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Abstract

Elastic waves in the presence of a damaged interface between two dissimilar

elastic media is investigated in the three-dimensional case. The damaged is

modelled as a stochastic distribution of equally sized circular cracks which

is transformed into a spring boundary condition. First the scattering by a

single circular interface crack between two dissimilar half-spaces is investi-

gated and solved explicitly for normally incident waves in the low frequency

limit. The transmission by a distribution of cracks is then determined and

is transformed into a spring boundary condition, where effective spring stiff-

nesses are expressed in terms of elastic moduli and damage parameters. A

comparison with previous results for a periodic distribution of cracks shows

good agreement.
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1. Introduction

Elastic wave scattering by damage and delaminations is of considerable

importance for ultrasonic non-destructive evaluation and structural health

monitoring, where ultrasound is widely used to detect interfacial damage.

Ultrasound methods should distinguish between an open crack, where all

the faces are stress-free, and a delamination. A delamination can be more

complex than an open crack: faces may interact or consist of multiple mi-

crocracks, especially at adhesive bonds. Identification of damaged interfaces

or zones of non-perfect contact between materials is more complicated than

identification of macrocracks. An imperfection can be simulated as a set or

multiple cracks (Achenbach, 1989; Achenbach and Zhang, 1990) or as a de-

viation from perfect contact (Tattersall, 1973; Baik and Thompson, 1984),

and this leads to a modification of the continuous boundary conditions at

the interface. Although the approaches are technically different, they lead

to similar results related to wave propagation in composites with damaged

interfaces (Baik and Thompson, 1984; Achenbach, 1989; Golub and Boström,

2011; Kvasha et al., 2011).

It is natural to introduce a distribution of springs at the debonded in-

terface (spring boundary conditions) in order to simulate it. Compared to

multiple cracks, spring boundary conditions are simpler and more efficient.

Thus, spring boundary conditions can be used for identification of multiple

cracks (Shifrin, 2015). Tattersall (1973) showed experimentally that an im-

perfect contact can be investigated with elastic waves. This idea of using
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ultrasound in order to test adhesive bonds or debonded interfaces is applied

by, e.g., Alers and Graham (1975), who demonstrated the applicability of

spring boundary conditions for the estimation of adhesive bonds. The spring

boundary conditions at the interface with normal n demand that the normal

and tangential components of stress σ are continuous while the jump in the

displacement vector is proportional to the stress:

σ1
ik · nk = σ2

ik · nk = κik
(
u2k − u1k

)
. (1)

Here κik is in general a three-by-three matrix and the upper indices number

the contacting media.

Other approaches such as introducing a set of cracks or replacing a dam-

aged layer by a thin layer have also been applied and compared with the

spring model (Baik and Thompson, 1984; Sotiropoulos and Achenbach, 1988;

Kachanov, 1994, etc.). Many studies exploiting distributed springs have been

applied to simulate ultrasound interaction with planar damaged interfaces

with different structures. Many of them (Baik and Thompson, 1984; Marge-

tan et al., 1988; Boström and Wickham, 1991; Lavrentyev and Rokhlin, 1994;

Pecorari, 2008; Boström and Golub, 2009; Lekesiz et al., 2013a) derived es-

timations for the distributed spring stiffnesses or applied these models in

experimental work (Lavrentyev and Rokhlin, 1998; Leiderman and Castello,

2014). These derivations are often based on the idea of substitution of an

array of planar cracks by distributed springs at the damaged interface. This

substitution should lead to the same wavefields in the far-field zone from the

interface. It should be mentioned that normal and transverse spring stiff-

nesses are equal in the case of in-plane motion (Lekesiz et al., 2011; Golub

and Boström, 2011), while they differ in the three-dimensional case (Lekesiz
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et al., 2013a). Baik and Thompson (1984) used a quasi-static approximation

for plane P-waves and obtained the expression for effective normal spring

stiffness for identical materials. Margetan et al. (1988) extended this ap-

proach and estimated the transverse component of the spring stiffness for

identical media, Lavrentyev and Rokhlin (1994) derived the stiffnesses for

the case of dissimilar materials at the imperfect contact zone. An effec-

tive spring stiffness approximation was proposed for a planar periodic array

of collinear cracks (Lekesiz et al., 2011) and a hexagonal array of coplanar

penny shaped cracks located at the interface between two dissimilar solids

(Lekesiz et al., 2013a).

The present paper is an extension of previous work on distributions of

strip-like cracks between dissimilar media (Boström and Golub, 2009; Golub,

2010; Golub and Boström, 2011; Kvasha et al., 2011) and the study of

Boström and Wickham (1991), where a distribution of circular contacts be-

tween two identical half-spaces were considered. The aim of this study is

to obtain expressions for the spring boundary conditions in three dimensions

describing wave propagation through a damaged interface between dissimilar

isotropic media in terms of elastic moduli and damage parameters. First, an

integral equation for a circular interface crack is derived following Krenk and

Schmidt (1982) combined with an integral equation technique (Glushkov and

Glushkova, 2001; Glushkov et al., 2002). The scheme used by Boström and

Wickham (1991) is applied in order to obtain the total transmission coeffi-

cients for a distribution of cracks using a reciprocal theorem and ensemble

averaging. In order to construct analytical formulae, an asymptotic low fre-

quency solution for a single circular crack between dissimilar half-spaces is
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derived, see Ohyoshi (1973); Vatulyan and Yavruyan (2006). Then the re-

flection and transmission coefficients for normal incidence of a plane P-wave

and S-wave for a random distribution of equally sized circular cracks at the

interface between two half-spaces are calculated. The diagonal components

of the spring stiffness matrix are derived from the equality of the transmission

coefficients for the spring model and the damaged interface.

2. Single interface crack

In this section the scattering of time harmonic waves by an open, circular

crack at the interface between two dissimilar elastic isotropic half-spaces is

investigated. Cartesian (x1, x2, x3) and cylindrical (r, θ, z) coordinate systems

are used in the following, both are centred at the circular crack occupying the

domain Ω = {r ≤ a, z = 0} as depicted in Figure 1. The displacement vector

is denoted uj = uji = {uj1, uj2, uj3}, where superscript j = 1 corresponds to the

lower half-space (x3 < 0) and j = 2 to the upper one (x3 > 0). The material

properties are determined by the Lamé constants λj and µj and densities ρj .

The wave numbers kij = ω/vij at the angular frequency ω are expressed via

the longitudinal or P wave velocity v1j and the transverse or S wave velocity

v2j :

vnj =
√
cnj/ρj, c1j = λj + 2µj, c2j = µj.

Harmonic motion in isotropic media is governed by the Lamé equation

3∑

i=1

∂σj
ik

∂xk
+ ρjω2uji = 0, j = 1, 2. (2)

The stress tensor components are given by Hooke’s law:

σj
ik = λj

(
∂uj1
∂x1

+
∂uj2
∂x2

+
∂uj3
∂x3

)
δik + µj

(
∂uji
∂xk

+
∂ujk
∂xi

)
.
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where δik is the Kronecker delta.

The total field in the two half-spaces with a circular interface crack is a

sum of an incident field in the absence of the crack uin and a scattered field

usc due to the crack. For the purposes of this study the incident field uin is

taken as a plane wave propagating along the x3 axis in the lower half-space

plus the corresponding reflected and transmitted waves:

uin
s (x1, x2, x3) =





ps

(
eik1sx3 +R−

s e
−ik1sx3

)
, x3 < 0,

psT
−
s eik2sx3, x3 > 0,

, (3)

The index s here takes the value s = 1 for an incoming P wave and s = 2 for

an incoming S wave. The amplitude reflection and transmission coefficients

are

R−
s =

c1sk1s − c2sk2s
c1sk1s + c2sk2s

, T−
s =

2c1sk1s
c1sk1s + c2sk2s

, s = 1, 2. (4)

The polarization vector ps describing the type of incident plane wave is for

the P wave p1 = {0, 0, 1} and for the S wave p2 = {1, 0, 0}.
The wave scattered by an open crack usc has continuous normal and

tangential stresses τ sc = {σ13, σ23, σ33} at the interface of the crack x3 =

0, whereas the displacement field usc has a discontinuity at r ≤ a so the

boundary conditions for the scattered field are:





u1,sc(r, θ, 0) = u2,sc(r, θ, 0), r > a,

τ 1,sc(r, θ, 0) = τ 2,sc(r, θ, 0), r > a,

τ 1,sc(r, θ, 0) = τ 2,sc(r, θ, 0) = −τ 1,in
s (r, θ, 0), r ≤ a.

(5)

In addition the scattered field must be outgoing at infinity.

The scheme used by Krenk and Schmidt (1982) for a circular crack in an

isotropic space is now followed. Thus cylindrical coordinates are used and
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Figure 1: Geometry of the problem for a single interface crack.

the cylindrical displacement components are written

ur =
∂ψ3

∂r
+
∂2ψ2

∂r∂z
+

1

r

∂ψ1

∂θ
, uθ =

1

r

∂ψ3

∂θ
+

1

r

∂2ψ2

∂θ∂z
− ∂ψ1

∂r
,

uz =
∂ψ3

∂z
−
(
∇2 − ∂2

∂z2

)
ψ2,

in terms of potentials ψi. The index j denoting the half-space is suppressed

on the potentials here and in the following. The potentials in media denoted

by index j = 1, 2 must satisfy Helmholtz equations

∇2ψ3 + k21jψ3 = 0, ∇2ψi + k22jψi = 0, i = 1, 2.

In order to construct solutions in cylindrical coordinates the wavefields are

expanded into Fourier series in terms of cosmθ and sinmθ over the angular
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coordinate θ. The potentials for the scattered field have similar representa-

tions, where the potential ψm
1 differs by a sign (Krenk and Schmidt, 1982;

Boström and Peterson, 1989)

ψ1(r, θ, z) =

∞∑

m=0

ψ1m
1 (r, z) sinmθ −

∞∑

m=0

ψ2m
1 (r, z) cosmθ,

ψi(r, θ, z) =

∞∑

m=0

ψ1m
i (r, z) cosmθ +

∞∑

m=0

ψ2m
i (r, z) sinmθ, i = 2, 3.

Expressions for the components of the displacement vector v = {ur, uθ, uz}
and stress vector have the same form:

v(r, θ, z) =

∞∑

m=0

(
χ1m(θ)v1m(r, z) + χ2m(θ)v2m(r, z)

)
,

τ (r, θ, z) =
∞∑

m=0

(
χ1m(θ)τ 1m(r, z) + χ2m(θ)τ 2m(r, z)

)
,

where

χ1m(θ) = diag
(
cos(mθ), sin(mθ), cos(mθ)

)
,

χ2m(θ) = diag
(
sin(mθ),− cos(mθ), sin(mθ)

)
.

It is natural to represent the functions ψnm
i (r, z) as the Hankel transform of

Ψm
i (α, z) over the radial coordinate r

ψnm
i (r, z) =

∞∫

0

Ψnm
i (α, z)Jm(αr)αdα.

It is also convenient to follow (Krenk and Schmidt, 1982; Boström and Pe-

terson, 1989) and to use rearranged displacement

wnm = {unmr + unmθ , unmr − unmθ , unmz }
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and stress vectors

τ̂
nm = {τnmrz + τnmθz , τ

nm
rz − τnmθz , τ

nm
zz } . (6)

Here the Fourier components are expressed in terms of the Hankel transform,

see (Glushkov and Glushkova, 2001; Glushkov et al., 2002) for more details

wsc,nm(r, z) =





w
sc,nm
1 (r, z) =

∞∫
0

Jm(αr)K1(α, z)Q
nm(α)α dα, z < 0

w
sc,nm
2 (r, z) =

∞∫
0

Jm(αr)K2(α, z)Q
nm(α)α dα, z > 0

(7)

To obtain this representation the continuity of the components qnmi (r) of the

unknown traction vector

τ̂
sc(r, θ) = q(r, θ) =

∞∑

m=0

2∑

n=1

χnm(θ)qnm(r)

over the whole interface has been used in the form of the Hankel transform:

Qnm(α) =

∞∫

0

Jm(αr)qnm(r)r dr.

In the integral representation (7) the Hankel transform of Green’s matrices

is

Kj(α, z) =




1

2
[Mj(α, z) +Nj(α, z)] −1

2
[Mj(α, z)−Nj(α, z)] Pj(α, z)

−1

2
[Mj(α, z)−Nj(α, z)]

1

2
[Mj(α, z) +Nj(α, z)] −Pj(α, z)

−1

2
Sj(α, z)

1

2
Sj(α, z) Rj(α, z)



,

and the matrix composed of Bessel functions is

Jm(αr) =




Jm+1(αr) 0 0

0 Jm−1(αr) 0)

0 0 Jm(αr)


 .
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The shifts in orders of the Bessel functions in Jm occur due to the use of

the displacement vector wnm instead of v. The components of the Hankel

transform of the Green’s matrices Kj are expressed via the same functions

as in (Glushkov et al., 2002)

Mj(α, z) = (−1)j+1γ2j
∆j

[
ηje

−γ2j |z| − 2α2e−γ1j |z|
]
,

Rj(α, z) = (−1)j
γ1j
∆j

[
2α2e−γ2j |z| − ηje

−γ1j |z|
]
,

Pj(α, z) =
α

∆j

[
2γ1jγ2je

−γ2j |z| − ηje
−γ1j |z|

]
,

Sj(α, z) =
α

∆j

[
ηje

−γ2j |z| − 2γ1jγ2je
−γ1j |z|

]
,

Nj(α, z) = (−1)j+1 e
−γ2j |z|

µjγ2j
,

∆j = µj[η
2
j − 4α2γ1jγ2j ], ηj = (2α2 − k22j).

(8)

The branches of the square roots γnj =
√
α2 − k2nj are fixed by the conditions

Re γnj ≥ 0 and Im γnj ≤ 0 for α ∈ (−∞,∞).

It is convenient to introduce the crack opening displacement (COD) as the

primary unknown (for which an integral equation is going to be formulated)

∆v(r, θ) = vsc
1 (r, θ, 0)− vsc

2 (r, θ, 0) =
2∑

n=1

∞∑

m=0

χnm(θ)∆vnm(r) (9)

The combinations ∆wnm of the components of ∆vnm are expanded into a

series of the associated Legendre polynomials Pm
j of the first kind (Krenk

and Schmidt, 1982; Kundu and Boström, 1991):

∆wk(r, θ) =

2∑

n=1

∞∑

m=0

∞∑

t=0

βnm
kt φ

m
kt(r)χ

nm(θ) (10)

φm
1t(r) =

Pm+1
m+2t+2

(√
1− r2/a2

)

Pm+2
m+2t+2 (0)

, φm
2t(r) =

Pm−1
m+2t

(√
1− r2/a2

)

Pm
m+2t (0)

,
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φm
3t(r) =

Pm
m+2t+1

(√
1− r2/a2

)

Pm+1
m+2t+1 (0)

.

This expansion has the correct behaviour as r approaches zero and it has a

square root behaviour at the crack edge, but it does not have the (somewhat

unphysical) oscillations that are known to exist at a crack edge between two

dissimilar media (Srivastava et al., 1979). The Hankel transform of the basis

functions can be calculated in terms of Bessel functions

Φm
3t(αa) =

a∫

0

φm
3t(r)Jm(αr)rdr =

a∫

0

Pm
m+2t+1

(√
1− r2/a2

)

Pm+1
m+2t+1 (0)

Jm(αr)r dr =

(−1)t
√
πa

2

Jm+2t+1+3/2(αa)

α3/2

Φm
kt(αa) =

a∫

0

φm
kt(r)Jm+1(αr)rdr = (−1)t

√
πa

2

Jm+2t+9/2−2k(αa)

α3/2
, k = 1, 2.

The basis functions should be defined carefully for m = 0, in this case

φ0
2t(r) = φ0

1t(r) and correspondingly Φ0
2t(αa) =

a∫
0

φ0
1t(r)J−1(αr)rdr = −Φ0

1t(αa).

Using the continuity of the displacement between the two half-spaces out-

side the crack it is straightforward to express the unknown Hankel transform

of the interfacial traction

Qnm(α) = L(α)∆W nm(α),

L(α) = [K2(α, 0)−K1(α, 0)]
−1 , n = 1, 2.

in terms of the crack opening displacement

∆W nm(α) =

∞∫

0

Jm(αr)∆wnm(r)r dr.
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For this purpose the integral representation (7) and the inverse Hankel trans-

form are used. The matrix L becomes

L(α) =




1

2
[M0(α) +N0(α)] −1

2
[M0(α)−N0(α)] P0(α)

−1

2
[M0(α)−N0(α)]

1

2
[M0(α) +N0(α)] −P0(α)

−1

2
S0(α)

1

2
S0(α) R0(α)



.

Here the elements can be expressed in analytic form via

M0 =
R̃

M̃R̃ + P̃ S̃
, N0 =

1

Ñ
, P0 =

−P̃
M̃R̃ + P̃ S̃

,

R0 =
M̃

M̃R̃ + P̃ S̃
, S0 =

−S̃
M̃R̃ + P̃ S̃

.

The functions with a tilde denote the difference between the corresponding

functions (8) without a tilde in the lower and upper half-spaces at x3 = 0,

e.g. M̃(α) =M2(α, 0)−M1(α, 0). These functions become

M̃(α) =
γ21k

2
21

∆1

+
γ22k

2
22

∆2

, R̃(α) =
γ11k

2
21

∆1

+
γ12k

2
22

∆2

,

P̃ (α) = −S̃(α) = α

(
−γ11γ21 − α2 + k221/2

2∆1

+
γ12γ22 − α2 + k222/2

2∆2

)
,

Ñ(α) = −µ1γ21 + µ2γ22
µ1µ2γ21γ22

.

To use the inhomogeneous boundary condition at the crack surface (5)

the traction of the incoming wave combined according to (6) is also expanded

in a Fourier series

τ̂
in
s (r, θ, z) =

2∑

n=1

∞∑

m=0

χnm(θ)τ̂ in,nm
s (r, z).

For the P wave incidence the traction components are

τ̂
in,nm
1 = f1





(0, 0, 1), n = 1, m = 0

(0, 0, 0), otherwise
,
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and for SV wave incidence they are

τ̃
in,nm
2 = f2





(0, 2, 0), n = 1, m = 1

(0, 0, 0), otherwise
,

fs =
2ic1sk1sc2sk2s
c1sk1s + c2sk2s

.

The inhomogeneous boundary condition at the crack surface (5) then gives

2∑

n=1

∞∑

m=0

χnm(θ)




∞∫

0

Jm(αr)Qnm(α)αdα+ τ̂
in,nm(r, 0)


 = 0.

Substitution of the crack opening displacement finally leads to the following

integral equation for the unknowns ∆W nm

∞∫

0

Jm(αr)L(α)∆W nm(α)αdα = −τ̂
in,nm
s (r). (11)

Applying the Galerkine scheme gives the discretized form of the integral

equation (11) (keeping Nt + 1 terms)

Nt∑

t=0

Am
tt′β

nm
t = −gnm

t′s , t′ = 0, . . . Nt (12)

where the left-hand side matrix is composed of 3 by 3 blocks

Am
tt′ =

∞∫

0

Φm
t′ (α)L(α)Φ

m
t (α)α dα, gnmit′s =

a∫

0

τ̂ in,nmis (r, 0)φm
it′(r)r dr,

constructed via the matrices Φm
t′ = diag (Φm

1t′ ,Φ
m
2t′ ,Φ

m
3t′).

The α integral in Am
tt′ is slowly convergent so the asymptotic behaviour

for large arguments is now investigated. For α→ ∞ it is possible to expand

L(α) as follows

L(α) = αLas + L̃(α),
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where L̃(α) ∼ O(α−1) at α → ∞. To obtain this the square roots are first

expanded

γnj = α

(
1−

k2nj
2α2

)
+O(1). (13)

Then all the functions including γnj can be also expanded, e.g.

∆j ≈ 2µjα
2(k21j − k22j) +O(1).

Employing these approximations into all the functions involved in the Green’s

matrix K(α, z = 0) construction gives

M̃(α) ≈ − 1

α
m1, Ñ(α) ≈ − 1

α
m2, R̃(α) ≈ − 1

α
m1, P̃ (α) = −S̃(α) ≈ 1

α
m3,

where

m1 =
1

2

(
λ1 + 2µ1

µ1(λ1 + µ1)
+

λ2 + 2µ2

µ2(λ2 + µ2)

)
, m2 =

(
1

µ1

+
1

µ2

)
,

m3 = −1

2

(
1

λ1 + µ1

− 1

λ2 + µ2

)
.

(14)

Substitution of these asymptotic forms into L(α) gives the final asymptotic

representation of the kernel of the integral equation (11)

Las =
1

2m2(m
2
3 −m2

1)




m2
1 +m1m2 −m2

3 m2
1 −m1m2 −m2

3 2m2m3

m2
1 −m1m2 −m2

3 m2
1 +m1m2 −m2

3 −2m2m3

−m2m3 m2m3 2m1m2


 .

This well-known trick makes it possible to compute the matrix Am
tt′ with

a reasonable convergence in the following way

Am
tt′ = Ãm

tt′ +

∞∫

0

Φm
t′ (α)L̃(α)Φ

m
t (α) dα, (15)
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Figure 2: Normalized crack opening displacement for normally incident P wave scattering

by a circular crack in a homogeneous medium: comparison with (Mal, 1970; Budreck and

Achenbach, 1988; Kundu and Boström, 1991).

where the blocks Ãm
tt′ =

∞∫
0

Φm
t′ (α)L̃as(α)Φ

m
t (α)α

2 dα are calculated analyti-

cally using the formula

∞∫

0

Jµ(at)Jν(at)
dt

t
=

2

π

sin(π/2(ν − µ))

ν2 − µ2
.

In order to check the calculations, a comparison with other papers is per-

formed for the case when the material in the two half-spaces are equal in Fig.

2. The calculations have been performed for glass with parameters given in

(Kundu and Boström, 1991). The reasons for the small discrepancies that

are seen are unclear, however, note that the results are taken from figures

15



so that the exact points are a little uncertain. Analogous comparisons have

been made for dissimilar media with the method proposed by Glushkov and

Glushkova (1996), with a very good correspondence (?).

3. Plane wave transmission through a damaged interface

x2

x3

x1

2l2

2l1

Rectangular domain with N  cracksc

Figure 3: Geometry of the problem for a damaged interface with a distribution of interface

cracks.

Following the scheme used in Golub and Boström (2011), consider a plane

P or S wave incident normally to an interface with a random distribution of

circular cracks of the same radius a, see Fig. 3. It should be mentioned that

the scheme can be generalized to the case of cracks with a variation in size.

Introduce a large rectangle in the x1x2 plane with the center at the origin of

coordinates of size 2l1 along the x1 axis and 2l2 along the x2 axis. Then the

16



crack density parameter C can be introduced as the ratio of the total area

of all the cracks Sdamage to the total area of the rectangle Stotal

C =
Sdamage

Stotal
.

The total field is a sum of incident and scattered fields u = uin+usc as for

a single crack. The cracks are assumed to be small relative to the wavelength

of the incoming wave. It is then possible to neglect the interaction between

the cracks if they are not located too close to each other, see more comments

later on. The ensemble average of the total scattered field by a random

distribution of cracks can be constructed in the same manner as in (Boström

and Golub, 2009; Golub and Boström, 2011) in the form of outgoing plane

waves propagating in the ±x3 direction:

〈usc〉(x) = ps





P−
s e−ik1sx3, x3 < 0,

P+
s eik2sx3 , x3 > 0,

(16)

where the brackets denote ensemble averaging. Here the notation from Sec-

tion 2 is followed and thus s = 1 for the P wave and s = 2 for the S wave.

The Betty-Rayleigh reciprocal relation is now applied to the two elasto-

dynamic states usc and uin

∫

S

[
uini (x) · σsc

ij (x)− usci (x) · σin
ij (x)

]
njdS = 0.

The surface integral is over the area S which is the sum of the rectangular

prism S− with corners at the points (±l1,±l2, 0−), (±l1,±l2,−l3) and the

rectangular prism S+ with corners at ((±l1,±l2, 0+), (±l1,±l2, l3) symmet-

ric to S− with respect to the x1x2 coordinate plane. It can be shown in the

same manner as in (Golub and Boström, 2011) that the integrals along the

17



damaged interface then cancel along the uncracked parts and contain the

crack-opening displacement along the cracked parts. Taking an ensemble av-

erage the other integrals can all be calculated and this gives for the reflection

coefficient

P−
s = −1

2
(1− R−

s )C ps ·∆us,

which is expressed in terms of the reflection coefficient R−
s from equation (4)

and the average value of the COD

∆us =
1

πa2

∫∫

Ω

∆us(x1, x2) dx1dx2.

Here the integration area is over one crack. The transmission coefficient P+
s

is determined in a similar way (Golub and Boström, 2011):

P+
s = −1

2
(1 +R−

s )Cps ·∆us.

The total transmission coefficient for the random distribution of equal circu-

lar cracks then becomes

T̃s = T−
s + P+

s = T−
s

(
1− 1

2
Cps ·∆us

)
, (17)

which is expressed in terms of the material constants, the average of the crack

opening displacement and the density of cracks C.

4. Spring boundary conditions

The next step is to transform the calculated transmission coefficient in

order to have the same transmission properties as for the spring boundary

conditions. If the damaged interface is modelled by the distributed spring

model, then spring boundary conditions (1) must be satisfied. The spring

18



boundary condition (1) demands that normal and tangential stresses σ ·n are

continuous at the damaged interface, while a displacement jump is propor-

tional to the stresses. The diagonal components of the three-by-three matrix

κ are determined below from equality of the transmission coefficients for the

random distribution of cracks and the spring model. As in Section 2, the

displacement field for both types of plane waves (s = 1, 2) normally incident

to the interface x3 = 0 and incoming from the lower half-space (x3 < 0) is

us(x) =





ps

(
eik1sx3 + R̂se

−ik1sx3

)
, x3 < 0,

psT̂se
ik2sx3 , x3 > 0,

(18)

R̂s =
ic1sk1sc2sk2s + κs(c1sk1s − c2sk2s)

ic1sk1sc2sk2s + κs(c1sk1s + c2sk2s)
,

T̂s =
2κsc1sk1s

ic1sk1sc2sk2s + κs(c1sk1s + c2sk2s)
. (19)

In the limit κs → ∞ these reflection and transmission coefficient becomes

identical to those in Section 2 for a welded interface.

The spring model assumes that it gives the same transmission as a random

distribution of interface cracks. So the transmission coefficients (19) and (17)

for the distributed spring model and the random distribution are set equal:

T̃s = T̂s and this gives

κN = κ33 = f1

(
1

C p1 ·∆v1

− 1

2

)
, κT = κ11 = f2

(
1

C p2 ·∆v2

− 1

2

)
.

(20)

fs =
2ic1sk1sc2sk2s
c1sk1s + c2sk2s

.

The second terms in the estimations (20) depend on frequency, so from the

assumptions of aknj ≪ 1 these terms can be omitted.
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In the relation (20) the average crack opening displacement ∆us is needed

to determine the normal and transverse spring stiffnesses κ33 = κN and κ11 =

κ22 = κT . Instead of a numerical calculation of ∆us, an asymptotic solution

∆uas
s can be used in (20). Construction of the asymptotic solution ∆uas

s is

based on the assumption that aknj ≪ 1. This assumption makes it possible

to exploit the expansions (13) for γnj again, so the integrals in the left-hand

side of system of algebraic equations can be estimated as Am
tt′ ≈ Ãm

tt′ , because

∞∫

0

Φm
t′ (α)L̃(α)Φ

m
t (α) dα→ 0

as aknj → 0. In the system of equations (12) the matrix Am
tt′ ≈ Ãm

tt′ is thus

known in closed form. For P wave incidence only m = 0 and n = 0 enter

and it is enough to put the number of terms in the COD expansion Nt = 0

because the coefficients |β10
t | decay rapidly with t when aknj ≪ 1. If only

the first term is kept in the expansion (10), then the asymptotic solution for

the COD can be obtained analytically by solving a three-by-three system of

linear algebraic equations Ã0
00β̂

10

0 = g10
01:

β̂as,10
10 = f1

20am3(m
2
1 −m2

3)

4π2m2
1 − 15m2

3

,

β̂as,10
20 = f1

20am3(m
2
1 −m2

3)

4π2m2
1 − 15m2

3

,

β̂as,10
30 = f1

8aπm1(m
2
1 −m2

3)

4π2m2
1 − 15m2

3

.

The systems of linear algebraic equations (12) should also be solved for SV

wave incidence, the non-zero terms are then for m = 1 and n = 1. The

coefficients β̂11
k0 are more complex as compared to P-wave incidence :

β̂as,11
10 = f2

1680am2
2m

2
3(m

2
1 −m2

3)

π(m2
1 +m1m2 −m2

3)(36m1π2(m2
1 +m1m2 −m2

3)− 275m2m2
3)
,
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β̂as,11
20 = f2

−32am2(m2
1 −m2

3)(9m1π
2(m2

1 +m1m2 −m2
3)− 35m2m

2
3)

π(m2
1 +m1m2 −m2

3)(36m1π2(m2
1 +m1m2 −m2

3)− 275m2m2
3)
,

β̂as,11
30 = f2

−360aπm2m3(m
2
1 −m2

3)

π(36m1π2(m2
1 +m1m2 −m2

3)− 275m2m2
3)
.
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Figure 4: The averaged vertical COD ∆u31 obtained numerically divided by the averaged

asymptotic solution ∆u as
31 for P wave diffraction by a single interface crack between six

different combinations of media at Nt = 10; c0 = 3160m/s.

In order to demonstrate the accuracy of the asymptotic solution, Fig. 4

shows the averaged vertical COD component ∆u31 divided by the purely real

average ∆u as
31 of asymptotic solution ∆u as

31(r, θ) = βas,10
30 φ10

30(r) for six pairs of

materials (their properties are listed in Table 1). Fig. 4 depicts the real and

imaginary parts for Nt = 10, and as there are only small changes going from
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Figure 5: The averaged horizontal COD ∆u12 obtained numerically divided by the aver-

aged asymptotic solution ∆u as
12 for SV-wave diffraction by a single interface crack between

six different combinations of media at Nt = 10.

Nt = 0 to Nt = 10 it is concluded that the asymptotic solution is accurate

enough for the estimation of the normal spring stiffness. The relative error

is less than 1% when ak . 0.2. The same comparison of ∆u12 and ∆u as
12 is

demonstrated in Fig. 5 for SV-wave scattering.

Using the asymptotic solutions mentioned above, the transverse and nor-

mal spring stiffnesses are obtained as:

κi = κ0i ·
1

aC
, i = T,N, (21)
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Material Density, ρ Young’s modulus, E Poison ratio, ν

[kg/m3] [GPa]

Glass 2770 69.15 0.25

Alumina 4000 400 0.231

Epoxy 1200 4.5 0.399

Aluminium 2700 70 0.33

Zirconium 5700 200 0.3

Lead 11400 17.76 0.43

Steel 7860 81 0.288

Table 1: Dimensionless mass densities and wave velocities of the materials used.

where

κ0N =
3

16π
· 15m

2
3 − 4πm2

1

m1(m2
1 −m2

3)
,

κ0T =
3π(m2

1 +m1m2 −m2
3)

32m2(m
2
1 −m2

3)
· 36m1π

2(m2
1 +m1m2 −m2

3)− 275m2m
2
3

9m1π2(m2
1 +m1m2 −m2

3)− 35m2m
2
3

.

The obtained formulae (21) are now compared with the stiffnesses derived

for a periodic hexagonal array of circular cracks by Lekesiz et al. (2013a), who

estimated the normal and transverse spring stiffnesses based on the methods

of Lekesiz et al. (2013b) and Kachanov (1994). In the case considered by

(Lekesiz et al., 2013a) distance between neighbour circular cracks of radius

a is equal 2b, so the corresponding unit-cell including one crack has side

2
√
3b/3. The crack density is then calculated as the ratio of the area of the

circular crack πa2 and the area of the hexagonal unit cell

C =
πa2

2
√
3b2

.
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Thus, stiffnesses (21) can be rewritten in the following form

κi · b = κ0i · I (a/b) , i = T,N, (22)

I
(a
b

)
=

3
√
3

2
·
(a
b

)−3

.

The stiffnesses derived in Lekesiz et al. (2013a) have similar form

κi,Lekesiz · b = κ0i,Lekesiz · ILekesiz (a/b) , i = T,N, (23)

which are expressed in terms of the function

ILekesiz

(a
b

)
=
π2DL

8
· 3π
4

·
(a
b

) 1

2 ·
[
ln sec

(
π
√
DL

2

(a
b

) 7

4

)]−1

,

where DL = 0.8673 and κ0i,Lekesiz are given in Lekesiz et al. (2013a).

The case of identical materials is considered first in order to have a clear

analytical comparison of the estimations obtained in (Lekesiz et al., 2013a)

and derived via the present approach. The effective transverse and normal

spring stiffnesses for identical materials are given by (Lekesiz et al., 2013a,

Eqs. (25) and (26)) in terms of elastic moduli λ = λ1 = λ2 and µ = µ1 = µ2,

crack radius a and average distance between defects 2b:

κhomogeneous
T,Lekesiz · b = µ(3λ+ 4µ)

4(λ+ 2µ)
· ILekesiz

(a
b

)
,

κhomogeneous
N,Lekesiz · b = µ(λ+ µ)

λ+ 2µ
· ILekesiz

(a
b

)
.

(24)

The present stiffnesses given by the relations (21) are simplified in the case

of identical materials (taking into account that m3 = 0) and expressed in

terms of a and b (instead of C):

κhomogeneous
T · b = µ(3λ+ 4µ)

4(λ+ 2µ)
· I
(a
b

)
,

κhomogeneous
N · b = µ(λ+ µ)

λ+ 2µ
· I
(a
b

)
.

(25)
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The dependencies on the Lamé parameters are the same for the normal and

tangential stiffnesses in the case of identical materials. Moreover, the depen-

dencies on the Lamé parameters are in a very good agreement (κ0i ≈ κ0i,Lekesiz)

also for dissimilar materials as demonstrated in Table 2.

κ0T/κ
0
T,Lekesiz κ0N/κ

0
N,Lekesiz

aluminium / aluminium 1.0 1.0

glass / lead 1.00002 1.00003

glass / epoxy 1.00062 1.00102

aluminium / alumina 1.00084 1.00147

zirconium / alumina 1.00015 1.00026

steel / epoxy 1.00086 1.00143

Table 2: Ratios κ0
T /κ

0
T,Lekesiz and κ0

N/κ0
N,Lekesiz for different pairs of materials.

The dependence on a/b seems very different at first glance, but as shown

in Fig. 6 the difference is small for small a/b and then gradually increases.

To capture the relative difference it is better to consider the ratio κi/κi,Lekesiz,

very nearly coinciding with I(a/b)/ILekesiz(a/b) due to the approximate equal-

ity of the multipliers depending on elastic moduli. Figure 7 depicts the spring

stiffnesses calculated via formulae (21) normalized by the corresponding stiff-

nesses from (Lekesiz et al., 2013a, Eqs. (40) and (41)) valid for identical and

dissimilar media. For small a/b it can be seen that the spring stiffnesses are

about 10.3% greater as compared to the hexagonal array of periodic cracks.

One reason for this difference is the difference between a periodic and a

stochastic crack distribution. Thus, the transmission coefficient for periodic
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Figure 6: Normal spring stiffnesses κhomogeneous
N (a/b) obtained in the present work and

κhomogeneous
N,Lekesiz (a/b) derived in (Lekesiz et al., 2013a) for identical materials normalized with

b(λ2 + 2µ2)/µ2(λ2 + µ2).

strip-like cracks and the spring model was considered by Golub and Boström

(2011). It was demonstrated that the transmission is about 10% greater for

the spring model based on the assumption of a stochastic distribution of

cracks compared to an periodic array of cracks. A very similar conclusion

was made by (Sotiropoulos and Achenbach, 1988, Eq. (46)), who demon-

strated that periodic circular cracks have approximately 11% lower reflection

coefficient than the statistical distributions of circular cracks.

For high crack densities the present approach deviates more and more

from the results for periodic cracks. This is mainly due to the neglect of
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Figure 7: Ratio between spring stiffnesses κi(a/b) obtained in the present work and

κi,Lekesiz(a/b) derived in (Lekesiz et al., 2013a) approximately valid for arbitrary pairs

of materials.

multiple scattering in the present approach, but maybe also because the

stochastic distribution tends to loose it meaning when the crack density be-

comes large. It has been shown by Isida et al. (1985) that the static interac-

tion effects between two coplanar elliptical cracks are negligible if distances

between crack centers s and crack diameters d satisfy the relation

s/d & 1.25,

which transforms for hexagonal periodic cracks (s = 2b and d = 2a) into

a/b . 0.8

But as shown by (Sotiropoulos and Achenbach, 1988, Eq. (46)) the neglect

of multiple scattering is valid for surprisingly large crack densities at low fre-

quencies. Thus, it could be quantified so that multiple scattering is neglected

with good accuracy at least for a/b . 0.5 (C . 0.23).
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5. Concluding remarks

Spring boundary conditions for simulation of damaged interfaces are de-

rived in a three-dimensional case. The normal and transverse effective spring

stiffnesses are expressed in terms of elastic moduli, damage parameters and

frequency. The stiffnesses have been derived for small sizes of cracks com-

pared to the wavelength and stochastically distributed microcracks, so the

results differ from the stiffnesses of Lekesiz et al. (2013a) derived for pe-

riodic cracks. The model should be valid when the crack radius a fulfills

max ka . 0.2, where max is with respect to all the wave numbers k in the

two media, and when the damage parameter a/b . 0.5 (C . 0.23). The

spring boundary conditions can be applied for different kinds of problems,

e.g. by measuring the group velocity to find a damaged part of an inter-

face (Balvantin et al., 2012; Mezil et al., 2014) or by using wave velocities

from local maximum and minimum frequencies of the reflection spectrum to

obtain a normal interfacial stiffnesses for multilayered structures (Ishii and

Biwa, 2014).
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