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Abstract 
 
Vehtec AB is a company working on building and developing heating systems for 

buses. One of the main components of the heating system is the heating unit, which 

called Eldi heater.  

The purpose of the thesis is to simulate Eldi heater using commercial CFD software, 

and to validate the simulation results by running a lap experiment. This simulation 

will provide an inner view of the flow motion and what could be done to improve the 

efficiency of the heater.  

After running the first simulation for the original model, it seemed likely that the 

efficiency could be improved by altering the geometry. Three models with different 

geometry were built and simulated to try to improve the flow turbulence and the 

duration the water spend inside the heating unit, hence increasing the heat transfer rate 

from the heating elements to the water volume. 

Two models have showed improvement compared to the original one. Model two had 

the best results with temperature increase by 7% and 14 % reduction in time. 
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1 Introduction 
This chapter will provide a brief description of the project, the goal and the 
limitations. Additionally, a short description for the CFD software will be written. 

1.1 Background: 

Vehtec AB is a company that has been working with the bus industry for almost two 
decades. In the past decade, the company’s focus has been to increase in-house 
product development for the heating of buses with sustainability in mind. Vehtec has 
developed Veheat, which is a patent pending product that is a combination of a 
radiator and convector of aluminum. This reduced the number of mixed materials and 
the environmental impact, especially fuel consumption. With increased competition a 
on the market, the need to develop the product further became an apparent issue. By 
using computer simulation models the product can be evaluated and developed with 
lower cost and time compared to laboratory testing.  
 
The Figure below shows the heating system inside the vehicle with all its parts and 
components. The system uses the hot water from the engine to warm the passengers 
compartment, but in a cold environment the engine needs time to warm up and hence 
warming the water in the system. As a solution for this problem, an electrical pre-
hater is installed to warm the water in the system, hence warming the passengers 
compartment. 
 

 
Figure 1 Heating system in vehicles, taken from Vehtec catalogue 

 

1.2 Aim of the work: 

The aim of the thesis is to design a computational fluid dynamic simulation model, in 
order to observe the effectiveness of various geometries on the Eldi pre heater. 
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1.3 Limitation 
 
Due to computational resource and time limitations, the modeling will be limited to 
some criteria. Among the different models that are used for CFD, the modeling in this 
thesis will be limited to Reynold averaging Navier-Stokes (RANS) model. Regarding 
the turbulence modeling the model used is the two-equation model (𝐾 − 𝜀) with wall 
function. There will be no comparison between different models, due to time 
limitations. In addition, the simulations will be limited to steady state, the boundary 
conditions are kept the same for all models and the number of cell is limited to 3 
million. If more than 3 million cells are used in the simulation, the simulation will 
take more than a week to converge, which is not suitable for the thesis time frame. 
 

1.4 What is CFD? 
 
CFD stands for computational fluid dynamics, which is a power full tool for 
simulating fluid turbulence, chemical reactions, heat transfer and many other 
phenomena related to the fluid flow. In addition, CFD can be defined as a method of 
applying the laws of fluid mechanics and the mathematical equations and principles to 
sophisticated computer algorithms to produce software or computer programs for 
visualizing the data. Alternatively, it is the analysis of fluid flow, heat transfer, and 
other related phenomena with the aid of advanced physical models, numerical 
techniques, software and computers.  
 
CFD simulations are used in a wide range of industrial and non-industrial 
applications, such as: 
-  Vehicle industry: CFD methods are applied to many areas in vehicle industry, for 

example to predict the drag and lift forces, simulating the combustion in the 
combustion chamber, simulating the air flow around the radiator to predict the 
cooling efficiency and many other applications. CFD has become a vital tool when 
designing a modern vehicle. 

- Cooling of equipment, including microcircuit.  
 
CFD has lagged other CAE (Computer aided engineering) software, because of the 
complexity of the associated phenomenon in the fluid flow. The final goal from 
developing CFD software is to reach a tool that is capable to provide a simulation 
comparable to other CAE tools such as stress analysis codes. 
 
CFD has many advantages compared to testing in the lab, some of this advantages 
are: 
- CFD provides a lower cost compared to running an experiment in a lab or using a 

wind tunnel in case of running an aerodynamic analysis for a vehicle. 
- Short lead-time, by using new software one can prepare and run a simulation in 

hours.  
- A great advantage in CFD is post-processing, which makes understanding the flow 

features much easier for the user. 
- The ability to observe results where experiments cannot be held, such as observing 

the airflow under the vehicle hood. 
- Easy to run different configurations and comparing between them. 
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One can mention that, CFD has some disadvantages, which is requiring modeling that 
brings uncertainties and complex phenomena to describe mathematically.  
Versteeg, H.K., Malalasekera, W. (2007). 
 

1.5 How does a CFD code work? 
 
All CFD codes use numerical algorithms to solve fluid flows problems. CFD software 
provides a user interface for the user to input all the problem parameter, boundary 
conditions and to examine the results of the simulation. Hence, all CFD commercial 
software is divided into three main categories: pre-processor, solver and post-
processor.  
 

1.5.1 Pre-processor 
Using a user-friendly interface uses the pre-processing to input the case’s data into the 
CFD software. Then the data is transformed into a suitable form for the solver to work 
on it. In the pre-processing, the user does the following steps: 
- Define the geometry of the case, which called the computational domain. 
- Define the boundary conditions. 
- Create the mesh and choose between different types of meshes that can be used, the 

selection depends on the case. A suitable mesh for this case might not be a suitable 
for another case.  

- Select the physical models. 
- Define the fluid properties.  
 
The solution domain is divided into smaller domains where each one has a center 
point called a “node”. The solution parameters such as pressure, velocity and 
temperature are saved at the nodes. A general rule is the larger the number of nodes 
the more accurate the solution. Although by increasing the number of nodes, the 
solution cost increases in terms of more computational power needed as well as more 
time is needed to get the solution. The best meshes are the ones that are non-uniform: 
coarse in the areas where there is a little change between the nodes and finer at areas 
where the change is relatively large. The ultimate CFD software is the one with the 
capability to generate an automated mesh that is refined automatically in areas where 
a refined mesh is needed and coarse when a coarse mesh is needed. The mesh quality 
is very important as the solution accuracy depends on it.    

1.5.2 Solvers 
The solver uses a numerical technique to find the solution. The most popular 
technique is the finite volume method, because it has the following advantages: 
- It is easy to understand and to code. 
-  All the terms to be approximated have a physical meaning. 
- The solution domain is divided into small non-overlapping control volumes and the 

differential conservation equations are integrated in each control volume. 
- At the center of each control volume, there is a node where the variables are saved. 
- It can have any kind of mesh, which makes it suitable for all geometry. 
- The values on the faces for each node are interpolated form the values of the nearby 

nodes.         
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1.5.3 Post-processor 
The post-processing is the data visualization tools that are used by the user to observe 
the solution of the case. These include: 
- Geometry and mesh display. 
- Vector plots such as speed plots. 
- Contour plots such as pressure plots. 
- Tracking of particles. 
-  Surface plots. 
- Animation of the fluid flow. 
 
In general, one can say the graphics output for the CFD software have improved the 
understanding of ideas to the non-specialist.  
 
CFD solutions for fluid flows can be as good as the physics models that impeded in 
the code, but is user dependent to achieve good accuracy. Therefore, the CFD code 
user should have skills in order to achieve good results from the simulations. There 
are decisions and choices that have to be made by the user in order to improve the 
simulation quality and result in solutions that are more accurate. Those decisions 
could be to solve the flow for turbulent or laminar, two or three dimension, which 
model should be used for the turbulent flow and many other decisions and choices. 
For the user to be able to select the most suitable models for each case this require 
large experience and knowledge about the CFD codes. Versteeg, H.K., Malalasekera, 
W. (2007).  
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2 Modeling in STAR-CCM+ 
STAR CCM+ is commercial software used for fluid dynamics simulations developed 
by a company called CD-adapco. 
There are general steps to be followed when doing a simulation on STAR-CCM+, 
these steps will be explained and detailed in this chapter in a sequential way, starting 
from the first step to the last one. 
 

2.1 Modeling geometry 
Most of the simulations in STAR-CCM+ start with creating a 3D model of the case 
under investigation. This model can be created in any 3D- CAD software and it has to 
be well prepared, cleaned of all the unnecessary parts. In addition, STAR-CCM+ has 
it is own 3D-CAD tools, where one can build the model from scratch using these 
tools. 
 
3D-CAD model is a solid model of the case that is need to be investigated and is 
created in any of the CAD software packages that is available. 
The process of creating a 3D-CAD starts with creating a sketch in 2D. Then this 
sketch can be converted to 3D model by creating a series of operations such as 
extruding or revolving. One can modify the model even more by drawing new 
sketches on the available body and add or subtract parts to the model by performing 
more operations such as sweeps, lofts, revolution and extrusion. 
 
STAR-CCM+ has a tool called 3D-CAD which allows the user to build 3D models 
from scratch, this tool is specialized to suit the needs of CFD analysis, it also allows 
the user to make changes to available models in easy and quick way before rerunning 
the simulation. CD-adapco (2014). 
 

2.2 Defining the simulation topology 
Geometry parts are used to define the surface of the model that is going to be 
simulated, but STAR-CCM+ does not work directly on the geometry parts. The 
domain where the mesh will be generated and transport equations are going to be 
solved is defined as regions, boundaries and interfaces. 
 
  When a model is being imported into STAR-CCM+, there are tools provided to 
convert the geometry surfaces into regions, boundaries and interfaces. A 
recommended practice is that, the user should do this step after making all the 
changes needed to the geometry part before converting the surfaces to regions and 
boundaries. CD-adapco (2014). 
 

2.3 Surface repair 
In order for STAR-CCM+ to create a good mesh the surface of the model should be 
prepared for the meshing operation. The surface preparation is done by using the 
surface repair tool. The surface repair tool provides a list of thresholds that counts the 
number of the faults that are presents on the surface. Each one of these thresholds has 
a distinguishing color. The surface on the model with a specific fault will have the 
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color of that fault. After identifying the faults on the model, one can use the available 
tools to fix these faults. 
One thing should be mentioned before explaining the surface repair tool is that, when 
geometry is imported to STAR-CCM+ the surface of this geometry will be divided 
into triangles, each on of them is called a face. 
 
The thresholds that are available in the surface repair tool: 
 

1. Pierced faces. 
When two faces intersect, each other are called pierced faces. This error can be fixed 
by deleting one of the faces. In many cases, deleting one of the faces might cause 
another error, so one should be careful when fixing this kind of error. 
 

 
Figure 2 Pierced faces, taken from CD-adapco (2014) manual. 

 
 

2. Face quality. 
Face quality is identified as the ratio between the inner circle radiuses multiplied by 2 
and the outer circle radius of the triangle. The face quality ranges between zero and 
one, zero being the worst quality and one is the ideal quality. 
 

 
Figure 3 Face quality, taken from CD-adapco (2014) manual. 
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3. Face proximity. 
Face proximity is the distance between two faces to the size of the face, it falls 
between zero and one, the low value indicate fold in the surface. This problem can be 
fixed by refining the mesh in the area of the fold. 
 

 
Figure 4 Face proximity, taken from CD-adapco (2014) manual. 

 
 
 

4. Free edges. 
A free edge is an edge that is connected to one face only. This problem can be solved 
by filling the holes. 
 

 
Figure 5 Free edges, taken from CD-adapco (2014) manual. 

 
 

5. Non-manifold edges. 
Non-manifold edge is an edge that is connected to more than two faces. This problem 
can be fixed by deleting one of the extra faces, but one should be careful as deleting a 
face could cause another error. 
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Figure 6 Non manifold edges, taken from CD-adapco (2014) manual. 

 
The above figures shows the error that one should check before start using any one of 
the repair tools.  
 
Now is time to explain some of the useful tools that one can use to repair the surface. 
 

• Offset faces and edges. 
Faces and edges can be inflated or translated in one direction or both directions using 
this tool. When this tool is activated, the user can specify the surface that should be 
fixed, the thickness and the direction in which the surface should be inflated or 
translated. 
 

• Merge and imprint surfaces. 
This tool allows the user to merge and imprint two surfaces into each others. This tool 
is very useful when there are pierced surfaces, these surface can simply be imprinted 
into each other to become on surface. Also it can be useful when two parts are joined 
together and they should touching each others at certain surfaces, then these surfaces 
can be imprinted into each others. 
The user can specify a certain tolerance, and if there are two surfaces with a distance 
between them that is less than the tolerance, these surfaces will be imprinted. 
 
By using the above-mentioned tools, one can prepare the surface for the meshing 
process, but first one should make sure that all the faults are equal to zero except the 
face quality, as this one will be fixed when the mesh is been generated. CD-adapco 
(2014). 

 
 

2.4 Meshing 
A mesh is a discretized representation of the computational domain, which the 
physics solver uses to provide a numerical solution. 
 
The mesh creation in STAR-CCM+ starts with selecting the models for the mesh 
continua. The mesh models are divided into two main groups, surface mesh and 
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volume mesh. Each one of these groups has its own models from which the user can 
choose which suit his simulation purpose the best. 
 
 

2.4.1 Surface mesher models 
The surface remesher is used to improve the quality of the surface by re-triangulate 
the surface and prepare it for the volume mesh. A golden rule is that, a good volume 
mesh starts from a good surface mesh. 
 
Two models are available on STAR-CCM+ for the surface remesher.  
 

2.4.1.1 Surface remesher: 
The surface remesher has the following properties: 
 

1. Curvature refinement: this option when activated will do a refinement of the 
surface mesh based on the curvature of the surface. 

 
2. Proximity refinement: when this option is activated, it refines the surface mesh 

based on the proximity to the original surface. 
 
 

3. Compatibility refinement: when this option is activated, will do refinement 
based on the face size during the re-meshing. 

 
4. Retain geometric features: it keeps the feature that is inherited from the 

original geometry as long as face quality does not reduce. 
 
 

5. Aligned mesh: when this option is activated, aligned mesh will be generated 
which means, the rectangular surface will have a uniform size. 

 
6. Base size: here the user can specify the reference length value for all size 

control. 
 
 

7. Minimum face quality: the minimum quality to allow topological 
modification, this value should be between zero and 0.2. 

 
8. Surface growth rate: the maximum ratio between two neighbors triangles. 
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Figure 7 re-meshed surfaces, taken from CD-adapco (2014) manual. 

2.4.1.2 Surface wrapper 

The surface wrapper can be used to generate a surface that is manifold, closed and 
non-intersecting. The surface wrapper is used when poor quality CAD is used. See 
CD-adapco manual (2014).  
 

2.4.2 Volume mesher 
STAR-CCM+ provides alternative types of meshes that are available for the user. 
These volume meshes are used to generate the volume mesh after re-meshing the 
surface. Each one of these meshes has advantages and disadvantages, depending on 
the user application and preferences. 
 
The types for the meshing models are: 
 

1. Tetrahedral mesh. 
In all types of mesher, the tetrahedral is the fastest mesh generator and uses the least 
amount of memory. It also provides a multi region mesh and conformal mesh between 
the different regions. 

2. Trimmed mesh. 
The trimmed mesh model provides a robust, fast and high quality mesh that is suitable 
for simple and complex geometry. This type of mesh is suitable for large domains 
such as car in a wind tunnel, airplanes and ships. 
General rules for using trimmed mesh are: 

• Simulations where have a large aligned flow directions. 
• When refinement in the wake region is needed, for example a car in a wind 

tunnel. 
 

3. Thin mesh. 
Thin mesher is used to generate mesh for thin parts like sheet metals. The type of 
mesh that is generated by the thin mesher is a prismatic mesh. 
 

4. Advancing layer mesh with built in prismatic layers. 
This mesher model generates a prismatic layer mesh around the surface of the region 
and then fill the region with a polyhedral mesh. When this mesher model is used there 
is no need to use a separate prismatic mesher model as it is included in the mesher 
model already. 
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5. Prism layer mesher 
 
The prism layer mesher is used to generate the mesh around the surface; it has to be 
used with a core volume mesh, as it does not generate the mesh in the core.  
The prism layers can only be generated at the boundary of type wall. 
 
The importance of the prism layers generated from its ability to help resolve the wall 
flow accurately, and help determine the heat transfer and forces from the wall and 
also flow features as separation. 
 
Near the wall the viscous sub layer has very steeped gradient that the normal mesh 
would not be enough to capture it, using a prism layers mesher will help capture this 
gradient, what will give more accurate results. 
 
The prism layers mesher has some properties that are used to control it: 
 

• Number of prism layers. 
The user can control the number of prism layers that is generated inside the prism 
layers by setting a specific number. 
 

• Prism layer total thickness. 
The overall thickness for the prism layers can be defined by the user using this 
property. 
 

• Prism layer stretching. 
Prism layer stretching is the ratio between the thickness of each layer and the next 
layer. 
 
The volume mesher has some requirements that should be fulfilled before the mesher 
is executed. The surface should be closed, manifold and non-intersecting. For fixing 
these errors, see Section 3.4.1. 
Often the cell quality issues in the volume mesh can be tracked back to the surface 
mesh face quality, it is recommended that the same setting for the volume mesh 
should be used for the surface mesh. CD-adapco (2014). 
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Figure 8 tetrahedral meshes, taken from CD-adapco (2014) manual. 

 
Figure 9 Polyhedral mesh, taken from CD-adapco (2014) manual. 

 
Figure 10 Trimmed mesh, taken from CD-adapco (2014) manual. 

 

Figure 11 Advancing layer mesher, taken from CD-adapco (2014) manual. 
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2.5 Modeling physics 
This section deals with the physics models available in STAR-CMM+, when each 
model should be selected and what they do. 
 
There are varieties of physics models in STAR-CCM+ one can choose from. When 
some models are selected other models has to be selected as well. For example when 
one select fluid model a flow model has to be selected as well. 
 
The physics models in STAR-CCM+ are: 
 

2.5.1 Space models 
The space model in STAR-CCM+ has four sub-models for the user to choose from 
them: 
 

• Axisymmetric model. 
This model intends to work on two-dimensional axisymmetric meshes. In this type of 
space model the boundaries edges that lie on the axis should of type axis, and the 
mesh should be oriented in a way that the axis of rotation is at y=0 in global 
coordinate space. 
 

• Shell three-dimensional model. 
This model is used when the thickness of the geometry is small enough to assume it as 
a single cell thickness in the normal direction. 
 

• Two dimensional model 
This model is designed to work with two-dimensional meshes and the depth is 
assumed equal to one unit in SI units. 
 

• Three dimensional model 
This model is used when three-dimensional mesh is used.  
 

2.5.2 Time models 
The time models in STAR-CCM+ are: 

• Steady model 
This model is used when steady state is the target of the simulation. When this model 
is selected the changes due to the time are not considered in the results of the 
simulation. In other words only the spatial derivatives are being considered. 
 

• Harmonic balance model 
This model is used when the solution repeats it self with known frequency, and is 
designed to solve periodic unsteady problems. 
 

• Implicit unsteady model 
In this time model an implicit solver is used. 
 

• Explicit unsteady model 
In this time model an explicit solver is used. 

• PISO unsteady model 
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This model is used for transient states with small time steps. It is only compatible with 
simulations using K-Epsilon model and no combustion. 
 

2.5.3 Modelling materials 
All the fluids and metals can be modeled in STAR-CCM+ as it provides a large group 
of all the metals and the fluids. Also the user can select a multi-component gas, liquid 
or solid and can customize the materials properties. 
 

2.5.4 Modelling flow and energy 
For simulating the flow and energy in STAR-CCM+ there are two main models the 
user can select from them: 
 

• Coupled flow and energy model 
The coupled flow model solves the energy, momentum and mass equations at the 
same time. Coupled flow model is suitable for compressible flows, natural convection 
and flow with large force and energy sources. Moreover it needs more work to be set 
up than the segregated flow model, requires more memory, but might converge faster 
if a good mesh is generated for the model. 
The number of iterations needed to reach a solution is independent on the mesh size 
when using the coupled solver. 
 
 

• Segregated flow and energy model 
The segregated model solves the flow equations for each variable separately (pressure 
and velocity) or in uncoupled way. This model is best for high Mach number cases, 
incompressible and mildly compressible flows. It has the advantage over the coupled 
model when the computational power is an issue.  
The number of iterations needed to reach a solution depends on the mesh size when 
using the segregated solver. 
 

2.5.5 Modelling the viscous regime   
STAR-CCM+ gives the user the choice to select on of the three models for the 
viscous regime depending on the application of the simulation. 
 

• Inviscid flow 
Inviscid flow is a flow on an ideal fluid, which means that the fluid viscosity is 
neglected and it will have no effect on the simulation results. The boundary layers are 
not solved and this causes a significant reduction in the computation power needed for 
the simulations.  
 

• Laminar flow  
This model is used when the flow is at low velocities and there is no disruption in the 
layers, the fluid flow in parallel layers. It is suitable when the flow has low Reynolds 
number so that transition to turbulence flow does not occur. 
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• Turbulent flow 
Turbulent flow is characterized by chaotic, instability and irregular motion in space 
and time. This model is suitable for most of the cases, because turbulence affects most 
of the flows around us. 
 
STAR-CCM+ has many turbulence models that are used. In this report, only the most 
common used models are going to be discussed. 
 

1. K- Epsilon model: 
A K-Epsilon model is the most common model used in CFD to simulate mean flow 
characteristics for turbulent flow conditions. The model attempts to predict turbulence 
by two partial differential equations for two variables. One variable is the kinetic 
energy 𝜅 and the second is the dissipation rate ℰ. 
 

2. K-omega model: 
This model is a common two-equation turbulence model. That is used as a closure for 
the Reynolds-averaged Navier–Stokes equations. It also uses two variables to predict 
turbulence. This model has two equations to be solved, the first for the kinetic energy 
𝜅 and the second for the specific dissipation rate 𝜔.  
 

2.5.6 Modelling wall treatment 
Wall treatment is a group of assumptions that are used in STAR-CCM+ to model the 
near wall for each turbulence model. There are three types of wall treatment in STA-
CCM+: 
 

1. High wall treatment: 
In the approach it is assumed that the first cell from the wall lies in the logarithmic 
region of the boundary layer, y+ >= 30. This treatment is suitable for models that do 
not damp the turbulence in the near wall region. 
 

2. Low wall treatment: 
In this treatment t is assumed that the first cell from the wall lies within the viscous 
sub layer, y+<= 1. In this model, the viscous sub layer is resolved. This treatment is 
suitable for the low Reynolds number turbulence models. 
 

3. The all wall treatment: 
This is a hybrid approach to enable low wall treatment for fine meshes and high wall 
treatment for coarse meshes, 1=<y+<=30. CD-adapco (2014). 
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3 The Experiment 
An experiment was carried out to have an idea about how the heater will behave in 
real life and operation conditions. 
 
The experiment took place in Eldi workshop in Stockholm. The setup for the 
experiment was as follow, the heater was connected to a tank of 30-liter capacity, the 
water in the tank has 19o C of temperature, a flow meter was connected to the outlet 
and thermometer was used to read the temperature of the water in the tank. The Figure 
below shows the experiment setup. Photos from the experiment are available in the 
appendix Section (7.1). 

 
Figure 12 Experiment setup 

The starting temperature of the water was 19oC as mentioned before. The pump of the 
heater was switched on for a few seconds before turning on the heating elements, so 
the transient state of the flow at the beginning does not affect the temperature 
measuring. The flow rate and the temperature of the water were registered every 
minute. 
The water is heated until reached a temperature of 70oC then the thermostat switched 
off the heating elements automatically.  
 
This experiment was carried out for two units each one has a heating source of 9800 
W, but only the results for one unit is registered in this report, the other unit was 
tested only to validate the results. The table below shows the flow-rate and 
temperature registered each minute. 
 

Table 1 Experiments results for Eldi heater 9800 W 

Time [min] Flow rate [L/min] Temperature [oC] 
0 0 19.0 
1 13.5 19.8 
2 13.4 24.1 
3 13.7 27.6 
4 13.6 31.7 
5 13.7 35.8 
6 13.4 39.7 
7 13.6 43.4 
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8 13.7 47.3 
9 13.6 51.2 
10 13.5 55.3 
11 13.6 58.8 
12 13.6 62.6 
13 13.8 66.3 
14 13.5 70 

 
From the above table one can calculate the average increase in temperature of the 
water every two minutes. The two minutes interval was selected because it is the time 
roughly needed for the whole water in the tank to be heated by the heater. By dividing 
the tank capacity by the flow rate one can calculate the time needed for the water in 
the tank to be heated providing that the flow-rate in measured. 
 
                                              

!"#$ !"#"!$%& (!" !"#$%)
!"#$!%# !"!" !"#$ (!".!)

= 2.2 𝑚𝑖𝑛                          (1) 

 
Table 2 Increase in temperature 

Time [min] Temperature [oC] Increase in temperature 
[oC] 

0 19.0 0 
2 24.1 5.1 
4 31.7 7.6 
6 39.7 8.0 
8 47.3 7.6 
10 55.3 8.0 
12 62.6 7.3 
14 70 7.4 

 
By calculating the average increase in temperature from the above Table, one can use 
this average to compare it with the result from the simulation to validate the 
simulation. The difference between the inlet temperature and the outlet temperature of 
the water from the simulations should be equal to the average increase from the 
experiment in ideal world. 
 
The average increase in the temperature from the experiment was found to be 7.2oC.  
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4 Modelling and Results 

 

4.1 Geometry 
Different geometries are used for the simulations additional to the original one. The 
idea is to observe how the change in the geometry will affect the efficiency of the 
heater in terms of the temperature distribution in the outlet. For all the simulations, the 
boundary conditions are kept constant to focus only on the effect of the geometry. 
All geometries were prepared by using the repair surface tools provided by 
STARCCM+ see Section (2.3). 
 
 
 

 
Figure 13 Original model 

 

4.2 Boundary conditions 
The boundary conditions for all the simulations are kept the same. The inlet water has 
a temperature of 19o C. This temperature is chosen to be consistent with experiment 
where the inlet temperature is 19o C and the flow rate is 18 L/min, which is acquired 
from the data of the pump that is used for the heating element. Nevertheless, when the 
flow rate is measured it was found to be 13.6L/min. Hence, it was decided to run the 
simulation for the original model two times using a flow rate of 18 and 13.6L/min to 
cover all the possibilities. Regarding the new models the simulation will be run using 
18L\min flow rate and if the results from the simulation show improvement then the 
same model will be simulated using 13.6 L/min, this arrangement due to limitation in 
time and computational power. 
 The total heat source coming from the elements is 9800W and the pressure at the 
outlet is 0.2 bar. The Figure below shows the boundary conditions for one of the 
models. 
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Figure 14 Boundary conditions 

 
 
 

4.3 Mesh refinement 
 
Mesh refinement study was carried out, because the mesh quality is of great 
importance for the accuracy of the simulation. A good quality mesh will make the 
simulation converge faster and the model will have less bad cells. 
 
The base size of the mesh was altered between 0.5, 1,3 and 5 mm to observe the effect 
on the result for different size mesh. The smaller the mesh base size the larger the 
number of cells, hence the longer time it takes for the simulation to converge. 
Therefore, the optimum solution was to find a base size that is not very small and at 
the same time give accurate results. 
The original model was used for the mesh study and to choose which size is the best 
for the simulations. Due to time limitation the mesh that is assumed the best was used 
for the other models. 
 
The table below shows the effect of the base size for the mesh on the number of cells. 
The prism layers are kept only two, because it was found that the prisms layers affect 
the number of cell greatly. Hence, a separate study on the affect of the prisms layers 
on the number of cells was conducted. 
 
Table 3 Number of cells based on the base size 

Base size Prism layers Number of cells 
5mm 2 329,819 
3mm 2 1,019,928 
1mm 2 1,797,506 
0.5mm 2 3,132,879 
 
The prism layers affect the accuracy in the region where the fluid meets the metal. In 
our case, this area has significant importance, because it directly affects the heat 
transfer from the elements to the fluid. Therefore, a suitable compromise of less 
number of prism layers and good accuracy should be achieved.  
The table below shows the effect of the prism layers number on the cells number. 
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Table 4 Number of cells based on number of prisms 

Base size Number of prisms Number of cells 
5mm 2 329,819 
5mm 4 744,136 
5mm 6 905,194 
5mm 10 1,227,071 
 
From the table above one can notice the effect of the prisms on the number of cells. 
Due to computational resource limitation it was found that the maximum number of 
cells the computer used for the simulations could tolerate is 3 Million cells.  
 
Based on the results from the simulations using different base size mesh, it was found 
that the 1 mm mesh gives the most accurate results and when used with a combination 
of 2 prisms layers the number of cells turned out to be 3.1 Million cell, which is 
within the limit of the computer to run the simulation. The 0.5mm mesh did not add 
any more details to the result when the results compared to the 1mm mesh results.  
The Figures below shows the temperature distribution at the outlet for the 1 mm and 
0.5mm meshes. 
 
From the below Figures one can see there is no difference in the result, which means 
using 1 mm mesh will be a smart choice. However, when comparing between the 
results from the 3mm, 5mm and 1 mm mesh one can notice the rough shapes of the 
contours that shows the temperature distribution in 3mm and 5mm mesh. This means 
the results are not accurate enough and the temperature progression is not as smooth 
as in 1mm and 0.5 mm mesh. 
 
The Figures that show the mesh, residuals and temperature distribution in the water 
volume for 1mm, 3mm, 5mm and 0.5 mm are available in the appendix Section (7.2). 
 
Finally, the mesh for model 4 has a base size of 2mm instead of 1mm, because the 
length of the heating elements increased the number of cells to reach 5million, which 
exceeded the computational power. Hence, the base size for the mesh was increased 
to 2 mm to reduce the number of cells and without compromising the result accuracy. 
The confirmation of the 2mm mesh accuracy was done by running a simulation for 
the original model using mesh with base size of 2mm; the same results were acquired 
as when running the simulation with 1 mm base size. 
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Figure 15 Outlet 1mm base size mesh 

 

 
Figure 16 Outlet 0.5 mm base size mesh 

 
Figure 17 Outlet 3mm base size mesh 

 
Figure 18 Outlet 5mm base size mesh 
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4.4 Modelling 
Modeling the heater in STARCCM+ was done a according to the following steps: 

4.4.1 Building the geometry 
The model was built in 3D CAD using Inventor 2015, and then it was imported into 
STAR CCM+. The surface of the model was prepared for generating the mesh using 
the tools provided by STAR CCM+. The internal volume of the heater, which should 
be filled with water, was extracted using a tool in STAR CCM+ called “Extract 
volume”. 
After that, each part in the model was assigned to region, for example assigning the 
heating elements, thermo-tubes to region steel and the fluid volume to region fluid. 

4.4.2 Generating the mesh 
The models used to generate the mesh were surface remesher, polyhedral mesher and 
prism layer mesher. The table below shows the settings for generating the mesh. 
 
 
 

Table 5 Mesh continua 

Base size 1mm 
Number of prism layers 2 
Prism layers stretching 1.5 
Prism layers thickness 1.95mm 
Surface growth rate 1.3 
Relative min size 40% of base size 
Relative max size 100% of base size 
 
When the mesh was generated the growth of prism layers were restricted only to the 
interface of the fluid and the solid region. Because the interface between the fluid and 
the region is where the heat transfer occurs, hence the prism layer is used to capture 
this phenomenon.  

4.4.3 Physics continua 
Two physics continua were set up for the solid and fluid region. The model selection 
for the physics was as follow:  

• For the solid region: 
 
Table 6 Physics models for solid region 

Space 3 dimensional 
Time Steady 
Material Steel 
Optional Segregated solid energy 
 

• For water region: 
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Table 7 Physics models for water region 

Space 3 dimensional 
Time Steady 
Material Water 
Flow Segregated flow 
Equation of state Constant density 
Viscous regime Turbulent 
Reynolds-Averaged Turbulence  K-Epsilon Turbulence 
Wall treatment  Segregate fluid temperature 
Optional Two layer all y+ treatment 
 

4.4.4 Residuals and mass imbalance 
The residuals plot is generated automatically by STAR CCM+ to show the error of 
the simulation and to show when the simulation is converged. A second plot was 
generated to examine the accuracy of the simulation is the mass imbalance. 
 
The mass imbalance plot was generated using the following equation: 
 
                               (Total mass flow ÷inlet mass flow)×10                                   (2) 

 
The smaller the number results from the equation the more accurate results achieved. 
 
Finally, a plane sections were created to plot the variables under study, and several 
scenes were created to visualize the results. The plots for the residuals and mass 
imbalance can be seen in the appendix Section (7.3).  
 
 
 

4.5 Results 
Each model results will be discussed separately and in the discussion and conclusion a 
comparison between the models will be discussed. 
 

4.5.1 The original model 
This model represents the heating unit that is used now by Vehtec to heat the 
passenger’s compartment in the vehicles. The figure below shows the geometry of the 
original Eldi heater. One can notice that the inlet has an oval shape for this unit and 
the outlet is circular. The simulation of this model was run twice to simulate the two 
flow rates 18 and 13.6L\min. 
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Figure 19 Original model geometry 

 
After running the simulations until it converged the following results were collected: 
4.5.1.1 Temperature distribution on the elements 

From Figures 20 and 21, one can observe that the heating elements are hotter on the 
up side than the down side. This means the volume of the water passes through the 
down side is larger than that passes through the up side, which means the distribution 
of the water inside the heating unit is not uniform.  
 
 

4.5.1.2 Streamlines  
From Figure 22, one can see that the majority of the flow passes through the down 
side of the elements and goes through the outlet. Moreover, the water on the topside 
keeps circulating inside the heater for a longer time what makes it hotter than the 
water in the bottom side. Unfortunately, only a small a mount this water in the upside 
leaves the unit, on the other side the majority of the water that leaves the heater it is 
from the bottom side. The water from the bottom side is not as hot as the one from the 
upside, because it leaves the heater faster. The streamlines for both flow rates 18 and 
13.6l/min are similar, hence there was no need to show the streamlines for 13.6l/min 
simulation. 
 
4.5.1.3 Temperature distribution over the water volume  

The Figures 23 and 24 represents the water volume inside the heating unit. This 
Figure validates the previous assumption that the water in the topside is warmer than 
the bottom side. 
 

4.5.1.4 Outlet temperature  
Figures 25 and 26 show the temperature distribution on the outlet surface, the average 
temperature for the surfaces is 26.5oC for 18l/min flow rate and 28.7oC for the 
13.6l/min flow rate. 
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Figure 20 Heating elements of original model, 18l/min flow rate 

 
Figure 21 Heating elements of original model, 13.6l/min flow rate  

 
Figure 22 Streamlines of original model, 18l/min flow rate 

 
 
Figure 23 Water volume, 13.6l/min flow rate 
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Figure 24 Water volume, 18l/min flow rate 

 

 
Figure 25 Outlet temperature of original model 18l/min flow rate 

 

 
Figure 26 Outlet temperature 13.6l/min flow rate 
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4.5.2 Model 1 
This model is the first attempt to improve the efficiency of the heating unit. The idea 
behind the design of this model is to create turbulence inside the heating unit, which 
will increase the heat transfer between the water and the heating elements. The inlet is 
situated on the side of the heating unit, therefore the water will move in spiral shape 
when it enters the heating unit. Moreover, the heating elements were distributed inside 
the volume in a uniformed way that it thought to give better heat transfer between the 
heating elements and the water. The simulation for this model was carried out using a 
flow rate of 18l/min. 
 

 
Figure 27 Model 1 geometry 

 
4.5.2.1 Temperature distribution on the elements 

One can see from Figure 28 that the element temperature in the middle is higher than 
the edges and the coolest part is the one close to the inlet. 
 
4.5.2.2 Streamlines  

From Figure 29, one can notice that the radial motion of the water is the reason 
behind the lower temperature on the elements part that is closer to the cylinder wall. 
Meanwhile the water volume in the middle of the cylinder has less motion relatively, 
which reduce the heat transfer between the water and the elements. 
 
4.5.2.3 Temperature distribution over the water volume 

Figure 30 shows the gradual heating of the water as it moves through the heating unit, 
also shows gradual distribution of the temperature, which is opposite to Figure 27 of 
the original model. 
 

4.5.2.4 Outlet temperature 
Figure 31 shows the temperature distribution over the outlet surface, the average 
temperature is 26.5oC. 
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Figure 28 Heating elements of model 1 

 
Figure 29 Streamlines of model 1 

  
Figure 30 Water volume model 1 

 
Figure 31 Outlet temperature 



 

 CHALMERS, Applied Mechanics, Master’s Thesis 2015:89  29 
 

4.5.3 Model 2 
Model 2 is designed with flanges inside to work as obstacles for the water flow, hence 
the water will stay in contact with the heating elements for longer period and the 
turbulence should increase. As a result, the heat transfer to the water is expected to 
increase. This model is simulated using 18 and 13.6 l/min flow rates. The Figures 
from the 13.6 l/min flow rate simulation can be seen in the appendix Section (7.3). 
 

 
Figure 32 Model 2 geometry 

 

4.5.3.1 Streamlines 
Figure 33 present the streamlines generated for the simulation of model 2. The flanges 
deflects the water, hence it should increase the turbulence and the heat transfer rate. 
 

4.5.3.2 Temperature distribution over the heating elements 
One can see from Figure 34 that the temperature distribution on the heating elements 
is not uniform.  
 

4.5.3.3 Water volume 
From Figure 35, one can see the gradual heating of the water as it passes through the 
heating unit. 
 

4.5.3.4 Outlet temperature 
Figure 36 shows the temperature distribution over the outlet, the average surface 
temperature is 26.8oC for 18l/min flow rate simulation and 29.3oC for 13.6l/min flow 
rate. The Figures of the second simulation with 13.6l/min flow rate are in Section 
(7.3).  
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Figure 33 Streamlines of model 2,18L/min flow rate 

 
Figure 34 Heating elements of model 2, 18L/min flow rate 

 
Figure 35 Water volume of model 2, 18l/min flow rate 

 
Figure 36 Outlet temperature of model 2, 18l/min flow rate 
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4.5.4 Model 3 
The purpose from this model was to observe the effect of increasing the surface area 
on the heat transfer from the elements to the water. It is known from the physics that 
the transfer of heat increases when the surface area increase. The number of heating 
elements in this model is doubled comparing to the previous models. 
 

 
Figure 37 Model 3 geometry 

4.5.4.1 Streamlines 

The Figure 38 shows the streamlines of model 3 and how the water moves inside the 
heating unit. 
 
4.5.4.2 Heating elements temperature 

One can see from Figure 39 that the part of the heating elements near to inlet is the 
coldest and the middle part of the heating elements is the hottest.  
 
4.5.4.3 Water volume 

Figure 40 shows the temperature distribution on the water volume of model 3. 
 

4.5.4.4 Outlet temperature 
Figure 41 represents the temperature distribution on the outlet with average of 26.4oC. 
 
 
 
 
 



 
 

32  CHALMERS, Applied Mechanics, Master’s Thesis 2015:89 
 

 
Figure 38 Streamlines of model 3 

 

 
Figure 39 Heating elements temperature of model 3 

 
Figure 40 Water volume of model 3 

 

 
Figure 41 Outlet temperature 
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4.5.5 Model 4  
Model 4 is designed in a way that is thought to be the optimum, by considering the 
advantages and disadvantages of the previous models. Two flow rates are used to 
simulate this model, 13.6 and 18 l/min. 
The heating elements for this model is designed in spiral shape to increase the surface 
area without needing to increase the volume of the heating unit. 
The Figures resulted for the simulation with flow rate 13.6 l/min can be found in the 
appendix Section (7.3). 
 

 
Figure 42 Model 4 geometry 

4.5.5.1 Streamlines  
Figure 43 shows the streamlines of model 4 when simulated with 18l/min flow rate. 
The streamlines for 13.6l/min flow rate is not different from Figure 46 only in the 
temperature of the water, one can see it in the appendix Section (8.3). 

4.5.5.2 Heating elements 
Figure 44 shows the temperature distribution over the heating elements of model 4. It 
can be noticed that the inner coil is warmer than the outer coil, which indicate less 
heat is transferred from the inner coil to the water. 

4.5.5.3 Water volume 
Figure 45 shows the temperature distribution on the water volume of model 4. The 
water moves in spiral shape due to the design of the inlet and the heating elements. 
4.5.5.4 Outlet temperature 

Figure 46 shows the temperature of the water on the outlet, the average temperature is 
26.6oC for 18l/min flow rate and for the 13.6l/min flow rate is found to be 29oC. 
The Figures for the simulation of 13.6l/min can be seen in the appendix Section (7.3).   
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Figure 43 Streamlines, 18l/min flow rate 

 

 
Figure 44 Heating elements, 18l/min flow rate 

 

 
Figure 45 Water volume, 18l/min flow rate 

 
Figure 46 Outlet temperature of model 4, 18l/min flow rate  
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5 Discussion and conclusion  
 
In this chapter the results of the simulations will be discussed: 
 

• Original model: 
From looking at the results of the original model, one can notice that the shape of the 
inlet and the positions of both of the inlet and the outlet cause the water to leave the 
heater very quickly. Hence, it does not warm to a higher temperature. 
Moreover, due to the positions of the inlet, outlet and heating elements a circulation 
bubble is created in the topside of the heater, which restricts the flow of the water.  
Therefore, by changing the position of the inlet, outlet and the heating elements one 
can improve the efficiency of the heating unit.  
 

• Model 1 
In this model the inlet shape and position has been altered to check if this could 
increase the efficiency of the heating unit. Moreover, the heating elements are 
distributed evenly inside the heating unit. However, instead of all these changes the 
outlet temperature remained the same as the original model. 
 

• Model 2 
From looking at the results of model 2, one can see the flanges succeeded in working 
as an obstacle for the flow and created more turbulence, which should increase the 
heat transfer rate from the heating elements to the water.  
This model gave the best results as the temperature increased by 0.30C when the flow 
rate is 18l/min and 1oC when the flow rate is 13.6l/min.  
 

• Model 3 
From looking at the results of model 3, one can see that the streamlines are not similar 
to the ones from model 1,despite the both models have the same positions of the inlet 
and the outlet. This non-similarity is probably due to increasing the number of the 
heating elements, which affect the flow shape. 
 

• Model 4 
From looking at the streamlines of model 4, it was observed that the majority of the 
flow is exposed to the outer coil, which makes the outer coil colder than the inner one 
due to the heat transfer to the water.  
 
In conclusion, the models that show improvement are model 2 and model 4. Model 2 
shows the best result with a temperature increase by 7% and if this increase is 
reflected on the time needed for the water to be heated to 70oC, then the reduction in 
time will be 2 minutes, which is 14%. 
More simulations are needed in the future to investigate more arrangements for the 
inlet and outlet positions, plus the heating element shape and surface area.   
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7 Appendix 
7.1 Photos from the experiment 

 
Figure 47 Setup of the experiment 

 
 

 
Figure 48 Flow meter 
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7.2 Mesh refinement study 
 
 

 
Figure 49 Plane section of 0.5 mm base size mesh 

 
 
 
 
 

 
Figure 50 Plane section of 1mm base size mesh 
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Figure 51 Plane section of 3mm base size mesh 

 
 
 
 
 

 
Figure 52 Plane section of 5 mm base size mesh 
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Figure 53 Temperature of water volume, 0.5mm base size mesh 

 
Figure 54 Temperature of water volume,1mm base size mesh 

 

 
Figure 55 Temperature of water volume, 3mm base size mesh 

 
Figure 56 Temperature of water volume, 5mm base size mesh 
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Figure 57 Residuals, 0.5mm base size mesh 

 
 

 
Figure 58 Residuals, 1mm base size mesh 

 
 

 
Figure 59 Residuals, 3mm base size mesh 
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Figure 60 Residuals, 5mm base size mesh 
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7.3 Simulations results 

 
Figure 61 Heating elements of model 2,13.6l/min flow rate 

 
 
 
 

 
Figure 62 Water volume of model 2,13.6l/min flow rate 

 

 
Figure 63 Outlet of model 2,13.6l/min flow rate 
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Figure 64 Heating elements of model 4,13.6l/min flow rate 

 
Figure 65 Water volume of model 4,13.6l/min flow rate 

 

 
Figure 66 Outlet of model 4,13.6l/min flow rate 
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Figure 67 Mass imbalance of model 1 

 
Figure 68 Mass imbalance of model 2,13.6l/min flow rate 

 
 

 
Figure 69 Mass imbalance of model 2,18l/min flow rate 
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Figure 70 Mass imbalance of model 3 

 

 
Figure 71 Mass imbalance of model 4,13.6l/min flow rate 

 

 
Figure 72 Mass imbalance of model 4,18l/min flow rate 
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Figure 73 Mass imbalance of original model 13.6l/min flow rate 

 

 
Figure 74 Mass imbalance of original model 18l/min flow rate 

 

 
Figure 75 Residuals of model 1 
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Figure 76 Residuals of model 2, 13.6l/min flow rate 

 

 
Figure 77 Residuals of model 2, 18l.min flow rate 

 

 
Figure 78 Residuals of model 3 
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Figure 79 Residuals of model 4,13.6l/min 

 

 
Figure 80 Residuals of model 4, 18l/min flow rate 

 

 
Figure 81 Residuals of original model, 18l/min flow rate 
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Figure 82 Residuals of original model, 13.6l/min flow rate 


