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Abstract—We consider the use of multiple co-located satellites
to improve the spectral efficiency of broadcast transmissions. In
particular, we assume that two satellites transmit on overlapping
geographical coverage areas, with overlapping frequencies. We
first describe the theoretical framework based on network infor-
mation theory and, in particular, on the theory for multiple access
channels. The application to different scenarios will be then con-
sidered, including the bandlimited additive white Gaussian noise
channel with average power constraint and different models for
the nonlinear satellite channel. The comparison with the adop-
tion of frequency division multiplexing and with the Alamouti
space-time block coding is also provided. The main conclusion
is that a strategy based on overlapped signals is the most con-
venient in the case of no power unbalance, although it requires
the adoption of a multiuser detection strategy at the receiver.

Index Terms—Co-located satellites, frequency division multi-
plexing, multiple access channel, spectral efficiency.

I. INTRODUCTION

IN TODAY’S satellite communication systems, the scarcity
of frequency spectrum and the ever growing demand for

data throughput has increased the need for resource sharing.
In recent years, users of professional broadcast applications
such as content contribution, distribution, and professional data
services have demanded more spectrally efficient solutions.

Satellite service providers often have the availability of
co-located satellites: two (or more) satellites are said to be co-
located when, from a receiver on Earth, they appear to occupy
the same orbital position. Co-location of satellites is typi-
cally used to cover the fully available spectrum by activating
transponders on different satellites that cover non-overlapping
frequencies or as a stand-by in-orbit redundancy, when the
backup satellite is activated in case of failure of the main
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satellite. However, the second satellite can also be exploited
to try to increase the capacity of the communications link.

In this paper, we address a scenario in which the backup
satellite is activated in addition to the main one, to improve the
spectral efficiency (SE) of the overall communication system.
The transmission from the two satellites can be coordinated,
but through simple geometrical considerations it can be eas-
ily shown that even with a coverage area of a few tens of
kilometers and two co-located signals separated in angle by
a fraction of degree, time alignment is not possible. On the
other hand, the considered system model can also represent a
scenario where a single satellite with two transponders oper-
ating at the same frequency is employed and hence the two
transmitted signals can be considered synchronous.

Here, we study the information rate (IR) achievable by a
system where the two satellites transmit on overlapping geo-
graphical coverage areas with overlapping frequencies, and
compare our results with that achievable by the frequency
division multiplexing (FDM) strategy and with that achievable
adopting the well-known Alamouti space-time block code [1].

The two-satellites scenario has been studied in [2] and [3],
where the satellite channel is approximated as a linear additive
white Gaussian noise (AWGN) channel, and the information
theoretic analysis has been carried out under the limiting
assumption of Gaussian inputs. We instead examine three dif-
ferent models for the system: the linear AWGN channel, the
peak-power-limited AWGN channel [4]–[6], and the satellite
channel adopted in the 2nd-generation satellite digital video
broadcasting (DVB-S2) standard [7]. The studied system is
an instance of broadcast channel [8]–[10] with multiple trans-
mitters. However, we are interested in a scenario in which
the same information must be sent to every receiver. This
situation corresponds, for example, to the delivery of a TV
broadcast channel. We show that all these scenarios can be
analyzed by means of network information theory and we
will resort to multiple access channels (MACs) [8], [11] with
proper constraints.

Our analysis reveals that, if we allow multiuser detection,
the strategy based on overlapping signals achieves higher SEs
with respect to that achievable by using FDM. Interestingly,
we show that there are cases in which a single satellite can
outperform both these multiple satellites strategies, but not the
Alamouti scheme.

The remainder of this paper is structured as follows: in
Section II we present a general system model valid for all
cases, and in Section III we briefly review the theory of MACs.
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In Sections IV and V we discuss the achievable rates by FDM
and by the Alamouti space-time code. In Sections VI–VIII we
analyze the three different scenarios and Section IX concludes
the paper.

II. SYSTEM MODEL

Fig. 1 depicts a schematic view of the baseband model we
are considering. A single operator properly sends two separate
data streams to the two satellites. The impact of the feeder
uplink interference is considered negligible in this scenario.
Data streams are linearly modulated signals, expressed as

xi(t) =
∑

k

x(i)
k p(t − kT) i = 1, 2, (1)

where x(i)
k is the k-th symbol transmitted on data stream i,

p(t) is the shaping pulse, and T is the symbol time.
Each satellite then relays the signal, denoted as si(t),1 to

several users scattered in its coverage area. For each user, the
received signal is the sum of the two signals coming from the
satellites, with a possible power unbalance γ 2 due to different
path attenuations (we assume 1/2 ≤ γ ≤ 1). Without loss of
generality, we assume that the attenuated signal is s2(t), oth-
erwise we can exchange the roles of the two satellites. The
received signal is also affected by a complex AWGN process
w(t) with power spectral density N0. As mentioned, time align-
ment between the signals transmitted by the two satellites is
not possible, since if the signals from the two satellites come
perfectly aligned at a given receiver in the area, there will be
other receivers for which a misalignment of a few symbols
is observed. On the other hand, it is straightforward to show
that our information-theoretic analysis does not depend on the
time alignment of the two signals, and we will assume syn-
chronous users to simplify the exposition. Hence, the received
signal has the following expression

y(t) = s1(t) + γ ejφ(t)s2(t) + w(t), (2)

where s1(t) and s2(t) are the signals at the output of the
two satellites, and φ(t) is a possible phase noise process,
caused by the instabilities of the oscillators. We assume that
the phase noise is slowly varying w.r.t. the signals’ baud rate
and perfectly known at the receiver. Signals s1(t) and s2(t)
are transmitted with overlapping frequencies, and the overall
signal has bandwidth W.

Since we are analyzing a broadcast scenario in which dif-
ferent receivers experience different (and unknown) levels of
power unbalance, we impose that the two satellites transmit
with the same rate. This constraint will be better clarified in
the next sections. Channel state information is not available at
the transmitter and no cooperation among the users is allowed.
This is because the target is on broadcasting applications.

A simple alternative strategy to overlapping frequencies,
that allows to avoid interference between the two transmitted
signals, is FDM. The bandwidth W is divided into two equal
subbands assigned to the different satellites. An unequal sub-
band allocation does not make sense since the power unbalance

1It can be si(t) �= xi(t) due to the nonlinear transformation at the satellite
transponder.

Fig. 1. Block diagram of the analyzed system.

is different for different receivers in the coverage area and, in
any case, unknown to the transmitter. In this case, the received
signal has expression

y(t) = s1(t)e
jπ fct + γ e−jπ fct+jφ(t)s2(t) + w(t), (3)

where fc is the frequency separation between the two signals.
Another possible alternative to avoid interference between

the two signals is the use of the Alamouti space-time block
code [1], consisting in the two satellites exchanging the trans-
mitted signals in two consecutive transmissions. Unlike the
two previous strategies, its classical implementation requires
a perfect alignment in time of the signals received from the
two satellites. However, in Appendix A we will describe an
alternative implementation working in the presence of a delay
which can be different for different receivers.

In the following, these transmission strategies will be com-
pared by using the overall SE of the system as a figure of
merit. The SE is defined as

SE = I

TW
[bit/s/Hz],

where I is the maximum mutual information of the channel.
However, since in the scenario of interest the values of T
and W are fixed, without loss of generality we will assume
that TW = 1 and we will refer to the terms IR and SE
interchangeably.

III. MULTIPLE ACCESS CHANNELS

In this section, we review some results on classical
MACs [8]. We consider the transmission of independent sig-
nals from the two satellites.2 We denote by R1 the SE of the
first satellite and by R2 that of the second satellite. At this
point, we make no assumptions on the channel inputs, since a
better characterization of the input distributions is presented in
the next sections. However, independently of the form assumed
by the input distribution, the boundaries of the SE region can
be expressed, for each fixed signal-to-noise ratio (SNR), as [8]

R1 ≤ I(x1; y|x2) � I1

R2 ≤ I(x2; y|x1) � I2

R1 + R2 ≤ I(x1, x2; y) � IJ,

where I(x1; y|x2), I(x2; y|x1) and I(x1, x2; y) represent, respec-
tively, the mutual information between x1 and y conditioned to
x2, that between x2 and y conditioned to x1 and that between

2We will explain later in Section VI why this is the best choice for the
signals transmitted from the two satellites.
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Fig. 2. Achievable rate region in the case I2 < I1. Point D is the maximum
achievable SE from satellite 1 to the receiver when satellite 2 is not sending
information. Point C is the maximum rate at which satellite 2 can transmit as
long as satellite 1 transmits at its maximum rate. The maximum of the sum
of the SEs is obtained on points of the segment B-C, which can be achieved
by joint decoding.

the couple (x1, x2) and y; we have omitted the dependence on t
and we adopt definitions I1, I2, and IJ to simplify the notation.

Fig. 2 is useful to gain a better understanding of the behavior
of SE regions. Point D corresponds to the maximum achiev-
able SE from satellite 1 to the receiver when satellite 2 is
not sending any information. Point C corresponds to the max-
imum rate at which satellite 2 can transmit as long as satellite 1
transmits at its maximum rate.3 The maximum of the sum of
the SEs, however, is obtained on points of the segment B-C;
these points can be achieved by joint decoding of both sig-
nals. It does not make sense to adopt different rates for the
two satellites, since each satellite ignores whether its signal
will be attenuated or not and this attenuation will vary for dif-
ferent receivers. As a consequence, the only boundary point
of the SE region we can achieve is point E, which lies on
the line R1 = R2. We define IJ,p the pragmatic sum of rates
corresponding to point E: it is easy to see, through graphical
considerations, that

IJ,p = min(IJ, 2I2).

Point F is the intersection between the capacity region and
the line R2 = −R1 + I1 and it corresponds to a sum-rate equal
to I1. The position of point E depends on the power and on
the power unbalance. Depending on these two values, E can
be found in different positions: in particular, if E lies on the
left of F, we can notice that IJ,p < I1, hence it is convenient
to use a single satellite with rate I1 rather than activating the
second satellite.

IV. ACHIEVABLE RATES BY FREQUENCY

DIVISION MULTIPLEXING

Since the two signals transmitted by the FDM model (3)
operate on disjoint bandwidths, they are independent and the
IR achievable by this system is equal, in case γ = 1, to that
of a single transmitter with double SNR. We define by IFDM
the achievable rate by FDM, and by IFDM,p that achievable
by FDM under the equal rate constraint. The latter is clearly

3If we exchange the role of the two satellites, the same considerations hold
true for points A and B instead of D and C.

equal to twice the minimum SE of the two subchannels. We
demonstrate that the rate achievable by FDM is always lower
or equal than that achievable with two signals with overlapping
frequencies in the absence of nonlinear distortions; the same
result is valid for the pragmatic rates and can be stated in the
following theorem, whose proof can be found in Appendix B.

Theorem 1: Let us consider the ideal multiple access
channel

y(t) = x1(t) + γ x2(t) + w(t). (4)

The following inequalities hold true

IJ ≥ IFDM (5)

IJ,p ≥ IFDM,p (6)

with equality if and only if x1(t) and x2(t) are Gaussian random
processes and γ 2 = 0 dB.

The theorem, beyond the mathematical proof, has a practical
explanation. The use of a second satellite, besides increasing
the overall transmitted power, makes the distribution of x1(t)+
γ x2(t) closer to a Gaussian distribution (see the Berry-Esséen
theorem [12]). Thus, a sort of shaping gain must be added to
the gain arising from the higher power.

The strategy based on FDM is perfectly equivalent, in
terms of SE, to a strategy based on time-division multiplex-
ing (TDM), in which time is divided into slots of equal length,
and each satellite is allotted a slot during which only that
satellite transmits and the other remains silent. During its slot,
each satellite is allowed to use twice the power. However, on
satellites, due to peak power constraints, it is not possible to
double the power and the satellite amplifiers are not conceived
for power bursts. Hence TDM strategy will not be considered.

V. ACHIEVABLE RATES BY THE ALAMOUTI SCHEME

We now consider the application of the Alamouti
scheme [1]. The two satellites first transmit x1(t) and x2(t)
and then x∗

2(t) and −x∗
1(t), respectively. The rate IA, achiev-

able by the Alamouti scheme, satisfies the following theorem,
proved in Appendix C.

Theorem 2: Let us consider the ideal multiple access
channel

y(t) = x1(t) + γ x2(t) + w(t),

where xi(t), i = 1, 2 are random processes such that −xi(t)
has the same finite-dimensional distributions as xi(t). The
following inequality holds

IJ ≥
(a)

IA ≥
(b)

IFDM

with equality in (a) if and only if x1(t) and x2(t) are indepen-
dent Gaussian random processes with the same variance, and
in (b) if and only if γ 2 = 0 dB.

Theorem 2 shows that the IR achievable by the Alamouti
scheme is between the ones achievable by two overlapping
signals and by FDM. However, it has the interesting feature
that it is not degraded by the equal rates constraint, being
IA,p = IA, where the subscript p stands for pragmatic. This
is due to the fact that both signals are transmitted once by
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the satellite with no attenuation and once by the satellite with
attenuation γ . Hence, while it is always true that IA ≥ IFDM,p,
it can happen that IA ≥ IJ,p.

VI. ADDITIVE WHITE GAUSSIAN NOISE CHANNEL

WITH AVERAGE POWER CONSTRAINT

A first case study, useful to draw some preliminary consid-
erations about the theoretical limits for the described system,
is the classical AWGN channel with average power constraint.
For this case, we have that the two satellites of Fig. 1 have
no effect on the signal, hence the received signal reads

y(t) = x1(t) + γ ejφ(t)x2(t) + w(t).

We express the average power constraint as

E
[
|xi(t)|2

]
≤ P i = 1, 2,

where P is the maximum allowed average power.
For this channel, the capacity is reached with independent

Gaussian inputs, p(t) = sinc(t/T), and TW = 1 [13]. A suffi-
cient statistic is derived by sampling the output of a low pass
filter [13], [14]. Since we are assuming slow-varying phase
noise, the observable is

yk = x(1)
k + γ ejφk x(2)

k + wk,

where φk = φ(kT). The phase noise does not change the statis-
tics, and hence the SE IJ is given by the classical Shannon
capacity, taking into account the total transmitted power, and
reads

IJ = log2

(
1 +

(
1 + γ 2

)P

N

)
,

where N = N0W is the noise power in the considered band-
width. If, instead, we adopt the FDM model (3), the SE can
be computed as the average of the SEs of two subchannels,
each transmitting on half the bandwidth:

IFDM = 1

2
log2

(
1 + 2

P

N

)
+ 1

2
log2

(
1 + 2γ 2 P

N

)
.

When we introduce the equal rate constraint, it is straightfor-
ward to show that we have the following pragmatic SEs

IJ,p = min

(
IJ, 2 log2

(
1 + γ 2 P

N

))

IFDM,p = log2

(
1 + 2γ 2 P

N

)
.

In Fig. 3 we show the SE IJ as a function of P/N, for dif-
ferent values of power unbalance γ , together with the SE that
can be achieved when a single satellite is available (γ → 0). In
this case, the performance of the Alamouti scheme is exactly
the same as IJ, as foreseen by Theorem 2. The figure also
shows IFDM for the same values of γ . We see that FDM is
capacity-achieving when γ = 1 (i.e., IJ = IFDM when γ = 1,
as also clear from the equations and as foreseen by Theorem 1)
but it is suboptimal in the case of power unbalance.

In Fig. 4 we report the pragmatic SEs for the cases of Fig. 3.
For signals with overlapping frequencies, with power unbal-
ance γ 2 �= 0 dB, IJ,p is lower than IJ only in the range of low

Fig. 3. Joint spectral efficiency for different values of γ (AWGN channel
with average power constraint).

Fig. 4. Pragmatic spectral efficiency for different values of γ (AWGN channel
with average power constraint).

P/N values, corresponding to the case 2I2 < IJ. The transition
is indicated by the change of slope in the curve. We also see
that, for high power unbalance, a portion of IJ,p lies below
single-satellite SE.

In case of FDM, we clearly see how the user with the lower
SE limits IFDM,p. The curves coincide for γ = 1, while they
suffer from a significant performance loss w.r.t. IFDM for high
values of power unbalance. If the power unbalance is very
high, FDM performs even worse than a single satellite. Finally
we can notice that, when γ 2 �= 0 dB, IA > IJ,p for low P/N
values.

At the end of this section, we would like to motivate our
choice of transmitting independent signals from the two satel-
lites. Let us consider the opposite scenario where the same
signal is transmitted from the two satellites. The received
signal y(t) can thus be expressed as

y(t) = x(t) + γ ejφ(t)x(t − τ) + w(t)

where x(t) is the transmitted signal, and τ the difference
between the propagation delays of the two satellites. The
received sample at time kT reads

yk = xk + γ ejφk
∑

i

sinc(i − τ/T)xk−i + wk.
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The channel is thus equivalent to a time-varying frequency-
selective channel

yk =
∑

i

hk,ixk−i + wk (7)

with impulse response hk,i = γ ejφk sinc(i− τ/T) for i �= 0 and
hk,0 = 1 + γ ejφk sinc(−τ/T). As already said, φk is assumed
slowly varying with respect to the symbol interval but, due to
the oscillators’ instabilities, it will be assumed with a coher-
ence time shorter than the codeword length. Hence, we are
interested in the ergodic rate obtained by averaging the infor-
mation rate that can be obtained with a given value of φ.
Independently of the value of τ , the average signal power is

E

⎡

⎣
∣∣∣∣∣
∑

i

hk,ixk−i

∣∣∣∣∣

2
⎤

⎦ =
(

1 + γ 2
)

P (8)

and it can be shown that the ergodic rate cannot be higher
than log2(1+(1+γ 2) P

N ), the rate achievable with independent
signals (see Appendix D for a detailed proof).

VII. ADDITIVE WHITE GAUSSIAN NOISE CHANNEL

WITH PEAK POWER CONSTRAINT

As a first step to the theoretical characterization of our
satellite transmission problem, we consider the case a peak-
power-limited signal rather than an average-power-limited one.
The adoption of a peak power constraint comes naturally from
the use of a saturated nonlinear high-power amplifier (HPA) at
the satellite. However, there is no expression for the channel
capacity in this scenario, but only bounds are available [5].
For this reason, we concentrate on the study of a simpli-
fied discrete-time channel, where the peak power constraint
is imposed on information symbols [6].

In this section, we repeat the analysis of Section VI in
a peak-power-limited scenario. We first review the results
in [6] for the case of a single transmitter, then we extend
the reasoning to the case of two transmitters.

A. Analysis for Single Transmitter

If we assume that γ → 0, the model (2) simplifies to the
following discrete-time memoryless channel model

yk = xk + wk, (9)

where yk is the observable, xk = x(1)
k is the k-th symbol

transmitted by satellite 1, and wk is AWGN with variance
N = N0W. The input symbols xk must be subject to a
peak-power constraint, that can be expressed in the form

|xk|2 ≤ P . (10)

Channel (9) under constraint (10) was completely stud-
ied in [6]: the capacity-achieving distribution is discrete
in amplitude and uniform in phase, and has the following
expression

p(r, θ) = p(θ)p(r) = 1

2π

m∑

�=1

q�δ(r − p�), (11)

with xk = rejθ . The distribution is formed of m concentric
circles, each having weight q� and radius p�. The constraints
of the problem, in polar coordinates, become

0 ≤ p� ≤ √
P (12)

p�+1 > p� (13)

0 ≤ q� ≤ 1 (14)
m∑

�=1

q� = 1. (15)

For the distribution (11), we can compute the rate I(xk; yk)

in closed form. First of all, we need to derive an expression
for the probability density functions (PDFs) of the chan-
nel and the observable. Based on the channel model (9),
we have

p(yk|xk) = p(yk|r, θ) = 1

πN
e−|yk−rejθ |2

N . (16)

From (16) we can obtain the PDF p(yk) as

p(yk) =
∫ +∞

r=0

∫ 2π

θ=0
p(yk|r, θ)p(r, θ)drdθ

= 1

πN

1

2π

∫ +∞

r=0

∫ 2π

θ=0
e−|yk|2+|r|2

N e
2

[
ykre−jθ

]

N

·
m∑

�=1

q�δ(r − p�)drdθ

= 1

πN

1

2π

m∑

�=1

q�e−|yk|2+|p�|2
N

·
∫ 2π

θ=0
e

2|yk |p�
N cos(arg(yk)−θ)dθ

= 1

πN

m∑

�=1

q�e−|yk|2+|p�|2
N I0

(
2|yk|p�

N

)
, (17)

where I0(·) is the modified Bessel function of the first kind
and order zero. By combining (16) and (17) we have

I(xk; yk) = E

[
log2

p(yk|xk)

p(yk)

]

= E

⎡

⎢⎢⎣log2
e−|yk−rejθ |2

N

∑m
�=1 q�e−|yk|2+p2

�

N I0

(
2|yk|p�

N

)

⎤

⎥⎥⎦. (18)

The expectation in (18) is taken with respect to the actual ran-
dom variables, i.e., xk (and hence r and θ ) and yk. The latter
is a function of xk and wk, and thus it depends on their statis-
tics. The optimal values of m, q� and p� cannot be found in
closed form, but they are subject to optimization [6]. For this
reason, we evaluated (18) for increasing values of m and, for
each value, we optimized the m radii to achieve the highest IR.
Optimization results for 1 ≤ m ≤ 20 are plotted in Fig. 5. We
see that, as expected, as P/N increases, the optimal distribution
is formed of a higher number of circles. We also point out that
each curve in Fig. 5 is the envelope of all curves with a lower
number of circles, so m must be read as the maximum number
of circles, i.e., one or more circles can have zero probability.
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Fig. 5. Spectral efficiency for single transmitter for distributions composed
of an increasing number of circles m (AWGN channel with peak power
constraint).

Fig. 6. Optimal number of circles of the capacity-achieving distribution for
single transmitter.

The optimal number of circles is shown in Fig. 6 as a func-
tion of P/N. We point out that the results in Fig. 5 differ
from those in [6] because of a different SNR definition. In
fact, in [6], capacity curves are computed as a function of the
SNR per dimension, while our curves are a function of the
total SNR.

B. Analysis for Two Transmitters

Aim of this section is to extend the results of Section VII-A
to the case of two transmitters. For this scenario, we make the
assumption that the optimal distributions of the two inputs
are still in the form (11). This result has been demonstrated
for real inputs [15], but not for complex inputs, as the
case of interest here. For this reason, the computed IR is a
lower bound to the actual channel capacity, whose expres-
sion is not known. Under this assumption, the input amplitude
distributions are

p(ri) =
mi∑

�=1

q(i)
� δ
(

ri − p(i)
�

)
, i = 1, 2

and the received signal is an extension of (9):4

yk = x(1)
k + γ x(2)

k + wk

= r1ejθ1 + γ r2ejθ2 + wk,

with each of the two inputs satisfying constraints (12)–(15).
In this scenario, we can express the joint IR IJ = I(x1, x2; y)
as an extension of (18):

IJ = E

⎡

⎢⎢⎣log2
(2π)2e−

∣∣yk−r1ejθ1−γ r2ejθ2
∣∣2

N
∑m1

�=1

∑m2
i=1 q(1)

� q(2)
i 	�,i

⎤

⎥⎥⎦, (19)

where

	�,i =
∫ 2π

0

∫ 2π

0
e−

∣∣∣yk−p(1)
� ejθ1−γ p(2)

i ejθ2
∣∣∣
2

N dθ1dθ2.

We have computed (19) for different levels of power unbal-
ance between the two received signals; we have verified that
the best performance is achieved when using input distribu-
tions with only one circle (i.e., m1 = m2 = 1 in (19)). The
joint IR is shown in Fig. 7, where the curve labeled 1 satellite
is obtained as the envelope of the curves of Fig. 5. We report
here, for comparison, the IR computed when FDM is used,
assigning half of the bandwidth to each of the satellites. We
see that, unlike the case of average power constraint, FDM
is not the optimal choice, not even in the absence of power
unbalance (when FDM gains exactly 3 dB from the single
satellite). This result comes from a straightforward applica-
tion of Theorem 1. In effect, since the two input distributions
are not Gaussian, the inequality (5) is strict. Fig. 7 also reports
the IR IA, achievable by the Alamouti scheme. As foreseen by
Theorem 2, we see that for γ 2 = 0 dB the rate IA is perfectly
equivalent to IFDM, while for γ 2 = −6 dB FDM performs
worse. For all values of γ we have that IJ > IA, since the
input signals are not Gaussian processes.

We also point out that, unlike what happens when the con-
straint is on the average power, in this case the theoretical
upper bound for IJ, when γ = 1, is 6 dB better than the sin-
gle transmitter case. This is because, if the two signals are
perfectly in phase, the overall signal has double amplitude,
and hence its power is 4P (i.e., 6 dB higher). This situation is
unrealistic (and, in fact, we do not experience a 6 dB gain),
but it is the upper limit for the IR.

As already mentioned, in a broadcast scenario we have the
further constraint that the two transmitters must use the same
rate. When we impose this constraint to the rates shown in
Fig. 7, we obtain the pragmatic rates in Fig. 8. We see again
that, as expected, the rates IJ,p and IFDM,p have suffered a
degradation for γ 2 = −6 dB, and we also notice that, for low
values of P/N and a high power unbalance, the use of a single
satellite may be convenient over the use of two overlapped sig-
nals. However, since the Alamouti scheme is not degraded by
the application of the equal rates constraint, we can conclude
that IA grants the best performance in a certain range of P/N.

4We point out that a phase noise term should be considered in the second
signal. However, since this shift is assumed to be perfectly known at the
receiver and the input distributions are invariant w.r.t. a phase rotation, we do
not add it to our model.
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Fig. 7. Joint spectral efficiency for different values of γ (AWGN channel
with peak power constraint).

Fig. 8. Pragmatic spectral efficiency for different values of γ (AWGN channel
with peak power constraint).

We can better understand the impact of the equal rates
constraint on the joint IR by studying the SE regions of the
channel for different values of P/N, reported in Fig. 9. From
the analysis of these figures, we can conclude that the maxi-
mum sum-rate cannot always be achieved and we can have a
numerical insight of the values of P/N and γ 2 that allow to
improve the rates with respect to a case with only one transmit-
ter. In particular, it is easy to understand that when the power
unbalance is low (γ 2 → 0 dB) the spectral efficiency region
is perfectly symmetric and maximum sum-rate is achieved for
all values of P/N. On the other hand, with high power unbal-
ance (γ 2 = −6 dB) it is clear that maximum sum-rate can be
achieved only at high P/N, whereas when the power is low
the performance of two satellites is worse than that of a single
satellite.

C. Practical Constellations for AWGN Channel With
Peak Power Constraint

We are now interested in evaluating the performance of
practical constellations with a finite number of points on
the AWGN channel with peak power constraint, in order to

Fig. 9. Spectral efficiency regions for γ 2 = −6 dB.

Fig. 10. Single transmitter capacity and spectral efficiency for PSK/APSK
constellations.

find which kind of discrete constellations can be successfully
adopted on the satellite channel.

Starting from the single transmitter case, we see in
Fig. 10 that M-ary phase-shift keying and amplitude-phase-
shift keying (MPSK/MAPSK) constellations, usually adopted
in satellite communications, are practically capacity-achieving.
However, as foreseen also by the theoretical analysis, constel-
lations with multiple circles (such as APSK) are suboptimal
when two transmitters are adopted. This can be seen in Fig. 11,
showing the envelopes of the SEs achievable with quaternary
PSK (QPSK), 8PSK, 16APSK, 32APSK and 64APSK, where
APSK exhibits a loss with respect to the bound IJ for high
P/N values. As suggested by the theoretical results, we see
that the bound is achieved by replacing APSK constellations
with PSKs with the same cardinality, whose envelopes are
again shown in the figure. Fig. 12 reports the same analysis
for the pragmatic rates, and the same conclusions hold. We
point out that FDM and Alamouti schemes perform single-
user operations, so they practically achieve their corresponding
theoretical bounds with classical PSK/APSK constellations.
Finally, we mention that we have attempted an optimization of
the constellations, using the same algorithm described in [16],
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Fig. 11. Joint spectral efficiency for PSK/APSK constellations and different
values of γ .

Fig. 12. Pragmatic spectral efficiency for PSK/APSK constellations and
different values of γ .

imposing that the constellations adopted by the two transmit-
ters are identical. Optimization results suggest that PSKs are
practically optimal in this case.

VIII. SATELLITE CHANNEL

This section investigates the performance of the system
in Fig. 1 when a realistic satellite transponder model is
used. The block diagram of the adopted transponder model
is depicted in Fig. 13. It shows an input multiplexing (IMUX)
filter which removes the adjacent channels, a HPA, and an
output multiplexing (OMUX) filter aimed at reducing the spec-
tral broadening caused by the nonlinear amplifier. The HPA
AM/AM and AM/PM characteristics and the IMUX/OMUX
impulse responses are those provided in [7]. Particularly, the
OMUX filter has -3 dB bandwidth equal to 38 MHz and the
HPA has AM/AM and AM/PM characteristics that are called
“conventional” in [7]. Although the HPA is a nonlinear mem-
oryless device, the overall system has memory due to the
presence of IMUX and OMUX filters.

The transmitted signals at the input of the two satellites are
linearly modulated as in (1), with the same pulse and symbol
interval, and the information symbols x(i)

k are drawn from a

Fig. 13. Block diagram of the considered satellite transponder.

Fig. 14. Transponder bandwidth allocation for FDM.

discrete constellation. The symbol intervals of the two signals
are also assumed to be perfectly aligned. Thus, the received
signal reads as in (2). Process φ(t) models the difference of
phase between oscillators and their phase noise, and is consid-
ered perfectly known at the receiver. We employ the adaptive
receiver proposed in [16] and [17]: a sufficient statistic for
detection is extracted by using oversampling at the output of
a low pass filter [14], and a fractionally-spaced minimum mean
square error (FS-MMSE) equalizer, working at twice the sym-
bol rate, acts as adaptive filter followed by a multiuser detector.
The adaptivity is accomplished by means of the least mean
square or the recursive least square algorithms [18]. The mul-
tiuser detector computes the a posteriori probabilities of the
symbols as

p
(

yk

∣∣∣x(1)
k , x(2)

k

)
∝ exp

⎧
⎪⎨

⎪⎩
−
∣∣∣yk − β

(
x(1)

k + γ x(2)
k ejφk

)∣∣∣
2

N0

⎫
⎪⎬

⎪⎭

where yk is the sample at the output of the FS-MMSE equal-
izer, β is a possible (complex-valued) bias, and φk = φ(kT) is
the phase noise process at the receiver (under the assumption
that φ(t) is slow enough w.r.t. the symbol time).

Similarly to previous sections, we also consider an FDM
scenario: the transponder bandwidth is equally divided into
two subchannels as schematically depicted in Fig. 14.
Then, the FDM receiver performs detection separately with
two FS-MMSE equalizers, followed by a symbol-by-symbol
receiver.

As already done with the other channel models, we adopt
the Alamouti scheme as a third possibility: the Alamouti
precoding is performed on transmitted symbols and, at
the receiver side, after a proper processing, two separate
FS-MMSE equalizers and symbol-by-symbol receivers are
adopted. Unlike the previous scenarios, in the presence of non-
linear distortions and phase noise the Alamouti scheme cannot
perfectly separate the two signals at the receiver. However we
will show in the numerical results that its performance is still
excellent.
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Fig. 15. Spectral efficiency achievable by PSK and APSK constellations for
two satellites and γ 2 = 0 dB.

The complexity of the channel model does not allow (to
the best of our knowledge) to obtain results in a closed form
as in previous sections. Hence, the achievable SEs for this
scenario are computed through the Monte Carlo method pro-
posed in [19] (see also [20] for details on the application to
the satellite channel). We point out that these values are a
lower bound to the actual SE and they are achievable with the
specific adopted receiver. The ensuing SE curves describe the
possible achievable gains in a scenario that is more realistic
than those described in previous sections. All results will be
reported as function of Psat/N, where Psat is the HPA power
at saturation.

A. Numerical Results

We consider transmitted signals with baudrate 37 Mbaud,
adopting the classical constellations of satellite communica-
tions, i.e., QPSK, 8PSK, 16APSK and 32APSK (denoted to
as PSK/APSK schemes). As an alternative to the classical
PSK/APSK, we also consider the use of 16PSK and 32PSK,
as suggested by the theoretical analysis. The adopted shap-
ing pulse p(t) has root raised cosine spectrum with roll-off
α = 0.1. The input back-off is set to 0 dB for QPSK and
8PSK, and to 3 dB for all other modulations.5

Fig. 15 shows the envelope of the pragmatic SE IJ,p for the
considered modulations, with power unbalance γ 2 = 0 dB.
Details on the modulations of the envelope are reported in
Table I. The figure also shows the SE for FDM, for the
Alamouti scheme, and for a single satellite. In case of FDM,
each signal has baudrate 1/T =18.5 Mbaud, and the fre-
quency spacing is equal to fc = (1 + α)/T= 20.35 MHz.6

We can see from the figure that two overlapped signals can
achieve a higher SE than all considered alternatives. Moreover
the envelopes show that 32APSK and 32PSK are not conve-
nient in case of overlapped signals, since they perform worse

5We found these values to be optimal from other activities beyond this
paper. We also point out that the impact of interchannel interference due
to transponders transmitting on adjacent frequencies is negligible for all the
presented scenarios, and hence it will not be considered [21].

6Other values of frequency spacing have been tested, but 20.35 MHz has
been found to be practically optimal for this scenario.

TABLE I
Psat/N RANGE OF THE ENVELOPE IJ,p FOR PSK AND APSK

MODULATIONS AND γ = 1

Fig. 16. Spectral efficiency achievable by PSK/APSK constellations for two
satellites using FDM and γ 2 = 0 dB.

than 16APSK and 16PSK modulations, and PSK modulations
perform better than APSK modulations. It is interesting to
notice that, although the channel model is affected by non-
linear effects, inequality (6) still holds true even in this case.
We also notice that, at high Psat/N, FDM performs worse even
than a single satellite. This loss is due to the interchannel inter-
ference (ICI) from the second FDM signal, which lies in the
same OMUX bandwidth. In fact, due to the spectral regrowth
after the HPA, the two FDM signals are no more orthogonal.
This effect is proved in Fig. 16, that compares the FDM curve
with two SE curves: ideal FDM in the absence of ICI, and
a single satellite with twice the power Psat. Similarly to the
linear channel, ideal FDM can achieve the same SE as the
single satellite with double power, but in the actual case ICI
has an impact on performance.

We can notice from Fig. 15 that gains given by two over-
lapped signals w.r.t. a single satellite can be higher than 3 dB.
The gains over 3 dB are related to the shaping of the overall
signal, obtained by the sum of the satellite outputs. Indeed,
as already mentioned in Section IV, the sum of two signals
has an amplitude distribution that is closer to a Gaussian dis-
tribution. Figs. 17 and 18 show the PDF and the cumulative
distribution function (CDF) of the signal amplitude, properly
normalized by the number of transmitting satellites. We com-
pare the amplitude distributions of a single signal and two
overlapped signals (with γ 2 = 0 dB), when the transmitters
adopt 16PSK, RRC pulses with roll-off α = 0.1, IBO equal
to 3 dB. For comparison purpose we report also the PDF
and CDF of the Gaussian distribution with unit variance. It
is clear from the figures that the sum of two signals is closer
to a Gaussian distribution than the single transmitter. We have
verified that similar considerations hold for 8PSK.
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Fig. 17. Probability density function of the signal amplitude with 16PSK,
RRC α = 0.1, IBO=3 dB, γ 2 = 0 dB.

Fig. 18. Cumulative distribution function of the signal amplitude with 16PSK,
RRC α = 0.1, IBO=3 dB, γ 2 = 0 dB.

Fig. 19. Spectral efficiency achievable by DVB-S2 constellations for two
satellites and γ 2 = −6 dB.

Fig. 19 and Table II report SE curves for the same sce-
nario as in Fig. 15, but with power unbalance equal to 6 dB.
Overlapped signals again outperform FDM for every Psat/N

TABLE II
Psat/N RANGE OF THE ENVELOPE IJ,p FOR PSK AND APSK

MODULATIONS AND γ = 1/2

Fig. 20. Spectral efficiency regions for DVB-S2 constellations for two
satellites and γ 2 = −6 dB.

value but, since the equal rate constraint limits the performance
to that of the lower power signal, the Alamouti scheme and a
single satellite have higher SE at low Psat/N. The behavior of
IJ,p w.r.t. a single satellite can be seen from the SE regions in
Fig. 20, and it can be noticed that it is perfectly in line with
results found for the peak limited AWGN channel, despite a
huge difference between the two models.

IX. CONCLUSION

We investigated the rates achievable by a system using
two co-located satellites. We exploited the second satellite
to improve the spectral efficiency. We studied three mod-
els: AWGN channel with average power constraint, AWGN
channel with peak power constraint, and the DVB-S2 satellite
channel. For all cases we considered signals with overlapping
frequencies, FDM, and the Alamouti scheme. Overlapped sig-
nals resulted to be convenient in all cases w.r.t. FDM, but we
showed that there are cases in which the Alamouti scheme can
outperform both, and that even a single satellite can be conve-
nient over overlapped signals: these cases depend on the power
unbalance and on the received signal-to-noise power ratio.

APPENDIX A
ALAMOUTI SCHEME WITH TIME MISALIGNMENT

In this appendix, we show an alternative implementation of
the Alamouti scheme, for the case when the signals received
by the two satellites have a time misalignment. The precoding
and decoding schemes adopt complex conjugation and time
reversal of the signals. A similar precoding has been pro-
posed in [22] for orthogonal frequency division multiplexing
schemes with two relay nodes.
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Let us consider a channel for which, when x1(t) and x2(t)
of finite duration are transmitted, the received signal is

ya(t) = x1(t) + γ ejφx2(t − τ) + wa(t)

where τ denotes the time misalignment. After the transmission
of these signals, the transmitter sends x∗

2(−t) and −x∗
1(−t).

The received signal, in this case, is

yb(t) = x∗
2(−t) − γ ejφx∗

1(−t + τ) + wb(t).

If the receiver has perfect knowledge of τ , φ, and γ , it can
elaborate the received signals as

ya(t) − γ ejφy∗
b(−t + τ)

√
1 + γ 2

=
√

1 + γ 2x1(t) + w̃a(t)

y∗
b(−t) + γ e−jφya(t + τ)

√
1 + γ 2

=
√

1 + γ 2x2(t) + w̃b(t),

where the Gaussian processes w̃a(t) and w̃b(t) are statistically
equivalent to wa(t) and wb(t). Hence, signals x1(t) and x2(t)
can be independently detected.

In the presence of phase noise (i.e., when the phase φ is not
constant) and nonlinear effects, however, this scheme works
only approximately. The loss due to residual interference will
be negligible if signals x1(t) and x2(t) have a duration shorter
than the phase noise coherence time and nonlinear effects are
limited. In particular, the AM/PM characteristic of the nonlin-
ear amplifier must be such that when conjugating the input,
the output results to be conjugated too.

APPENDIX B
PROOF OF THEOREM 1

We now prove Theorem 1; we first prove a preliminary
result concerning the differential entropies of two continuous
random variables.

Lemma 1: Let x and y be two independent continuous com-
plex random variables, with probability density functions p(x)
and p(y) and differential entropies h(x) and h(y). Then

h(x + y) ≥ 1 + h(x) + h(y)

2
(20)

with equality if and only if x and y are independent Gaussian
random variables with the same variance.

Proof: For the entropy power inequality

2h(x+y) ≥ 2h(x) + 2h(y) (21)

= 21+ h(x)+h(y)
2 cosh

(
h(x) − h(y)

2
ln 2

)

≥ 21+ h(x)+h(y)
2 (22)

where equalities in (21) and (22) hold if and only if x and y are
Gaussian and have same variance. Eq. (20) is finally derived
by taking the logarithm of (22).

We then consider the rates achievable by FDM. Under the
assumption of ideal FDM transmission, a sufficient statis-
tic is obtained by sampling the continuous waveforms. The
observables for the two subchannels are

y1 = x1 + w1 (23)

y2 = γ x2 + w2 (24)

where x1 and x2 are the signal samples, w1 and w2 are white
Gaussian noise processes with power N/2 instead of N, since
FDM works with half the bandwidth w.r.t. the case of a single
transmitter. The mutual information of FDM is the average of
the mutual information for the two channels, i.e.,

IFDM = h(y1) + h(y2)

2
− log2

(
πe

N

2

)
,

and the pragmatic rate is

IFDM,p = h(y2) − log2

(
πe

N

2

)
.

Since the mutual information is a non decreasing function of
the SNR [23], clearly it is IFDM,p ≤ IFDM.

We finally prove Theorem 1.
Proof: We first prove inequalities (5) and

2I2 ≥ IFDM,p. (25)

The samples at the output of channel (4) can be equivalently
expressed as y = y1 + y2 and the mutual information of this
equivalent expression reads IJ = h(y1 + y2) − log2(πeN).
Hence,

IJ − IFDM = h(y1 + y2) − h(y1) + h(y2)

2
− 1

from which, by an application of the Lemma, we derive
inequality (5). The mutual information I2, instead, reads

I2 = h(y|x1) − log2(πeN)

= h(y2 + w1) − log2(πeN)

and

2I2 − IFDM,p = 2h(y2 + w1) − h(y2) − log2(2πeN)

which becomes (25) from Lemma.
Since IJ,p = min(IJ, 2I2) and IFDM ≥ IFDM,p, clearly (6)

follows with equality if and only if x1 and x2 are Gaussian
with γ 2 = 0 dB.

APPENDIX C
PROOF OF THEOREM 2

We now prove Theorem 2.
Proof: Let us start by first proving inequality (a).

The observable for Alamouti precoding is

yA,1 = x1 + γ x2 + wA,1

y∗
A,2 = x2 − γ x1 + wA,2

where wA,1, wA,2 are independent Gaussian random variables
with power N.

Let us evaluate

IJ − IA = h(y) −
h
(

yA,1, y∗
A,2

)

2
(26)

≥ h(y) −
h
(
yA,1

)+ h
(

y∗
A,2

)

2
(27)

= 0 (28)
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where (28) is obtained by observing that h(y) = h(yA,1) =
h(y∗

A,2). Equality in (27) is achieved if and only if yA,1 and
y∗

A,2 are independent. From an application of Lukacs-King the-
orem [24], independence holds if and only if x1 and x2 are
independent Gaussian random variables with the same power.

We now prove inequality (b): the Alamouti observable, after
receiver processing, is

ỹA,i =
√

1 + γ 2xi + w̃A,i i = 1, 2. (29)

and is still a sufficient statistic for detection. The SNR in (29)
is (1+γ 2)/2 ≤ 1 times the one in (23) and (1+γ 2)/2γ 2 ≥ 1
times that in (24). Hence, since the mutual information is a
concave function of the SNR [23], no matter the input dis-
tribution, inequality (b) is straightforward and it holds with
equality if and only if γ 2 = 0 dB.

APPENDIX D
ERGODIC RATES FOR SATELLITES TRANSMITTING

THE SAME SIGNAL

We demonstrate that, when the two satellites transmit the
same signal, the information rate cannot be higher than the
case when transmitting independent signals.

Proof: When the same signal is transmitted, we obtain
a time-varying frequency selective channel as in (7). The
received signal can be expressed, by using a matrix notation, as

y = Hx + w, (30)

where x = [x0, . . . , xn−1]T is the vector of transmitted sym-
bols, w is the noise vector, and H is a matrix with elements
Hk,i = hk,i. In this section we denote the Hermitian operator
by †, and the identity matrix by I.

Matrix H, for the channel we are considering, can be written
in the following form

H = I + γ�H̃,

where matrix � is diagonal with elements �k,k = ejφk and H̃
is Toeplitz with elements H̃k,i = sinc((i − k)T − τ).

We denote the singular value decomposition of H as

H = U�V†,

where U, V† are unitary matrices, and � is a diagonal matrix
with elements �k,k = σk.

If we set x̃ = V†x and ỹ = U†y, channel (30) becomes n
parallel channels in the form

ỹk = σkx̃k + w̃k, (31)

with SNR σ 2
k P/N. Say I(σ 2

k P/N) the mutual information
of (31) as function of the SNR, the information rate is

I(x; y|H)

n
= 1

n

n−1∑

k=0

I

(
σ 2

k
P

N

)

≤ I

(
1

n

n−1∑

i=0

σ 2
k

P

N

)

≤ I

(
1

n
trace

(
H†H

)P

N

)
,

where the last inequality is due to the concavity of the mutual
information as a function of the SNR [23]. The trace can be
rewritten as

trace
(

H†H
)

= trace
(

I + 2γR
(
�H̃

)
+ γ 2H̃†H̃

)
.

Since we are dealing with an ergodic process, it holds that

lim
n→∞

1

n
trace

(
H†H

)
= lim

n→∞
1

n
trace

(
I + γ 2H̃†H̃

)

= 1 + γ 2

where last equality is found through the Szegö Theorem [25].
We finally obtain the following inequality

lim
n→∞

I(x; y|H)

n
≤ I

((
1 + γ 2

)P

N

)
.

The right term is independent of U and V†. Hence, two satel-
lites transmitting the same signal have achievable information
rate lower than the one achievable with the Alamouti scheme
and same input distribution.
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