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Abstract 

 

In Sweden, around 10% of the energy supplied to the district heating networks are lost through heat losses from the distribution 
pipes. In cylindrical geometries it is preferable to improve the insulation as close to the center as possible. This has resulted in a 
hybrid insulation district heating pipe concept with a combination of vacuum insulation panels at the center, held in place by 
polyurethane foam. In the twin pipe concept, the vacuum insulation panel cover the supply pipe. This creates a complex temperature 
profile over the section and measured results on single pipes might not be applicable. Therefore, there is a need for a method to 
evaluate the improvement of hybrid insulation twin pipes in the laboratory. This paper presents a method where two guarded hot 
pipe apparatuses is used, one heating rod for each pipe, to measure the heat losses from hybrid pipes and compare to a conventional 
polyurethane pipe. The measurements indicate an improvement in thermal performance by 12%-18% for the total losses and by 
29% -39% for the supply pipe losses. 
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1. Introduction 
 

Collected energy statistics in Sweden [1] show that for 2013, 10 % of the energy supplied to the district heating 
network was lost in heat distribution. This is mainly due to the heat transfer from the distribution pipes. Within the 
research project ‘Värmegles’ (Sparse Heating), Fröling [2] concludes that the thermal performance of the district 
heating pipes is very important for the environmental performance of sparse district heating network. 
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New district heating pipes today commonly uses polyurethane foam to insulate the district heating pipes. With 
cyclopentane and carbon dioxide as blowing agents, the thermal conductivity of the polyurethane pipe insulation at 
50°C ranges from 22 mW/(m·K) to 27 mW/(m·K) depending on production method and pipe producer [3–6]. 

The heat loss from a district heating pipe can be reduced by adding insulation thickness to the pipe. For a cylindrical 
geometry, the effect of the insulation decreases with distance from the center of the cylinder. This gives incentives to 
exchange the thermal insulation close to the pipe to a better performing insulation, rather than adding insulation on 
the outside of the pipe. 

Vacuum insulation panels consist of porous insulation which has been evacuated to decrease the thermal 
conductivity through the pore gas. The evacuated material reaches a minimum room temperature thermal conductivity 
between 2.5 mW/(m·K) and 7 mW/(m·K) depending on the material [7]. For building sector applications, a long life 
time performance is prioritized. This has led to the common use of nano-porous materials, such as fumed silica, as 
core material with a minimum thermal conductivity around 4.5 mW/(m·K) [7,8], less than a fourth of the thermal 
conductivity of polyurethane foam. 

This also has led to a concept of a hybrid insulation district heating pipe where the innermost part of the 
polyurethane foam has been exchanged by a vacuum insulation panel, shown in Fig. 1. 

 

 

 
Fig. 1: District heating pipe cross sections describing the concept for hybrid insulation. A single pipe to the left and a twin pipe to the right. The 
novel insulation surrounds the supply pipe in the twin pipe configuration. 

 
The hybrid insulation district heating pipes have been evaluated through the projects ‘Högpresterande 

fjärrvärmerör’ [9,10] (High performance district heating pipes) and ‘Hybridisolerade fjärrvärmerör’ [11,12] (Hybrid 
insulation district heating pipes). The projects have been separated into four parallel research paths: thermal 
performance measurements with guarded hot pipe, finite element simulations of hybrid pipes in field and laboratory, 
field measurements on pipes connected to active district heating networks and high temperature performance 
measurements in laboratory. 

Meaurements with guarded hot pipe have shown an improvement of more than 30% when 10 mm of vacuum 
insulation panel is added to a single pipe with a steel pipe diameter of 114.3 mm and a casing pipe diameter 225 mm 
[9]. In Sweden, twin pipes are common for district heating pipes, where the return pipe is placed above the supply 
pipe within the same surrounding insulation. The temperature field in a twin pipe differs a lot from the temperature 
field in a single pipe. When a vacuum insulation panel is added to the supply pipe, the symmetry of the pipe is reduced 
further, making the measurements on single pipes even less representative of the twin pipe performance. Therefore, it 
is of interest to develop a method to measure the thermal performance of twin pipe in the laboratory. 

 
1.1. Scope 

 
This paper presents the development of a method to assess the thermal performance of twin pipes in the laboratory, 

with a focus on the comparison between conventional pipes and district heating pipes with vacuum insulation panels 
incorporated in the insulation. The method has been used to make some first estimations of the performance of a set 
of hybrid insulation district heating pipes with varying vacuum insulation panel set-ups. 

 
1.2. Method 

 
Measurements of the thermal performance of pipes have been done with a modified guarded hot pipe apparatus. 

The measurements are based on the standard for thermal conductivity measurements on polyurethane in SS-EN 
253:2009 [13]. Conductances have been calculated according to the network analysis presented by Hagentoft [14]. 
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2. Guarded Hot Pipe measurements on twin pipes 
 

The measurement equipment was created for standardized thermal conductivity measurements on single pipes 
according to Appendix F of SS-EN 253:2009 [13]. In the standard measurement, one heating rod is inserted into the 
media pipe of a single pipe and the temperature at the steel pipe surface and at the casing surface is measured at 4 
positions longitudinally and circumferentially equally distributed. For the twin pipe case, two apparatuses were used, 
with 2 heating rods, 4 temperature measurements in each pipe and 8 temperature measurement points around the 
surface as presented in Fig. 2. 

 

 

 
Fig. 2. Thermocouple placement for the guarded hot pipe measurements. Description of the measurements on a single pipe on top and the 
measurements for a twin pipe measurement below. 

 
In the standard measurement, the thermal conductivity at 50°C is sought after. Therefore, the heat losses are 

measured at an average temperature around 50°C. For the twin pipe measurements, relative heat flow measurements 
were done instead. 

In previous simulations within the project, the boundary temperatures of the supply pipe, the return pipe and the 
ambient air have been chosen to 85°C, 55°C and 5°C respectively. The laboratory measurements were limited to the 
laboratory air temperature at 22.5°C and the maximum temperature of the heating rods at 80°C. The measurement 
temperatures were chosen to be linearly proportional to the temperature differences in the simulation case, giving a 
supply pipe, return pipe and ambient temperature of 80°C, 58°C and 22.5°C. 

It was also of interest to separate the magnitude of the heat flow from the supply pipe from the flow out from the 
return pipe. This was done by setting the same temperature in each pipe. Since the thermal conductivity and thus the 
heat losses depend on temperature, measurements were done both for 58°C in each pipe and 80°C in each pipe. 

The measurement regime for each pipe is shown in Table 1. 
 

Table 1. The three measurement cases. 
 

Measurement Tsupply [°C] Treturn [°C] Tambient  [°C] 

1.Symmetrical @ 58°C 

2.Proportional 

3.Symmetrical @ 80°C 

58 ± 0.5 

80 ± 0.5 

80 ± 0.5 

58 ± 0.5 

58 ± 0.5 

80 ± 0.5 

22.5 ± 0.5 

22.5 ± 0.5 

22.5 ± 0.5 

 

Due to the surface resistance between the casing pipe surface temperature and the room air temperature, the 
temperature at the casing surface will be higher than the room temperature. The temperature will also vary with the 
circumference of the pipe since the distance between the heated steel pipes and the casing pipe varies. The consequence 
of this variation has to be analyzed. 

The measurements were performed for four samples with varying set-ups of vacuum insulation panels and one 
reference sample with only polyurethane foam insulation. The outer diameter of the steel carrier pipes were 89.9 mm 
and the pipes were positioned at 25 mm distance from each other. The outer diameter of the casing pipe was 315 mm 
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with a thickness of around 4 mm. All vacuum panels were 1 m long and the pipes were cut to 1060 mm to avoid 
cutting through the panels. 

The main difference between the different samples was the overlap of the vacuum insulation panel, but one sample 
also had a thicker vacuum insulation panel. The samples are presented in Fig. 3. 

 

 

 
Fig. 3. The five measured samples with the thickness and the overlap of the vacuum insulation panels presented. 

 
3. Conductance model 

 
A temperature independent conductance model was also tested, to see if the heat flows could be described as 

constant heat flow terms between each temperature boundary, as presented in Fig. 4. The relation between the 
conductances and the heat flows is described by Equation (1): 

 

Q K T (1) 
 

where Q is the heat flow (W), K is the thermal conductance (W/K) and ∆T is the temperature difference between 
the temperature nodes (°C). 

 

 

 
Fig. 4. Description of the conductance model. 

 
The main simplifications in using conductances is that the conductances are temperature dependent, because the 

thermal conductivity of the insulation is temperature dependent, and that the boundary temperature Ta has a varying 
temperature. 

For the case when Ts and Tr in Fig. 4 are equal, no heat is transferred between these pipes. For that case, the heat 
power supplied to one of the pipes can be used, together with the boundary temperatures, to calculate the conductance 
between that pipe and the ambient boundary, Ta. 

 
4. Results 

 
The heating power needed to reach the prescribed temperatures are presented in Fig. 5. As expected, the heating in 

the supply pipe decreases with extra insulation. One consequence is that the return pipe comes in a colder surrounding, 
increasing the heat loss from the return pipe. This means that the heat losses from the return pipe increases. 
Nevertheless, the total heat loss is also decreasing with vacuum insulation panels and with increasing overlap. 
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Fig. 5. Heating demand for the supply pipe, the return pipe and the total energy demand for the proportional boundary temperatures. The samples 
are listed as: Sample number (Vacuum insulation panel thickness [mm]/ Overlap length [mm]). 

 
Samples 2-5 have been compared to sample 1 (the reference pipe with only polyurethane insulation). For the total 

losses, the improvement is between 12% and 17%. The largest contribution to the improvement comes from the supply 
pipe losses which are decreased by 29% and 39%. Conventionally, the total losses are considered when characterizing 
district heating pipes. But this also depends on the method of heat production. If the return temperature is lower, the 
heat production could be more effective, why decreasing the losses from the supply pipe is of higher importance. 

 
Table 2. Total heat loss from the proportional measurements and calculated by the conductances achieved from the symmetrical 
temperature measurements. 

 

Sample 
nr 

Q 
[W] 

Q@58°C 

[W] 

Q/Q@58°C -1 
[%] 

Qavg 

[W] 

Q/Qavg -1 
[%] 

Q@80°C 

[W] 

Qtot/Q@80°C -1 
[%] 

Q@80°C/Q@58°C -1 
[%] 

1. 11,80 11,17 6% 11,62 2% 12,07 -2% 8% 

2. 10,39 9,81 6% 10,26 1% 10,70 -3% 9% 

3. 9,97 9,75 2% 10,03 -1% 10,32 -3% 6% 

4. 9,73 9,53 2% 9,83 -1% 10,13 -4% 6% 

5. 9,74 9,58 2% 9,81 -1% 10,04 -3% 5% 

 

The results from the conductance calculations are shown in Table 2. The measured total heat loss for the 
proportional case is compared to the heat loss calculated from the conductances measured at 58°C, at 80°C and for 
the average between them. The conductances have been multiplied with the boundary temperatures from the 
proportional case, meaning 58±0.5°C in the return pipe, 80±0.5°C in the supply pipe and an ambient temperature of 
22.5±0.5°C. 

The result indicate how well the conductance model can be used to represent the thermal performance of the pipes. 
By separating the boundary temperatures from the conductances, as in Equation (1), the performance could be 
estimated for any boundaries. Table 2 show that the variation in the estimated heat losses varies with up to 9% 
dependent on the temperature at which the conductances were measured. Consistently, the higher temperature gave 
larger conductances, which was expected. 

The average gives the best fit, reasonably because the temperature in both pipes will influence the conductances. 
The low conductances and the high conductances form limits between which the true conductance will lie as long as 
the boundary temperatures are within these limits. This creates a maximum deviation in the heat flow between 5% 
and 9%. 

It might be possible to improve the conductance model by introducing some temperature dependence. 
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5. Conclusions 
 

This paper presents the results from guarded hot pipe measurements on hybrid insulation twin pipes with vacuum 
insulation panels and polyurethane foam insulation. With a vacuum insulation panel, the total heat loss from the pipe 
is reduced. For the tested dimensions, two steel pipes with a 114.3 mm diameter, a casing pipe with a 315 mm diameter 
and 10-15 mm vacuum insulation panel, the total heat loss was reduced by 12%-17%. The whole variation of 5 
percentage units can be seen in the change from 0 mm to 100 mm in overlap length. The increment of thickness from 
10 mm to 15 mm gave an improvement of 2 percentage units. It should be considered that there only were one sample 
for each set-up. 

The improvement is resulting from a reduction in the supply pipe losses between 29% and 39%. Some of the 
improvement is lost because the return pipe losses increase. This happens because the temperature around the return 
pipe decreases when the supply pipe has better insulation. 

For the conductances there were a variation in the calculated total heat losses of up to 9% between the high 
temperature and the low temperature. This deviation is the limit for any pipe temperatures between 58°C and 80°C 
and a ambient temperature at 22.5°C. The measured heat flow could be predicted by the average conductances with 
an error of less than 3%. 
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