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Abstract—In this paper we compare the performance of MgB2 

Hot-Electron Bolometer Mixers operating at Local Oscillator 

frequencies of 0.6 THz and 1.63 THz. The minimum noise 

temperatures that were obtained are 700 K and 1150 K for 0.6 

THz and 1.63THz respectively. The receiver noise bandwidth is 

of the order of 2.2-3GHz for 10nm thick HEB devices with a Tc 

of 8.5K. Sub-micrometer size HEBs were also fabricated with no 

degradation of the initial film quality when a 20nm MgB2 film 

with a Tc of 22K was used. In the direct detection mode, the 

maximum voltage responsivity is in the range of 1-2kV/W at 

1.63THz and the optimal bias current is around 1/4-1/3 of the Ic 

at 4.2K.  

Index Terms—Terahertz detector, Hot-Electron Bolometer, HEB 

mixer, MgB2, thin film.  

 

I. INTRODUCTION 

he part of the electromagnetic wave spectrum of 0.1-10 

THz (3 mm – 30 µm) is frequently addressed as the 

terahertz (THz) range [1]. Despite difficulties to build 

components and systems for these frequencies, THz 

heterodyne receivers play important roles in astronomical and 

atmospheric science applications. [2]. As an example, the 

Herschel Space Observatory [3] with an overall frequency 

coverage of 60-670 µm allowed observation of star-formation 

activities, physics and chemistry of the interstellar medium, 

spectroscopic and photometric study of comets, asteroids and 

outer planet atmospheres and their satellites [4]. 

Several types of devices are used as mixer elements for 

heterodyne detection: Schottky diodes, SIS junctions, hot-

electron bolometers (HEBs). In contrast to Schottky diode 

mixers, HEBs have much lower noise temperature and three 

orders of magnitude lower LO power requirements [5, 6]. 

HEBs could be used at higher frequencies than SIS mixers 

(1.3THz upper limit). Typically, phonon-cooled HEBs are 

made from ultrathin films of NbN [7], but novel materials 

could be implemented for HEB fabrication to improve their 

parameters. Magnesium diboride (MgB2) discovered in 2001 

[8] has the highest critical temperature (Tc = 39 K) among 

intermetallic compounds. Recent progress in MgB2 thin film 
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deposition [9], [10] opens new prospects in fabrication of 

superconducting electronic devices: hot-electron bolometers 

(HEB) [11], superconducting single-photon detectors (SSPD) 

[12], superconducting quantum interference devices (SQUID) 

[13], etc., because of its high Tc and short electron-phonon 

relaxation time. 

Recently, low noise THz HEB mixers were demonstrated 

based on thin MgB2 superconducting films deposited on c-

Al2O3 substrates using molecular-beam epitaxy [14], [15]. A 

mixer noise temperature of 600K with a 3.4 GHz gain 

bandwidth was measured at 2K and an LO frequency of 600 

GHz. Apart from Al2O3 , SiC substrates have been shown to 

result in very high quality MgB2 superconducting films with a 

critical temperature in excess of 36K for thicknesses down to 

10 nm [16]. In this work, devices were made from films as 

thin as 15nm, where GBW from 5GHz to 7GHz (depending on 

the bias point) have been achieved. 

In our paper, we present experimental investigation of the 

noise and the conversion gain for MgB2 HEB mixer on Al2O3 

substrates at both 1.63THz and 0.6THz.  

II. DEVICE FABRICATION AND EXPERIMENTAL SET-UP 

HEB devices discussed in this paper were made of thin 

MgB2 films on c-cut sapphire substrates. The lattice structure 

of this substrate matches very well with the lattice of MgB2, 

hence providing high quality thin films. Recently, SiC has 

been shown to be a better option for this application [10], 

which we will address later in our research. 

T 

 
Fig. 1. Scanning Electron Microscope (SEM) image of a spiral antenna (light 
grey) integrated HEB (visible in the slot at the spiral center) mixer. The 

substrate is dark grey. 
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MgB2 films were deposited with Molecular Beam Epitaxy 

(MBE) at a temperature of 300°C. Details of the deposition 

process have been published in [9]. MgB2 films were covered 

with 20nm Au films in-situ. This method prevents MgB2 films 

from degradation prior to and during the processing. 

Furthermore, it is expected to provide a lower contact 

resistance between the MgB2 and the Au films. A low contact 

resistance is especially important considering the extremely 

high frequencies the devices are made for (>1THz). 

Devices we discuss here were made from MgB2 films 

deposited over a period of two years. Gradually, during 

process optimization, the critical temperature Tc of our ultra-

thin films improved. Film smoothness, stresses, and other 

parameters have not been investigated and will not be 

discussed here.  

HEBs were integrated with planar spiral antennas made of 

300nm thick gold film deposited on top of the in-situ Au 

(Fig.1). The in-situ Au layer above the bolometer itself was 

etched by means of Ar Ion-Beam milling. After fabrication, 

the substrate was diced on individual chips, each including a 

spiral antenna integrated HEB and the two-point terminals, 

used to bond the chip to the external (dc and IF (Intermediate 

Frequency)) circuits.  

The HEB chip was clamped on the back side of a Si lens, 

and packaged in a mixer block with an SMA terminal. In the 

LHe cooled cryostat, a broadband bias-T and a broadband 

Low Noise Amplifier (LNA) followed the mixer block (Fig.2). 

Outside the cryostat, a pair of extra LNAs, a tunable IF filter 

(50MHz instantaneous bandwidth) and a microwave power 

meter formed the rest of the IF chain.  

For the HEB mixer noise temperature measurements, a 

standard Y-factor technique was applied with two black body 

loads, at liquid nitrogen and room temperatures. Either a 12 

m or a 50 m Mylar beam splitter was used to combine the 

Local Oscillator (LO) and the black body radiation, depending 

on the HEB size and the power of the LO. As LO sources, 

both a 0.6THz Backward Wave Oscillator (BWO) and a 

1.63THz Far Infrared (FIR) gas laser were used. The losses in 

the beam splitter (0.1dB), the cryostat window (0.8dB), and 

the IR filter (0.6dB) were measured separately and used for 

the receiver noise temperature deduction. The Si lens 

reflection loss was accounted as 1dB [17, 18]. The LNA noise 

was not deducted from the noise temperature.   

III. RESULTS AND DISCUSSION 

HEB mixers were tested at LO frequencies of 600GHz and 

1.63THz. Considering previous publications [14, 15], the goal 

of the new experiments at 0.6 THz was to confirm the 

reproducibility of the earlier results. The new devices were 

also smaller in size (1m×1m vs 3m×1.5m reported 

earlier). However, we used MgB2 films from the same film 

batch as before (10nm thick, Tc=8.8K). Current-Voltage (I-V) 

characteristics of the HEB mixer used for the noise 

temperature measurements are given in Fig.3. Despite an 

increase of the critical current upon cooling from 4.2K to 2.5K 

(achieved by reducing the LHe vapor pressure), the noise 

temperature improvement was quite small (about 10%). 

Therefore, all other tests were made at 4.2K. The lowest noise 

 
Fig. 2. Photograph of the interior of the test cryostat. 

 
Fig. 3. I-V-curves of HEB mixer (10nm thick, TC=8.5K) at 4.2K (with and 

without LO pumping at 600GHz) and at 2.5K (without LO). Eight pumped I-
V curves are shown and they are labeled 1 through 8 in decreasing LO 

power.  

 
Fig. 4. P-V curves (1.6 GHz) measured at different LO power at 600GHz. 

The curves are labeled 1 through 5, corresponding to the numbered I-V 
curves shown in Fig.3. The equation explains the definition of the U-factor. 

Bath temperature is 4.2K.  
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temperature was obtained at  LO power and bias voltage 

corresponding to the red circle in Fig.3 (1mV, 20A).  

Fig.4 shows IF power PIF vs bias voltage (P-V curves) for 

the corresponding I-V curves from Fig.3. A maximum of the 

P-V occurs at a bias voltage just below the voltage of the 

minimum noise temperature. The U-factor [19, 20], defined as 

a ratio of the PIF with the mixer at the optimal point to the PIF 

with the mixer in the superconducting state, has been shown to 

be a useful parameter with which to test the receiver. In the 

first state, PIF is a sum of the mixer output noise (k×B×Tout), 

the IF amplifier noise (k×B×TLNA), and the mixer response to 

the input load (294K in this case, 2×k×B×294K, the factor of 2 

here occurs due to the Double Side Band nature of the 

receiver), k is the Boltzmann constant, and B is the bandwidth 

of the band pass filter at the output of the IF chain. In the 

second state, the HEB is in the superconducting state and does 

not produce any electrical noise. On the other hand, the HEB 

becomes a perfect short at microwave frequencies, which 

reflects the amplifier noise (hence, the factor of 2 in the 

formula for the U-factor, Fig.3). Therefore, a low U-factor 

means either a high IF amplifier noise or a low mixer output 

noise temperature. For a high sensitivity HEB mixer the 

dominant noise contribution is made by the electron 

temperature fluctuations, and which is much larger compared 

to the thermal noise (equal to the electron temperature in the 

HEB). More detailed discussion can be found in [21].  

The measured DSB noise temperature spectrum across the 

1-4 GHz IF band is shown in Fig.5. Similar to as reported 

earlier [14] the noise bandwidth is approximately 3GHz. The 

minimum noise temperature is 700K (1.1 GHz).  

The LNA noise temperature was measured separately and  

is in the range of 2-3K. Therefore, from the 7dB U-factor (see 

Fig.4) we can obtain the mixer output noise temperature, 

which is approximately 25K. Given the (corrected for the 

optical loss) DSB noise temperature of 750K (at 1.6GHz, see 

Fig.5, 650K without the LNA noise contribution), the mixer 

gain can be calculated as -19dB, of which 1.5dB is the IF 

impedance mismatch loss (Z=dV/dI = 170 Ohm is the IF 

impedance of the HEB mixer).  

The accuracy of the mixer gain and the output noise 

calculations depends on the IF amplifier gain and noise 

stability versus the input impedance, which changes when the 

HEB mixer is switched from the operation point (Z= 170Ohm) 

to the superconducting state (Z=0). An isolator between the 

mixer and the amplifier would resolve this issue. However, a 

cryogenic broadband isolator was not available during the 

experiments. Our preliminary investigation shows that an error 

of up to 2dB can occur for Tout and G obtained from the U-

factor if we disregard the LNA performance variation.  

However, the superconducting state can be replaced by the 

normal state of the mixer. This state can be achieved when the 

mixer is heavily pumped with LO (curves 1 in Figs. 3 and 4). 

In this case the denominator in the U-factor becomes 

(TLNA+Tc), since in the normal state the temperature 

fluctuation noise becomes much smaller than the thermal 

noise, where the effective temperature equals  the electron 

temperature of the HEB. In this case, a mixer gain of -18.5dB 

and an output noise of 26K was obtained. This result is very 

close to that obtained from the U-factor. 

 
Fig. 5. The DSB noise temperature (corrected for the optical loss) at 0.6THz 

and 1.63THz LO frequencies for the device discussed in Fig.3 and Fig.4. 

 
Fig. 6. The IV-curves of a HEB mixer made of 20nm film with a TC of 22K.  

Curve 1: 4.2K no LO; Curve 2: Heating-1 no LO; Curve 3: 4.2K full LO 

power; Curve 4: Heating-1 with full LO power; Curve 5: No LO, the heating 

was increased untilcurve 5 coincided with curve 4. 

 
Fig. 7. IV-curves of the heated HEB Mixer (see Fig.6). The numbers in the 

field represent the voltage response at 1.63THz as measured with the lock-in 

amplifier. 
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We do not provide I-V characteristics of the mixer pumped 

with the 1.63 THz LO here, because those were the same as 

with the 600 GHz LO. This fact can be explained by a 

relatively low Tc of the devices, which results in a low energy 

gap, evidently with a characteristic frequency below 600GHz.  

The minimum DSB noise temperature at 1.63THz LO was 

1150K . The reason for a 50% increase in noise temperature 

compared to that measured at 600GHz is not clear at the 

moment. A contact resistance between the Au antenna and the 

MgB2 bolometer might still exist despite the in-situ deposition 

of the Au layer. This could be the reason for an increase of 

optical loss at higher LO frequencies.  

The same exercise with the U-factor, considering the noise 

temperature at 1.63THz, gives a mixer gain of -21dB. The fact 

that the U-factor is the same as for the 600GHz LO agrees 

with fact that the shape of the I-V curves during pumping with 

both LOs are the same.  

We can note that for NbN HEB mixers (at 0.6THz and 

1.63THz) the mixer conversion gain from -13dB to -14dB, and 

the mixer output noise from 40K to 60K was reported [20] 

At 1.63THz the noise bandwidth is about 2.2-2.5GHz. Since 

the given noise temperature includes the contribution of the 

LNA, the LNA fraction increases by an increase of the optical 

or the mixer loss. Thereby, the receiver (the mixer + the LNA) 

noise bandwidth is reduced. A similar effect has also been 

observed for NbN HEB mixer [20].  

Earlier we have shown that the noise bandwidth for MgB2 

HEB mixers increases when higher Tc MgB2 films are used 

[15]. After optimization of the MgB2 film deposition, the 

critical temperature increased to 20-25K. Using a 20nm MgB2 

film a set of devices was fabricated with a Tc of 22K. The I-V 

curves for one such device are given in Fig. 6. The bolometer 

dimensions are 1m×0.4m. With the total available power of 

the FIR laser (estimated as 100 W in front of the cryostat), 

the mixer was pumped to an IV-curve which should be close 

to the optimum (curve 3 in Fig.6). However, for the noise 

temperature measurements with a thin beam splitter, the LO 

power at the cryostat will be greatly reduced. Therefore, the 

mixer has to be operated at a higher temperature. In Fig.6, 

curves 4 and 2 correspond to an increased temperature with 

and without LO pumping. For curve 5, LO was switched off 

and the mixer temperature was further increased until it 

overlapped with curve 4. As can be seen, curves 4 and 5 are 

identical. Therefore, at  “Heater-1” the 1.63THz radiation has 

the same effect on the HEB as a rise in temperature.  

In order to estimate which IV curve corresponds to the HEB 

maximum sensitivity to the THz radiation, a direct detection 

experiment was conducted. For a set of temperatures, the 

voltage response of the HEB on the amplitude modulated THz 

radiation was recorded (Fig.7). The FIR laser power was 

attenuated by 20dB, in order to reach the small signal limit 

(there was no visible effect of the laser on the I-V- curve). The 

laser radiation modulation was accomplished with a chopper 

(set on 20Hz). The voltage response of the HEB was measured 

with a lock-in amplifier. As can be seen in Fig.7, the 

maximum responsivity is achieved at a bias range of 2-4mV 

and 0.3-0.5mA, i.e. at a current which is about 1/4- 1/3 of the 

critical current at 4.2K. Considering the known optical losses, 

the maximum responsivity can now be calculated to be in a 

range of 1-2kV/W at 1.63THz.  With this information, noise 

temperature measurements will have to be conducted in the 

near future. 

 

IV. CONCLUSION 

With this work we demonstrate that low noise performance 

can be repeatedly achieved for MgB2 HEB mixers, both for 1 

THz and for the above. The minimum noise temperatures 

obtained are 700K at 0.6THz and 1150K at 1.63THz LO 

frequencies. The noise bandwidth is of the order of 2.2-3GHz 

for devices 10nm thick with a Tc of 8.5K. For HEBs with a Tc 

of 22K we observe that the effect of the THz LO on the IV-

curves is nearly the same as of HEB heating. The maximum 

direct detection responsivity is in the range of 1-2kV/W at 

1.63THz and the optimal bias current is  1/4-1/3 of the Ic at 

4.2K.   
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