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Abstract: This paper proposes a simple constrained proportional controller with gain schedul-
ing for simultaneous thermal and SOC balancing of a multilevel converter based modular battery.
The proposed balancing controller is devised by investigating structural properties of constrained
linear quadratic (LQ) model predictive controller (MPC) introduced in our earlier study. This
investigation reveals a particular factorization of time-varying control gain matrices, which leads
to approximation of matrix gains as scalar gains under the assumption of small parametric
variations among battery cells. The gains are scheduled in load current. This special structure
enables the identification of two dominant operational modes of the balancing controller: SOC
balancing mode in low to medium load current range and thermal balancing mode in high
current range. This study also proposes a simple algorithm for control projection on constraint
polytope. The proposed balancing controller is tested in simulations for a modular battery with
four significantly mismatched cells. The performance is comparable to MPC, which uses true
battery parameters. The performance and the simplicity of the controller make it attractive for
real-time implementation in large battery packs.

Keywords: Batteries, cell balancing, SOC balancing, thermal balancing, modular battery,
multilevel converters, gain scheduling, LQ Control, model predictive control.

1. INTRODUCTION

The transportation is going through a critical transition
phase to improve energy efficiency and reduce CO2 emis-
sions. The battery-powered electrified vehicles (xEVs) are
one of the competitive solutions. The main drawback of
xEVs is the high initial cost and relatively short lifetime of
battery pack. The lithium-ion battery system is currently
emerging as dominant technology for future xEVs. How-
ever, like all other battery types, the ageing rate of each
Li-ion cell is greatly affected by various factors like state-
of-charge (SOC) level, depth-of-discharge (DOD), temper-
ature, and c-rate etc as shown by Vetter et al. (2005);
Wang et al. (2011); Bandhauer et al. (2011), and Groot
(2014). In short, the cells in the string being stored or cy-
cled at higher SOC-level, DOD and temperature may age
faster than those at lower SOC, DOD, and temperature,
resulting in nonuniform ageing of cells. The cell imbalance
and nonuniform ageing are also tightly coupled, which
may lead to a vicious cycle resulting in the premature
end of battery life. In addition to nonuniform ageing, the
SOC imbalance also has a detrimental impact on the total
usable capacity of the battery, see review papers by Lu
et al. (2013) and Altaf et al. (2014) for details. Thermal,
SOC, and DOD imbalance is inevitable in battery packs
of xEVs due to variations in cell parameters and operating
conditions, see Dubarry et al. (2010); Mahamud and Park
(2011). Thus, thermal and SOC balancer is very critical
for optimal performance of automotive batteries. The SOC
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balancing can be achieved using various types of passive or
active SOC balancers, see Gallardo-Lozano et al. (2014);
Cao et al. (2008), whereas thermal balancing can poten-
tially be achieved using reciprocating air-flow as proposed
by Mahamud and Park (2011).

The notion of simultaneous thermal and SOC balancing us-
ing a single active balancing device was introduced in our
previous work, see Altaf et al. (2012, 2013); Altaf (2014). A
similar kind of conceptual study has also been carried out
by Barreras et al. (2014). Thermal and SOC balancing are
two tightly coupled and somewhat conflicting objectives,
but it is possible to achieve both simultaneously in aver-
age sense subject to load variations and surplus battery
voltage (Altaf et al. (2014)). In addition, it requires a
special balancing device, like multilevel converter (MLC)
(Malinowski et al. (2010)), which enables bidirectional
power flow from each battery module to achieve non-
uniform load scheduling. The MLC-based modular battery
consists of n cascaded power units (PUs), each containing
a smaller battery unit and a full-bridge dc-dc converter.
The modular battery is reconfigurable and provides a large
redundancy in the voltage synthesis, which gives extra
degree-of-freedom in control.

The modular battery has multiple electro-thermal control
objectives including thermal balancing, SOC balancing,
and terminal voltage control. In Altaf et al. (2015b,a),
a linear quadratic model predictive control (LQ MPC)
scheme is proposed, which achieves the balancing ob-
jectives by using only one-step prediction. The control
scheme is based on the decomposition of controller into



two orthogonal components, one for voltage control and
the other for balancing control. The voltage control prob-
lem is a simple minimum norm problem, whereas the
balancing problem is formulated as a control-constrained
LQ MPC problem, which is solved in two stages. The first
stage issues an optimal balancing control policy (control
gains) by solving a standard time-varying unconstrained
LQ problem. The second stage generates feasible control
actions by doing Euclidean projection of unconstrained LQ
controls on a time-varying control constraint polytope.

This paper is an extension of Altaf et al. (2015a). The main
purpose is to further simplify the balancing controller. The
idea is to approximate the LQ control gains by studying
their structural properties and solve control projection
problem by a simple algorithm. This leads to a simple
proportional controller with load current dependent scalar
gains. The controller can be easily implemented online as it
is based on evaluating simple gain polynomials and doing
straightforward iterations for Euclidean projection instead
of strictly solving an optimization problem. In addition,
this study completely unfolds the internal working and
reveals two dominant operational modes of the balancing
controller, which leads to very simple balancing rules based
on load current magnitude.

Two proposed controllers (one based on the gain polynomi-
als and other based on the balancing rules) are evaluated
and compared to MPC through simulations. We assume
Toyota Prius PHEV, running in EV mode for US06 drive
cycle, as load for an air-cooled modular battery consisting
of four cells. To analyze the effectiveness of the controllers,
we assume significant variations among resistances, capac-
ities, and initial SOCs of cells.

The paper is organized as follows. The modeling of MLC-
based modular battery and the previous LQ MPC scheme
are briefly summarized in sections 2 and 3 respectively.
The proposed proportional controller is presented in sec-
tion 4. The simulation results are discussed in section 5
and conclusions are drawn in section 6.

2. MODULAR BATTERY: MODELING

The electro-thermal model of an air-cooled modular bat-
tery is presented in this section, see Altaf et al. (2012,
2013, 2015a) and Altaf (2014) for modeling details.

2.1 MLC-based Modular Battery: Overview

The (cascaded h-bridge) MLC-based modular battery,
supplying voltage vL(t) ∈ [0, vL,max] ⊆ R+ to a variable
load with current demand iL(t) ∈ [iL,min, iL,max] ⊆ R, is
shown in Figure 1. The MLC consists of n series-connected
PUs, each containing an ideal full-bridge (FB) and an
isolated Celli. This modular structure allows four quadrant
operation in iL–vLi plane, which enables control of bidirec-
tional power flow from each Celli using control variables
ui (duty cycle). In this study, we assume positively con-
strained control i.e. u(t) ∈ [0, 1] (so-called unipolar control
scheme). This scheme does not allow polarity inversion of
any cell in the string, which simply implies that at any
time instant, either all cells are charging (for iL(t) < 0) or
all are discharging (for iL(t) > 0).

The averaged signals on two ports of ideal FBi (see Fig. 1)
are linearly related through duty cycle ui(t) as follows

iBi(t) = iL(t)ui(t), vLi(t) = dvi(t)ui(t), (1)

where iL and vLi are the terminal current and voltage of
PUi respectively, iBi is the current through Celli, and

dvi(t) = voci − iL(t)Rei (2)

is the ON-time terminal voltage of Celli, where voci is
OCV and Rei is internal resistance. The terminal voltage
and power of the modular battery are given by vL(t) =
∑n

i=1 vLi(t) and PL(t) =
∑n

i=1 PLi(t) respectively, where
PLi(t) = vLi(t)iL(t) is the power output from each PUi.
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Fig. 1. MLC-based n-cell modular battery in green box.

2.2 Electro-thermal Model of Modular Battery

The electrical dynamics of cells is studied using the
simple cell model (OCV-R), see Hu et al. (2012). The
thermal dynamics of air-cooled battery is modeled using
lumped capacitance and flow network modeling approach,
see Mahamud and Park (2011); Lin et al. (2013a,b). The
model considers only cell surface temperature with con-
stant coolant temperature and speed at inlet. All internal
parameters of cells are assumed constant. Under these
assumptions, the electro-thermal model of any Celli of the
modular battery for a given load current iL(t) is given by

ξ̇i(t) = −
1

3600Cei

iL(t)ui(t), (3a)

Ṫsi(t) =

i
∑

j=1

atijTsj(t) +
Rei

Csi

i2L(t)ui(t) + wtiTf0, (3b)

vLi(t) = dvi(t)ui(t), (3c)

where temperature, Tsi(t), and SOC, ξi(t), are states,
Tf0 is the constant inlet fluid temperature (measured
disturbance), vLi(t) is the terminal voltage of PUi, and
dvi(t), given by (2), is considered as a time-varying feed-
through gain. The parameter Cei is the charge capacity,
Rei is the resistance, and Csi is the heat capacity of Celli.

The coefficients atij = f(α, β)asi and wt= −
∑i

j=1 atij are
thermal circuit parameters for unidirectional coolant flow,
where f(α, β) is a rational function of αi:s and βi:s and wti

describes influence of Tf0 on Celli, see Altaf et al. (2015a)
for definition. All other parameters are defined in Table 1.

Using (3a)–(3c) as basic building block and treating Tf0 as
a dummy state, the continuous-time (CT) electro-thermal
model of a n-cell modular battery is given by the following
standard linear time-varying (LTV) state-space system

ẋ(t) = Ax(t) +B(iL(t))u(t), (4a)

y(t) = Cx(t) +D(iL(t))u(t). (4b)



Here x(t) =
[

ξT(t) ϑT(t)
]T
∈ R

2n+1 is the state vector,

ξ(t) = [ξ1 · · · ξn]
T
∈ R

n, ϑ(t) =
[

TT
s Tf0

]T
∈ R

n+1 is

an augmented thermal state with Ts(t) = [Ts1 · · · Tsn]
T
∈

R
n, u(t) = [u1 · · · un]

T
∈ R

n is the control input, y(t) =
[

ϑT(t) vL(t)
]T
∈ R

n+2 is the output, and

vL(t) =

n
∑

i=1

vLi =

n
∑

i=1

dvi(t)ui = Dv(t)u(t). (5)

All the state-space matrices are defined in Appendix A.
The discrete-time (DT) state-space model is given by

x(k + 1) = Adx(k) +Bd(iL(k))u(k), (6a)

y(k) = Cx(k) +D(iL(k))u(k), (6b)

where Ad and Bd(k) are obtained using Euler approxima-
tion assuming iL(k) to be constant during each sampling
interval [kh, (k + 1)h] where h is a sampling step size.

Table 1. Definition of Cell/Coolant Parameters

Parameters Expression Units

OCV of Celli voci V

Electrical Resistance Rei Ω
Charge Capacity Cei Ah

Thermal Resistance Rui KW−1

Air Density ρf kgm−3

Air Specific Heat Capacity cpf JK−1kg−1

Air Volumetric Flow Rate V̇f m3s−1

Air Thermal Conductance cf = ρfcpf V̇f WK−1

Temperature Coeff. asi = (CsiRui)
−1 s−1

Thermal Coupling Coeff. αi = Ruicf Unitless
Thermal Coupling Coeff. βi = −1 + αi Unitless

2.3 Control Constraint Set

The unipolar control scheme imposes control constraint
ui(k) ∈ [0, 1] for each Celli. Therefore, the control con-
straint set of n-cell modular battery is given by

U = {u(k)|Huu ≤ hu, ∀k}, (7)

for suitably defined Hu and hu.

3. LQ MPC CONTROL SCHEME: OVERVIEW

In this section, we give an overview of 1-step LQ MPC
scheme proposed by Altaf et al. (2015b,a). The electro-
thermal control objectives include simultaneous thermal
and SOC balancing (balancing problem) as well as termi-
nal voltage control (voltage regulation problem) of mod-
ular battery. The proposed scheme prioritizes the load
voltage regulation (supply = demand). The balancing is
treated as secondary objective, which is achieved by opti-
mally using any redundancy available in the modular bat-
tery after meeting power demand. The control strategy is
mainly developed based on the decomposition of controller
into two orthogonal components as follows

u(k) = uv(k) + ub(k) ∈ U , (8)

where control uv(k) ∈
(

U ∩ N (Dv(k))
⊥
)

is for voltage
control and ub(k) ∈ Ub(k) ⊆ N (Dv(k)) is for balancing
control where Ub(k) (so-called truncated null-space) is a
balancing control constraint polytope (defined in (B.3)),
N (Dv(k)) is the nullspace of Dv(k) and N (Dv(k))

⊥ is the

orthogonal complement of N (Dv(k)), see Appendix B for
definitions. The proposed orthogonal decomposition guar-
antees the voltage constraint while giving the possibility
of simultaneous thermal and SOC balancing. The block
diagram of control scheme is shown in Figure 2(a). The
voltage and balancing controllers are summarized below,
see Altaf et al. (2015a) for details.

3.1 Voltage Controller: Minimum Norm Problem

The feedforward voltage control uv(k), for a known load
demand (iL(k), vLd(k)), is given by (Altaf et al. (2015a,b))

uv(k) = (Dv(k))
† vLd(k), (9)

where (Dv)
† = DT

v

(

DvD
T
v

)−1
is a right pseduo-inverse

of Dv. The solution uv(k) ∈ R(Dv(k)
T) is guaranteed

to be inside U for load demands iL(k) ∈ [iLmin, iLmax]
and vLd(k) ∈ [0, vLdmax] with appropriately defined limits
iLmin, iLmax, and vLdmax < vLmax(k).

3.2 Balancing Controller: LQ MPC Scheme

The main objective is to design ub(k) ∈ Ub(k) ⊆ N (Dv)
such that SOC and temperature errors for each Celli

eξi(k) = ξi(k)− ξ̄(k), (10)

eTsi
(k) = Tsi(k)− T̄s(k), (11)

are minimized without increasing average battery temper-

ature,
∑Nd

k=1 T̄s(k)/Nd, over driving horizon Nd relative

to that of unbalanced battery. Here ξ̄(k) = 1
n
1Tnξ(k) and

T̄s(k) =
1
n
1TnTs(k) are instantaneous mean SOC and mean

temperature of the modular battery and considered as
reference signals here. The objective is achieved by solv-
ing, in the MPC framework, the following 1-step control-
constrained LQ problem at each time step.

minimize
[

‖x(k + 1)‖2
P̄x

+ ‖ρb(k)‖
2
Rρb

]

subject to x(k + 1) = Adx(k) + B̄d(k)ρb(k),

ub(k) = Vn(iL(k))ρb(k) ∈ Ub(k),

(P-I)

for given x(k), iL(k), and uv(k), with optimization vari-
ables x(k + 1) and ρb(k) ∈ R

n−1 (null-space coefficient
vector that is equal to last n− 1 elements of ub(k)) where
Vn(iL(k)), defined in (B.2), is a null-space basis matrix
and B̄d(k) = Bd(iL(k)) · Vn(iL(k)). Note that P̄x is a
block-diagonal matrix that maps battery’s state x(k + 1)
to quadratic costs qEe

2
ξi
(k+1) (SOC deviation penalty) +

qT e
2
Tsi

(k+1) (temperature deviation penalty) + qT̄ T̄
2
s (k+

1) (temperature rise penalty) for all cells. The matrix
Rρb

(k) = γ4V
T
n (iL(k))Rub

Vn(iL(k)), with Rub
as a penalty

on ub, is a penalty weight for ρb(k).

The problem (P-I) is solved in two stages :

(1) Unconstrained LQ Problem: Firstly, we solve uncon-
strained LQ problem to find unconstrained control

ρub (k) = Kρb
(k)x(k), (12)

where superscript ‘u’ stands for ‘unconstrained’ and
the gain Kρb

(k) is given by single Riccati recursion

Kρb
(k) = −[Rρb

(k) + B̄T
d (k)P̄xB̄d(k)]

−1B̄T
d (k)P̄xAd, (13)

Then, using (12), we recover full balancing control

uu
b (k) = Kub

(k)x(k), (14)



where Kub
(k) = Vn(k)Kρb

(k). The total uncon-
strained control is given by

uu(k) = uv(k) + uu
b (k). (15)

Note that the balancing control policy uu
b uses battery

state as feedback and battery load (iL and uv) as
feedforward to achieve balancing objectives.

(2) Constrained Control via Projection: Secondly, we
compute constrained control action by projecting
uu
b (k) on the constraint set Ub(k).

minimize ‖ub(k)− uu
b (k)‖

2

subject to ub(k) ∈ Ub(k)
(P-II)

where the time-varying set Ub(k) is defined in (B.3).

4. RULE-BASED PROPORTIONAL BALANCING
CONTROLLER WITH GAIN-SCHEDULING

From (12), it is straightforward to verify that the complete
balancing control structure has following form

ρub (k) = KE
ρb
(k)ξ(k) +KT

ρb
(k)Ts(k) +Kf

ρb
(k)Tf0. (16)

where KE
ρb
(k) and KT

ρb
(k) are feedback control gain matri-

ces and Kf
ρb
(k) is a feedforward gain vector to compensate

the effect of measured disturbance Tf0. In this section, we
approximate these gains and present simple proportional
balancing controller, see Fig. 2(b). This approximation is
achieved by exploring properties of gain matrices. This
study reveals certain functional properties, control gain
structure, and balancing rules, which we present below.

4.1 Balancing Control Gain Structure

Feedback Gains: Let us define a right invertible matrix

Mρb
:=

(

M1
ρb
−M2

ρb

)

∈ R
n−1×n, (17)

where M1
ρb

= [0n−1 In−1] and M2
ρb

= 1
n
1n−1×n. It maps

states to SOC and temperature error vectors

eξ′(k) = ξ′(k)− ξ̄(k) · 1n−1 = Mρb
ξ(k), (18)

eT ′

s
(k) = T ′

s(k)− T̄s(k) · 1n−1 = Mρb
Ts(k), (19)
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Fig. 2. Block diagram of closed-loop control system of
MLC-based modular battery powering a variable load.

where ξ′(k) ∈ R
n−1 and T ′

s(k) ∈ R
n−1 are SOC and

temperature of cells 2 to n. Since the objective function
in problem (P-I) penalizes state errors, it is reasonable to
assume that the control gains given by (13) should also
act on state errors eξ′(k) and eT ′

s
(k). The empirical study

of (13) for small parametric variations suggests following
approximate factorization of the feedback gain matrices

KE
ρb
(k) ≈ LE

ρb
(k)Mρb

, (20)

KT
ρb
(k) ≈ LT

ρb
(k)Mρb

, (21)

where the invertible matrices LE
ρb
(k) = [ℓeij(k)] and

LT
ρb
(k) = [ℓtij(k)] of order (n−1)×(n−1) are time-varying

control gains for SOC and temperature errors respectively.
These time-varying gains have special structure with fol-
lowing properties (explored using empirical study)

• In case of zero parametric variations (i.e. Cei =
Cej , Rei = Rej), the matrices are purely diagonal,
each with equal diagonal elements.
• In case of parametric variations, the matrices becomes

non-diagonal. However, they are still diagonally domi-
nant, for most practical parametric variations (20% in
capacity and 100% in resistance), with order of mag-
nitude difference between diagonal and non-diagonal
entries i.e. |ℓeii| ≫ |ℓ

e
ij |, |ℓ

t
ii| ≫ |ℓ

t
ij |.

• The diagonal entries are almost equal (ℓeii ≈ ℓejj ,

ℓtii ≈ ℓtjj) for small parametric variations.
• The sign of ℓeii is same as sign of iL, whereas sign of
ℓtii is always negative.
• The magnitudes of ℓejj(k) and ℓtjj(k) have significance

dependence on load current iL(k).

Based on these properties, we have LE
ρb
≈ sgn(iL)k

e
ρb
In−1

and LT
ρb
≈ −ktρb

In−1 where keρb
(≈ |ℓeii|) > 0 and ktρb

(≈
|ℓtii|) > 0 are scalar gains. This leads us to following
approximations of feedback control gains

KE
ρb
(k) ≈ sgn(iL(k))k

e
ρb
(k)Mρb

, (22)

KT
ρb
(k) ≈ −ktρb

(k)Mρb
. (23)

Feedforward Gain: The feedforward gain Kf
ρb
(k), for

small resistance variations, has the following factorization

Kf
ρb
(k) ≈ −ktρb

(k)Mρb
WTd, (24)

with the same scalar gain ktρb
(k) as in (23). Here WTd =

hWT (h is sampling interval and WT = [wti] ∈ R
n) is the

Tf0 influence vector where each wti describes the influence
of Tf0 on each Celli. The matrix Mρb

operates on WTdTf0

and computes ambient temperature error vector

eT ′

f
(k) =

(

W ′
Td −WTd · 1n−1

)

Tf0 = Mρb
WTdTf0, (25)

where T ′
f ∈ R

n−1 and W ′
Td ∈ R

n−1 are ambient temper-

ature and Tf0 influence vector of cells 2 to n, WTd =
1
n
1TnWTd is mean influence of Tf0 on string of cells. The

ambient error for each Celli is then given by

eTfi
=

(

wti −WTd

)

Tf0. (26)

Note that “≈” should be replaced with “=” in (22)–(24)
under zero parametric variations.

From (22), (23), and (24), we get the following (approxi-
mate) balancing control laws for each Celli (i ∈ {2, · · · , n})



uu
bei(k) = ρubei(k) ≈ sgn(iL(k))k

e
ρb
(k)eξi(k), (27)

uu
bti(k) = ρubti(k) ≈ −k

t
ρb
(k)eTsi

(k), (28)

uu
bfi(k) = ρubfi(k) ≈ −k

t
ρb
(k)eTfi

, (29)

where eξi(k), eTsi
(k), and ewti

are defined in (10), (11),
and (26) respectively. Note that (27)–(29) are balancing
control laws for any n − 1 cells (assumed as cells 2 to n
here), whereas the control law of Cell1 is given by

uu
b1(k) = V ′

n(k)ρ
u
b (k) = V ′

n(k)Kρb
(k)x(k), (30)

which can be verified by studying (14) and (12), where
V ′
n(k) is defined in (B.2). The control law (30) shows

dependence of uu
b1 on control of other n − 1 cells. This is

also obvious from the fact that balancing control does not
influence the battery terminal voltage i.e. Dv(k)ub(k) =
vLb(k) = 0. This implies that control of any Celli can be
represented as a linear combination of other controls.

Interpretation of Balancing Rules: Note that the SOC
balancing rule (27) during charging and discharging are
complement of each other. This makes sense because, to
achieve SOC balancing, any Celli with positive (negative)
SOC error must be discharged more (less) during discharg-
ing and must be charged less (more) during charging. The
thermal balancing rule (28) is same during both charging
and discharging because current through a cell, regardless
of its direction, always generate heat (i.e. cannot consume
it). The disturbance compensation rule (29) only cancels
out the ambient temperature errors for each cell. It makes
sense because it is not required to completely cancel out
the disturbance itself for balancing.

Note that if any cell has same error sign for both SOC and
temperature during discharging then it will have conflict-
ing usage requirements to achieve simultaneous thermal
and SOC balancing. In this situation, controller will ben-
efit from short regeneration/charging phase, otherwise it
will have to prioritize one of the two objectives. This trade-
off can be established based on load current magnitude.

4.2 Proportional Control with Gain Scheduling (PwGS):

The control gains keρb
and ktρb

, for a battery with n nominal
cells, are given by the following polynomials

keρb
(k) = a5|iL(k)|

5 + · · ·+ a1|iL(k)|+ a0, (31)

ktρb
(k) = b5|iL(k)|

5 + · · ·+ b1|iL(k)|+ b0, (32)

which are identified by fitting curve to control gain data
in the following fashion:

• Find Kρb
(k) for each iL(k), varying as a ramp func-

tion in the interval [−20c, 20c], by solving Riccati
equation (13), where c stands for c-rate of current.
• Perform factorization (22)–(24). This gives us data

points for gains keρb
and ktρb

as function of iL.
• Fitting curve to these data points, we identify coeffi-

cients of polynomials (31) and (32).

The gains keρb
and ktρb

, for a battery with 4 nominal cells,
are plotted in Fig. 3(a) as a function of iL ∈ [−20c, 20c]
and the coefficients are given in Table 2. The gain curves
show clear trade-off between thermal and SOC balancing
objectives. Each of these objectives is prioritized in differ-
ent load current range. For example, SOC balancing is pri-
oritized for |iL| ≤ 8 c and thermal balancing is prioritized

in |iL| > 8 c. This behavior makes sense because thermal
balancing is not much needed during low current intervals
due to reduced thermal intensity. These two dominant
control modes show that the simultaneous thermal and
SOC balancing is not possible for continuously high load.

Table 2. Coefficients of Gain Polynomials

Params. Value Params. Value

a5 −2.460× 10−6 b5 −4.063× 10−8

a4 3.560 × 10−4 b4 7.753× 10−6

a3 −0.015 b3 −5.224× 10−4

a2 0.012 b2 0.0132
a1 8.740 b1 −0.038
a0 −0.759 b0 0.0430

4.3 Proportional with Simple Balancing Rules (PwSBR):

Considering two dominant control behaviors in two differ-
ent current ranges, we can motivate even simpler balancing
rules/policy as given below and shown in Figure 3(b).

keρb
(k) =

{

sgn(iL(k)) · 60, if |iL(k)| ≤ 8 c
sgn(iL(k)) · 20, otherwise.

(33)

ktρb
(k) =

{

0.25, if |iL(k)| ≤ 8 c
3.6, otherwise.

(34)

The above rules capture the main essence of balancing
controller i.e. if |iL| ≤ 8 c, prioritize SOC balancing, else
thermal balancing.
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Fig. 3. Proportional gains as function of load current iL.



4.4 Control Limiter

The balancing control limiter, originally formulated as
problem (P-II), is approximated using Algorithm 1 for
easier implementation. It achieves ub ∈ Ub by successively
applying the following two Euclidean projections of uncon-
strained control until convergence of control error εub

.

• Projection on box Ub1 to satisfy ub ∈ [ub,min, ub,max]
(lines 4—7).
• Projection on hyperplane N (Dv) to satisfy vL = vLd

(lines 8—10).

Note that we use analytical solutions for projections on
rectangle and hyperplane (see Boyd and Vandenberghe
(2006)). The solution is optimal (equivalent to solv-
ing (P-II)) for n = 2, but may get suboptimal for n > 2.

Algorithm 1 Control Limiter

1: Given: uu
b (k), ub,min(k), ub,max(k), Dv(k), tol.

2: Set i = 1, ui
b = ub,u, ε0ub

= 1n ⊲ Initialize

3: while
(

εi−1
ub
≥ tol

)

do
⊲ Find limit violations

4: Ivlub
= find(ui

b < ub,min)

5: Ivuub
= find(ui

b > ub,max)
⊲ Project on box

6: ui
b(I

vl
ub
) = ub,min(I

vl
ub
)

7: ui
b(I

vu
ub
) = ub,max(I

vu
ub
)

⊲ Project on hyperplane
8: εivLb

= 0−Dvu
i
b ⊲ voltage error

9: εiub
= εivLb

D†
v ⊲ balancing control error

10: ui+1
b = ui

b + εiub
⊲ Correction/Update equation

11: i← i+ 1
12: end while
13: return ub

5. SIMULATION RESULTS AND DISCUSSION

5.1 Simulation Setup

We evaluate, through simulations, the balancing perfor-
mance of two proposed proportional controllers (PwGS
and PwSBR) and compare it with one-step MPC for US06
drive cycle (representative of intensive driving). We must
reemphasize here that the MPC, with the same setting
as in Altaf et al. (2015a), uses true cell parameters, but
the proportional controllers are implemented assuming
only nominal parameter values. All three controllers use
sampling interval h = 1 sec. Note that we do not require
any special solvers for proportional controllers. However,
for MPC, we need a QP solver like CVX (Boyd and Vanden-
berghe (2006), Grant and Boyd (2011)) to solve Euclidean
projection problem (P-II).

The modular battery considered for this study consists of
4 modules, each containing one cell (3.3V, 2.3Ah, A123
ANR26650M1A). The nominal values of cell’s electro-
thermal parameters have been taken from Lin et al.
(2013b) and the coolant inlet temperature Tf0 is assumed
constant at 25℃. The true cells are assumed to have
capacity, SOC, and resistance variations as shown in
Figure 4. The battery load current data for US06 were
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Fig. 4. Figure shows capacity and resistance distribution
of cells. Figure 4(a) shows variation in actual and
dischargeable capacities, Ced,i(k) = ξi(k)Cei, along
with rated capacity Cr of cells.

obtained at 1 Hz by simulation of Toyota Prius PHEV in
full EV mode in Advisor (Wipke et al. (1999)). We assume
vLd = 9.25V (battery load voltage demand at dc-link).

5.2 Comparison of Balancing Performance

The simulation results for two driving trips of US06 are
shown in Figure 5. The plots are arranged in a 3 × 3
matrix of subfigures where columns correspond to MPC,
PwGS, and PwSBR respectively and each row corresponds
to one of three battery performance variables: ξ(k), Ts(k),
and {‖eξ(k)‖∞, ‖eTs

(k)‖∞}. These plots clearly show that
all three controllers significantly reduce SOC deviation
among cells relative to the initial condition. Initially, the
SOC deviation monotonically decreases almost all the time
as shown in Figures 5(g), 5(h), and 5(i). After decay of
initial SOC imbalance, all controllers are able to keep tight
equalization of SOCs (≤ 1%), while keeping temperature
deviations within almost 1℃ during both charging and
discharging. The performance statistics show that PwGS
gives almost similar performance as MPC. The PwSBR
gives lower peak in eTs

(k), but at the expense of slower
SOC balancing and slightly higher mean and standard
deviation of both thermal and SOC imbalance.

5.3 Comparison of Computational Efficiency

The computational times (obtained on a PC with i7 pro-
cessor and 16 GB RAM) for two stages (gain computation
and projections) of each balancing controller are shown
in Table 3. We save a lot of computational time during
the second stage of proportional controllers. There is no
significant difference for first stage due to small size of
problem in this simulation. However, for large n, the com-
putation time of first stage for MPC will grow significantly
due to matrix inversion in Riccati equation (13) as shown
in Figure 6.

Table 3. Computational Efficiency Comparison

Online Timing MPC PwGS PwSBR

Control Computation 50µs 40µs 23µs

Control Projection 150ms 1.2ms 1.2ms

6. SUMMARY AND CONCLUSIONS

In our earlier study (Altaf et al. (2015a)), we proposed LQ
MPC based balancing controller with two stages to solve
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(b) PwGS : SOC balancing.
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(c) PwSBR: SOC balancing.
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(d) MPC : Thermal balancing.
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(e) PwGS : Thermal balancing.
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(f) PwSBR: Thermal balancing.
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Fig. 5. Simulation results for balancing performance of modular battery under US06 drive cycle are shown: first column:
1-step Constrained MPC Scheme; second column: PwGS with Limiter ; and third column: PwSBR with Limiter.
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thermal and SOC balancing problem of a modular battery.
The first stage computes time-varying LQ control gains
and second stage performs Euclidean control projections
to satisfy control constraint.

This paper is an extension of Altaf et al. (2015a). The main
purpose was to propose a simple proportional balancing
controller by studying the structural properties of LQ
control gains. In addition, we aimed to solve projection
problem using simpler algorithm. This study discovered
that, under the assumption of small cell parametric vari-
ations, each time-varying control gain matrix can be fac-
torized into a constant matrix and a time-varying scalar
gain. We identified two scalar gains (one for SOC and

the other for thermal balancing) as 5th order polynomials
in load current. We also proposed simple iterations to
compute projections. These approximations result in a
simple and computationally efficient proportional balanc-
ing controller, which can be easily implemented on low-
power embedded hardware as it does not require solving
any optimization problem. The study has also revealed two
dominant modes of balancing controller i.e. SOC balancing
in low current range and thermal balancing in high current
range. Using this insight, we also proposed another rule-
based proportional balancing controller, capturing these
two modes.

The performance of balancing controllers have been thor-
oughly evaluated and compared with one-step MPC for
a four cell battery with parametric variations. Although,
both proportional controllers have been implemented as-
suming battery with zero parametric variations, we still
get balancing performance comparable to MPC, which
assumes full access to true battery parameters. The per-
formance is promising in this simulation case study, but
need experimental validation on large battery packs.
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Appendix A. STATE-SPACE SYSTEM MATRICES

The matrices for model (4a)–(4b) are given by

A =

[

AE 0
0 Aϑ

]

, B(iL(t)) =

[

BEiL
Bϑi

2
L

]

,

AE = 0n×n, BE = −
1

3600
diag (be1, · · · , ben) ∈ R

n×n,

Aϑ =

[

AT WT

0Tn 0

]

, Bϑ =

[

BT

0Tn

]

,

AT = [atij ] ∈ R
n×n, BT = diag (bt1, · · · , btn) ∈ R

n×n,

WT = [wt1 · · · wtn]
T
∈ R

n,

C =

[

0 In+1

0Tn 0Tn+1

]

, D(iL(t)) =

[

0
Dv(t)

]

,

Dv(t) = [dv1(t) · · · dvn(t)] ∈ R
1×n,

where AT is a constant lower triangular thermal subsystem
matrix and the coefficients bei =

1
Cei

and bti =
Rei

Csi
. Note

that Dv(t) is a feedthrough gain from u(t) to vL(t).

Appendix B. SET DEFINITIONS

The nullspace of Dv(k) is a hyperplane in R
n given by

N (Dv) = {u(k)|Dv(k)u(k) = 0} = R(Vn) ⊆ R
n, (B.1)

where R(Vn) is the range-space of null-space basis matrix

Vn(k) =

[

V ′
n(k)
In−1

]

∈ R
n×n−1, V ′

n(k) =
−1

dvi(k)
D′

v(k) (B.2)

where D′
v ∈ R

1×n−1 is obtained by deleting 1st element of
Dv. Using (7), (8), and (B.1), we define

Ub(k) = Ub1(k) ∩N (Dv(k)), (B.3)

where Ub1(k) = {ub(k) |Hub
ub(k) ≤ bub

(k)} is a box
constraint with matrix Hub

= Hu and time-varying vector

bub
(k) =

[

−ub,min
T ub,max

T
]T

= hu −Huuv(k). (B.4)
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