of applying the Kirchhoff approximation (solid) compared to UTD

(dashed) for different diffraction angles.

The error due to the Kirchhoff approximation depends mainly on frequency
and diffraction angle. For the lower frequencies the error increases with de-
creasing frequency; whereas, for higher frequencies, the error is very weakly
dependent on frequency, as can be seen in in the calculated results, Figure (3).
To have an error smaller than � dB, at the higher frequencies, the diffraction
angle must be smaller than about ��Æ, as can be seen in Figure 3. Higher fre-
quencies mean that the source and the receiver are far away from the screen
edge in comparison to the wavelength � (i.e. 
�� 
� �).
In this situation we have a distance to the screen edge from the source or the

receiver that is about ��m. The frequency can be normalised with respect to this
distance, since the important parameter (except from the diffraction angle) is
the number of wavelength from the source (or the receiver) to the screen edge.
For instance, at the frequency ��� Hz we have a wavelength of about ��	 m,
and the number of wavelengths to the receiver is ����� � ��
��	 � ��. In con-
clusion one can say that if the normalised frequency ����� is larger than about
�� (��� Hz for the geometries used here) and the diffraction angle is smaller
than about ��Æ, the error is smaller than � dB, for situations similar to the ones
studied here.
Furthermore, when the Kirchhoff approximation is valid, a change of the

acoustic properties of the barrier surfaces will be without effect, since the free
field contribution will be unchanged. Also, changing a thin screen into a wedge
will have no effect.



Paper IV 7

The reasoning above explains the applicability of one-way PE methods to
situations with low barriers. In these implementations the PE method calcu-
lates wave propagation in one direction (outward from the source) and a bar-
rier is modelled by setting the pressure field equal to zero at the location of the
barrier [13]. The free field above the barrier is calculated correctly, and as long
as the Kirchhoff approximation is valid, the free field will produce the correct
result at the receiver. Consequently, when the Kirchhoff approximation is not
valid one would assume that the one-way PE method is not valid either, when
including a barrier.

2.3. Artificial damping of the substitute sources

When implementing the model, a finite substitute surface � is needed. If then
the size of the surface � is varied (or if the source or the receiver is moved),
the error due to the finite surface shows an oscillatory pattern, corresponding
to the Fresnel-zones. The introduction of an artificial damping of the substitute
sources leads to weaker oscillations and thereby a smaller surface is needed
(see Figure 4). Here, the calculations aremade for a three-dimensional situation
without a barrier, where the substitute surface is placed midrange between the
point source and the receiver. The substitute surface is circular and its radius ��
is varied from � to �
m. The frequency is ���Hz. The thin line shows the result
without artificial damping. For the thick line the damping starts at �� � �� � 


m and the damping factor is ���������
�� � ���.
One can see in Figure 4 that it suffices to extend the radius �� of the sub-

stitute surface out to about the total source-receiver distance; for �� � � m the
error is smaller than ��%. When the substitute surface is moved closer to either
the source or the receiver its radius can be decreased, with maintained accu-
racy. In the discretisation a distance of �
� between the substitute sources is
usually enough, but for this plot �
�� is used to show a smoother result. (In
this example a discretisation is used only in radial direction; in circumferential
direction a continuous source is used.)

2.4. Influence of a turbulent atmosphere

There will be line-of-sight propagation from the substitute sources on the sur-
face � to the receiver, that is, no barriers or other obstacles are shielding the
sound propagation. The subject of line-of-sight propagation in a turbulent at-
mosphere has been studied extensively (e.g. [14, 15, 16, 17, 18]), and the theoret-
ical results most useful here deal with the correlation between acoustic pressure
signals that are received at different positions but are originating from a single
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Figure 4. Solutionwith andwithout artificial damping of the substitute sources, plotted

as relative sound pressure versus integration radius, �� .

point monopole source. These theoretical results can be applied to the recip-
rocal problem at hand: the correlation between signals coming from different
sources to one receiver position. The correlation between signals from different
sources is used to calculate the mean square pressure amplitude for single fre-
quencies. The correlation between two source signals is usually described by
the mutual coherence function �.
Let us start with a homogeneous free space and the pressure � due to two

point sources as

� � ���
��� � ���

���� (6)

where �� and �� are the complex pressure amplitudes due to source � and
source �. Then we introduce small fluctuations in the refractive index or the
velocity of the medium that are zero mean in space and time, and vary slowly
with time compared to the time period of the sound. For this situation the long-
term average of the square of the pressure amplitude can be computed accord-
ing to e.g. [8] or [19], as

������ � ����� � ����� � ������� ���
�
���

�
��
��

��
���� (7)
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where � 	 ��� 	 �. For � sources it could be formulated as [19]

������ �
��
���

����� � �
����
���

��
	��	�

����	 � ���
�
���

�
�	
��

��
��	 � (8)

From equation (8) it is possible to see how an expression for the case of a
continuous source distribution can be written:

������ � �
� �

���������������� � (9)

� �
����������� ���

�
���

�
�����

����

��
���� ���������

where � and �� are positions on the substitute surface, and where � stands for
the complex conjugate. This integral expression (9) is basically the same as in
[20], where the effect of turbulence on the sound from a line source is studied.
(In [20] the formulation is for the mean acoustic power which gives a factor �
�
extra.) If there would be a homogeneous atmosphere, � 
 �, equation (9) could
be seen as the same as the square of the Rayleigh integral in equation (1).
Now we can calculate the influence of a turbulent atmosphere for our case

where the effect of a barrier is modelled by a distribution of substitute sources
on a surface �. If the strength of the substitute sources is described by �� as in
equation (1), we get

������ �
����
��

��
� (10)

�
�

�
�

���������� ���
�
���

�
����

�

���

��
��� ����

where � � ������ �� � ������� ��� � �����

��� � � ���� ����� �� � ����

������� �

���� ��
�

��, and ��
� refers to ��

� and �� refers to �� .
For the free space Green’s function according to equation (2) we can rewrite

equation (10) as

������ �
����
��

��
� (11)

�
�

�
�

������

���

�

���� ���
�
��
� �
� � ���

�
���
��

��
��� ����

where
 � ��� � ��� and 
� � ���

� � ���.
For the description of the turbulence, a homogeneous and isotropic turbu-

lence is assumed, that is, the fluctuations are assumed to follow the same statis-
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Figure 5. Longitudinal (�) and transversal (�) distance for two sources and one re-
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tics in all points and in all directions. The turbulence is described by a fluctuat-
ing part � of the index of refraction � � �����, where � here is taken to follow
a Gaussian correlation function

����� ������� � ��� �������
���� (12)

where � and � are two vectors in space, � � ���, �� the standard deviation of �,
and � the correlation length. Other turbulence models than the Gaussian could
be used, and this would then lead to different mutual coherence functions.
Temperature and velocity fluctuations affect the sound field in different

ways. The mutual coherence function for velocity fluctuations is deduced in
[21, 18], where also the older result for Gaussian temperature fluctuations
is shown. Here, only temperature fluctuations are considered, but to include
other medium fluctuations should not be a problem.
If we assume that the turbulence can be described by the Gaussian correla-

tion function (12) we can write the mutual coherence function as [22, Eq. (11)]

���� �� � ���

�
����������

�
� � ���
��

�
�

��
� (13)

where � is the transversal distance between the sources, � is the longitudinal
distance to the receiver, and ���
�� �

	 
��

�
����������.

Daigle et al. [22] concluded that for long ranges the amplitude fluctuations
saturate and then equation (13) gives a too small coherence. The amplitude fluc-
tuations are estimated to saturate roughly when �

�
�
������

��� � � [22], which,
in the situations studied here, only would be the case for the highest frequen-
cies and the longest distances. Equation (13) is therefore used throughout this
study.
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When deducing equation (13) the two source positions are assumed to be
at equal distance from the receiver, and � the distance from the receiver to the
midpoint between the two sources. Here, the two sources are not necessarily
at equal distance from the receiver and therefore some modification must be
made. In this study the longest of the two distances determines the value of �,
as shown in Figure 5. The transversal distance � forms the base of a triangle
where the two other sides are of equal length and whose common angle have
bisector �. (For the two-dimensional situations studied here, however, the re-
sults are not so sensitive to the exact choice of � and �. For instance, a numerical
test showed negligible difference between � being chosen as the longest or the
shortest of the two source-receiver distances. This is probably due to the fact
that the most important contributions come from sources that are low in com-
parison to their distance to the receiver. In that case, the relative changes in �

and � are small when the choice of � is shifted.)
The mutual coherence function can be deduced via the parabolic equa-

tion and the Markov approximation [17]. Other methods than by using the
parabolic equation can be applied [23], but, in any case, it is assumed that the
transversal distance � is small compared to the longitudinal distance �. This ap-
proximation leads to an overestimation of themutual coherence function. Here,
the transversal distances are about equal to the longitudinal distances only for
the shorter ranges studied; for the longer ranges the transversal distances are
much smaller than the longitudinal distances, and therefore it assumed here
that the results are correct at the longer ranges. Concerning the range of acous-
tic wavelengthswhere the theory is valid, it can be concluded that no restriction
due to the turbulent scales is necessary [8].
If a ground surface is introduced, there will be direct and ground reflected

waves whose mutual coherence need to be estimated. The situation with a sin-
gle source above a hard ground has been studied experimentally [6] and theo-
retically [7, 8, 9]. A good estimate of the mutual coherence function is by taking
themaximum separation distance � between the two paths as � in equation (13)
[9]. For the coherence between the direct wave from one source and the ground
reflectedwave from another source, the transversal separation between the two
sources is added to � to produce the � used in equation (13).

3. Implementation

In the numerical study the geometry is two-dimensional, and the surface inte-
grals in equation (9) can be reduced to line integrals in the vertical direction �.
Also the turbulence is assumed to be two-dimensional. For the mutual coher-
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ence function (equation 13), the values of the input parameters are found from
the projections on the vertical xy-plane. This is in accordance with Salomons’
analysis [9] for a turbulence that is rotationally symmetrical around the vertical
axis through the source.
The acoustic pressure �� due to a coherent line source is calculated as the

far-field approximation

�� �
�
�
��

��

���
���
���� (14)

where� is a source strength.
The Kirchhoff approximation is used, so that the normal velocity is calcu-

lated according to equation (4), with �� according to equation (14).
The results are compared with those from using a PE method [2]. In all cal-

culations the turbulence was modelled by a Gaussian correlation function (12)
with ��� � � ����
 and � � ���m. The source was located on the surface of a hard
ground and the receiver at the height of the screen edge � . For the calculations
at ��� Hz, two different source-screen distances were used, �� � ��� and ���

m, and the screen height � was either �� or �� m. The calculations at � � ����

Hz were made only for �� � ��� m and � � �� m. The mean acoustic power
was calculated for receiver distances up to ���� m from the source. In the PE
calculations, �� realisations of the turbulent atmosphere were used for the esti-
mation of the mean power. (The finite number of averages leads to an error in
the solution, which would decrease for a larger number of averages and then
give smoother results.)
The maximum height ���� used for the substitute sources was ��� m for

�� � ���m and 
��m for �� � ���. These values of �� were found by numerical
tests in the absence of turbulence.
Artificial damping was introduced in the strength of the substitute sources

to decrease the small oscillations in the solution when the receiver distance is
varied. (See Subsection 2.3 and Figure 4). The damping was chosen to start at
� � ����
�, and the strengths of the substitute sources above that were multi-
plied by the factor ������ 
 ��� ����
���, with � � ����m��. For the discretisa-
tion, a horizontal distance between the substitute sources of �
� was used.

4. Results – comparison with PE

The calculated results are presented in Figures 6-9 as the sound pressure level
relative to the level without the screen, i.e. the negative of insertion loss. The
calculations using the substitute-sources model (SSM in the legend) are made
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each �� meters in range, and the results are plotted as solid lines with circular
marks. The PE calculations are plotted as solid lines. The results for a turbulent
atmosphere have been plotted together with the results for a homogeneous (i.e.
non-turbulent) atmosphere, and the two highest curves show the results for the
turbulent atmosphere using the two different models. The dashed line shows
the correct diffraction without turbulence, using UTD.
In Figures 6-9 the model using substitute sources gives results that show a

good over-all agreement with the PE calculations.
At ���� Hz, however, (Figure 9) the PE calculations show a slightly larger

influence of turbulence than the substitute sources. One cause for that could
be the following. In the situations without a screen, the introduction of turbu-
lence was shown to cause the PE method to predict a sound level on ground
that increased with distance relative to free field [2]. At ���� m range the in-
crease (above the expected 
 dB due to the hard ground) was � dB at ��� Hz
and 
 dB at ���� Hz. This focusing is accompanied by a decreased sound level
at the height of the screen edge. At ���� Hz this decrease was about ���-� dB
at the height �� m, but at ��� Hz it was not noticeable. Since these calculations
without screen were used as reference for calculating the insertion loss, it be-
came slightly lower. This could account for a significant part of the discrepancy
shown here in Figure 9. (In [2] the deviation in the PE results due to the low
reference was too small to appear as interesting to further investigate in com-
parison to the overall differences between the PE calculations and the scattering
cross-section calculations made there.)

5. Discussion and conclusions

The model using substitute sources, presented here, gives results that show a
good over-all agreement with the PE calculations made. The substitute-sources
model can therefore be concluded to have similar qualities as the PE, which
has been validated by measurements for the similar situation with upward re-
fraction and turbulence (e.g. [4, 24]). The substitute-sources model is computa-
tionally faster than the PE, and if the kirchhoff approximation is not applied,
the model would not be limited to low angles, as the PE is. Compared to cal-
culations based on the scattering cross-section, the presented model is much
slower, but is not limited by the single-scattering approximation.
At ����Hz the PE calculations show a slightly larger influence of turbulence

than by using the substitute sources. One cause for that could be that the PE
method predicts a sound pressure level slightly less than the expected 
 dB



14 Paper IV

100 200 300 400 500 600 700 800 900 1000
-30

-25

-20

-15

-10

-5

range (m)

re
la

tiv
e 

so
un

d 
pr

es
su

re
 le

ve
l (

dB
)

SSM
PE 
UTD

Figure 6. Relative sound pressure level at ��� Hz, for a �� m high screen at range

��� m.
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Figure 7. Relative sound pressure level at ��� Hz, for a �� m high screen at range

��� m.
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Figure 8. Relative sound pressure level at ��� Hz, for a �� m high screen at range

��� m.

100 200 300 400 500 600 700 800 900 1000
-30

-25

-20

-15

-10

-5

range (m)

re
la

tiv
e 

so
un

d 
pr

es
su

re
 le

ve
l (

dB
)

Figure 9. Relative sound pressure level at ���� Hz, for a �� m high screen at range

��� m.
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relative to free field, for the situation with a turbulent atmosphere, a source on
a hard ground, a receiver at ��m height, and without the screen.
In this paper the turbulence is assumed to be introduced into a homoge-

neous free space, and it is for this situation the used mutual coherence func-
tion has been deduced. It is, however, a reasonable approximation that the mu-
tual coherence function also can be used for a weakly modified medium, for
instance as in [19] where a linear sound speed profile, with the correspond-
ing Green’s function, is considered. For a more strongly modified medium, the
mutual coherence function, as well as the Green’s function, could be estimated
numerically. In this respect the substitute-sources model is applicable to a large
variety of geometrical and atmospherical situations.
For future work it would be of interest to extend the model to three dimen-

sions, with a point source and a three-dimensional turbulence. Also to take into
account the correct diffraction above the barrier would be of interest to try, i.e.
to not use the Kirchhoff approximation.
Moreover, it could be possible to include in the model a thick barrier of finite

length, a finite impedance ground, a sound speed profile, and an anisotropic
and inhomogeneous turbulence.
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[19] L’Espérence, A. and Nicolas, J. and Daigle, G. A., Insertion loss of ab-
sorbent barriers on ground. J. Acoust. Soc. Am., Vol. 86, 1989, pp. 1060-1064.

[20] Salomons, E. M., A coherent line source in a turbulent atmosphere. J.
Acoust. Soc. Am., Vol. 105, 1999, pp. 652-657.

[21] Ostashev, V. E. and Gerdes, F. andMellert, V. andWandelt, R., Propagation
of sound in a turbulent medium. II. Spherical waves. J. Acoust. Soc. Am.,
Vol. 102, 1997, pp. 2571-2578.

[22] Daigle, G. A. and Piercy, J. E. and Embleton, T. F. W., Line-of-sight prop-
agation through atmospheric turbulence near the ground. J. Acoust. Soc.
Am., Vol. 74, 1983, pp. 1505-1513.

[23] Karavainikov, V. N., Fluctuations of amplitude and phase in a spherical
wave. Sov. Phys. Acoust., Vol. 3, 1956, pp. 175-186.
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