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Abstract 

With the help of modern computer aided tools, complex architectural shapes are 
becoming increasingly popular and easy to model and design. As a consequence, 
questions are raised of how to realize and produce the design in a feasible and affordable 
way. This issue, in the building industry, is known as rationalization. Today, this 
process normally takes place at the end of the design process, while if it is considered 
at an early stage, the greatest gains can be made.  

In this study, rationalization in terms of different surface discretization methods has 
been a main focus. Geometrical theory of how to divide a surface into smaller elements 
have been studied for historical and modern buildings in order to understand what 
important factors exist. Site visits and interviews with practicing architects and 
engineers have been conducted in order to study different design approaches and 
rationalization of real projects. This study also explores multi-objective optimization, 
since most real design projects have several different aspects to consider when 
rationalization is performed. These are often more or less conflicting, resulting in many 
different solutions where trade-offs can be made in order to find a desired result.  

The theory studied in this thesis is applied in a design project, where a new glass and 
steel gridshell structure is proposed. The structure is designed parametrically in the 
Rhinoceros® plugin Grasshopper® and structurally analysed with the FE add-on 
Karamba. Different possible solutions were investigated by the use of genetic algorithm 
optimization in the Grasshopper® add-on Octopus. The solutions are compared to each 
other in order to find an optimal solution regarding load bearing capacity, cost and 
architectural qualities.  

The design project shows that the studied discretization methods have different 
advantages and drawbacks depending on the specific case. It also shows that the use of 
genetic algorithms and parametric design can be very effective for generating many 
different solutions to complex problems. However, the role of the designer is still very 
important when it comes to judging the result and selecting a design based on 
qualitative objectives.  

Key words: Freeform architecture, Rationalization, Multi-objective optimization,            
         Genetic algorithms, Parametric design, Finite element method, Form 
         finding, Architecture and structural design.  
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Sammanfattning 
Komplexa arkitektoniska former blir allt mer populära och enklare att modellera och 
designa med hjälp av allt mer lättillgängliga datorprogram. Som en konsekvens till detta 
uppstår frågor om hur man kan realisera och producera dessa komplexa former på ett 
kostnadseffekt sätt. Detta område kallas ibland rationalisering. Idag sker denna 
rationaliseringsprocess ofta vid slutet av designprocessen, även om det  skulle vara mer 
givande om det implementeras i ett tidigare skede.  

Geometrisk teori över hur ytor kan delas in i mindre element har studerats för  historiska 
och moderna byggnader med syfte att skapa en uppfattning om vilka faktorer som 
påverkar. Studiebesök och intervjuer med yrkesverksamma arkitekter och ingenjörer 
har utförts för att undersöka olika tillvägagångssätt inom designprocessen. Denna 
undersökning inkluderar också multiobjektiv optimering, då de flesta verkliga 
designproblem innehåller flera olika aspekter att ta hänsyn till vid rationalisering. Dessa 
aspekter kan vara mer eller mindre motstridiga, vilket resulterar i många olika lösningar 
där en avvägning genomförs för att hitta ett önskat resultat.  

En metodik baserad på teorierna används sedan i ett designprojekt, där ett nytt glas- och 
ståltak för en innegård föreslås. Strukturen är parametriskt modellerad med hjälp av 
Rhinoceros®-tillägget Grasshopper® och sedan strukturellt analyserad med finita 
elementmetoden genom Karamba. Olika möjliga lösningar undersökts med hjälp av 
genetiska algoritmer, i optimeringsprogrammet Octopus inom Grasshopper®. 
Lösningarna är jämförda med varandra för att hitta en optimal lösning med hänsyn till 
konstruktiv kapacitet, kostnad och arkitektoniska kvalitéer.  

Designprojektet visar att metoderna för att dela upp ytor har olika för- och nackdelar, 
vilket varierar från fall till fall. Det visar även att genetiska algoritmer och parametrisk 
design kan vara väldigt användbart för att generera många olika lösningar till ett 
komplext problem. Dock är designerns roll fortfarande avgörande när det kommer till 
att bedöma och välja en av dessa lösningar baserat på kvalitativa aspekter. 

Nyckelord: Friformsarkitektur, Rationalisering, Multiobjektiv optimering, Genetiska  
         algoritmer, Parametrisk design, Finita elementmetoden, Arkitektur och  
         teknik. 
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1 Introduction 
In this chapter, the concept of freeform architectural surfaces is introduced. A brief 
historical overview of how the building industry has changed over time will be given 
and the aim, limitations and method of the thesis will be presented.  

1.1 Background  
The architecture and structural engineering industry have during the past decades 
undergone a digital revolution. Research on surfaces in geometric modelling took a big 
leap at the end of the 20th century, initiated by practical needs in the car manufacturing, 
aeronautic-, gaming- and animation industries (Pottman, et al., 2006). With the help of 
Computer aided design tools, complex architectural shapes can now be produced with 
minimal design input. As a consequence, freeform geometry is becoming increasingly 
popular among architects and structural engineers.  

Even though freeform architecture does not have a proper definition, it is associated 
with smooth flowing shapes, often with both positive and negative curvature and lack 
of symmetries.  

Complex geometries and freeform surfaces in architecture dates back to long before the 
modern computer-age. Some examples include dome-like shelters made from wood and 
willow, roman non-reinforced concrete domes or the early prismatic glass dome by 
Bruno Taut in 1914.  It was only by the middle of 20th century, with the increasing 
popularity of reinforced concrete that architects and structural engineers really started 
to explore freeform shapes.  

 

Figure 1.1 Left: Expo’58 pavilion Le Corbusier, 1958 (Photo: Wouter Hagens). 
Right: Sydney opera house, Jørn Utzen 1973 (Photo: Bjarte Sorensen). 
Both buildings got it’s freeform shape realized by the use of reinforced 
concrete.  

Before computers became commonly used, physical models were used in order to find 
the shape of a building as well as study the structural behaviour. Pioneer Buckminster 
Fuller, famous for his Geodesic dome, explored new possibilities for complex 
lightweight structures through mathematics and models. Other pioneers include Antoni 
Gaudi, with his catenary arch models, Frei Otto, famous for working and developing 
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suspended structures, Hans Schober and Jörg Schlaich with their cable nets and 
gridshells as well as Heinz Isler through and his extremely thin concrete shells.  

   

Figure 1.2 Left: Lightweight tent construction at the Munich Olympic stadium 
1972, Frei Otto (Photo: btr). Right: Hippo House, Berlin Zoo, 1996. The 
freeform surface is covered with planar quadrilateral glass panes 
(Photo: Schlaich Bergermann Partner).  

As freeform shapes emerges more often, questions are raised concerning realization and 
production of complex designs in feasible and affordable ways. This issue, in the 
building industry, is known as rationalization. The tools used in architectural design 
were originally developed for industries with a difference in scale, aesthetics and 
manufacturing techniques, making rationalization even more crucial.  

 

Figure 1.3 Milan Trade Fair glass roof by Schlaich Bergermann Partner. The mesh 
grid of the freeform glass roof flows seamlessly from the quadrilateral 
mesh (flat top region) to the triangular one within the funnel region 
(Photo: Ramon Prat).  

Today, freeform architecture can be found almost all over the world. Architects such as 
Zaha Hadid, Sir Norman Foster and Frank Gehry all contribute to the modern freeform 
architecture. These freeform shapes are not yet very common in Sweden and the rest of 
the Scandinavian countries. However, examples such as the Emporia Shopping Centre 
and the Triangle station, both in Malmö, have been built in recent years.  
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The process of rationalizing freeform surfaces normally takes place at the end of the 
design process, while if it is considered at the initial stage, the greatest gains can be 
made. This report will study different ways of rationalizing freeform architecture based 
on a set of criteria. It will explore how for example the structural behaviour and 
architectural aesthetics will influence the chosen rationalization method.  

1.2 Aim 
When rationalizing a freeform surface, many different aspects can and need to be 
considered. The purpose of this thesis is to investigate different methods of 
rationalization of freeform architectural shapes into buildable structures, and to 
investigate which factors influence the constructability and cost of the final structure.   

The aim is to apply this theory on a study project in order to investigate the 
rationalization process, in which a freeform surface will be studied from initial sketch 
to conceptual design solutions. The aim for this design is to not only be structurally 
optimized, but take other aspects under consideration such as original design intent, 
simplicity of design, material usage etc. though multi-objective optimization.  

The purpose of this thesis is also to explore how existing computer tools can be utilized 
in a design method when working with freeform architectural shapes.  

1.2.1 Thesis questions 

• How can a freeform architectural shape be rationalized?  
• What aspects does the term rationalized contain? 
• What are the most important aspects? 

• How will different discretization methods affect the structural behaviour? 
• How can the rationalization method be implemented in the design process? 

1.3 Limitations 
Some types of structures, for example concrete shells, inflatable structures and timber 
gridshells, will not be studied in depth.  

The focus for the study project will be on the overall structure, and therefore it will not 
be solved in a detailed scale. Effects such as long term creep and temperature loads will 
not be considered.  

Already existing commercial softwares will be explored and combined instead of 
creating new programs. Different kinds of genetic algorithms and FE-modelling 
programs will not be studied, but the study will be conducted within Grasshopper® and 
its add-ons Octopus and Karamba.  
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1.4 Method 
In order to get a better knowledge of the subject, literature studies will be conducted as 
a starting phase. This includes identifying different methods of discretization of 
freeform surfaces such as triangular and quadrilateral division, gridshells and tensile 
structures. Already built examples around the world will also be studied and for some 
projects, site visits will be conducted. Architectural and engineering offices in Sweden 
and abroad will be visited to discuss how freeform projects can and have been 
rationalized. The theory of single and multi-objective optimization will also be studied. 
Different optimization criteria will be identified along with the evaluation of the 
different discretization types.  

The study project that will be designed is a mean of exploring the rationalization 
process, existing design tools and evaluation criteria. This project will be a canopy at 
the courtyard of the civil engineering building at Chalmers University of Technology. 
A design program will be specified where boundary conditions are stated. Further, an 
initial design will be developed through sketches and model making. The most 
promising methods of discretization will be compared and developed through the use 
of multi-objective optimization with genetic algorithms. This process searches for 
structurally and material efficient solutions that also take aesthetic qualities under 
consideration. One individual is selected for each of the four chosen discretized 
surfaces. They are then compared and further rationalized.  

The process will be explored through computational and physical sketch models. The 
softwares that will be used are Rhinoceros® and its plugin Grasshopper® with add-ons 
Octopus, Kangaroo and Karamba. 
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2 Surface theory 
The following chapter contains theory of structural stability and form finding. It also 
introduces different methods of surface realization together with built examples.  

2.1 Structural stability and form finding 
For a structure to be statically stable, it needs to be in equilibrium with the external 
forces it is subjected to. The overall geometry of a structure is of high importance during 
the design process. The priority of the functionality and aesthetics of the geometry can 
vary between different design projects, but a combination of both is preferred in most 
cases. Structures working in tension and compression is more efficient when it comes 
to material usage and lowering the deflections compared to structures working mainly 
in bending. 

Form finding in structural engineering and architecture is often used to describe the act 
of finding the shape of a design such that is works in mainly tension and compression. 
The governing load used for form finding is usually the structures self-weight, but it 
can also be other external loads.   

Historically, the importance of finding a shape that works mainly in compression was 
essential, as traditional construction materials such as masonry and stone only resist 
small tensile stresses. The traditional arches and domes are some of the first form found 
structures, which got their shapes with help from the hanging chain principle. By 
inverting the shape of a hanging chain, which works in pure tension and is free from 
bending, a pure compression structure will be found. Later, in the 20’s century 
investigations through physical models using hanging cloths, soap film and chain 
networks were conducted.  

 

Figure 2.1 Form found surface according to a catenary curve shape. Hanging 
shape working in pure tension (left) and inverted shape, giving a form 
that mainly works in compression (right).  

Today, with the help of modern computer programs, different kinds of numerical 
methods can be used for form finding. One type of these are the geometric stiffness 
methods, which are material independent. A particular example of this is the Force 
Density Method, which is based on the ratio of force to length. Other methods include 
dynamic equilibrium methods, for example Dynamic Relaxation, which results in a 
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geometry where all forces are in equilibrium through iterations in small time steps.  
Another way to find a shape is through large deformation analysis using the finite 
element method (Veenendaal & Block, 2014).  

An important factor for a structure to be globally stable, is the support conditions. A 
way to technically describe this is by the degrees of freedom (DoF). For static structural 
calculations, DoF is the number of independent movements a body has. In a three 
dimensional space, an unrestrained body has six degrees of freedom; three translational 
and three rotational. The translational DoF’s represents the movement in three 
perpendicular axes (usually x,y,z), similar is the rotational DoF’s which represent the 
rotations about these axes.  

In order for a structure to avoid moving around freely in space (rigid body modes), it 
needs to be restrained for these movements at the supports.  

2.2 Gaussian/Principal curvature 
When discretizing freeform surfaces, particularly when laying out flat and single curved 
panels, studying the curvature behaviour is essential. One way of measuring the 
curvature of a surface is by the Gaussian curvature, which is a scalar that is the product 
of the two principle curvatures. The two principle curvatures, 𝑘" and 𝑘# , are  the 
maximum and minimum curvatures which are perpendicular to each other. The 
Gaussian curvature is expressed as 𝐾 = 𝑘" ∙ 𝑘# at every point on the surface.  

A geometric way of specifying if the Gaussian curvature is positive, negative or zero, 
is by studying the direction of these principle curves. Principle curves with the same 
sign, as for a dome, will have a positive Gaussian curvature. For a hyperboloid where 
the principle curves have different signs, the Gaussian curvature is negative. For a 
single curved surface, the principle curvature in one direction is zero, making the 
Gaussian curvature zero. The sign of the Gaussian curvature is of importance when 
mapping panels on a surface, particularly for hexagonal grids which will be explained 
further in the this chapter.   

 

Figure 2.2 Principle curves and Gaussian curvature on surfaces.  
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2.3 Surface discretization 
There are different ways one can realize freeform surfaces, one common way is to 
divide it into segments, commonly known as discretization. Discretization can be done 
in a lot of different ways, some of which will be explained in this chapter. The 
discretization methods vary in number of element face edges, node complexity, face 
curvature, material suitability etc. For example, planar elements are often preferred 
since production costs generally are lower than for curved elements. Often, for curved 
elements, a unique mould has to be created for each element. Since the moulds often 
can be more expensive than the element itself, this results in an expensive solution.  

This chapter will cover triangular, quadrilateral and hexagonal meshes, and some 
examples of how different shapes can be combined will also be presented. Different 
methods are of course suitable for different cases, but a general explanation and 
advantages/disadvantages will be stated below. Built examples of each method will be 
given. As a last part of this chapter, other methods to realize freeform surfaces will be 
presented shortly.  

2.3.1 Triangular meshes 

Triangulation of surfaces is a common way to discretize a surface. A triangular mesh 
has the advantage of  always creating flat panels between three points. This way, a 
planar triangle mesh can approximate any given surface. The disadvantages however 
are that a triangular mesh results in a high number of elements and high node 
complexity since typically six edges meet in each node. These disadvantages also often 
results in low structural transparency, which can be a problem when working with a 
see-through covering material such as glass.  

 

Figure 2.3 Different ways of triangulating a surface, all with a unique architectural 
expression. 	

One problem with a triangular mesh is that an exact offset mesh cannot be created for 
any arbitrary surface. This can cause issues for the layout of supporting beams and 
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multi-layer meshes. When offsetting a triangular mesh, the individual triangles become 
scaled versions of one another. Therefore only near-spherical or plane meshes can be 
offset at a constant distance. An approximated offset mesh for a freeform surface will 
have an error distributed over all the nodes (Pottman, et al., 2006).  

There are many possible ways one can triangulate a surface, making it relatively easy 
to adjust the mesh to fit the force paths. Compared to other discretization methods, 
where one will need to follow more strict mathematical rules in order to subdivide the 
surface, triangular meshes have larger possibilities for structural optimization. In order 
to create a structurally efficient design, the design must be able to transfer the loads 
favourably, with minimal bending, through membrane forces (Schlaich & Bergermann, 
2005). A triangular grid is particularly good in this aspect, where each element is stable 
for in-plane forces. This makes it possible to use hinged connections between the 
structural members.  

One well-known example of a triangulated steel grid is the roof over the Great Court of 
the British Museum in London. The grid was created using form finding and in total 
the roof consists of 3 312 unique panels of glass. Half of the elements are though a 
mirrored copy of another as the courtyard is symmetric along the north-south axis. A 
triangular structural grid was chosen because of its structural efficiency and the fact 
that a triangular mesh always creates flat faces (Williams & Shepherd, 2010). 

   

Figure 2.4 The Great Court of the British Museum in London is covered by glass 
with a triangular steel mesh. It was opened in 2000 and designed by 
Foster + Partners and Buro Happold.    

2.3.2 Quadrilateral meshes 

A quadrilateral mesh has several advantages over a triangular mesh. The mesh has a 
smaller number of edges which often results in less use of structural material, lower 
node complexity and a higher structural transparency. According to (Schober, et al., 
2002), quadrilateral meshes are by far easier to manufacture compared to triangular 
meshes, due to the fact that they require less mullions and machining operations. 
However, a quadrilateral mesh does not automatically have planar faces as for a 
triangular one. Therefore, quadrilateral meshes are sometimes made of single or double 
curved elements, but as mentioned above, this is a more expensive solution. The three 
types will be explained below.  
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Figure 2.5 Different ways of subdividing a mesh with quadrilateral elements, a 
mesh with planar faces (left), single curved elements (middle) and 
double curved elements (right).  

In order for quadrilateral meshes to be stable for in-plane forces, the face material can 
be utilized or additional diagonal members can be added. Moment connections can also 
be used, which are much more complex and expensive to construct compared to hinged 
connections. 

 

Figure 2.6 Structural stability of triangular and quadrilateral meshes. The two 
figures to the right shows two ways of stabilizing quadrilateral meshes, 
either by stiff connections or diagonal members/face material. 

2.3.2.1 Planar quadrilateral meshes  

A quadrilateral mesh with planar faces (PQ mesh) is an approximation of the initial 
surface. Planar faces are preferred especially when working with materials that are 
expensive or even impossible to bend. Since a PQ mesh cannot be constructed on any 
arbitrary freeform surface, the original surface may have to change to be able to fit a 
PQ mesh. However, in some cases small changes in the overall geometry can be 
preferred to attain the advantages that it has over a triangular mesh.  

Another advantage for PQ meshes is that, according to (Pottman, et al., 2006), the 
higher number of edges in a planar face, the easier it is to create an offset mesh. 
Therefore, a PQ mesh is often a better option than a triangular one when it comes to 
multi-layer meshes and to reduce the torsion in the nodes for the supporting system.  

Hans Schober, partner of Schlaich Bergermann Partner, developed a strategy for 
generating quadrilateral planar facets of double-curved surfaces. The method is based 
on the principle that two parallel vectors in space always define a planar quadrilateral 
surface (Schober, et al., 2002). With this method, two of the four sides of the 
quadrilateral mesh will be parallel, either the longitudinal- or the lateral edge.   

Schober’s method includes two ways of generating a special surface, the first way is 
the “Translational surface”. It is created by translating any special curve (generatrix) 
against another random curve (directrix). Subdividing these curves equally will create 
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a planar mesh with constant bar length. Another surface fit for planarization is the 
“Scale-Trans-Surfaces”, which is created in a similar way as the “Translational surface” 
with the difference that the generatrix curve is scaled and translated against the 
directrix.  

 

Figure 2.7 Basic principle for planar quadrilateral meshes. Left figure shows 
parallel longitudinal edges while the right figure shows parallel lateral 
edges (Image: Hans Schober). 

 

Figure 2.8  Example of Translational surface (left) and Scale-Trans-Surface (right).  

 

Figure 2.9 Glass roof at the Museum of Hamburg History, GMP Architects and 
Schlaich Bergermann Partners. The glass roof consists of flat glass 
panels, with diagonal cables creating required stiffness (Photo: Heiner 
Leiska).  

Generatrix

Directrix

Generatrix

Directrix
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Two other methods of discretizing a surface with planar faces, is by using a ”Conical” 
or ”Circular mesh”. The circular mesh can be understood as a quadrilateral mesh where 
all vertices of a face are positioned on a flat circle on the surface. This method is 
particularly good since the opposite angles for a quadrilateral inscribed in a circle are 
supplementary, meaning that the two angles will add up to 180 degrees. This means 
that the created quadrangle is close to a rectangle with each angle approximately 90 
degrees.  

 

Figure 2.10 Left: A quadrilateral inside a circle, the sum of the two opposite angles 
is 180°. Right: How a circular mesh is fitted on a surface, making planar 
quadrilateral elements.  

A surface can also be divided along the principle curvature lines. A vector field is 
created over the surface and connected into lines. An advantage with a principle 
curvature quadrilateral mesh is that since the principle curvatures are perpendicular to 
each other in each point, the quads will be close to rectangles when the lines are 
straightened out in-between the points. According to (Zadravec, et al., 2010), a mesh 
based on principal curves on a surface is often close to have planar faces. A drawback 
of the method is however that depending on the surface, the spacing between the curves 
can be uneven, meaning the panels can differ much in size.  

In a computational environment, a discretized surface can be given a set of both 
material-realistic and pseudo-physical properties. The pseudo-physical properties do 
not actually exist, but make the element react in a physical way to forces applied to it. 
This way, realistic or forced physical behaviour can be simulated, to achieve planarity 
of faces, equal size elements etc. This method can therefore be used for creating a PQ-
mesh, but is also applicable for other element face shapes. A tool for simulating 
physical behaviour is the Grasshopper add-on Kangaroo, which will be described more 
further down in this chapter.  
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2.3.2.2 Single curved quadrilateral meshes 

It is also possible to divide a surface into single curved elements. These are often less 
expensive to produce than double curved ones and can give a closer approximation of 
the original shape than planar elements. However, bent panels are still more costly than 
flat ones, but can be a good compromise.   

A surface can be developed into single curved strips by first creating a PQ mesh 
according to one of the methods described in section 2.2.2.1. One strip of planar 
quadrilaterals can be unfolded into the plane. If this strip is refined into infinitely many 
elements and the planarity of the elements is kept, a developable strip (D-strip) is 
generated, and can still be unfolded into the plane without stretching or tearing 
(Pottman, et al., 2008).  

 

Figure 2.11 Single curved elements can be created out of a planar quadrilateral 
mesh by refining the strips into infinitely many quads.  

The strips can be manufactured by bending instead of using moulds. This is especially 
suitable for materials such as metal sheets that are easily bent in one direction into a 
desired shape. One example of this is the Guggenheim Museum in Bilbao by Frank 
Gehry, where the double curved façades are built up by single curved sheets of titanium, 
see Figure 2.12. Gehry originally designed the building by gluing physical stripes of 
paper, enabling the surfaces to be constructed with single curved elements held up by a 
lattice grid in structural steel (Nero, 2004). 

 

Figure 2.12 The Guggenheim Museum in Bilbao by Frank Gehry is covered with 
single curved titanium sheets.   
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2.3.2.3 Double curved quadrilateral meshes 

Double curved panels are sometimes desired because of their ability to create a surface 
that is identical to the initial surface, instead of being an approximation. A surface with 
double curved elements is smooth and not facetted as for one with planar elements. For 
a surface with high curvature, a mesh with planar elements could distort the appearance 
or even be impossible to create.  

One example of a building with double curved glass elements is the Hungerburgbahn 
in Innsbruck, by Zaha Hadid Architects where separate moulds has been created for 
each panel (Eigensatz, et al., 2010).  

 

Figure 2.13 Left: Hungerburgbahn in Innsbruck by Zaha Hadid Architect (Photo: 
Hafelekar). Right: Kunsthaus in Graz by Peter Cook and Colin Fournier 
(Photo: Schneider & Aistleitner). In both buildings, a separate mould 
for each element was used.  

In order to have a more efficient manufacturing process for double curved elements, 
one can try to reduce the number moulds or have less complex moulds. This can be 
done by finding symmetries so that the moulds can be used more than once or finding 
pieces of the surface that can be made out of more simple moulds such as cylinders, 
paraboloids, torus patches etc. (Eigensatz, et al., 2010).  

2.3.3 Hexagonal meshes  

Another way to discretize a surface is using a hexagonal mesh. Since node complexity 
is a major factor in manufacturing cost, a hexagonal mesh has some advantages over a 
triangular or quadrilateral mesh, where only three beams are joined at each node. 
However, while a planar hexagonal mesh (P-Hex mesh) is suitable for some special 
shapes, such as constant mean curvature surfaces, it can be very hard and sometimes 
impossible to fit a P-Hex mesh onto an arbitrary freeform surface and at the same time 
prevent the mesh to self-intersect (Wang & Liu, 2010).  

Sometimes other geometrical shapes are needed to help cover the surface with a P-Hex 
mesh. Pentagons are a common alternative. One well known example of such a closed 
surface, with genus 0, is an ordinary football, that consists of 12 pentagons and 20 
hexagons. Only a closed surface of genus 1 can be covered with only planar hexagons 
(Wang & Liu, 2010). One example for this is a torus.  
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Concave hexagons is created for surfaces with negative Gaussian curvature, such as the 
inner circle of the torus or hyperboloid, which may not always be aesthetically 
desirable. 

 

Figure 2.14 Planar hexagons on a surface. The hexagons are convex where the 
Gaussian curvature is positive, and concave at negative Gaussian 
curvature.  

Similar as for a quadrilateral mesh, the hexagonal mesh also needs either connections 
that can transfer moment or additional structurally stabilizing members in order to be 
structurally stable. The domes of the Eden Project consist of hex-tri-hex space frames 
in two layers, see Figure 2.15 (Eden Project, 2001). Even though the inner layer does 
not consist of only triangles, the layers work together and stabilize the shell.  

 

Figure 2.15 Eden Project in Cornwall by Grimshaw Architects and Anthony Hunt 
Associates. Eight large inter-linked domes create humid and temperate 
regions. The structure is covered with triple-layered pillows of ETFE 
foil, which was used instead of glass to create a light-weight roof 
structure (Eden Project, 2001).  
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2.3.4 Combination of different geometrical shapes 

In some cases, different shaped panels can be used out of structural or aesthetic reasons. 
In the large glass and steel structure of Milan Fair both quadrilateral and triangular 
panels were used, see Figure 1.3. The surface was primarily designed as a triangular 
mesh and were then generated to a quadrilateral one. Thinner rods were then inserted 
in all places where the elements were not planar, creating planar triangles (Schlaich 
Bergermann Partner, 2005). This way, there is less use of material in parts where it is 
not needed.  

Another example of a surface where quadrilateral and triangular elements are mixed is 
the Department of Islamic Arts at the Louvre in Paris. The mission was to make a 
triangulated mesh structure more lightweight by making it into a PQ mesh. This was 
however not possible to design without changing the boundaries too much and did 
therefore not meet the architect’s idea. A mesh with both triangles and quadrangles was 
therefore made, and it was easier to meet the intention of the initial surface (Pottmann, 
2014). 

The glass roof over the courtyard of the Scheepvaartmuseum in Amsterdam, which was 
added during the renovation of the museum in 2011, is another example where the 
surface is divided into different shaped elements, see Figure 2.16. The geometry is set 
by lines passing from one edge of the surface to another, creating a pattern that is found 
on historical Dutch nautical maps preserved in the museum. The shape of the dome was 
decided by the maximum height of the surrounding building and to achieve material 
efficiency. The grid divides the roof into triangles, quadrangles, pentagons and 
hexagons, all planar glass panels. As a result of the intersecting pattern, the panels differ 
a lot in size and more than 6000 different steel elements are used (NEY+Partners, 
2011).  

   

Figure 2.16 Left: Area where triangles turn into quadrilateral panels at the New 
Milan Trade Fair (Photo: Studio Fuksas). Right: The new glass roof at 
the Scheepvaartmuseum, designed by the architect and civil engineer 
Laurent Ney.  
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2.4 Other methods of surface realization  
Freeform architectural surfaces are not only created by dividing the surface into 
geometrical shapes as described above. There are several other methods to accomplish 
such shapes.  

Concrete is easily shaped by casting, where the difficulties and costs lays in the casting 
moulds and the reinforcement design. Concrete shells can be expressed in significantly 
freeform flowing surfaces such as The Ocenographic in Valencia by the architect Félix 
Candela and structural engineer Alberto Domingo, see Figure 2.17 (left). The concrete 
roof is form found in order to find a structurally efficient shape, similar to the work of 
Heinz Isler.  

Traditional materials such as stone and masonry has also been used to realize modern 
freeform structures, particularly structures working primarily in compression. The 
Mapungubwe Interpretation Centre in South Africa is one example of this, made from 
un-reinforced bricks, see Figure 2.17 (right). 

   

Figure 2.17 Left: Thin concrete shell roof at the L’Oceanogràfic in Valencia by Félix 
Candela (Photo: Felipe Gabaldón). Right: Masonry shell at Mapun-
gubwe Interpretation Centre, Peter Rich Architects (Photo: Iwan Baan). 

Another type of a freeform stucture is the timber gridshell. A timber grid can be created 
in the same way as a steel grid with straight beams that are cut off and connected in 
each node. More commonly, timber gridshells are created by a net of long slender 
interwoven laths that are laid out flat and then bent into its final shape. The final grid 
structure therefore consist out of curved members and create curved spaces in between, 
see Figure 2.18 (left).   
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Figure 2.18 Left: Weald and Downland Gridshell by Buro Happold and Edward 
Cullinan Architects (Photo: Hugh Chevallier). Right: TRADA pavilion 
by Rambøll Computational design (Photo: Rambøll).  

A way to divide a surface into different shaped cells is with a Voronoi diagram. This 
can be created from a specified set of points on the surface, where each point will have 
its own region. Depending on where the surface points are created, the regions will 
differ a lot in shape and size, see Figure 2.19 (right). This may not be a rational way of 
discretizing a surface, but it can however give a good approximation for planar elements 
on a surface since smaller ones can be applied where needed in areas with high 
curvature.  

   

Figure 2.19 Left: Membrane roof over Urban-Loritz-Platz in Vienna by Silja Tillner 
and Schlaich Bergermann Partner. Right: Ontario’s Celebration Zone 
for the Pan Am and Parapan Am Games in Toronto by Hariri Pontarini 
Architects, Thornton Tomasetti and Blackwell.  

Another example of constructing freeform shapes is by using membranes. A special 
type of membrane structure is an inflatable one where a surface is created out of a 
cutting pattern and structurally held up by “air beams”, see Figure 2.19 (right).  
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3 Design and Optimization 
Rationalization of the design process can be just as important as rationalization of the 
design. Depending on how a design problem is approached, the result can differ. The 
following chapter introduces an overview of how the design process can be conducted. 
It also explains two different design approaches form a theoretical and professional 
application point of view. The chapter also contains optimization theory and 
explanation of different computer programs and how they can be used in a parametric 
design process.   

3.1 Design approach 
Two different ways of approaching a design task is the top-down and the bottom-up 
approach. The top-down approach is sometimes called stepwise or decomposition 
approach. It starts with the overall picture in mind which is broken down into sub-
systems/more refined levels. The top-down approach is said to have been followed at 
École des Beaux-Arts school of design, where it was taught that an architecture design 
should begin with an overall plan and processed by stepwise refinement (Mitchell, et 
al., 1988). This approach allows for bigger teams to work on different parts of the 
project, which are easy to combine.  

 

Figure 3.1 Stepwise refinement of a schematic plan into a detailed floor plan 
redrawn from sketches made by J.N-L. Durand (Mitchell, et al., 1988).  

Bottom-up however, is an approach where the system is put together by individual 
elements that are linked together until a complete top-level system is formed. An easy 
understandable example of the bottom-up approach is a Lego-design where many 
different Lego parts are linked together to form a global shape.  

Figure 3.2 shows how these design approaches can be described for a freeform surface 
design task. A good way of designing could be to combine the two approaches. A 
strength of the top-down approach is that a clear and simple vision can be followed all 
the way through the design, but sometimes the design can be too specified for detailed 
systems to fit in the end. The bottom-up approach can give a great freedom of designing 
the individual parts, but can lead to problems when putting the parts together and 
perhaps create a too complex result. 
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Figure 3.2 Flow-chart of the top-down (left) and bottom-up (right) design 
approach, if the approaches were to be applied in a freeform surface 
discretization design problem.   

3.1.1 Professional application 

Different architectural offices approaches a design in different ways. During an 
investigation of how real offices work with rationalization in early and later stages of 
the design, two architectural companies were visited; Wingårdhs in Gothenburg and 
Foster + Partners in London.  

Wingårdhs is one of the most prominent architectural offices in Sweden and are known 
to work artistically, conceptually and design out of the ordinary. They have designed 
one out of only a few buildings with freeform features in Sweden, the Emporia 
Shopping Centre in Malmö, see Figure 3.4. The building has two freeform glass 
surfaces at the two main entrances, one with the colour amber and one sea blue. The 
intent of the shape is to create an exciting entrance and to draw people into the building. 
The amber coloured surface is created of 473 unique double curved glass panels and 
has a diagonal basket-like supporting structure that can be seen behind the glass 
(Davidsson, 2015).  

 

Figure 3.3 Left: Rendering of the initial design (Image: Wingårdh Arkitektkontor 
AB). Right: Finished building (Photo: Tord-Rikard Söderström). 
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Wingårdhs’ design approach for Emporia can be called a top-down approach. The final 
surface is very similar to the initial design at the competition stage, see Figure 3.3, 
keeping the original vision all through the project. According to Davidsson in an 
interview in October 2015, they were more or less determined from the beginning to 
use double curved glass to reach an almost seamless, flowing surface. Investigations 
were made to see how it could be done with for example flat triangles, but it did not 
meet the architects aesthetic demands. The diagonal division of the surface was made 
by the architects to create a dynamic flow, but the detailing and construction was made 
by the Spanish steel contractor Folcrá. Wingårdhs wanted the glass panels to be as big 
as possible to reach a high transparency, the maximum height was thus set by the 
furnace used by the glass manufacturer Cricursa (Davidsson, 2015).  

 

Figure 3.4 Double curved glass panels of the Emporia Shopping Centre entrance. 
The maximum size of the panels are 2x4,5 m. The glass panels consist 
of 2x8 mm laminated glass. 

During a site visit to Emporia Shopping Centre in October 2015, a few questions 
regarding rationalization arose. The supporting system has curved elements with large 
dimensions to support the glass panels. By allowing the seemingly arbitrary surface to 
change, there might have been greater possibilities to create a more slender structure 
which also would increase the transparency. As can be seen in Figure 3.4 (right), the 
seams between the panels are not flowing continuously in all areas, and appear crooked 
from some angles. Even though surface discretization has not been a major focus for 
the surface itself, rationalization of the building process has. The smaller (sea blue) 
entrance surfaces is created out of the larger (amber) one, making it possible to reuse a 
large amount of the moulds and thereby reducing the cost substantially compared to 
having two completely different surfaces.  
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The next office visited, Foster + Partners is a renowned architectural office working 
with projects all over the world. They have an integrated design process where 
architects and engineers work together from the very beginning of their projects. A 
project of interest in this study is the ongoing New International Airport in Mexico City 
(MCA). Foster + Partners London office was visited in November 2015, to talk about 
the project and their design process.  

The airport is going to be one of the largest in the world where the main structure of the 
building is a smoothly shaped roof, enclosing the terminal with an approximate surface 
area of 500 000 square meter, see Figure 3.5. The roof is flowing continuously to fulfil 
the vision of one experience and to connect all the different parts into one. The roof (in 
the stage it is in now) is defined by a two layer triangulated space frame structure with 
maximum spans of up to 170 m. All vertical loads are being transferred along the 
perimeter and through vertical supports (funnels) that are integral part of the space 
frame geometry. In order to create a structurally efficient design, the shape is intended 
to follow a catenary curve, slightly adjusted in order to accommodate spatial internal 
and external constrains (Olsson, et al., 2015).  

     

Figure 3.5 MCA overview and interior visualization (Image: Foster + Partners). 

MCA is a strongly integrated project, as the design team has been working with the 
engineering office Arup since the start, as well as with in-house engineers at the 
competition stage. Detailing is always an important factor for Foster + Partners, making 
sure to have full control over the design. Their choice of geometry in MCA – a 
triangulated space frame – is motivated by the structural efficiency of bars working 
mainly in tension and compression. They are continuously working with the mesh to 
find the visually most pleasing balance between bar length, profile size and bar position. 
They investigate manufacturing capabilities early on to see what is actually possible to 
accomplish	(Olsson, et al., 2015).  

These constrains combined with an overall design idea, where form finding has been 
performed, is an example of the use of the bottom-up approach together with the top-
down one. The limitations are not seen as a hindrance, but as a framework for a design 
that guaranties a final product that is realizable. This way of working can create a shape 
that is optimized with respect to both global structural efficiency and manufacturing 
possibilities.  

 

 



 

 CHALMERS, Applied Mechanics, Master’s Thesis 2015:94  23 

 

Figure 3.6 MCA interior visualization. The vertical supports (funnels) are 
integrated with the roof (Image: Foster + Partners). 

In this project, Foster + Partners have strived to develop an efficient design. Efficient 
in terms of structure but also in terms of reducing the costs, for example by minimising 
the amount of material used and the complexity of junctions. The amount of different 
types of elements can be a factor, but its significance depends on the contractor’s 
methods. Still, the number of different panels have been limited whenever possible, by 
rationalising parts of the space frame. 

The two architectural offices visited have very different work strategies, much 
depending on what they aim for as a final result, but also the knowledge within the 
office and the working culture and practice in the different countries. At most 
architectural offices in Sweden, engineers are traditionally and usually involved 
relatively late in the design process, whilst at Foster + Partners the aim for all projects 
is to integrate structural and environmental design early on. Many architectural projects 
are becoming more and more complex, where a big task is to combine all different 
aspects.  

The structural engineer Ove Arup, known for working very closely with architects, has 
over the years pointed out this change in roles and the need for the various stakeholders 
to understand each other in order to contribute to the overall design. The expression 
‘Total Design’, stated by Arup is often used to describe this point of view where the 
education becomes an important factor (Grange, 1998). The need for knowledgeable 
architects and engineers in their respective fields are very important, but the ability to 
see and understand the whole picture is equally important. Technically skilled architects 
have the knowledge that can make it possible to relinquish traditional solutions, and 
instead create new innovative designs. This is equally true for engineers with 
architectural skills.  
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3.2 Generative design & optimization  
Parametric or generative design has played an important role for modern architecture, 
giving the possibility for the designer to explore multiple design options in a fast way. 
According to Lars Hesselgren, one of the founding directors of SmartGeometry Group, 
generative design is not about designing a building. It is about designing the system 
that designs the building (Hesselgren, 2009). Initial parameters are defined and linked 
together under certain rules to form a system from which a design result is generated 
normally using a computer program. By changing the initial parameters, the design 
result changes accordingly, making generative design a very powerful tool, particularly 
in an initial design phase. Parametric modelling makes it possible to change the design, 
without redrawing everything all over again.  

 

Figure 3.7 Flow chart over a parametric process. 

By implementing structural analysis and optimization into the parametric environment, 
the designer can quickly evaluate the performance of the design. Adjustments to the 
initial parameters can then be made and the results will all change accordingly.    

The central aim of optimization is to search for the best solution, according to an 
objective function, often called fitness function, containing one or several objectives. 
Usually it means targeting one or multiple objectives, subject to certain constraints, and 
minimizing them until they reach optimal solutions. This can be written as:  

			min 															 𝑓", 𝑓#, … , 𝑓./
subject	to						constraints

																																												 3.1  

where nf denotes the number of objective functions, fi:s, considered (Sehlström, 2013).  
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3.2.1 Multi-objective optimization 

In practice, many real design problems have multiple competing objectives, both 
regarding engineering and architectural aspects. These are often in different degrees 
conflicting, resulting in many possible solutions which are not optimal for all functions. 
There are different ways one can solve an optimization problem containing multiple 
objectives. One way is to create one objective function, which contains various 
objectives (cost, total mass, etc.) where weighting can be assigned to one/some of the 
criteria in order to rank them against each other. An example of an optimization 
problem with two objectives, surface area 𝐴>, and volume 𝑉, with weighting 𝑤" and 
𝑤# could be;  

𝑚𝑖𝑛 𝑓 𝐴>, 𝑉 = 	𝑤"𝐴> + 𝑤#𝑉 																																											 3.2  
or 

𝑚𝑖𝑛 𝑓 𝐴>, 𝑉 = 	𝑤"𝐴> 𝑤#𝑉 																																														 3.3  

The problem stated above gives two different results depending on how the objective 
function is written. Minimizing the top expression would minimize both the surface 
area and volume, while minimizing the bottom expression would minimize the area and 
maximize the volume.  

Another alternative for multi-objective optimization is to explore the Pareto front. It is 
a visual approach to assess the trade-offs between the often competing objectives where 
the solutions are ranked by their level of domination rather than their performance in 
the objective functions. 

 

Figure 3.8 Pareto front for a bi-objective optimization problem. 

By plotting the usually large number of evaluated solutions, an outer line can be 
identified which will define a border limit where the design solutions can’t further 
improve. This limit is called the Pareto front which separates the feasible and infeasible 
regions, see Figure 3.8. This border will be a curve for a bi-objective problem, and a 
surface for a tri-objective problem. It is more complicated to visualize the Pareto front 
for a problem with more than three objectives. The points on the Pareto front are all 

OBJECTIVE 1

OB
JE

CT
IV

E 
2

Feasible point

Pareto point

Pareto front

Infeasible point

Utopia point



   

26  CHALMERS, Applied Mechanics, Master’s Thesis 2015:94 

possible optimal combinations of the objectives. For a point to be Pareto optimal, no 
objective can be improved without degrading at least one of the other objective values 
(Filomeno Coelho, et al., 2014).  

There are usually multiple Pareto optimal solutions, making the solving of multi-
objective optimization problems complex and not as straightforward as conventional 
single-objective optimization problems. The decision maker will need to choose from 
all of the multiple possible solutions, making this step very important. An experienced 
decision maker is therefore preferred, and the Pareto front could be used as a way of 
visualizing the different solutions, with the trade-offs between the different criteria.  

3.2.2 Genetic algorithms 

Genetic algorithms (GA) in optimization are a type of evolutionary algorithms inspired 
by the Darwinian law of natural selection. A random population of potential solutions 
is created from which the best individuals are favoured and combined in order to create 
better individuals at the next generation. The optimization process mimics the natural 
one for genetic mutation, reproduction and selection to iteratively improve the 
individuals in each generation, according to the optimization criteria (Richardson, et 
al., 2014). The GA process is stopped when a termination criterion has been met. The 
criterion can be related to the fitness function such that a minimum required fitness 
value has been reached, or it can be related to the number of solutions controlled, 
generations or the calculation time. For each generation, it is tested if the termination 
criterion is met and if it isn’t, one more iteration will be performed.  

 

Figure 3.9 Flow chart of genetic algorithm optimization.  

In multi-objective genetic algorithms (MOGA), diversity becomes an important aspect 
in the selection of individuals. The diversity operator controls how similar the design 
is compared to the rest of the population, which if promoted, leads to better exploration 
of the possible design solutions.   
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A risk related to the use of GA’s is that the use of for example mutation and crossover 
can miss out on some possible solutions if the “wrong” parents are chosen. Some 
possible solutions that might result in more optimum solutions might be missed if for 
example the mutation rate is set too high. The calculation time for genetic algorithms 
are also higher compared to other optimization techniques. Genetic algorithms are 
however a good technique to search a large design space of complex problems, where 
the designer is not forced to pick a single optimal design but to choose from a final 
optimized population. Since the algorithm is random-search oriented, it does not rely 
on the initial point of search to be good, and can thus find optimal solutions for any 
starting point. 

3.2.3 Generative design tools 

Rhinoceros® is a computer-aided design tool developed by Robert McNeel & 
Associates. There are many possible plugins one can integrate in Rhino, one example 
is Grasshopper®. It is a visual programming tool that enables a parametric design 
process that immediately shows the progress and result in Rhino. Grasshopper consist 
of a set of components, that each contain several programming commands, that can be 
connected to each other on a canvas. The program enables parametric programming 
without the need of extensive scripting knowledge. Grasshopper is a free software and 
a lot of add-ons have been developed to broaden the use of the parametric modelling.  

One of these add-ons is Octopus, an evolutionary optimization tool that can search for 
many objectives simultaneously. The component is connected to genes that will be 
changed during the optimization process, and objectives that are being minimized. It is 
also possible to connect hard constraints that have to be fulfilled for the solution to be 
kept in the generation. The program creates a Pareto front for each generation that 
enables the user to make trade-offs between the objectives. It enables one to choose 
preferred solutions during a search, promoting solutions similar to this. Octopus also 
allows the user to set generation size, number of generations, elitism (promotes local 
optimization mixing elite solutions), mutation probability, mutation rate, crossover rate 
and to promote genetical diversity.  

The add-on Kangaroo is a physics engine that can simulate and calculate physical 
behaviour to enable interactive simulation, optimization and form finding. A solver 
weights different goals against each other in an iterative process until the nodes in the 
structure reaches equilibrium or a minimum energy threshold. As described in an earlier 
chapter, it can also be used to give a model a pseudo-physical behaviour, for example 
forcing faces on a mesh to be planar. This is useful working with geometries whose 
individual faces have more vertices than three.  

Karamba is an add-on to Grasshopper that enables FE analysis in real time. Since it is 
implemented in Grasshopper it is possible to use together with for example Octopus 
and therefore enabling structural optimization. It is however more simple than many 
other FE-modelling programs, only performing linear analyses, which for the following 
study is considered to be sufficient.  
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3.3 Simple case study – 2D truss  
In order to test the tools described above, a case study of a simple 2D truss has been 
performed. A truss is a suitable example for a first investigation, since the results can 
be predicted beforehand and understood and evaluated thereafter. Starting from the 
truss shown below, different input values will be changed according to selected 
objectives to reach optimal solutions. The optimization objectives will be:  

• Maximize normal force utilization 
• Minimize total mass 
• Minimize deformations 

The truss is loaded with self-weight and point loads at the top nodes. All connections 
are hinged and the bar elements all have the same circular tube cross section.   

 

Figure 3.10 Initial truss.  

Fixed variables:  

𝐿 = 10	𝑚 Total truss span width 

𝑃I = 50	𝑘𝑁 Sum of all point loads, all equal magnitude 

Optimization variables:  

0.50	𝑚 ≤ ℎ ≤ 2.00	𝑚 Truss height 

5.0	𝑐𝑚 ≤ 𝑑 ≤ 15.0	𝑐𝑚 Cross section diameter 

0.20	𝑐𝑚 ≤ 𝑡 ≤ 1.50	𝑐𝑚 Cross section thickness  

2 ≤ 𝑛 ≤ 18 Number of diagonals (even numbers) 
Constrains: 

𝑈S,I =
STU,V
SWU,V

≤ 1 Normal force utilization limit  

𝑙I ≤ 3	𝑚 Bar length limit 
Optimization objectives:  

𝑚𝑎𝑥 [\,V
#.]"

 Maximize sum of utilizations divided by number of bars 

𝑚𝑖𝑛 𝑀I  Minimize total mass 

𝑚𝑖𝑛 𝑚𝑎𝑥 𝛿`  Minimize maximum deformation 

 

P1 P2 P3 P4 P5 P6
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Table 3.1 Variables and objective values for the initial truss. 

 

 

Figure 3.11 Initial normal force utilization.  

After multi-objective optimizing with genetic algorithms trough Octopus, 100 
generations with 100 individuals in each generation are produced. The results have 
different qualities since the objectives are conflicting. Three individuals from 
generation 1, 20 and 100 are shown on the next pages. They are chosen to represent 
three spread out results on the Pareto front from a 3D dimensional graph, see figure 
below. 

 

Figure 3.12  Three dimensional graph over the individuals on the Pareto front in 
generation 100.   

Height 
[m]

Diameter 
[m]

Thickness 
[m]

No. of 
diagonals

Average 
utilization 

[%]

Mass 
[kg] 

Deflection 
[m]

Initial truss 1.00 0.100 0.0100 12 5 753.6 0.003

GEN 1 Height 
[m]

Diameter 
[m]

Thickness 
[m]

No. of 
diagonals

Average 
utilization 

[%]

Mass 
[kg] 

Deflection 
[m]

Ind. 1 0.63 0.062 0.0038 12 29 168.4 0.025

Ind. 2 1.79 0.059 0.0032 8 16 154.0 0.005

Ind. 3 1.85 0.127 0.0038 10 6 450.6 0.002

GEN 20 Height 
[m]

Diameter 
[m]

Thickness 
[m]

No. of 
diagonals

Average 
utilization 

[%]

Mass 
[kg] 

Deflection 
[m]

Ind. 1 0.63 0.063 0.0025 8 47 107.0 0.039

Ind. 2 1.16 0.050 0.0021 10 39 82.0 0.018

Ind. 3 1.89 0.149 0.0029 16 6 528.7 0.002

GEN 100 Height 
[m]

Diameter 
[m]

Thickness 
[m]

No. of 
diagonals

Average 
utilization 

[%]

Mass 
[kg] 

Deflection 
[m]

Ind. 1 0.90 0.050 0.0020 8 53 70.6 0.031

Ind. 2 1.36 0.050 0.0020 8 37 76.4 0.015

Ind. 3 2.00 0.149 0.0026 8 7 341.4 0.002
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Table 3.2 Variables and objective values for the first generation. 

 
 

 

Figure 3.13  Individual 1, 2 and 3 generation 1, normal force utilization. 

Table 3.3 Variables and objective values for generation 20 

 

 

Figure 3.14  Individual 1, 2 and 3 generation 20, normal force utilization. 

  

Height 
[m]

Diameter 
[m]

Thickness 
[m]

No. of 
diagonals

Average 
utilization 

[%]

Mass 
[kg] 

Deflection 
[m]

Initial truss 1.00 0.100 0.0100 12 5 753.6 0.003

GEN 1 Height 
[m]

Diameter 
[m]

Thickness 
[m]

No. of 
diagonals

Average 
utilization 

[%]

Mass 
[kg] 

Deflection 
[m]

Ind. 1 0.63 0.062 0.0038 12 29 168.4 0.025

Ind. 2 1.79 0.059 0.0032 8 16 154.0 0.005

Ind. 3 1.85 0.127 0.0038 10 6 450.6 0.002

GEN 20 Height 
[m]

Diameter 
[m]

Thickness 
[m]

No. of 
diagonals

Average 
utilization 

[%]

Mass 
[kg] 

Deflection 
[m]

Ind. 1 0.63 0.063 0.0025 8 47 107.0 0.039

Ind. 2 1.16 0.050 0.0021 10 39 82.0 0.018

Ind. 3 1.89 0.149 0.0029 16 6 528.7 0.002

GEN 100 Height 
[m]

Diameter 
[m]

Thickness 
[m]

No. of 
diagonals

Average 
utilization 

[%]

Mass 
[kg] 

Deflection 
[m]

Ind. 1 0.90 0.050 0.0020 8 53 70.6 0.031

Ind. 2 1.36 0.050 0.0020 8 37 76.4 0.015

Ind. 3 2.00 0.149 0.0026 8 7 341.4 0.002

Height 
[m]

Diameter 
[m]

Thickness 
[m]

No. of 
diagonals

Average 
utilization 

[%]

Mass 
[kg] 

Deflection 
[m]

Initial truss 1.00 0.100 0.0100 12 5 753.6 0.003

GEN 1 Height 
[m]

Diameter 
[m]

Thickness 
[m]

No. of 
diagonals

Average 
utilization 

[%]

Mass 
[kg] 

Deflection 
[m]

Ind. 1 0.63 0.062 0.0038 12 29 168.4 0.025

Ind. 2 1.79 0.059 0.0032 8 16 154.0 0.005

Ind. 3 1.85 0.127 0.0038 10 6 450.6 0.002

GEN 20 Height 
[m]

Diameter 
[m]

Thickness 
[m]

No. of 
diagonals

Average 
utilization 

[%]

Mass 
[kg] 

Deflection 
[m]

Ind. 1 0.63 0.063 0.0025 8 47 107.0 0.039

Ind. 2 1.16 0.050 0.0021 10 39 82.0 0.018

Ind. 3 1.89 0.149 0.0029 16 6 528.7 0.002

GEN 100 Height 
[m]

Diameter 
[m]

Thickness 
[m]

No. of 
diagonals

Average 
utilization 

[%]

Mass 
[kg] 

Deflection 
[m]

Ind. 1 0.90 0.050 0.0020 8 53 70.6 0.031

Ind. 2 1.36 0.050 0.0020 8 37 76.4 0.015

Ind. 3 2.00 0.149 0.0026 8 7 341.4 0.002
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Table 3.4 Variables and objective values for generation 100 

 

 

Figure 3.15 Individual 1, 2 and 3 generation 100, normal force utilization. 

The result shows that the three individuals are well improved from the 1st to the 100th 
generation. The two first individuals have roughly the same mass, while the deflection 
and utilization is considerable different. The cross section diameter as well as the 
thickness is set to the lower limit value, making it clear that these values might need a 
second consideration. The third has very small deflections, but very low utilization and 
large mass. 

 

 
  

Height 
[m]

Diameter 
[m]

Thickness 
[m]

No. of 
diagonals

Average 
utilization 

[%]

Mass 
[kg] 

Deflection 
[m]

Initial truss 1.00 0.100 0.0100 12 5 753.6 0.003

GEN 1 Height 
[m]

Diameter 
[m]

Thickness 
[m]

No. of 
diagonals

Average 
utilization 

[%]

Mass 
[kg] 

Deflection 
[m]

Ind. 1 0.63 0.062 0.0038 12 29 168.4 0.025

Ind. 2 1.79 0.059 0.0032 8 16 154.0 0.005

Ind. 3 1.85 0.127 0.0038 10 6 450.6 0.002

GEN 20 Height 
[m]

Diameter 
[m]

Thickness 
[m]

No. of 
diagonals

Average 
utilization 

[%]

Mass 
[kg] 

Deflection 
[m]

Ind. 1 0.63 0.063 0.0025 8 47 107.0 0.039

Ind. 2 1.16 0.050 0.0021 10 39 82.0 0.018

Ind. 3 1.89 0.149 0.0029 16 6 528.7 0.002

GEN 100 Height 
[m]

Diameter 
[m]

Thickness 
[m]

No. of 
diagonals

Average 
utilization 

[%]

Mass 
[kg] 

Deflection 
[m]

Ind. 1 0.90 0.050 0.0020 8 53 70.6 0.031

Ind. 2 1.36 0.050 0.0020 8 37 76.4 0.015

Ind. 3 2.00 0.149 0.0026 8 7 341.4 0.002
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4 Design project – implementation of theory 
In this chapter, a study project will be designed in order to test and develop the method 
and theory described in previous chapters. The design project aims to follow the design 
process described in the figure below. The evaluation of the results can be just as 
important as the implementation of the design theory.  

 

Figure 4.1 The design process chosen for this study project.  

  

INITIAL DESIGN
Sketches, volume studies

BRIEF
Context, demands

DISCRETIZATION METHOD
Study and selection of methods

OPTIMIZATION CRITERIA
Selection of optimization critera

OPTIMIZATION
Multi-objective optimization 

according to criteria

EVALUATION OF RESULTS

FURTHER RATIONALIZATION

Satisfying results

Not satisfying 
results

Next method
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4.1 Brief  
The design brief is to create a canopy, covering the courtyard of the civil engineering 
building at Chalmers University of Technology to provide rain and wind protection. It 
should cover parts of the courtyard, and still allow for sun light to reach into the 
surrounding buildings. The courtyard should have exterior climate, but the structure 
itself should be water tight. The façade facing south should be kept untouched to allow 
for a sunny seating area. 

The structure is assumed to have simply supported conditions along the boundary of 
the courtyard, since there are columns and possibly floor slabs to connect to. The 
supports along the boundary is assumed to have fixed translational (x,y,z) and free 
rotational degrees of freedom. 

 
 

 

Figure 4.2 Existing courtyard at the civil engineering building, Chalmers 
University of Technology.  

No dynamic or cyclic loads have been considered (vibrations, creep, shrinkage, etc.), 
neither has the detailing in connection between covering panels and grid structure. 
Geotechnical and foundation aspects have not been considered which can be an 
important factor for canopies in particular, where wind can cause the structure to lift. 
Therefore, the foundation and supports have to be able to withstand uplifting forces due 
to wind. The structural members is considered as round hollow steel cross sections. 
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4.2 Initial design surface 
A set of initial designs were sketched and 3d-modelled where the aim was to create 
initial designs that differed from each other. Structural efficiency is considered to be 
one important factor for the final design. All initial designs have a curvature in order to 
more efficiently carry the loads.  

 

Figure 4.3 Initial designs of the roof covering the whole or parts of the yard.  

The initial designs differ in covered area, curvature, structural boundary conditions and 
all-over shape. Design 1 and 2 are both covering the entire courtyard, and therefore 
neglected since they block the possibility for outdoor seating in the sun.  

The remaining designs are similar, but design 8 in Figure 4.3 is chosen to be further 
developed. It creates a large covered area, where it is possible to pass the courtyard 
fully protected from rain (doors in each corner). It still leaves a big part uncovered in 
the area which will have most of the direct sun around noon.  

The chosen shape will further be discretized and optimized according to certain criteria 
such as architectural aspects, structural efficiency and performance. 

1 2 3

4 5 6

7 8 9
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4.2.1           Loads 

Loads acting on the structure has been calculated according to Eurocode 2009, see 
Appendix A for complete assumptions and calculations. Some geometric 
simplifications have been assumed, and the structure has been studied along the middle 
section shown in the sketches below. 

 

Figure 4.4 Geometric simplifications of the structure, showing the mid section (left) 
and top view (right).  It is divided into three loading zones according to 
the slope of the canopy.  

The calculated result is presented in each sub-chapter below.  

4.2.1.1 Self-weight 

The self-weight for the structural steel (S235) is calculated within the FE-program 
Karamba for every design as the geometry and dimensions change. The resulting load 
from the covering material is calculated in Appendix A. The total self-weight of the 
structure is calculated by: 

𝐺bcb = 	𝐺>bdde + 𝐺feg>>																																														 4.1  

where  

𝐺>bdde = 𝑔𝜌>bdde𝑉>bdde	     Calculated within Karamba (𝜌>bdde = 8	000	𝑘𝑔/𝑚l) 
𝐺feg>> = 𝑔𝜌feg>>𝑡feg>>𝐴feg>>    6 mm glass panes (𝜌feg>> = 2	500	𝑘𝑔/𝑚l) 

4.2.1.2 Wind load 

The wind loads can be complex to calculate, especially for curved freeform surfaces. 
Simplified calculations with four load cases due to wind have been performed see 
Appendix A, but a wind tunnel test or computational study might have been required.  

4.2.1.3 Snow load 

The snow load is calculated according to load cases for a multi-span roof with a vertical 
wall on one side, see Appendix A. As for the wind, the shape of the canopy is simplified.  

  

α  = 35° 1

α  = 20°2 α2

5.0 m 5.2 m 5.6 m 

A3

A2

A1
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4.3 Application of surface discretization methods 
Different meshes are applied to the surface to study suitable methods for sub-dividing 
the surface into smaller elements. For this surface, triangular and quadrilateral meshes 
are chosen to be studied more closely. These still provide large amount of solutions, 
from which only some have been developed. The figure below shows four different 
ways to triangulate the surface. All four meshes have planar faces since all faces are 
triangles. There are some advantages and drawbacks for the different meshes. 

 

Figure 4.5 Meshes with triangular faces.   

Mesh b has a visual flow and may have some structural advantages since it has sets of 
bars going directly between the supporting boundaries and the ground. However, the 
space control is poor, meaning that the elements differ a lot in size. A way to avoid this 
could be to widen the semi-circle at the ground or to remove bars where the mesh is 
dense. Another way to achieve good spacing is to let the number of triangles increase 
as the shape widens, as in mesh c.  

The Delaunay mesh, d, can seem irrational since it is created out of a random set of 
points, however, if these points are free to move during an optimization process, the 
structural members can be placed in optimal spots. This can on the other hand be hard 
to control, and it is also possible that a good optimal solution cannot be found. Both 
mesh a and mesh d, and somewhat c, have difficulties following the curvature at the 
semi-circled support, since the meshes have evenly spread out triangles.  

a) Evenly spread out triangulated mesh that
    is structurally dependent on primary
    beams on the curved open sides

b) Fan-like triangulated mesh where a 
    primary structure is going from the sides
    down to the semi-circled supporing area

c) Triangulated mesh where the number of 
    triangles is increased as the shape widens

d) Triangulated delaunay mesh created from
    randomly spread out points 
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Figure 4.6 Meshes with quadrilateral faces.  

Four different quadrilateral meshes are shown in the figure above. All meshes except 
h), the scaled translational surface, have double curved faces on this initial surface, no 
planarity optimization has been performed at this point. 

Since the overall panel layout and shapes differ between these meshes, they have 
different potentials to have flat panels. Both mesh e and g have the same drawbacks as 
the triangulated mesh b with poor size control of the faces. Mesh f has the same problem 
as mesh a and d with difficulties following the curvature at the semi-circular support. 
For the scaled translational surface, h, all panels are flat due to its nature of being a 
bottom-up approach (see chapter 2, section 2.3.2.1). However, creating a surface like 
this has several limitations. The method is not always easy to control since the mesh 
layout is directly influencing the overall shape. It is therefore not suitable for all type 
of surfaces, and is thus not studied further.  

After a planarity investigation, the meshes f and g have poor potential to have planar 
faces still keeping the desired shape. Since planarity of faces is seen as an important 
quality, these meshes are not considered in the next phase.  

To limit the number of meshes to the optimization phase, meshes b, c and e are chosen 
to be studied further.  

 
  

e) Fan-like quadrilateral mesh where a 
    primary structure is going from the sides
    down to the semi-circled supporing area

f) Evenly spread out quadrilateral mesh that
   is structurally dependent on primary
   beams on the curved open sides

g) Fan-like diamond mesh h) Scaled translational surface that is
    cut at the curved open sides
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4.4 Selection of optimization criteria 
There are many, often conflicting, objectives to consider when designing a structure. 
These objectives contain both qualitative and quantitative aspects, which sometimes 
can be hard to evaluate. This is where the designer becomes an important factor of 
judging the result. To have a good overview of the optimization results, three different 
objectives are chosen. Other important criteria are set as hard constraints to ensure valid 
solutions.  

In this study, the following have been considered:  

Optimization objectives:  

𝑚𝑖𝑛 𝑚bcb   Minimize total mass of the structure (steel and glass) 

𝑚𝑖𝑛 𝛿	ngo   Minimize deformations under dead load 

𝑚𝑖𝑛 pqrsst
putvqq

  Minimize the steel by glass area (maximize transparency) 

Hard constraints: 

Utilization for axial, bending and shear forces must not exceed 1 for any bar in the 
structure for all load cases. The Grasshopper FE-modelling add-on Karamba calculates 
these utilization rates, as well as combination of forces and moments, for the worst case 
for each structural member.   

𝑈S,I =
𝑁wx,I
𝑁yx,I

≤ 1	,									𝑈z,I =
𝑀wx,I

𝑀yx,I
≤ 1	,									𝑈{,I =

𝑉wx,I
𝑉yx,I

≤ 1 

 
Lengths	of	bars	must	not	exceed 3.5 m for any bar in the structure:  

𝐿I ≤ 3.5	𝑚 

Maximum deflection for any load case should not exceed: 

𝛿`,ngo ≤
𝐿>�g.
150 =

15	000
150 = 100	𝑚𝑚	 

The deviation between vertices and a common plane (planarity) must not exceed:  

𝓅I ≤ 15	𝑚𝑚  
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Optimization variables:  

The following optimization variables and their limits are stated below: 

𝑑   Cross section diameter 50 ≤ 𝑑 ≤ 200	𝑚𝑚 

𝑡   Cross section thickness 2.0 ≤ 𝑡 ≤ 20.0	𝑚𝑚 

𝑛o, 𝑛�   Number of mesh divisions (x- and y-direction) 

𝑆ecgx   Inflation factor (to form find the surface) 
 

4.5 Analysis & optimization of design alternatives 
The three different mesh types are optimized according to the criteria listed above. 
Planarity is only studied for the quadrilateral mesh, since each triangular surface in a 
triangulated grid already has planar faces. The triangulated meshes is seen as a simply 
supported structure, with hinged joints between the bars, while the quadrilateral mesh 
is studied in two different cases, one case with fixed joints and one with hinged joints 
with diagonal bracing (see Figure 2.6). The edge beams at the open sides are considered 
as continuous beams.  

The different meshes are generated for 100 generations with 100 individuals in each 
generation. The figure below shows the Pareto front of the last generation for the 
triangulated diamond grid. Four individuals from different zones on the front are 
displayed. The individual that is chosen closest to the origin, and is equally optimal for 
all three objectives, is considered as a good trade-off solution. One individual from this 
region is chosen for each of the meshes in the following chapters.  

 

 

Figure 4.7  Three dimensional graph of the 100th generation of the triangulated 
diamond grid from Octopus, with four individuals on the Pareto front 
selected from different areas.  
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4.5.1 Triangular diamond grid 

The result of the chosen individual is shown below in perspective and plan view. Since 
the structure has hinged connections, the members work mainly in tension and 
compression. The utilization graphs below shows the worst case for each bar. It shows 
that very few bars are highly utilized, while many of them have a low rate of utilization. 
This is because all bars have the same cross section, and this is something that should 
be studied further in a further rationalization phase. 

 

Figure 4.8  Pareto optimal individual. Utilization of the worst case for each bar.  

      

Figure 4.9 Tension (red) and compression (blue) under dead load.  

The mesh layout enhances the shape as the lines flow between the supporting 
boundaries. The mesh layout and cross section thickness gives a good overall 
transparency of the grid, except for at the bottom part where the steel becomes very 
dense. This leads to big differences in the mesh element sizes, and the small angles 
between bars can lead to complicated nodes.  

Table 4.1 Variables and objective values for the triangular diamond grid.  

 

 
 
  

d [cm] t [cm] δmax [mm] m [kg] As/Ag [%] Umax [%] 

TRI DIAMOND 8.0 1.14 3.7 27 380 26 96

d [cm] t [cm] δmax [mm] m [kg] As/Ag [%] Umax [%] 

TRI BRANCH 6.0 1.96 10.3 24 919 16 98

d [cm] t [cm] δmax [mm] m [kg] As/Ag [%] Umax [%] 

QUAD FIXED 20.0 0.41 1.3 15 451 34 88

d [cm] t [cm] δmax [mm] m [kg] As/Ag [%] Umax [%] 

QUAD DIAG 11.0 1.5 20.9 33 386 29 57

d [cm] t [cm] δmax [mm] m [kg] As/Ag [%] Umax [%] 

TRI DIA 8.0 1.14 3.7 27 380 26 96

TRI BRANCH 6.0 1.96 10.3 24 919 16 98

QUAD FIXED 20.0 0.41 1.3 15 451 34 88

QUAD DIAG 11.0 1.5 20.9 33386 29 57
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4.5.2  Branching grid  

The following result shows the branching grid where the elements have similar sizes,  
unlike the previous triangulated diamond grid. Even though the utilization rate is more 
evenly spread out over the bars than for the previous mesh, the majority of the bars are 
still not very utilized. The bars are in this case hinged, making the members work 
mainly in tension and compression. 

     

Figure 4.10  Pareto optimal individual. Utilization of the worst case for each bar. 

 
 
Figure 4.11 Tension (red) and compression (blue) under dead load. 

Since the number of nodes increase as the shape widens, the size of the panels are more 
equal in size. However, odd valence nodes occur as a result of this. In those nodes, 
seven bars meet instead of six which is the case for the majority of the nodes. This 
results in a grid with disrupted lines, making the grid seem less continuously flowing. 
This is something that would need further refinement in a second design iteration in 
order to reach wanted aesthetic qualities.  

Table 4.2 Variables and objective values for the triangular branched grid.  

 

 
  

d [cm] t [cm] δmax [mm] m [kg] As/Ag [%] Umax [%] 

TRI DIAMOND 8.0 1.14 3.7 27 380 26 96

d [cm] t [cm] δmax [mm] m [kg] As/Ag [%] Umax [%] 

TRI BRANCH 7.0 0.80 9.5 17 857 20 99

d [cm] t [cm] δmax [mm] m [kg] As/Ag [%] Umax [%] 

QUAD FIXED 13.0 1.16 2.3 20 937 20 97

d [cm] t [cm] δmax [mm] m [kg] As/Ag [%] Umax [%] 

QUAD DIAG 11.0 1.50 20.9 33 386 29 57

d [cm] t [cm] δmax [mm] m [kg] As/Ag [%] Umax [%] 

TRI DIAMOND 8.0 1.14 3.7 27 380 26 96

TRI BRANCH 7.0 0.80 9.5 17 857 20 99

QUAD FIXED 13.0 1.16 2.3 20 937 20 97

QUAD DIAG 11.0 1.50 20.9 33 386 29 57
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4.5.3 Rectangular quadrilateral mesh - fixed connections 

This is the only grid where all joints between bars are moment resistant connections. 
Because of this, the bars will not work mainly in tension or compression, but instead 
mainly in bending. The combination of moments and normal stresses are the critical 
case for the worst utilized bars, shown below. The utilization is evenly distributed for 
the rest of the bars, but still low degree of utilization.  

 

Figure 4.12  Pareto optimal individual. Utilization of the worst case for each bar. 

 

Figure 4.13 Bending moment (My) of the overall structure and the most utilized 
section [kNm].  

 

Figure 4.14  Planarity [cm]. Maximal deviation between vertices is 0.43 cm.  

There is a large variation in panel size and shape for this grid. The planarity is sufficient 
according to the deviation tolerance, and satisfying in most areas. The global shape of 
the canopy is relatively low, a result of the planarity demand.  

Table 4.3 Variables and objective values for the quadrilateral mesh with fixed 
joints.  

 

d [cm] t [cm] δmax [mm] m [kg] As/Ag [%] Umax [%] 

TRI DIAMOND 8.0 1.14 3.7 27 380 26 96

d [cm] t [cm] δmax [mm] m [kg] As/Ag [%] Umax [%] 

TRI BRANCH 7.0 0.80 9.5 17 857 20 99

d [cm] t [cm] δmax [mm] m [kg] As/Ag [%] Umax [%] 

QUAD FIXED 13.0 1.05 2.3 20 937 20 97

d [cm] t [cm] δmax [mm] m [kg] As/Ag [%] Umax [%] 

QUAD DIAG 11.0 1.50 20.9 33 386 29 57

d [cm] t [cm] δmax [mm] m [kg] As/Ag [%] Umax [%] 

TRI DIAMOND 8.0 1.14 3.7 27 380 26 96

TRI BRANCH 7.0 0.80 9.5 17 857 20 99

QUAD FIXED 13.0 1.05 2.3 20 937 20 97

QUAD DIAG 11.0 1.50 20.9 33 386 29 57
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4.5.4 Rectangular quadrilateral mesh - diagonal bracing 

This mesh is modelled as the previous one but with hinged connections and pre-stressed 
diagonal bracing (dcable=2.6 cm) in each quadrangular. This way, the structure is still 
stable and all steel bars work mainly in compression. The utilization rate is evenly 
spread out, although no bar is fully utilized. In this case, the governing criterion is the 
deflections. 

      

Figure 4.15  Pareto optimal individual. Utilization of the worst case for each bar. 

 

Figure 4.16 Tension (red) and compression (blue) under dead load.  

 

Figure 4.17  Planarity [cm]. Maximal deviation between vertices is 0.55 cm. 

The mass is higher than for any of the other meshes. Since the structure is pre-stressed, 
the continuous beams at the open sides will receive higher stresses. This is compensated 
for by having a larger cross section at the side beams (d=19 cm, t=3.85 cm). 

Table 4.4 Variables and objective values for the quadrilateral mesh with diagonal 
bracing.  

 

1

0

1

0

d [cm] t [cm] δmax [mm] m [kg] As/Ag [%] Umax [%] 

TRI DIAMOND 8.0 1.14 3.7 27 380 26 96

d [cm] t [cm] δmax [mm] m [kg] As/Ag [%] Umax [%] 

TRI BRANCH 6.0 1.96 10.3 24 919 16 98

d [cm] t [cm] δmax [mm] m [kg] As/Ag [%] Umax [%] 

QUAD FIXED 13.0 1.16 2.3 20 937 20 97

d [cm] t [cm] δmax [mm] m [kg] As/Ag [%] Umax [%] 

QUAD DIAG 11.0 1.50 20.9 33 386 29 57

d [cm] t [cm] δmax [mm] m [kg] As/Ag [%] Umax [%] 

TRI DIA 8.0 1.14 3.7 27 380 26 96

TRI BRANCH 6.0 1.96 10.3 24 919 16 98

QUAD FIXED 13.0 1.16 2.3 20 937 20 97

QUAD DIAG 11.0 1.50 20.9 33 386 29 57
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4.6 Evaluation and comparison of optimized meshes  
The result from the optimization phase shows very promising results for all of the 
meshes. Different qualities and drawbacks are emphasised by each solution which will 
be presented in this chapter.  

For both the quadrilateral grids and particularly the triangulated diamond grid, the steel 
grid is very dense at the grounds support. This could be improved either by enlarging 
the semi-circled support on the ground or by manually removing some of the bars. The 
triangulated grid would become a quadrilateral diamond grid at the bottom where the 
bars are removed. This would result in non-flat panels, which either could be solved by 
removing the glass panels or using curved glass in this particular area.  

 

 

Figure 4.18  Illustrations of how the mesh layout and element size could be 
improved.  

The branching grid is free from this issue since the mesh is defined such that the number 
of intersections between bars is increasing as the shape becomes wider. As mentioned 
earlier, odd valence nodes occur due to this, which disrupts the continuously flowing 
lines. This could be solved by either re-defining the way that more nodes are created, 
or by distributing the nodes in another way. One option could also be to return to the 
Delaunay mesh, where all points are more randomized. Disrupted lines would not be 
experienced as a problem since there are no continuous ones to begin with.  
 
The first three of the previously studied meshes, triangulated diamond, branching and 
quadrilateral mesh with fixed joints, have a very low degree of utilization for most of 
the elements, and a few elements that approach 100% of utilization. This is a due to the 
fact that the same cross section is applied to all of the elements in the grid in this phase. 
The three meshes all have low deflections while the stresses reach the design value. 
However, the quadrilateral mesh with diagonal bracing is different where the large 
deflections are the governing criteria. Therefore, the utilization plot shows a more even 
distribution of the degree of utilization.  

1 2

1 2
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Both of the quadrilateral meshes are very low compared to the initial shape and the 
triangulated ones. This is a result of the planarization process. For the mesh with fixed 
joints, this is not a problem since it is capable of handling the stresses and deflection 
limits due to the overall rigidity of the structure. For the mesh with diagonal bracing 
however, the structure is more flexible and have larger deflections. A more curved 
shape would have helped in this aspect but it would be hard or even impossible to create 
flat panels.  
 
The table below shows a summary of the selected individuals for each mesh. However, 
in order to fully compare the meshes to each other, more than one individual for each 
mesh would need to be presented.  

Table 4.5 Variables and objectives for all meshes.  

 

As can be seen in the table above, the mass of the different grids varies between roughly 
18 and 33 metric tons. This results in large difference in material usage and also how 
the structure affects the boundary supports.  

The mass is somewhat related to the transparency (area of steel by area of glass), which 
varies from 20% to 29% for the studied individuals. It can be seen that the branched 
and the quadrilateral mesh with fixed nodes have the highest transparency. Quadri-
lateral meshes are often known to have good transparency, which is true in this case. It 
should be mentioned, however, that no extra steel has been added to compensate for the 
fixed nodes instead of hinged ones. Normally fixed nodes become a little bit larger and 
heavier than hinged ones since they need to be able to transfer moments.  

The quadrilateral mesh with diagonal bracing has a low transparency, which is a result 
of the large cable dimensions and mesh density needed for the structure to fulfil the 
deflection limit. This could possibly have been solved by studying the pre-tensioning 
and cable quality in more detail.  

d [cm] t [cm] δmax [mm] m [kg] As/Ag [%] Umax [%] 

TRI DIAMOND 8.0 1.14 3.7 27 380 26 96

d [cm] t [cm] δmax [mm] m [kg] As/Ag [%] Umax [%] 

TRI BRANCH 7.0 0.80 9.5 17 857 20 99

d [cm] t [cm] δmax [mm] m [kg] As/Ag [%] Umax [%] 

QUAD FIXED 13.0 1.05 2.3 20 937 20 97

d [cm] t [cm] δmax [mm] m [kg] As/Ag [%] Umax [%] 

QUAD DIAG 11.0 1.50 20.9 33 386 29 57

d [cm] t [cm] δmax [mm] m [kg] As/Ag [%] Umax [%] 

TRI DIAMOND 8.0 1.14 3.7 27 380 26 96

TRI BRANCH 7.0 0.80 9.5 17 857 20 99

QUAD FIXED 13.0 1.05 2.3 20 937 20 97

QUAD DIAG 11.0 1.50 20.9 33 386 29 57
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4.6.1 Further rationalization  

The following shows ways of how the grids can be further rationalized, including cross 
section optimization and reducing the number of unique panels. The triangulated 
diamond grid is presented below, in order to describe these processes. Further 
rationalization of the three other meshes can be seen in Appendix B and C.  

4.6.1.1 Cross section optimization 

To create an efficient structure, with well distributes stresses, the cross sections 
dimensions could vary. In order to reach a uniform structure, only the thickness of the 
cross section tubes are allowed to vary, and the diameter are kept the same. This will 
also reduce the self-weight of the structure, but might create a more complex and 
expensive manufacturing and construction phase. Therefore the number of different 
cross sections should be controlled. The figures below shows the utilization distribution 
and the cross section layout for 1, 2, 5 and 10 different number of cross sections. The 
diameters for all cross sections are the same, 80 mm, but the thickness vary between 
3.0 and 20.0 mm.  

In order to find a new cross section layout, the Karamba-component Optimize Cross 
Section is used. A set of pre-defined cross sections are chosen and distributed over the 
elements, keeping the stresses and deflections below the maximum values.  

To be able to compare the mass of the construction material, the glass mass of 6 326 kg 
is removed from the total mass. 

          

 

Figure 4.19 Initial cross section layout and utilization, msteel=21 054 kg.  

Table 4.6 Division and colour explanation of bars [mm].   

 

Thickness 3.0 4.6 6.3 8.0 9.7 11.4 13.6 15.8 18.0 20.0

Colour

No. of bars (1) - - - - - 596 - - - -

No. of bars (2) - 464 - - - 132 - - - -

No. of bars (5) 350 - 145 - 34 - 23 - - 44

No. of bars (10) 324 92 55 34 13 10 11 12 4 41
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Figure 4.20 Cross section layout for 2 different types of bars and utilization, 
msteel=13 145  kg. 38% mass reduction.  

      

Figure 4.21 Cross section layout for 5 different types of bars and utilization,  
msteel =11 450 kg. 46% mass reduction. 

      

Figure 4.22 Cross section layout for 10 different types of bars and utilization,  
msteel =11 422 kg. 46% mass reduction. 

As can be seen in the figures above, the structure is able to have thinner bars in the 
earlier not fully utilized parts. With more than one different bar size, the mass can be 
reduced significantly. It can be seen that the largest reduction of the mass is between 
one and two cross sections. It can also be seen that there is almost no difference in mass 
between 5 and 10 different cross sections, which concludes that a relatively low number 
of different cross sections, that is higher than one, is a good solution for this structure.  
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In Appendix B, cross section optimization can be seen for the other grid designs, where 
for only a few different thicknesses of the bars, the mass can be considerably reduced 
for the other meshes as well. The triangulated branching grid and the quadrilateral grid 
with fixed joints has the largest difference in mass going from 1 to 5 different cross 
sections. 

4.6.1.2 Reducing number of unique panels 

As has been mentioned earlier in the theory chapter in the report, the number of different 
panels and nodes has an impact of the rationalization of the production phase. 
Depending on if the shape has symmetries or not, copies or mirrored copies of an 
element can be created naturally. In this case the shape is symmetrical along one axis, 
and therefore half of the elements will be mirrored copies of another. An additional way 
to make even more similar elements is to work with tolerances. If several elements are 
almost alike over the mesh, the total number of different elements can be lowered.  

SmartClustering is a Grasshopper add-on created by the SMART Solutions Network at 
Buro Happold Engineering. It is used for reducing the number of unique panels of a 
surface. The algorithm is based on a variation of the K-means algorithm, which sorts 
the panels by their sizes and shape, and groups the ones that are similar to each other. 
The panels in the group is then replaced by a master panel, which represents an average 
of the panels in the group (Sharma, 2015). The component allows for the user to specify 
either the number of wanted unique panels, or the tolerance of the maximum deviation 
from the initial surface.       

 

Figure 4.23  Initial face layout. All 204 panels are unique.  

      

Figure 4.24  168 unique panels. Deviation = 0.01 m. 18% reduction.  
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Figure 4.25  80 unique panels. Deviation = 0.105 m. 61% reduction.  

The component is used for the triangulated diamond mesh above and the other meshes 
can be found in Appendix C. The figures above shows the initial mesh and the mesh 
clustered with 168 respectively 80 unique panels. Due to symmetry, only half of the 
mesh is studied where the different faces are illustrated with different colours. 

 Figure 4.26  Deviation between panels. From the left: Clustering of 204, 168 and 
   80 unique panels.   

With the tolerance of 0.01 m, 168 unique panels can be used instead of 204. This is a 
reduction of approximately 18%. This reduction can seem small, but for a larger 
projects this could become a big cost saving technique.  

In Appendix C, it can be seen that the reduction of number of unique elements is best 
for the meshes with triangular faces. Since the number of panels are much higher to 
begin with, it is also easier to find a higher percentage of similar elements. Since the 
triangular diamond grid has triangles created out of quadrilateral diamonds, where each 
pair are relatively similar, it is promising to cluster this mesh. However, since the 
quadrilateral meshes have fewer panels to begin with, the gains of creating duplicates 
are not as big. 

Depending on the type of panel, the advantages of reducing the number of unique 
elements vary. In this study project, it is not of a very high importance, since the 
production of flat single layer glass panels is simple. If they were more complex, or if 
the panel would for example require a mould (because of e.g. double curvature), great 
gains could be made. Then the mesh should initially have been adapted according to 
this. 
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5 Discussion 
5.1 Conclusion and discussion 
As shown in this thesis, the rationalization process can be very complex and difficult 
with many different aspects to consider. This thesis work is focused on discretizing 
freeform surfaces and therefore, other ways of rationalizing these shapes will not be 
discussed. The design project shows that the discretization methods have different 
advantages and drawbacks depending on the specific case. A large part of the 
rationalization process is understanding and implementing different constrains early on. 
Examples of this could be finding a form that has the potential of being structurally 
optimized, to develop a suitable mesh with rational layout or panels and nodes that can 
be produced in a feasible and affordable way. One other important aspect can be to 
allow the initial shape to change according to the constrains and objectives.  

Even though limitations in terms of constructability etc. are a big part of rationalization, 
they should not be seen only as something negative. They can also be very inspiring. 
However, it is important to always question the limitations and try to challenge and 
develop them. If not, architecture and structural design might never evolve. This is 
where the designer plays an important role of understanding the limitations in order to 
make use of them in the best way.  

If freeform shapes are defined to be smoothly flowing shapes without symmetries and 
structural logic, it could be questioned whether it’s possible to rationalize them at all. 
Is a rationalized freeform surface still a freeform surface? From an economical and 
sustainable point of view, it is our belief that all projects should go through some 
rationalization.   

5.1.1 Design approaches  

When the two design approaches top-down and bottom-up were presented in the report, 
it was mentioned that a combination of the two probably is a good way of reaching a 
good and rational design process and result. With a bottom-up approach, the designer 
can make sure that the project is buildable but it also requires more knowledge from 
the start of the project. Combining this with a top-down approach, the overall design 
will still be kept making sure that the initial intention is not sacrificed too much.  

Form finding is typically categorized as a top-down approach, while pre-determining 
maximum element size or planarity constrains can be examples of bottom-up 
approaches.  When iterating numerous solutions over many generations, in a multi-
objective search with several constraints in a parametric environment, the two 
approaches are combined. The exact shape and mesh layout of the surface is developed 
according to a combination of structural and aesthetical constraints. In a further 
development of the design, more constraints and objectives could be added. As an 
example, the cross sections could be more adapted to what is available on the market.  
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5.1.2 Optimization 

It has been mentioned in the theory of genetic algorithms that they can be very useful 
when searching for solutions to complex problems, but that they do not guarantee that 
an optimal solution is reached. In the study project of the steel and glass canopy, it can 
be seen that the designs are improved over the generations with respect to the 
objectives. The selected solutions of the 100th generations were much better than the 
result of initial manual testing of different variables beforehand, showing that the 
optimization process enhanced the use of parametric design by broad testing and 
development. The resulting Pareto front gives a perspicuous representation of the best 
individuals and makes it easy for the designer to understand the trade-offs between the 
different objectives to make informed decisions.  

A few different combinations of mutation rate, crossover rate and elitism, were studied 
for one of the meshes. The different combinations gave similar results, and therefore 
one of the combinations was used for all of the other meshes. It should also be noted 
that the different rates were the same over all generations. Gains could have been made 
if these were changed in the process. For example, the diversity could be best kept high 
in the beginning to of the search along with the crossover rate, to explore many possible 
solutions, and smaller at the end, when hopefully all local optimum were found. 

A convergence study should have been performed in order to ensure that the 
optimization process had reached a final solution. In the study project, the generations 
was pre-decided to 100, and it was therefore not guaranteed that the optimization had 
reached convergence. In order to control this, it was verified that the difference between 
the previous generations were small.  

Since both the clustering and cross section optimization was applied as a further 
rationalization step after the multi-objective optimization phase, they had no way of 
influencing the resulting shape of the design surface. This was due to the fact that both 
of the components are computational expensive, making the multi-objective 
optimization process very time consuming. However, it would have been interesting to 
study how the resulting surface would have turned out if this was implemented.  

In this study, details of the connections between bars and the attachment of the glass 
panels were not studied. This could have led to more refined constraints in the 
optimization and could have given limitation to the grids.  

As a conclusion, the thesis shows that the use of genetic algorithms and parametric 
design can be very effective for generating many different solutions to complex 
freeform architectural problems. However, the role of the designer is still very 
important when it comes to judging the result and selecting a design based on 
qualitative objectives. 
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5.1.3 Constructability  

One of the focus points of the design project has been to create a freeform surface with 
flat panels. This is due to the increase of cost at the production stage, for how curved 
panels is produced today. Flat panels are much cheaper to manufacture than both single 
and double curved ones. This is especially true when it comes to glass, which was the 
cladding material chosen in the design project. However, digital design and the 
production methods are evolving and with future techniques the difference in cost 
between curved or flat glass might decrease. Nevertheless, depending on the curvature, 
it may not be structurally efficient for the separate elements to be curved, therefore 
there could still be of importance to create flat panels.  

The process of reducing the number of unique elements, shows a quite small reduction 
for the study project with the specified tolerance of 0.01 m, it can be of more importance 
for larger projects. If for example the British museum mentioned above would have had 
a similar result, the number of unique panels could have been reduced from 3312 to 
2716. However, depending on the production technologies, this issue might not be of 
high importance. Techniques such as CNC milling or similar can create many different 
shaped flat panels relatively easy. In the near future additive manufacturing, often 
known as 3d-printing, of optically transparent glass can become available for the 
building industry making curved panels with different shapes cheaper than today.  

In the study project, only the panels have been studied in a further rationalization 
process in order to reduce the number of unique ones. Instead, it might have been of 
interest to study the number of different nodes as they often are more complex and 
expensive to produce. Although, these may be even easier to produce by 3d-printing 
technique in the near future.  

5.2 Future work 
As a continued study, a second iteration could have been performed for all meshes 
according to the comments at the evaluation. The conceptual designs could be 
developed further regarding a more thorough analysis with detail design and checking 
reaction forces against support conditions. More detailed load conditions would also 
have been necessary if the structure were to be built. In a freeform shape study like this, 
other architectural and engineering aspect such as acoustics or heat caused by solar 
radiation could have been taken into consideration as objectives in the optimization 
phase, and the result could have been very different.  

Both the reduction of unique panels and cross section optimization are applied at the 
end of the design process, similar to the top-down approach. Further development of 
this thesis could be to analyse how the result would change if the different objectives 
in the optimization process were applied in another order. The form finding could take 
place outside of the optimization engine Octopus, and instead clustering and/or cross 
section optimization could be included and so on. A rationalization study where the 
intersections between elements were studied more closely would also have been 
interesting, as that is something which has impact on the simplicity in design and 
constructability.  
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URL: https://upload.wikimedia.org/wikipedia/commons/e/e7/Expo58_ 
building _Philips.jpg 
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Right: Sydney Opera House by Bjarte Sorensen. (Own work)  
[GFDL (http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0 
(http://creativecommons.org/licenses/by-sa/3.0/)], via Wikimedia 
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URL: https://upload.wikimedia.org/wikipedia/commons/9/98/SydneyO 
peraHo use.jpg 
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Figure 1.2 Left: Olymipastadion München by btr (Own work) [CC BY-SA 2.5 
(http://creativecommons.org/licenses/by-sa/2.5)], via Wikimedia 
Commons 
URL: https://upload.wikimedia.org/wikipedia/commons/9/92/ 
Olympiastadion_M%C3%BCnchen_%281972%29_01_b.JPG 
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Right: Hippo House, Berlin Zoo. ©Schlaich Bergermann und Partner 
URL: http://www.sbp.de/en/project/house-for-hippopotamus-zoo-berlin/  
[Accessed 4 October 2015] 

Figure 1.3 New Trade Fair in Milan by ©Ramon Prat 
URL: http://www.fuksas.it/en/Projects/New-Milan-Trade-Fair-Milan  
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Figure 2.4 Left: The Great Court. Public domain.  
URL: https://commons.wikimedia.org/wiki/File:The_Great_Court.jpg 
[Accessed 5 October 2015] 

Figure 2.7 Basic principle for planar quadrilateral meshes. Courtesy of Hans 
Schober.  
Schober, H., Glymph, J., Ceccato, C. & Mussel, J., 2002. A Parametric 
Strategy for Freeform Glass Structures Using Quadrilateral Planar 
Facets. Pomona, ACM, pp. 303-321. 

Figure 2.9 Glass Roof of the Museum of Hamburg History by ©Heiner Leiska.  

Figure 2.11 Left: Guggenheim Museum Bilbao. Public domain.  
URL: https://www.flickr.com/photos/boklm/12141898293/in/photolist-
juWpm2-juWmER-yKpGuU-xQGgSu-xQGh1L-yMJ5Uz-yNuwWx/ 
[Accessed 16 October 2015] 
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Right: Guggenheim Museum Bilbao. Public domain.  
URL:  https://www.flickr.com/photos/76743870@N00/21494649716/in/ 
photolist-juWpm2-juWmER-yKpGuU-xQGgSu-xQGh1L-yMJ5Uz-
yNuwWx/ 
[Accessed 16 October 2015] 

Figure 2.13 Left: Hungerburgbahn-Bergstation by Hafelekar (Own work) [CC BY-
SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia 
Commons 
URL: https://upload.wikimedia.org/wikipedia/commons/f/f6/Hungerbur 
gbahn-Bergstation.JPG [Accessed 7 October 2015] 

Right: Graz Kunsthaus vom Schlossberg by Marion Schneider & 
Christoph Aistleitner  [CC BY-SA 2.5 
(http://creativecommons.org/licenses/by-sa/2.5)], via Wikimedia 
Commons 
URL: https://upload.wikimedia.org/wikipedia/commons/9/9b/Graz_ 
Kunsthaus_vom_Schlossberg_20061126.jpg [Accessed 7 October 2015] 

Figure 2.16 Left: New Milan Trade Fair by ©Studio Fuksas  
URL: http://www.fuksas.it/en/Projects/New-Milan-Trade-Fair-Milan 
[Accessed 21 December 2015] 

Figure 2.17 Left: L'Oceanografic by Felipe Gabaldón from Spain (Flickr) [CC BY 
2.0 (http://creativecommons.org/licenses/by/2.0)], via Wikimedia 
Commons  
URL: https://upload.wikimedia.org/wikipedia/commons/d/d4/L%27 
Oceanogra fic_%28Valencia%2C_Spain%29_01.jpg 
[Accessed 18 December 2015] 

 Right: Mapungubwe Interpretation Centre by ©Iwan Baan 

Figure 2.18 Left: Inside the Weald and Downland Gridshell by Hugh Chevallier [CC 
BY-SA 2.0 (http://creativecommons.org/licenses/by-sa/2.0)], via 
Wikimedia Commons.  
URL: https://upload.wikimedia.org/wikipedia/commons/5/59/Inside_ 
the_Weald_and_Downland_Gridshell_-_geograph.org.uk_-_258909.jpg 
[Accessed 16 October 2015] 

Right: Trada Pavillion by ©Rambøll 
URL: http://www.grasshopper3d.com/profiles/blogs/trada-pavilion 
[Accessed 9 December 2015] 

Figure 3.1 Partly redrawn image after sketches made by J.N-L Durand.  
URL: http://cumincad.architexturez.net/system/files/pdf/8403. 
content.pdf [Accessed 10 November 2015] 

Figure 3.3 Left: Rendering of Emporia Shopping Centre by ©Wingårdh 
Arkitektkontor AB.  

 Right: Emporia Shopping Centre by ©Tord-Rikard Söderström.  

Figure 3.5 Mexico City Airport Overview by ©Foster + Partners.  

Figure 3.6 Mexico City Airport Interior by ©Foster + Partners.  
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Appendix A – Calculation of loads 
The following calculations have been performed in order to estimate and simplify the 
loads applied to the canopy in the study project in chapter 4.  The loads have been 
considered in Ultimate Limit State, where the internal stresses and forces (with a load 
combination factor) is compared to the capacity of the structure.  

The glass is assumed to be connected to the steel structure only at the nodes. Therefore 
the distributed loads, in this case the self-weight of the glass, the wind load and the 
snow load, are applied as point loads at the nodes.  

The load combinations are applied according to Eurocode SS-EN 1990, Chapter 
6.4.3.2, expression  6.10:  

𝛾f,�𝐺�,�

	

��"

+ 𝛾�𝑃� + 𝛾�,"𝑄�," + 𝛾�,I𝜓�,I𝑄�,I

	

I�"

																																(𝐴. 1) 

where 

𝛾f,�   Partial safety factor for permanent load     
𝐺�,�   Permanent load        
𝛾�   Partial safety factor for point loads     
𝑃�   Point loads       
𝛾�,"  Partial safety factor for primary variable load    
𝑄�,"   Primary variable load (snow/wind)     
𝛾�,I   Partial safety factor for secondary variable load    
𝜓�,I	   Load combination factor for secondary loads   
𝑄�,I   Secondary variable load (snow/wind)     

	
Geometric simplifications has been assumed, and the structure has been studied along 
the middle section shown in the sketches below.  

 

Figure A.1  Geometric simplifications of the structure. It is divided into three 
loading zones according to the slope of the canopy.  

α  = 35° 1

α  = 20°2 α2
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A.1  Self-weight 

The self-weight of the steel structure, 𝐺>bdde , is found internally in the FE-program 
Karamba, using steel grade S235.  

𝐺>bdde = 𝑔𝜌>bdde𝑉>bdde	     Calculated within Karamba (𝜌>bdde = 8	000	𝑘𝑔/𝑚l) 

A dead load is added to represent the glass layer, as a uniformly distributed load of: 

𝐺feg>> = 	𝑔𝜌feg>>𝑡feg>> = 0.147	𝑘𝑁/𝑚#																																(𝐴. 2) 

assuming  

𝜌feg>> = 2500	𝑘𝑔/𝑚l	  Density of glass 
𝑡feg>> = 6	𝑚𝑚    Thickness of glass panes 

A.2  Wind load 
The wind load acting on the structure is calculated by multiplying the peak velocity 
pressure, which depends on the reference height z, with pressure coefficients which 
depend on the roof angle and wind direction. The structure is assumed to be a kinked 
duo-pitched roof where the worst case (zone G and J) is assumed for the three zones.  

The peak velocity wind pressure is calculated according to Eurocode SS-EN 1991-1-4: 

𝑞� 𝑧d = 𝑐d 𝑧 𝑞� = 0.468	𝑘𝑁/𝑚#																																			(𝐴. 3) 

where 

𝑐d 𝑧 = 1.2  Exposure factor (Terrain category IV) 
𝑞� = 0.39	𝑘𝑁/𝑚# Reference mean velocity pressure (Gothenburg) 

The wind is assumed to act on the structure according to four load cases shown in figure 
below.  
 

 

Figure A.2  Load cases of wind acting on the structure  

The external wind pressure coefficients, 𝑐�d , for duo-pitched roofs are found by 
interpolating the values found in Eurocode SS-EN 1991-1-4, Table 7.4a, presented in 
Table A.1.   

  

1 2 3 4
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Table A.1  External wind pressure coefficients, 𝑐�d 

 

The wind load is calculated according to Eurocode SS-EN 1991-1-4, Chapter 5.2: 

𝑤d = 𝑞� 𝑧d 𝑐�d																																																				(𝐴. 4)  
 

 Table A.2  Wind loads, 𝑤d, on the three zones of the structure [kN/m2] 

 

A.3  Snow load 
The roof is assumed to be a multi-spanned roof with an adjacent vertical wall. The snow 
load is calculated according to Eurocode SS-EN1991-1-3, Chapter 5.1:  

𝑆 = 	𝜇I𝐶d𝐶b𝑆�																																																		(𝐴. 5) 

where 

𝜇I    Shape coefficients  
𝐶d = 1.0  Exposure coefficient  
𝐶b = 1.0  Thermal coefficient 
𝑆� = 1.5	𝑘𝑁/𝑚#  Characteristic value of snow on the ground (Gothenburg) 

Load  case Load  case

 Zone  Zone

A1 0.7 0.7 -0.33 -0.33 A1 0.33 0.33 -0.15 -0.15

A2 0.37 0.37 -0.77 -0.77 A2 0.17 0.17 -0.36 -0.36

A3 -0.83 0.0 0.0 -0.83 A3 -0.39 0.00 0.00 -0.39

1 2 3 41 2 3 4

Load  case Load  case

 Zone  Zone

A1 0.7 0.7 -0.33 -0.33 A1 0.33 0.33 -0.15 -0.15

A2 0.37 0.37 -0.77 -0.77 A2 0.17 0.17 -0.36 -0.36

A3 -0.83 0.0 0.0 -0.83 A3 -0.39 0.00 0.00 -0.39

1 2 3 41 2 3 4
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Figure A.3  Slope and snow load cases for the canopy according to Eurocode SS-
EN 1991-1-3, Chapter 5.3.4).  

According to Eurocode SS-EN 1991-1-3, Table 5.2, the following snow load 
coefficients is used: 

𝜇"(𝛼" = 35°) = �.�(��]�)
l�

= 0.67   since 30° ≤ 𝛼" ≤ 60° 
𝜇" 𝛼# = 20° = 0.8     since 0° ≤ 𝛼# ≤ 30° 
𝜇# 𝛼 = 55° = 1.6     since 30° ≤ 𝛼 = �����

#
≤ 60° 

 

At the vertical wall, snow will gather according to load case (ii). For simplicity in 
calculations, a mean value has been chosen for zone A3 according to the sketch below:  

 

Figure A.4  Simplification of snow load in zone A3. The snow load is divided into two 
zones in A3.  
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A.4   Load combinations  
The load combinations according to equation (A.1) is given below. Load combination 
(LC) 0 is only for the self-weight. LC 1 to 9 have the different wind load cases as the 
primary variable load, where the dead weight and snow load is counted for as 
favourable for the upward wind load cases. LC 10-17 have the different snow load cases 
as the primary variable load. Here, the wind is favourable when having upward 
direction. 

𝐿𝐶	0							1.35 ∙ 𝐺>bdde + 𝐺feg>>  
 
𝐿𝐶	1							1.35 ∙ 𝐺>bdde + 𝐺feg>> + 1.5 ∙ 𝑄 I.x," + 1.5 ∙ 0.6 ∙ 𝑄>.c ,"   (Unfavourable)  
𝐿𝐶	2							1.0 ∙ 𝐺>bdde + 𝐺feg>> + 1.5 ∙ 𝑄 I.x,"  (Favourable) 
𝐿𝐶	3							1.35 ∙ 𝐺>bdde + 𝐺feg>> + 1.5 ∙ 𝑄 I.x,# + 1.5 ∙ 0.6 ∙ 𝑄>.c ,"   (Unfavourable) 
𝐿𝐶	4							1.35 ∙ 𝐺>bdde + 𝐺feg>> + 1.5 ∙ 𝑄 I.x,l + 1.5 ∙ 0.6 ∙ 𝑄>.c ,"   (Unfavourable) 
𝐿𝐶	5							1.0 ∙ 𝐺>bdde + 𝐺feg>> + 1.5 ∙ 𝑄 I.x,l  (Favourable) 
𝐿𝐶	6							1.0 ∙ 𝐺>bdde + 𝐺feg>> + 1.5 ∙ 𝑄 I.x,¡          (Favourable)  
 
𝐿𝐶	7							1.35 ∙ 𝐺>bdde + 𝐺feg>> + 1.5 ∙ 𝑄 I.x," + 1.5 ∙ 0.6 ∙ 𝑄>.c ,#  (Unfavourable) 
𝐿𝐶	8							1.35 ∙ 𝐺>bdde + 𝐺feg>> + 1.5 ∙ 𝑄 I.x,# + 1.5 ∙ 0.6 ∙ 𝑄>.c ,#  (Unfavourable) 
𝐿𝐶	9							1.35 ∙ 𝐺>bdde + 𝐺feg>> + 1.5 ∙ 𝑄 I.x,l + 1.5 ∙ 0.6 ∙ 𝑄>.c ,#  (Unfavourable) 

𝐿𝐶	10					1.35 ∙ 𝐺>bdde + 𝐺feg>> + 1.5 ∙ 𝑄>.c ," + 1.5 ∙ 0.6 ∙ 𝑄 I.x,"  (Unfavourable) 
𝐿𝐶	11					1.35 ∙ 𝐺>bdde + 𝐺feg>> + 1.5 ∙ 𝑄>.c ,"  (Favourable) 
𝐿𝐶	12					1.35 ∙ 𝐺>bdde + 𝐺feg>> + 1.5 ∙ 𝑄>.c ," + 1.5 ∙ 0.6 ∙ 𝑄 I.x,#  (Unfavourable) 
𝐿𝐶	13					1.35 ∙ 𝐺>bdde + 𝐺feg>> + 1.5 ∙ 𝑄>.c ," + 1.5 ∙ 0.6 ∙ 𝑄 I.x,l  (Unfavourable) 
 
𝐿𝐶	14				1.35 ∙ 𝐺>bdde + 𝐺feg>> + 1.5 ∙ 𝑄>.c ,# + 1.5 ∙ 0.6 ∙ 𝑄 I.x,"  (Unfavourable) 
𝐿𝐶	15				1.35 ∙ 𝐺>bdde + 𝐺feg>> + 1.5 ∙ 𝑄>.c ,#  (Favourable) 
𝐿𝐶	16				1.35 ∙ 𝐺>bdde + 𝐺feg>> + 1.5 ∙ 𝑄>.c ,# + 1.5 ∙ 0.6 ∙ 𝑄 I.x,#  (Unfavourable) 
𝐿𝐶	17				1.35 ∙ 𝐺>bdde + 𝐺feg>> + 1.5 ∙ 𝑄>.c ,# + 1.5 ∙ 0.6 ∙ 𝑄 I.x,l  (Unfavourable) 
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Appendix B – Cross section optimization 
The figures below show the result from the process cross section optimization for the 
other meshes.  

 

Figure B.1 Cross section layout and utilization for the triangular branched mesh, 
msteel=4 472 kg (before: msteel=11 870 kg). 62% mass reduction. 

 

Figure B.2 Cross section layout and utilization for the quadrilateral grid with fixed 
joints, msteel=6 427 kg (before: msteel=15 184 kg). 58% mass reduction. 

 

Figure B.3 Cross section layout and utilization for the quadrilateral grid with 
diagonal bracing, msteel=15 570 kg (before: msteel=27 627 kg). 44% mass 
reduction. 
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Table B.1 Division and colour explanation of bars [mm].  

 

Thickness 2.0 4.6 6.3 8.0 9.7 13.6 20.0 (d=190.0)

Colour

No. of bars (Branch) 423 118 15 - 9 3 -

No. of bars (Quad fixed) 86 153 31 7 - 4 -

No. of bars (Quad diagonal) 108 - 179 - 65 - 16
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Appendix C - Reducing number of unique panels 
The figures below show the result from the process of reducing the number of unique 
panels. All grids are assumed to be symmetric, hence the same panels can be laid out 
on the other side of the symmetry line.  

 

Figure C.1 Triangular branched grid, 172 unique panels (before 194). 
Deviation=0.01 m. 11% reduction.  

 

Figure C.2 Quadrilateral grid with fixed joints, 69 unique panels (before 72). 
Deviation=0.01 m.  4% reduction.  

 

Figure C.3 Quadrilateral grid with diagonal bracing, 90 unique panels (before 96). 
Deviation=0.01 m. 6% reduction.  

 


