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Abstract
The present thesis consists of five research papers in the areas of combinatorial
number theory and arithmetic combinatorics. Each paper is devoted to a spe-
cific realisation of the general intuition that, vaguely speaking, a set cannot be
simultaneously additively and multiplicatively structured.

Papers I and II study arithmetic progressions of maximal length in product
sets. In Paper I it is proved that if B is a set of N positive integers such that
B · B contains an arithmetic progression of length M then N ≥ π(M) +

M2/3−o(1). On the other hand, we present examples for which N < π(M) +

M2/3. The main tool is a reduction of the original problem to the question of
an approximate additive decomposition of the 3-sphere in Fn3 which is the set of
0-1 vectors with exactly three non-zero coordinates. In particular, it is proved
that such a set cannot be contained in a sumset A+A unless |A| � n2.

In Paper II the same problem of bounding the maximal length of an arith-
metic progression in a product set is considered in the complex setting, that is,
elements of the set B are now allowed to be complex numbers. In this case we
were able to prove a reasonably strong bound only assuming the Generalised
Riemann Hypothesis. The obtained bound is

N ≥ CεM1−ε

for any positive ε and some constant Cε.
Paper III explores a similar, but more general question, namely to bound the

maximal size of a set with small doubling contained in a product set B · B. A
set A is said to have small doubling if the size of the sumset A+A is bounded
by K|A|, where K is some absolute constant. It holds for example when A is
an arithmetic progression of arbitrary length. Let (An), (Bn) be sequences of
sets such that uniformly holds

|An +An|/|An| ≤ K
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and An ⊂ Bn ·Bn. Under the condition that the sizes of the elements in Bn are
polynomialy bounded with repect to |Bn|, it is proved that |An| = o(|Bn|2). In
particular, it follows that under this condition the additive energy of Bn ·Bn is
asymptotically o(|Bn|6), which, in turn, gives the classical Erdős Multiplication
Table Theorem as a special case.

Paper IV is dual to Paper III and gives an upper bound for the size of a
set A with small multiplicative doubling contained in a sumset B + B. Us-
ing different methods from those of Paper III, in particular, the Subspace the-
orem, Roche-Newton and the author proved the unconditional bound |A| =

O(|B|2 log−1/3 |B|), which implies that the multiplicative energy of a sumset
B + B is bounded from above by |B|6 exp(−O(log1/3−ε |B|)). The bounds
are then applied to give a partial result towards an inverse sum-product prob-
lem, conjectured in the paper.

Paper V deals with sum-product type problems in finite fields. It is proved
that for sets A,B,C ⊂ Fp with |A| = |B| = |C| ≤ √p and a fixed 0 6= d ∈ Fp
holds

max(|A ·B|, |(A+ d) · C|)� |A|1+1/26.

In particular,
|A · (A+ 1)| � |A|1+1/26

and
max(|A ·A|, |(A+ 1) · (A+ 1)|)� |A|1+1/26.

The first estimate improves an earlier bound by Roche-Newton and Jones.
In the general case of a field of order q = pm,m ≥ 2 similar estimates are

obtained with the exponent 1 + 1/559 + o(1) under the condition that A · B
does not have large intersection with any subfield coset, answering a question of
Shparlinski. The paper concludes with an estimate for the additive energy of a
multiplicative subgroup, which is used to obtain an explicit power-saving bound
for Gauss sums over multiplicative subgroups of order at least q28/57+o(1). To
our knowledge, such a bound is not currently present in the literature since
extracting explicit bounds from a more general result of Bourgain and Chang
seems to be hard.

Keywords: Product set, arithmetic progression, multiplication theorem, sumset, addi-

tive energy, multiplicative energy, sum-product phenomenon, multiplicative subgroups,

Gauss sums
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Introduction

The present thesis consists of five papers which study in various settings the
dichotomy between additive and multiplicative structures which a set of num-
bers may exhibit. In what follows we will give a short summary of the papers
together with a general overview of the research areas into which the papers
fall.

In order to place the content of the papers in a more general context, we first
give in Section 1.1 a very short historical digression and introduce in passing
two classical problems of additive Number Theory, the Goldbach conjecture
and Waring’s problem. These two problems played an important role in initi-
ating studies of additive bases which we introduce in Section 1.2. In turn, a
problem about additive bases has lead the author to the question whether long
arithmetic progressions can be contained in a set of products, studied in Papers
I and II. Paper II deals mainly with sets of complex numbers while Paper I gives
sharper bounds for the integer case. Both papers show that there are rather se-

1



2 INTRODUCTION

vere restrictions on the size of an arithmetic progression contained in a set of
products, as we discuss in detail in Section 1.3.

However, in hindsight it is better to describe such no-go results as “struc-
tural sum-product phenomena”. To illustrate this connection, we introduce in
Section 1.4 the classical sum-product conjecture of Erdős and Szemerédi, which
says that a set of numbers must grow either with respect to addition or multipli-
cation. The Erdős-Szemerédi conjecture is a precise quantatitive statement, but
on the conceptual level it says that a set cannot be simultaneously additively and
multiplicatively structured. By defining structure in different ways, this ‘philos-
ophy’ in turn leads to various interpretations, which we investigate in Papers III
and IV. On the other hand, Papers III and IV naturally extend Papers I and II, as
we discuss in Section 1.5.

Finally, in Section 1.6 we discuss how the aforementioned sum-product phe-
nomenon has been used in order to obtain new bounds for exponential sums,
which is an important problem with applications to number theory and com-
puter science. In Paper V a sum-product-type result together with an exponen-
tial sum bound of such flavour were obtained.
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1.1 Foundations of additive number theory

Since the ancient period of mathematical studies there has been significant in-
terest in the interplay between two fundamental arithmetical operations, addi-
tion and multiplication. Already ancient Egyptians realized that addition of unit
fractions behaves in a rather intricate way, though they were probably more in-
terested in applications rather than pure mathematics. On the contrary, later on
the ancient Greeks were building their endeavors mainly on their perception of
harmony and beauty.

One of the notable examples is the special treatment of perfect numbers by
Euclid in Elements. Recall that a number is called perfect if it is equal to the
sum of its proper divisors. Since the time of the Pythagoreans such curious
properties were thought to have metaphysical meaning. Philo of Alexandria
went as far as to claim that the world was created in six days only because six
is the first perfect number [32]:

“And he says that the world was made in six days, not because the
Creator stood in need of a length of time (for it is natural that God
should do everything at once, not merely by uttering a command,
but by even thinking of it); but because the things created required
arrangement; and number is akin to arrangement; and, of all num-
bers, six is, by the laws of nature, the most productive: for of all
the numbers, from the unit upwards, it is the first perfect one, be-
ing made equal to its parts, and being made complete by them; the
number three being half of it, and the number two a third of it, and
the unit a sixth of it [...]”

Speculating on what is so appealing in perfect numbers, one might suggest
that rarely do multiplicative properties of a number fit so neatly to addition,
and indeed any even perfect number must be of the form 2p−1(2p − 1), where
2p − 1 is a Mersenne prime. Though the history of perfect numbers is very
intriguing and the most basic questions still remain open (for example if there
are infinitely many of them or if there is an odd perfect number), we move on to
another striking conjecture which is one of the major open problems in modern
additive number theory, the Goldbach conjecture.
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The conjecture was formulated in 1742 by Goldbach in a letter to Euler,
and of course states, in modern language, that every even number greater than
two can be represented as a sum of two primes. Again, what we would like
to speculate about at this point is that the apparent difficulty of the conjecture
comes perhaps from our lack of understanding of how multiplicatively defined
objects (prime numbers) behave with respect to addition.

From the historical perspective we are mostly interested in the approach in-
troduced by Schnirelmann in 1930. He was able to prove that there is an abso-
lute constant K > 0 such that any integer greater than one is the sum of at most
K primes. In order to describe Schnirelmann’s idea, define the Schnirelmann
density of a set of non-negative integers A as

σ(A) = inf
n∈N
|[1, n] ∩A|

n
.

The sumset of two sets A and B is defined as

A+B = {a+ b : a ∈ A, b ∈ B}.

It is standard to denote A+A as 2A and, in general, to write hA for the iterated
sumsetA+ · · ·+A, where the setA is repeated h times. We mention in passing
that the product set A ·A is defined similarly as the set of all pairwise products
of elements of A. Now the method of Schnirelmann can be reduced to two
surprisingly powerful facts. Namely, it is enough to prove that

1. If a set A has positive Schnirelmann density and contains zero, then there
is a constant k > 0, which depends only on σ(A), such that kA = N. In
modern terminology, A is an additive basis of order k.

2. Even though the set {0, 1} ∪ P , where P is the set of primes, has zero
Schnirelmann density, the Schnirelmann density of the set {0, 1} ∪ (P +

P) is strictly positive.

For a proof of these two facts as well as a full exposition of Schnirelmann’s
theorem we refer the reader to [20].

Another famous topic in additive number theory is the conjecture formu-
lated by Edward Waring in his book Meditationes Algebraicae published in
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1770. Using the concept of additive basis, Waring’s problem can be stated as
that, for any k, the kth powers of natural numbers, usually denoted by Nk, form
an additive basis of finite order, which depends only on k. In the very same year
Lagrange published a proof that any positive integer is a sum of four squares,
which Nathanson quotes as “the most important result in additive number the-
ory" [20, p. 5]. Later on the problem of Waring has attracted no less than Hilbert
(who gave the first proof for arbirary k), Hardy and Littlewood, Vinogradov and
Linnik. Linnik’s “elementary” proof, given in 1943, is of the most relevance for
us and in fact follows Schnirelmann’s ideas.

As one might guess from the preceding discussion, the crucial part of Lin-
nik’s argument is to prove that Nk expands additively, that is, for some g(k)

the set {0, 1} ∪ g(k)Nk becomes thick enough to have positive Schnirelmann
density. The proof is somewhat tangential to the topic of the present thesis, but
the fact is instructive on its own. The reader can find the proof in [16] with
corrections by Jameson [17].

1.2 Additive bases

It was probably Paul Erdős who first realised that in fact it is fruitful to study
additive bases, finite sumsets and product sets in their own right. Even though
both Schnirelmann’s and Linnik’s theorems rely substantially on certain esti-
mates for the number of representations of a number as a sum of primes or
exact powers, Erdős envisioned a program where the analysis is based solely on
the densities or, in the finite setting, cardinalities of the sets in question.

To illustrate this strategy, let us mention a still very wide open conjecture of
Erdős1 that any infinite sequence of positive integersA contains arbitrarily long
arithmetic progressions if

∑

a∈A

1

a
=∞.

The idea was to attack an old open problem that the set of primes contains
arbitrarily long arithmetic progressions. Erdős wrote [9]:

1Also known as the Erdős–Turán conjecture, see [1]. The year the conjecture was formulated
for the first time is also uncertain.
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“This method of proof seems very attractive, it tries to prove a diffi-
cult property of the primes by just using the fact that the primes are
numerous. In some cases I have been successful with this simple
minded approach.”

That the primes contain arbitrary long arithmetic progressions is now the
celebrated theorem of Green and Tao [13], proved in 2004. It is appealing
that even though Green and Tao did use certain number-theoretic facts about
the set of primes, a substantial part of their work is based on the success with
a weaker form of the Erdős–(Turán) conjecture, now known as Szemerédi’s
theorem. Define the upper density of a set A ⊂ N as

d̄(A) = lim sup
n→∞

|A ∩ [1, n]|
n

.

Endre Szemerédi proved in 1975 [28] that any set with positive upper density
contains arbitrarily long arithmetic progressions, which opened a broad avenue
of research still very active at the present day. We shall not say more, since
we now turn to problems where the focus lies primarily on the properties of
sumsets and product sets of finite sets, rather than on sets with positive density.

From now on we will adopt the following notation. For two quantities X
and Y all the expressions X � Y , Y � X , X = O(Y ), Y = Ω(X) have the
same meaning, namely that there is a constantC, independent ofX and Y , such
that |X| ≤ C|Y |. If the constant is occasionally allowed to depend on some
other parameter, say ε, we will write X = Oε(Y ) or Y = Ωε(X). For a set A,
|A| denotes the size of the set. We will also denote by o(1) a quantity which
becomes arbitrarily small as the sizes of the sets in question become large (this
is the most interesting regime). For example, we will often hide logarithmic
factors in expressions like |A|/ log |A|, writing |A|1−o(1) instead.

Let us start with a paper of Erdős and Newman [10] where an inverse ques-
tion about additive bases was considered probably for the first time. Recall
the definition of an additive basis: a set B is a basis (of order two) for A if
A ⊂ B + B, that is, any element in A can be represented as a sum of two ele-
ments in B. In what follows it will be assumed that all bases are of order two,
unless stated otherwise.
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Erdős and Newman were interested in the minimal size of a basis for a given
set A and denoted this quantity by mA. One has trivially

√
|A| ≤ mA ≤ |A|+ 1,

and the question is what is the typical behaviour of mA. Writing N(A) for the
largest element of A they proved that for most sets holds

mA > min{ |A|
logN(A)

, N(A)1/2},

and if N(A) ≥ |A|2+ε then

mA >
ε

1 + ε
|A|.

In other words, if one takes a random set with n elements from the interval
{1, ..., N} then with high probability the minimal size of a basis is of order
min{n/ logN,N1/2}, and if N ≥ n2+ε, the minimal size is of order Ω(n),
that is, close to the trivial upper bound. This already indicates that sparse sets
which admit a thin basis (of sizeO(n1/2+δ) for some small δ > 0, say) are rare.
However, it turns out to be hard to prove a lower bound of the type

|An|
log |An|

� mAn (1.1)

for some explicit infinite sequence of setsAn withN(An) polynomially bounded
in |An|. In fact, we are aware of only two relevant examples, with proved
bounds being still very far from (1.1), and they are as follows. In the same
paper [10], Erdős and Newman proved that any basis for the set of squares
{12, . . . , n2} has size at least n2/3−o(1). Alon, Bukh and Sudakov in [2] gener-
alised this to the sets {1d, . . . , nd} and showed that at least

Ω(n
3
4− 1

2
√
d
− 1

2(d−1)
−o(1)

)

basis elements are required.
However, as was already pointed out by Erdős and Newman, the quantity

mA they introduced depends rather discontinuously on the “rate of growth” of
A. For example, while a typical set A of size n in the interval [1, n2] requires
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at least Ω(n/ log n) basis elements, it is always possible to slightly perturb the
set A so that there is a basis of size O(n3/4). In fact, the perturbation procedure
of Erdős and Newman places a large portion of the set into an arithmetic pro-
gression with difference [n1/2], so it becomes additively structured. Indeed, if
A has a lot of additive structure, then mA is small. The following claim seems
to be absent from the literature, so we will give a short proof.

Claim 1.2.1. If |A+A| < K|A| then mA = OK(|A|1/2).

The claim is a simple corollary of the celebrated theorem of Freiman, which
essentially describes the structure of sets with small doubling. It is convenient
to define the doubling constant

K =
|A+A|
|A|

and it is common to say that a set A has small doubling if K = O(1). To be
precise, this means that there is a family of sets An with |An| → ∞ so that
|An +An|/|An| remains bounded from above by O(1) as n→∞. Henceforth
we will often skip this explicit construction, writing instead of a sequence of
sets An simply “a set” A, assuming that |A| is a large parameter.

We need a special construct which is a multidimensional version of an arith-
metic progression. A generalised arithmetic progression (or GAP) is a set of
the form

P = {a+ d1x1 + . . . dkxk : 0 ≤ xi ≤ Li},

where k is the rank, V ol(P ) =
∏k
i=1 Li is the volume spanned by the k-

dimensional box and d1, . . . , dk are the differences. A GAP is proper if all
its elements are distinct, i.e. |P | =

∏k
i=1(Li + 1). Freiman’s theorem now

renders as follows.

Theorem 1.2.1 (Freiman). Let A be an subset of a torsion-free abelian group
Z, such that |A+A| ≤ K|A|. Then there exists a proper progression P of rank
at most K − 1 which contains A such that |P | ≤ exp(O(KO(1)))|A|.

A proof can be found in [31]. Freiman’s theorem tells us that sets with
small doubling constant must have rigid structure in the aforementioned sense.
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Thus, the small size of the sumset is one of the proxies one may use for the
term “additive structure” which we have been deliberately using in a very vague
manner so far.

Now in order to prove the claim it suffices to show that a proper GAP P

admits a basis of size OK(|P |1/2). This is easy: if P has the form

P = {a+ d1x1 + · · ·+ dkxk : 0 ≤ xi ≤ Li},

then define Mi = [
√
Li] and

Bi = {0, . . . ,Mi + 1} ∪ {Mi, 2Mi, . . . , (Mi + 1)Mi}.

It is now a simple exercise to show that

B = {a+ d1x1 + · · ·+ dkxk : xi ∈ Bi},

is a basis for P and |B| = O(|P |1/2).
Summing up, we conclude that for a sequence of sets An, a uniform bound

for the doubling constant is a stronger property than the boundmAn � |An|1/2.
However, very little is known about the regime when K ≥ |An|δ for some
(small) δ > 0 since the bounds in Freiman’s theorem are exponential in K.
It is a major open problem in additive combinatorics to prove a Freiman-type
structure theorem with polynomial bounds, known as the Polynomial Freiman–
Ruzsa conjecture. For the state of the art results in this direction, see [23].
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1.3 Summary of Papers I and II

In the previous section we saw that the set of squares is far from being ad-
ditively structured: it is not very hard show that the doubling constant of the
set S = {12, . . . , n2} is of order n1−o(1) (so that the sumset has size of order
n2−o(1)) and the result of Erdős and Newman gives mS � n2/3−o(1). It is an
old problem to show (or disprove) that in fact mS � n1−o(1). The analagous
question is also wide open for the set of dth powers {1d, . . . , nd}, which also
has almost maximal additive expansion, that is, it’s doubling constant is of order
n1−o(1).

Erdős conjectured in 1980 that perhaps sets with strictly increasing consecu-
tive differences should have large doubling constant. Such setsA = {a1, . . . , an}
with a1 < . . . < an and ai − ai−1 < ai+1 − ai for i = 2, . . . , n− 1 are said to
be convex. The definition is motivated by the fact that there is a convex function
f such that f(i) = ai. We have been dealing only with integer sets so far, but
in what follows we implicitly assume that the elements of the sets in question
are arbitrary real numbers, unless stated otherwise.

The first result in this direction was proved by Hegyváry [15] who proved
that if A is convex, then

|A+A| � |A| log |A|
log log |A| .

The best bound to date is due to Schoen and Shkredov [24] who proved that,
for a convex set A,

|A+A| � |A|14/9−o(1).

It is believed that, in fact, |A+A| � |A|2−o(1).
Hegarty, perhaps motivated by the aforementioned results, asked if there

is a non-trivial bound for mA for an arbitrary sequence of convex sets. He
conjectured that it should at least hold that

mAn

|An|1/2
→∞ (1.2)

as |An| → ∞. In fact, it is believed that for any δ > 0 there is no infinite family
of convex sets A with mA � |A|1−δ uniformly in |A|.
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We will now show how an exceedingly long arithmetic progression in a
product set would give a counterexample to Hegarty’s inquiry. Indeed, let

L = { a+ di }, i = 0, . . . ,m− 1

be an arithmetic progression of size m in a product set B · B for some fixed a
and d. Then if we take B′ = {− log(b), b ∈ B} the set

{− log(a+ di) }, i = 0, . . . ,m− 1

is a convex set of size m and contained in B′ + B′. So if there were examples
with m arbitrarily large and of order |B|2, it would have contradicted (1.2).

The problem of finding a bound for the maximal length of an arithmetic
progression in a product set was introduced for the first time in Paper A, not
included in the present thesis. It follows from the result of Paper A that at
least in the integer case the construction presented above gives only convex sets
A with mA � |A|1−o(1), thus providing partial support to the conjecture of
Hegarty.

In Papers I and II, which we will shortly discuss in more detail, this result
was improved in two directions. First, in Paper II (which chronologically pre-
cedes Paper I) the problem was extended to the complex setting with essentially
the same bound as in Paper A, albeit conditional upon the Generalised Riemann
Hypothesis, which we will abbreviate as GRH henceforth. It was proved that,
conditioned on GRH, if an arithmetic progression A is contained in a product
set of complex numbers B ·B, then |A| � |B|1+o(1). In Paper I a new method
was introduced which allowed us to obtain an almost tight bound for the integer
case.

But let us first sketch why in the simplest case of integer sets, it is natural
to expect that the length of an arithmetic progression contained in B · B is in
fact much less than |B|2, which is the trivial a priori bound. In essence, this
argument appeared in Paper A.

So let A be an arithmetic progression and A ⊂ B · B for some integer set
B. It is clear then that the set of prime factors of the elements of A is contained
in that of B. On the other hand, if we can find a set of prime factors p1, . . . , pn
such that pi divides only a single element ai ∈ A, i = 1, . . . , n, then inevitably
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n ≤ |B|. Let us call such divisors rare. Thus, in the integer setting, in order
to prove an upper bound for |A|, it is enough to find a large set of rare prime
divisors in A. Note that in principle this argument does not use the fact that A
is an arithmetic progression, but rather that the elements of A have many rare
divisors.

We now turn to the exposition of Paper II, which mainly deals with the
complex setting. Assume for contradiction that we have an inclusionA ⊂ B ·B
where the arithmetic progression |A| has length |B|1+ε for some ε > 0. The
idea is to construct rational integer sets A′, B′ such that A′ ⊂ B′ · B′, with
|A′| ≈ |A| and |B′| ≈ |B|, though A′ may not be an arithmetic progression
anymore. However, if we still can prove that the elements of A′ have many rare
divisors, then the argument outlined above goes through and we are done.

The first step of constructing A′ and B′ is to show that one may assume
without loss of generality that the elements ofB are algebraic integers of degree
O(1/ε). The second step is to take norms in the corresponding field extension,
which gives two rational integer sets A′ and B′ such that

A′ = {P (i) : i = 0, . . . , |B|1+ε}

for some polynomial of P of degree O(1/εO(1)), B′ is of size Ω(|B|) and A′ ⊂
B′ ·B′. This is almost what we are after, it remains to show that the P (i)’s have
many rare divisors as i ranges from 0 to |B|1+ε.

It turns out that one can take P such that its coefficients are bounded by
|B′|O(1/εO(1)) in absolute value. The final step is to apply an effective ver-
sion of the Chebotarev density theorem in order to produce a large (of order
|B|1+εO(1)−o(1)) set of rare prime divisors of the P (i)’s. This is where we have
to assume the validity of GRH. Putting everything together, one then arrives at
a contradiction and concludes that |A| � |B|1+o(1) must hold.

Paper I grew up from Paper A in attempts to refine the bound for the maxi-
mal length of an arithmetic progression in the integer case. We prove that if B
is a set ofN positive integers such thatB ·B contains an arithmetic progression
of length M then N ≥ π(M) + M2/3−o(1), where π is the prime counting
function. On the other hand, there are examples for which N < π(M) +M2/3.

The main new ingredient of Paper I is a mapping ρ : Z→ Fn3 for some large
n, which converts the multiplicative inclusion A ⊂ B · B into an additive one
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ρ(A) ⊂ ρ(B) + ρ(B). One of the advantages of working in the Fn3 setting is
the large number of subspaces, which often helps when dealing with sumsets.
In particular, for any set X , the sumset X +X is always contained in the linear
span of the elements of X .

The crucial lemma of Paper I, which uses the subspace structure in a more
subtle way, is as follows. Let ei, i = 1, . . . , n be the standard basis elements of
Fn3 and let the discrete 3-sphere be defined as

S3 = {ei + ej + ek, i 6= j 6= k},

that is, S3 is the set of 0-1 vectors with exactly three non-zero coordinates. The
lemma then asserts that if S3 ⊂ B +B for some B, then |B| � n2.
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1.4 Sum-product phenomenon

It is not difficult to construct examples of infinite subsets of integers which do
not expand additively at all, that is, the density of the sumset is not larger than
that of the original set. For example, any additive subgroup will do. On the
other hand, the sets with expansion we have seen in Section 1.1, namely the set
of primes and the set of exact powers, turn out to be almost non-expanding with
respect to multiplication. Indeed, the set of kth powers Nk forms a multiplica-
tive semigroup. The set of primes is not closed under multiplication of course,
but nevertheless the set of l-semiprimes, which is the l-fold product set of P,
has zero density for any fixed l > 0. This observation might suggest that there
is a certain relation between additive and multiplicative expansion, which one
may think of as another manifestation of the dichotomy between additive and
multiplicative structure.

As was already mentioned, in the finite setting the sizes of the sum- and
product sets of a set are a natural ballpark for the amount of such structure. In-
deed, one can view a set with small doubling as an approximate subgroup,2

meaning a set which is “approximately” closed under the group operation.
While a proper subgroup is closed under the group operation and thus has the
doubling constant equal to one, if the doubling constant is small in comparison
to the size of the original set, one might expect that some group properties still
carry over to this approximate regime.

The most striking conjecture in this direction is due to Erdős and Szemerédi,
who suggested that there are no finite “approximate subrings” of Z or R. Al-
ready in their seminal paper [11] they proved that there is δ > 0 such that for
any finite set A ⊂ R holds

max{|A ·A|, |A+A|} � |A|1+δ, (1.3)

and conjectured that in fact δ can be taken arbitrarily close to one. This means
that any set must have almost maximal expansion with respect to either ad-
dition or multiplication. The conjecture is still wide open, even though the
record for the best δ has been updated at least six times, chronologically by

2This notion was coined by Terence Tao, but the original definition is somewhat technical.
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Nathanson [21], Ford [12], Elekes [7], Solymosi [26], Solymosi [27], Konyagin
and Shkredov [18]. The latter authors proved that (1.3) holds with

δ =
1

3
+

1

20598
− o(1).

It was later conjectured by Wolff that the sum-product inequality (1.3) should
hold for subsets of Fp of moderate size and some δ > 0, since there are no non-
trivial subrings of fields of prime order. Bourgain, Katz and Tao [6] verified
Wolff’s conjecture in 2004. More precisely, they showed that if A is a subset of
Fp with pε ≤ |A| ≤ p1−ε for some ε > 0, then (1.3) holds for some δ(ε) > 0.
Later on the restriction |A| ≥ pε was dropped by Bourgain, Glibichuk and
Konyagin [5]. The best bound to date is due to Rudnev, Roche-Newton and
Shkredov [22] who proved (1.3) for any |A| < p5/8 and δ = 1/5.

Deep connections between the sum-product phenomenon and other fields
were quickly understood. In many cases the new method allowed one to obtain
results previously thought to be out of reach. We mention new constructions of
randomness extractors and expanders, results on group generation and applica-
tions to number theory, in particular new bounds for exponential sums. We refer
the reader to [29] for an excellent exposition and to [30] for a comprehensive
list of references. In Section 1.6 we will concentrate on the applications of the
sum-product phenomenon to bounding exponential sums, which is the subject
of Paper V.
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1.5 Summary of Papers III and IV

The sum-product conjecture considered in Section 1.4 predicts that a large
amount of additive structure in a set, encoded in the size of the sumset, is in-
compatible with multiplicative structure, encoded in the size of the product set.
By saying this, we define the arithmetic structure of a set in terms of the size of
the additive and multiplicative doubling, respectively.

A different approach, which we call structural sum-product phenomena,
is to investigate if sumsets can exhibit rich multiplicative structure and vice
versa, therefore defining the arithmetic structure in a more algebraic way. The
reader may notice here similarities with the discussion at the end of Section 1.2
where we compare sets with small additive doubling with sets which admit a
small additive basis. More concretely, one might expect structural sum-product
phenomena to occur in the following settings with varying coarseness of the
structures.

1. Rigid substructure: arithmetic progressions in product sets and geometric
progressions in sumsets.

2. Soft structure: subsets with small additive doubling in product sets and
subsets with small multiplicative doubling in sumsets.

3. Rough structure: additive decomposition of sets A with |A ·A| < |A|1+δ
and multiplicative decomposition of sets A with |A + A| < |A|1+δ for
some small δ > 0.

From this perspective, Papers I and II, which have been discussed in Sec-
tion 1.2, provide bounds on the size of additively structured pieces (arithmetic
progressions) inside multiplicatively structured sets (sets of pairwise products).
In turn, Papers III and IV follow the second part of the outlined program and
investigate the case of less rigid arithmetic structures contained in sum- or prod-
uct sets. Now, instead of taking arithmetic progressions we are interested in a
wider class of sets with bounded additive doubling. Let a constant K be fixed.
We then ask the following question.

Question 1. How large can a setA ⊂ B ·B be if |A+A| ≤ K|A| as |A|, |B| →
∞ ?
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The dual question renders naturally as follows.

Question 2. How large can a setA ⊂ B+B be if |A·A| ≤ K|A| as |A|, |B| →
∞ ?

Despite being “dual” to each other, Questions 1 and 2 seem to have quite
different nature, as we show in Papers III and IV, respectively.

The subtlety of Question 1 can be illustrated by the following example. Let
B = {1, . . . , n} and A = B ·B. Then clearly

K =
|A+A|
|A| ≤ 2n2

|[1, n] · [1, n]| .

If Question 1 admits a non-trivial answer of the form |A| = o(|B|2), then K
in the example above should become unbounded as n→∞. In other words, it
should hold that

|[1, n] · [1, n]| = o(n2),

a number-theoretic fact proved by Erdős and now known as the Erdős Multipli-
cation Table theorem, [8].

We show in Paper III that, for sets of integers B, under the technical condi-
tion that there is a fixed constant C such that

max
b∈B
|b| ≤ |B|C , (1.4)

one can indeed give an answer to Question 1 of the form |A| = o(|B|2). It is
not clear, however, if this bound can be improved.

On the other hand, in Paper IV we show that Question 2 admits a much
more satisfactory bound of the form

|A| � |B|1+o(1), (1.5)

even if we allow K to grow slightly with |A|. Note that the bound (1.5) is
proved for arbitrary sets of complex numbers with no additional assumptions.

Both questions above can be formulated in terms of additive and multi-
plicative energies, respectively, which give yet another quantitative measure of
the arithmetic structure of a set. The additive energy of a set B is defined as
the number of quadruples (b1, b2, b3, b4) ∈ B4 such that b1 + b2 = b3 + b4.
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Similarly, multiplicative energy is defined as the number of quadruples with
b1b2 = b3b4. The standard notation for the energies is E+ and E×, respec-
tively. An easy application of the Cauchy-Schwartz inequality gives

|B|4
E+(B)

≤ |B +B| (1.6)

and a similar inequality between multiplicative energy and the size of the prod-
uct set. Thus, if the additive doubling is bounded by a constant, the additive
energy must be of order Ω(|B|3). On the other hand, it is trivial that both ener-
gies never exceed |B|3, so a priori we have

E+(B ·B) = O(|B|6) (1.7)

and

E×(B +B) = O(|B|6). (1.8)

One can observe that improving the a priori estimates (1.7) and (1.8) would
give non-trivial answers to Questions 1 and 2, respectively. The converse is
only partially true since in general a set with almost maximal possible energy
can still have very large doubling. For example, one can take

B = {1, . . . , n} ∪ {1, 2, . . . , 2n}.

Clearly both E+(B) and E×(B) are of order n3, but |B + B| and |B · B|
are of order n2. However, the Balog-Szemeredi-Gowers theorem asserts that if
E+(B) = Ω(|B|3), there is a subset B′ ⊂ B of size Ω(|B|) such that |B′ +
B′| = O(|B′|), see [31, p. 79] for details. We can therefore conclude the
current section with the following corollaries of Papers III and IV, respectively.

Corollary 1.5.1. For integer sets B, under the condition (1.4), it holds that

E+(B ·B) = o(|B|6).

Corollary 1.5.2. For arbitrary sets of complex numbers B, it holds that

E×(B +B) = o(|B|6).
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In fact, we give a slightly more precise quantitative bound than that of Corol-
lary 1.5.2, see Paper IV for more details.

We close this section with a few words about the third part of the outlined
program. As the reader may have already noticed, the interval [1, n] gives a
counterexample to the multiplicative part of the last inquiry. Indeed, the dou-
bling constant of [1, n] · [1, n] grows at most logarithmically with respect to
n.

On the contrary, the additive counterpart of the question seems to be hard.
One can show, using arguments similar to those of Paper IV and assuming the
Polynomial Freiman-Ruzsa conjecture we mentioned at the end of Section 1.2,
that sets A with |A · A| ≤ |A|1+δ do not have small additive bases if δ is
sufficiently small. However, it is an open problem to find an unconditional
argument which in turn might shed light on other problems related to additive
decomposition of sets.
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1.6 Summary of Paper V

The paper of Bourgain, Glibichuk and Konyagin [5] was one of the triumphs
of arithmetic combinatorics: using the sum-product estimate the authors were
able to show that small multiplicative subgroups of Fp are almost uniformly
distributed, a problem which resisted all previous attacks by purely algebraic
methods. LetH ≤ F∗p be a multiplicative subgroup of size at least pδ . Bourgain,
Glibichuk and Konyagin showed that it holds uniformly in ξ 6= 0 that

1

|H|

∣∣∣∣∣
∑

x∈H
e

(
xξ

p

)∣∣∣∣∣� p−δ
′

for some δ′(δ) > 0. Before that, non-trivial exponential bounds had been ob-
tained using Stepanov’s method only for subgroups of size at least p1/4+ε for
some ε > 0, see [19].

However, even though the methods of [5] were effective in nature, it was not
entirely clear how to extract meaningful explicit bounds. It seems that the first
result of this kind was obtained by Bourgain and Garaev [4] who showed that
for a multiplicative subgroup H with |H| > p1/4, it holds uniformly in ξ 6= 0

that ∣∣∣∣∣
∑

x∈H
e

(
xξ

p

)∣∣∣∣∣� |H|
9437009/9437184+o(1).

What is interesting for us is that the approach of Bourgain and Garaev was
somewhat different from that of [5]. In the latter paper the idea is to extend the
set of ξ for which the exponential sum is large, eventually contradicting the Par-
seval identity. In the former paper a more direct application of the sum-product
bound was used (basically exploiting the fact that a multiplicative approximate
subgroup must expand additively). Unfortunately, in comparison to [5], this
type of reasoning gives non-trivial explicit bounds only when the subgroup is
sufficiently large, i.e. |H| > p1/4. However, it is still below the p1/4+ε barrier
of Stepanov’s method.

It is natural to try to extend the success with fields of prime order to general
finite fields. An obvious complication in this case is the presence of subfields,
which of course contradict the sum-product inequality (1.3). However, one may
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still hope that all counterexamples should be in some sense close to subrings,
therefore to subfields of Fq , when q is not prime. Indeed, already in [6] the
following fact was established.

Theorem 1.6.1 (Bourgain–Katz–Tao). Assume S ⊂ Fq , |S| > qδ and |S +

S|+ |S · S| < K|S|. Then there is a subfield G of Fq and ξ ∈ F∗q such that

|G| < KC |S|

and
|S \ ξG| < KC

where C = C(δ).

Following an approach similar to [5], Bourgain and Chang [3] managed to
extend the bound for exponential sums to general finite fields. It was another
remarkable contribution, as previously the main tool for bounding exponential
sums was Stepanov’s method, which is seemingly difficult to apply in fields not
of prime order (see [14] and references therein). As in [5], however, the result
is not explicit. Recall that a Gauss exponential sum is a sum of the form

Sn(a) =
∑

x∈Fq
ψa(xn),

where ψa := ep(Tr(ax)), ep(x) := exp( 2πix
p ), Tr(x) = x+ xp + . . .+ xp

m−1

and q = pm. If a 6= 0 the character ψa is non-trivial and we will assume that
henceforth.

It is easy to see that since F∗q is cyclic, equidistribution of multiplicative
subgroups is equivalent to bounding the corresponding Gauss sum. Indeed, first
note that one may assume n|(q − 1), since

Sn(a) = Sgcd(n,q−1)(a).

Next, let G be the group of nth powers, which is the image of the homomor-
phism η : x 7→ xn and thus is of order (q − 1)/n. The kernel of η is the group
of nth roots of unity and we have

Sn(a) =
∑

y∈Fq
|{x ∈ Fq, η(x) = y}|ψa(y) = 1 + nS(a,G),
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where

S(a,G) :=
∑

g∈G
ψa(g)

is the exponential sum over the group elements. The standard bound is

|S(a,G)| ≤
√
q − |G|,

which is non-trivial only when |G| ≥ q1/2. The most interesting case is thus
when the order of G is below this barrier. In fact, a power-saving bound for
subgroups G of size significantly less then q1/2 has been obtained in the paper
[3] for the first time.

The theorem of Bourgain and Chang is as follows.

Theorem 1.6.2 (Bourgain–Chang). Assume that n|(pm − 1) and satisfies the
condition

gcd(n,
pm − 1

pν − 1
) < p−νq1−ε (1.9)

for all ν such that 1 ≤ ν < m and ν|m, where ε > 0 is arbitrary and fixed.
Then

max
a∈F∗q

|Sn(a)| < cq1−δ

where δ = δ(ε) > 0 and c is an absolute constant.

As in the prime case, it was of certain interest to find an explicit power-
saving bound in the Bourgain-Chang theorem. Shparlinski suggested to look at
the following variant of the sum-product phenomenon.

Question 3. There is δ > 0 such that for any A ⊂ Fq with “small” intersection
with any subfield coset holds

max{|A ·A|, |(A+ 1) · (A+ 1)|} � |A|1+δ. (1.10)

A part of the question is to explicitly specify necessary constraints on the
interaction of A with subfields which would guarantee that (1.10) holds.

In Paper V, we give the following answer to Question 3.
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Theorem 1.6.3. LetA,B,C ⊂ Fq . Suppose that for any proper subfield F and
any c ∈ Fq holds |(A ·B)∩cF | ≤ |F |1/2. Then for any fixed 0 6= d ∈ Fq holds

max{|A ·B|, |(A+ d) · C|} ≥ |A|1+1/559+o(1). (1.11)

With d = 1, B = A and C = A + 1, Theorem 1.6.3 specializes to the
original question. For finite fields of prime order we show that (1.11) holds
with the better exponent 1 + 1/26 on the right hand side.

Let us say a few words on how it can be used in order to estimate Gauss
sums. Let n|q − 1 and H be the multiplicative subgroup of nth powers, which
is of order (q − 1)/n. Then from Theorem 1.6.3 one can obtain a bound on the
number of solutions to

h1 − h2 = d

with h1, h2 ∈ H and d 6= 0. Shparlinski [25] showed that this in turn implies
an explicit bound for Gauss sums. However, it turns out that a more bound
on the additive energy of a multiplicative subgroup gives a better quantitative
result. The fact that a non-trivial bound on the additive energy can be translated
to Gauss sums is well known to experts and was for example exploited in [14],
albeit the energy bound was derived using Stepanov’s method. The precise
formulation of the final result as it appears in Paper V is as follows.

Theorem 1.6.4. Let q = pm and n|q− 1. Assume also that we have the bound

gcd

(
n,
pm − 1

pν − 1

)
� nδ

q1−δ

pν
(1.12)

with δ = 119/605, uniformly for all ν such that ν|m and ν 6= m. Then

|Sn(a)| � min
{
q

3−δ2
4 n

2+δ2
4 , q

7−2δ2
8 n

1+δ2
4

}

for a 6= 0 and δ2 = 1/56 + o(1).

In particular, this estimate gives an explicit power saving bound for multi-
plicative subgroups G with |G| � q28/57+o(1), which is below the q1/2 barrier.
To our knowledge, such a bound is not currently present in the literature.
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[8] P. Erdős. An asymptotic inequality in the theory of numbers. Vestnik Leningrad
Univ. Mat. Mekh. i Astr., (13):41–49, 1960.
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