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Fig. 1. A Wiener-Hammerstein model structure.

1. INTRODUCTION

Nonlinear systems are present everywhere in real life and,
though linear system theory and linear system identifica-
tion methods have been often successfully applied in this
field, the need of nonlinear system identification methods
is increasing. One approach to nonlinear system identifica-
tion is to work with block-oriented nonlinear models, de-
fined as the interconnection of two kind of elements: linear,
time-invariant dynamic and static nonlinear blocks. One
example is the Wiener-Hammerstein (W-H) model, con-
sisting of two linear dynamic blocks and a static nonlinear-
ity in the middle, see Fig. 1. The identification of the W-H
systems is challenging due to the presence of two dynamic
systems whose contributions to the system behaviour are
not easily separable. Generally, in system identification,
the prediction error estimate gives an asymptotic efficient
estimator when the number of data goes to infinity, see
Ljung (1999) and Söderström and Stoica (1988). However,
in practical cases, the cost function can have many local
minima and, therefore, the main challenge is to generate
a good initial estimate for the identification procedure, in
order to increase the chances that the estimate converges
to the global minimum. Many approaches deal with the
minimization of the prediction error and the initial esti-
mate problem is solved in different ways.

In Wills and Ninness (2012) a random, stable, initialization
of GW and GH is performed. The authors show that there
are many local minima, so the estimation needs to be

repeated several times with different starting values, in
order to decrease the risk of termination in local minima.

In the case of W-H model, it is relatively easy to estimate
the product of transfer functions GW GH through the Best
Linear Approximation (BLA). Thus, other approaches
are built on the splitting of the BLA in the two linear
subsystems. Usually, in this case, the drawback is that a
large number of optimization problems are needed.

In Sjöberg and Schoukens (2012), the ”brute force”
method performs an iterative optimization for each of the
possibly pole/zero partition (combinatorially growing in
the model order). This requires high computational time
if the model order is greater than 10.

In Sjöberg et al. (2012), a least squares approach is used
where the input signal is filtered through the basis func-
tions of the first linear block, containing the poles of the
BLA, and the output is filtered through the basis functions
describing the inverse of the BLA, based on the zeros of
the BLA. This approach does not have the drawback with
exponential increasing of the computational time with
respect to the model order but the linear blocks will have
higher order than necessary.

More recently, in Vanbeylen (2014), the fractional ap-
proach is introduced for initialization. All poles and zeros
of the BLA are placed both in GW and GH , and initial-
ized using fractional exponents. The estimation problem
is solved in frequency domain, where the fractional expo-
nents can be easily handled. The method provides good
results but the estimation problem is nonlinear in the
fractional exponents. It is solved with an interative mini-
mization algorithm which can be caught in local minima.

The contribution of this work is a time-domain formulation
of the fractional approach. In time-domain it is possible
to rewrite the predictor of the system as a linear regres-
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Ljung (1999) and Söderström and Stoica (1988). However,
in practical cases, the cost function can have many local
minima and, therefore, the main challenge is to generate
a good initial estimate for the identification procedure, in
order to increase the chances that the estimate converges
to the global minimum. Many approaches deal with the
minimization of the prediction error and the initial esti-
mate problem is solved in different ways.

In Wills and Ninness (2012) a random, stable, initialization
of GW and GH is performed. The authors show that there
are many local minima, so the estimation needs to be

repeated several times with different starting values, in
order to decrease the risk of termination in local minima.

In the case of W-H model, it is relatively easy to estimate
the product of transfer functions GW GH through the Best
Linear Approximation (BLA). Thus, other approaches
are built on the splitting of the BLA in the two linear
subsystems. Usually, in this case, the drawback is that a
large number of optimization problems are needed.
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tion methods have been often successfully applied in this
field, the need of nonlinear system identification methods
is increasing. One approach to nonlinear system identifica-
tion is to work with block-oriented nonlinear models, de-
fined as the interconnection of two kind of elements: linear,
time-invariant dynamic and static nonlinear blocks. One
example is the Wiener-Hammerstein (W-H) model, con-
sisting of two linear dynamic blocks and a static nonlinear-
ity in the middle, see Fig. 1. The identification of the W-H
systems is challenging due to the presence of two dynamic
systems whose contributions to the system behaviour are
not easily separable. Generally, in system identification,
the prediction error estimate gives an asymptotic efficient
estimator when the number of data goes to infinity, see
Ljung (1999) and Söderström and Stoica (1988). However,
in practical cases, the cost function can have many local
minima and, therefore, the main challenge is to generate
a good initial estimate for the identification procedure, in
order to increase the chances that the estimate converges
to the global minimum. Many approaches deal with the
minimization of the prediction error and the initial esti-
mate problem is solved in different ways.

In Wills and Ninness (2012) a random, stable, initialization
of GW and GH is performed. The authors show that there
are many local minima, so the estimation needs to be

repeated several times with different starting values, in
order to decrease the risk of termination in local minima.

In the case of W-H model, it is relatively easy to estimate
the product of transfer functions GW GH through the Best
Linear Approximation (BLA). Thus, other approaches
are built on the splitting of the BLA in the two linear
subsystems. Usually, in this case, the drawback is that a
large number of optimization problems are needed.

In Sjöberg and Schoukens (2012), the ”brute force”
method performs an iterative optimization for each of the
possibly pole/zero partition (combinatorially growing in
the model order). This requires high computational time
if the model order is greater than 10.

In Sjöberg et al. (2012), a least squares approach is used
where the input signal is filtered through the basis func-
tions of the first linear block, containing the poles of the
BLA, and the output is filtered through the basis functions
describing the inverse of the BLA, based on the zeros of
the BLA. This approach does not have the drawback with
exponential increasing of the computational time with
respect to the model order but the linear blocks will have
higher order than necessary.

More recently, in Vanbeylen (2014), the fractional ap-
proach is introduced for initialization. All poles and zeros
of the BLA are placed both in GW and GH , and initial-
ized using fractional exponents. The estimation problem
is solved in frequency domain, where the fractional expo-
nents can be easily handled. The method provides good
results but the estimation problem is nonlinear in the
fractional exponents. It is solved with an interative mini-
mization algorithm which can be caught in local minima.

The contribution of this work is a time-domain formulation
of the fractional approach. In time-domain it is possible
to rewrite the predictor of the system as a linear regres-
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sion where the coefficients are algebraic expressions in the
fractional exponents and in the parameters of the static
nonlinearity. Then, given these coefficients, the fractional
exponents can be analytically computed. On a low order
example, uniqueness of the solution in the fractional ex-
ponents is shown.

The paper is organized as follows. A description of the
model setting and the model structure is given in Section 2.
In Section 3, the fractional approach is presented in details
together with the uniqueness results. Section 4 summarizes
the main steps of the new identification procedure and, in
Section 5, a simulation example is used to test the new
method.

2. PROBLEM FORUMLATION

2.1 Model Structure

The classical model structure of W-H type in the discrete-
time is described by

v(t) = GW (q−1, θW )u(t), (1)

w(t) = f(θNL, v(t)), (2)

ŷ(t) = GH(q−1, θH)w(t), (3)

where ŷ(t) is the predicted output of the system, and
GW (q−1, θW ) and GH(q−1, θH) are linear time invariant
transfer functions in the delay operator q−1. The function
f is a static nonlinearity parameterized with θNL. All the
parameters in the model can be collected in the vector

θ = [θW , θNL, θH ]. (4)

The two linear parts of the model can be further described
by

GW (q−1, θW ) =

∑nW
B

k=0 b
W
k q−k

1 +
∑nW

A

k=1 a
W
k q−k

, (5)

GH(q−1, θH) =

∑nH
B

k=0 b
H
k q−k

1 +
∑nH

A

k=1 a
H
k q−k

, (6)

where θW = [bW0 , ..., bW
nW
B

, aW1 , ..., aW
nW
A

] and, in a similar

way, θH = [bH0 , ..., bH
nH
B

, aH1 , ..., aH
nH
A

]. The static nonlinear-

ity is expressed as a basis functions expansion

f(θNL, v) =

d∑
k=1

θkNLfk(v), (7)

where fk are the basis functions, θkNL are the parame-
ters entering linearly in f and d is the number of basis
functions. In the following, it is assumed that the model
structure contains the true system to identify.

2.2 Data

For the estimation of the parameter vector (4) a set of

N data is assumed to be available, {u(t), y(t)}Nt=1. For
consistency, it is assumed that the input signal u(t) is a
realization of a Gaussian process and it is known exactly,
while the signal y(t) is the output of a true W-H system,
y0(t), corrupted by stationary additive noise

y(t) = y0(t) + ny(t). (8)

The intermediate signals v(t) and w(t) are not available.

2.3 General Identification Problem

A general identification problem aims to define the esti-

mate θ̂N of the parameter vector θ. A standard prediction
error method is used. It is based on minimizing the pre-
diction error

ε(t, θ) = y(t)− ŷ(t, θ), (9)

where y(t) is the measured output and the prediction
ŷ(t, θ), from (3), is given by

ŷ(t) = GH(q−1, θH)f(θNL, GW (q−1, θW )u(t)). (10)

Then the estimate θ̂N can be found by

θ̂N = argminθVN (θ), (11)

where VN (θ) is the criterion of fit defined by

VN (θ) =
1

N

N∑
t=1

ε2(t, θ). (12)

Since the predictor is not a linear regression, the compu-

tation of θ̂N must be done using a gradient based iterative
algorithm. That is, given a start value θ(0), iterate

θ(i+1) = θ(i) −Ri
dVN (θ)

dθ
(13)

until convergence. Typically, VN (θ) can have many minima
and the initial estimate θ(0) is crucial for the success
of the minimization. Depending on Ri, (13) describes a
wide class of well-known algorithms, like Gauss-Newton
and Levenberg-Marquardt algorithms. In the example
in Section 5 a Levenberg-Marquardt algorithm is used,
implemented in a software package for the Mathematica
platform, Sjöberg and Hjalmarsson (2009).

3. THE FRACTIONAL APPROACH FOR
INITIALIZATION

3.1 The Best Linear Approximation

In general, the first step of the initialization procedure
for the identification of W-H model is to compute the best
linear modelG(q−1) of the plant. Under the assumptions of
Gaussian input u(t) and output y(t) obtained by filtering
u(t) through a system of form (1)-(2)-(3) with linear
parts being stable, single input, single output, finite order
transfer functions, and the true nonlinear part f0 being a
continuous function R → R, the best linear approximation
(BLA) of the plant converges, asymptotically with N , to

kG0
W (q−1)G0

H(q−1), (14)

where G0
W and G0

H are the true linear functions and k
is a constant value which depends on u(t),f0, G0

W and
G0

H (Pintelon and Schoukens, 2001). In other words, the
BLA captures the dynamics of the two linear parts and the
nonlinear function is approximated with a constant. This
result holds when N → ∞ but, in practice, the number
of data is limited and the BLA is only used to obtain the
initial parameter estimate for the linear parts.

3.2 The Fractional Approach

The main idea is to use the BLA to initialize the Wiener
and Hammerstein dynamics in a fractional way. The posi-
tion of poles and zeros, coming from the BLA, is param-
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eterized between GW and GH through a new vector of
parameters [α, β], in the following way

ĜW (q−1, α, β) =

∏nB

i=1(1− zBLA
i q−1)βi

∏nA

i=1(1− pBLA
i q−1)αi

, (15)

ĜH(q−1, α, β) =

∏nB

i=1(1− zBLA
i q−1)1−βi

∏nA

i=1(1− pBLA
i q−1)1−αi

, (16)

where zBLA
i and pBLA

i are, respectively, zero and pole of
the BLA. The indeces nA and nB denote the dimension
of α and β vectors: for each real pole (zero) or pair of
complex poles (zeros) only one αi (βi) is introduced, in
order to keep the complex pairs together. In this way,
αi = 1 (βi = 1) locates the corresponding pole (zero)
at GW , αi = 0 (βi = 0) locates the corresponding pole
(zero) at GH . Therefore, by estimating α and β, the best
position is identified. The optimization problem for the
estimation of α and β can be written as

minα,β,θNL
VN (θ), (17)

where the criterion of fit VN (θ) is computed using the error
between the system output y(t) and the predictor

ŷ(t, θ) = ĜW (q−1, α, β)f(θNL, ĜH(q−1, α, β)u(t)). (18)

Note that the parameters of the nonlinearity θNL are
estimating at this step as well, θ = [θNL, α, β].

In Vanbeylen (2014), this fractional approach has been
introduced and the optimization problem (17) has been
solved in the frequency domain. Aim of the next sections
is to present a time-domain solution for (17).

3.3 The Time-Domain Formulation

The main problem that arises in the time-domain is to
find a proper formulation of the predictor (18), since, in
general, α and β can be different from 0 or 1 and, thus,
the time-delay operator q may have fractional exponents
(see Equations (15) and (16)). A possible solution to the
problem is to expand the two transfer functions GW and
GH using the Taylor series, with respect to the delay
operator q−1. For example, the expansion around 0 of a
transfer function with only one pole is

1

(1− pq−1)α
≈1 + pαq−1 + p2α(α+ 1)q−2+

+ p3α(α+ 1)(α+ 2)q−3 + · · ·+
+ pnα(α+ 1) · · · (α+ n− 1)q−n,

(19)

where α is a scalar and n is the expansion order. The choice
of n is crucial in this context. In order to retrieve a good
approximation of the transfer functions, the expansion
order needs to be increased as the model order increases.
This leads, in general, to expansions containing huge
algebraic expressions in α and β, see (19), that increase the
computational time of the optimization procedure. Thus,
the idea is to re-define the expansion order as the sum of
two new indeces, n = n1 + n2, where:

• n1 defines the number of terms in the expansion which
depend on α and β;

• n2 = n− n1 is the number of remaining terms in the
expansion in order to ensure a ”good” approximation.
These terms can be parameterized using dummy
parameters di (not depending on α, β). ”Good”
is here defined as the measure of the comparison

between the prediction error of the BLA and the
product of the two expansions.

Using these two new indeces, the expansion of the example
(19) becomes

1

(1− pq−1)α
≈1 + pαq−1 + p2α(α+ 1)q−2 + · · ·+

+ pn1α(α+ 1) · · · (α+ n1 − 1)q−n1+

+ d1q
−(n1+1) + · · ·+ dn2

q−n,
(20)

that can be rewritten as
1

(1− pq−1)α
≈1 +A1(α, p)q

−1 +A2(α, p)q
−2

+ · · ·+An1(α, p)q
−n1+

+ d1q
−(n1+1) + · · ·+ dn2

q−n,

(21)

where A1(α, p), ..., An1
(α, p) are the coefficients of the

expansion depending on the known dynamics and the
new parameter α. Therefore, by using the expansions, the
predictor (18) becomes

ŷ(t, θ) =

= G̃W (q−1, α, β, dW )f(θNL, G̃H(q−1, α, β, dH)u(t)),
(22)

where G̃W and G̃H represent the series expansions of ĜW

and ĜH that, in the general case, can be expressed as

G̃W (q−1, α, β) =1 +A1(α, β)q
−1 + · · ·+An1

(α, β)q−n1+

+ dW1
q−(n1+1) + · · ·+ dWn2

q−n,

(23)

G̃H(q−1, α, β) =1 +B1(α, β)q
−1 + · · ·+Bn1

(α, β)q−n1+

+ dH1
q−(n1+1) + · · ·+ dHn2

q−n.

(24)

In (23) and (24), A1(α, β), ..., An1
(α, β), B1(α, β), ...,

Bn1(α, β) are the coefficients of the Taylor series depend-
ing on the known system dynamics and on the α, β pa-
rameters, while dW = [dW1 , ..., dWn2

], dH = [dH1 , ..., dHn2
]

are dummy coefficients. One could notice that (23) and
(24) can be seen as linear regressions in Ai(α, β), Bi(α, β).
With this new parameterization, the number of algebraic
expressions in α, β, defined by n1, can be kept low, without
affecting the goodness of the approximation. On the other
hand, n1 should be big enough in order to have, in the
predictor, a sufficient number of coefficients that allows
the computation of α and β. This aspect is discussed in
the next sections and, in particular, for a test example,
uniqueness in α and β, once the Taylor coefficients are
known, is shown.

3.4 Uniqueness in the Fractional Exponents

Assuming that the expansion order n has been chosen
to ensure a good approximation of GW and GH , it is
possible to show that values for α and β can be analytically
computed. To do so, a small example is presented. It
consists of a Wiener-Hammerstein system with one pole
and one zero in the first linear part (a1 and b1 with
a1 �= b1), one pole in the second linear part (a2), and a
second degree polynomial nonlinearity in the middle:
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ĜW (q−1, α, β) =

∏nB

i=1(1− zBLA
i q−1)βi

∏nA

i=1(1− pBLA
i q−1)αi

, (15)
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(α, β)q−n1+

+ dW1
q−(n1+1) + · · ·+ dWn2

q−n,

(23)

G̃H(q−1, α, β) =1 +B1(α, β)q
−1 + · · ·+Bn1

(α, β)q−n1+

+ dH1
q−(n1+1) + · · ·+ dHn2

q−n.

(24)

In (23) and (24), A1(α, β), ..., An1
(α, β), B1(α, β), ...,

Bn1(α, β) are the coefficients of the Taylor series depend-
ing on the known system dynamics and on the α, β pa-
rameters, while dW = [dW1 , ..., dWn2

], dH = [dH1 , ..., dHn2
]

are dummy coefficients. One could notice that (23) and
(24) can be seen as linear regressions in Ai(α, β), Bi(α, β).
With this new parameterization, the number of algebraic
expressions in α, β, defined by n1, can be kept low, without
affecting the goodness of the approximation. On the other
hand, n1 should be big enough in order to have, in the
predictor, a sufficient number of coefficients that allows
the computation of α and β. This aspect is discussed in
the next sections and, in particular, for a test example,
uniqueness in α and β, once the Taylor coefficients are
known, is shown.

3.4 Uniqueness in the Fractional Exponents

Assuming that the expansion order n has been chosen
to ensure a good approximation of GW and GH , it is
possible to show that values for α and β can be analytically
computed. To do so, a small example is presented. It
consists of a Wiener-Hammerstein system with one pole
and one zero in the first linear part (a1 and b1 with
a1 �= b1), one pole in the second linear part (a2), and a
second degree polynomial nonlinearity in the middle:
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v(t) =
(1− b1q

−1)

(1− a1q−1)
u(t),

w(t) = f(θNL, v(t)) = θ1v(t) + θ2v
2(t),

y(t) =
1

1− a2q−1
w(t).

(25)

In order to build the predictor, the first step is to compute
the BLA of the whole system. Let’s assume, in this
example, that the BLA is known and exactly identical to
the series of the two linear functions

GBLA(q
−1) =

(1− b1q
−1)

(1− a1q−1)(1− a2q−1)
. (26)

Two poles and one zero mean that α = [α1, α2]
T is a

vector in R2 and β = β1 is scalar. Therefore, (15) and (16)
become

ĜW (q−1, α, β) =
(1− b1q

−1)β1

(1− a1q−1)α1(1− a2q−1)α2
, (27)

ĜH(q−1, α, β) =
(1− b1q

−1)1−β1

(1− a1q−1)1−α1(1− a2q−1)1−α2
. (28)

One could notice that ĜH is the same function as ĜW ,
but evaluated in (1− α) and (1− β) instead of α, β. This
property is preserved in the expansion. In fact, the generic
Ai(α, β), Bi(α, β) coefficients of the expansions (23), (24)
are defined as

Ai(α, β) =
Ĝ

(m)
W (0, α, β)

m!
, Bi(α, β) = Ai(1− α, 1− β),

(29)

where Ĝ
(m)
W (0, α, β) denotes the m-th derivative of ĜW

with respect to the delay operator, evaluated in 0. From
(23), (24) and (29) it follows that, if information about α,

β can be retrieved considering G̃W , the same information
is retrieved for (1−α), (1−β), considering G̃H . Thus, it is
sufficient to consider the Ai(α, β) terms, with i = 1, ..., n1,
in order to compute α, β.

Since the index n1 describes how many Ai(α, β) are
present in the expansion, it is reasonable to choose, in
a first attempt, n1 = 3 in order to have a number of
coefficients equal to the number of parameters to compute
(α1, α2, β1). With n1 = 3, the predictor for system (25)
can be computed as

ŷ(t) =ŵ(t) +B1ŵ(t− 1) +B2ŵ(t− 2)+

+B3ŵ(t− 3),
(30)

where ŵ(t) is the output of the nonlinearity and can be
expressed as

ŵ(t) =θ1u(t) + θ2u
2(t) +A1θ1u(t− 1)+

+ 2A1θ2u(t)u(t− 1) +A2
1θ2u

2(t− 1)+

+A2θ1u(t− 2) + 2A2θ2u(t)u(t− 2)+

+ 2A1A2θ2u(t− 1)u(t− 2) +A2
2θ2u

2(t− 2)+

+A3θ1u(t− 3) + 2A3θ2u(t)u(t− 3)+

+ 2A1A3θ2u(t− 1)u(t− 3)+

+ 2A2A3θ2u(t− 2)u(t− 3) +A2
3θ2u

2(t− 3).
(31)

For simplicity, in (30) and (31) the dummy parameters
have been omitted. This does not affect the analysis since
these parameters do not depend on α, β. The nonlinear
function is linearly parameterized in θNL and the Taylor
expansions of the fractional transfer functions can be seen

as a linear regression where the coefficients are algebraic
expressions in the unknowns α and β. Therefore it is possi-
ble to re-parameterize (30) as a linear regression of Taylor
coefficients and parameters of the static nonlinearity.

For the test example, it can be shown that, from the linear
regression parameters, values for the Taylor coefficients
A1, A2, A3, B1, B2, B3 can be identified. The next step is
to show that, given the Taylor coefficients, the solution in
α and β is unique.

Let’s denote with Ā1, Ā2, Ā3 the computed values for
A1(α, β), A2(α, β), A3(α, β). It is possible to build the
following system of equations

Ā1 = A1(α, β)

Ā2 = A2(α, β),

Ā3 = A3(α, β)

(32)

This system can be solved analytically. Replacing the
explicit expression for A1(α, β), A2(α, β), A3(α, β), system
(32) becomes

Ā1 =a1α1 + a2α2 − b1β1

Ā2 =
1

2
(a21α1(α1 + 1) + 2a1a2α1α2+

+ a22α2(α2 + 1)− 2(a1α1 + a2α2)b1β1+

+ b21(β1 − 1)β1)

Ā3 =
1

6
(a31α1(α1 + 1)(α1 + 2)+

+ 3a21a2α1(α1 + 1)α2+

+ 3a1a
2
2α1α2(α2 + 1)+

+ a32α2(α2 + 1)(α2 + 2)+

− 3(a21α1(α1 + 1) + 2a1a2α1α2+

+ a22α2(α2 + 1))b1β1+

+ 3(a1α1 + a2α2)b
2
1(β1 − 1)β1+

− b31(β1 − 2)(β1 − 1)β1)

(33)

The system (33) consists of three polynomial equations in
α1, α2, β1. The first equation of system (33) is linear. Thus,
it is possible to compute, for example, α1 in function of α2

and β1

α1 =
Ā1 − a2α2 + b1β1

a1
. (34)

Replacing (34) in the second equation of (33), the
quadratic terms in α2, β1 are simplified and the equation
becomes

Ā2 =
1

2
(a22−a1a2)α2+

1

2
(Ā2

1+a1Ā1+(a1b1−b21)β1), (35)

linear in α2, β1. Thus, it is possible to compute

α2 =
Ā2

1 + a1Ā1 − 2Ā2 + (a1b1 − b21)β1

(a1 − a2)a2
. (36)

Replacing (34) and (36) in the third equation of (33), we
get a final linear equation in β1

Ā3 =
1

3
(a1b

2
1 + a2b

2
1 − b31 − a1a2b1)β1+

+
1

3
(2a1Ā2 + 2a2Ā2 + 3Ā1Ā2+

− a1a2Ā1 − a1Ā
2
1 − a2Ā

2
1 − Ā3

1).

(37)

Unique solution in α1, α2, β1 is retrieved and it can be
expressed as
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α1 =
K1 +K2b1 + (K3b1 +K4)a2 +K5

a1(a1 − a2)(a1 − b1)

α2 = −K1 +K2b1 + (K3b1 +K4)a1 +K5

a2(a1 − a2)(a2 − b1)

β1 =
K1 +K2a2 + (K3a2 +K4)a1 +K5

b1(a1 − b1)(a2 − b1)

(38)

where K1,K2,K3,K4,K5 are constant values depending
on Ā1, Ā2, Ā3

K1 = Ā3
1

K2 = Ā2
1 − 2Ā2

K3 = Ā1

K4 = K2

K4 = 3Ā3 − 3Ā1Ā2

(39)

The solution (38) points out a drawback of the approach.
In fact, if double poles are present or one pole simplifies
with a zero, at least two of the denominators in (38) will
be zero. This simple example shows that it is possible to
uniquely identify the parameter vectors α, β from a system
of equations built up using the coefficients of the Taylor
series. It also shows that, for uniqueness, index n1 has to
be chosen equal to the sum of the dimensions of vectors
α, β to identify.

4. THE IDENTIFICATION ALGORITHM

On a test example, the previous section has provided
results regarding uniqueness of the solution in the α, β
parameters. This, together with the identification of the
nonlinear parameters θNL, provides an initial guess θ(0) for
the iterative optimization. The values of α and β obtained
with this approach explain how the dynamics are divided
in the two linear parts. The next step of the identification
procedure consists in placing the poles and zeros in the
first or second linear part, according to the values of α and
β, and re-fitting both dynamics and nonlinear parameters.
Motivation for that is the fact that the BLA, as already
explained in Section 3.1, is only an approximation of the
true dynamics of the system, since the number of data is
limited. In the following, a summary of the main steps of
the identification procedure is presented.

(1) Estimate the BLA of the plant as a rational form.
(2) Choose indeces n and n1, and expand the two frac-

tional functions (15) and (16).
(3) Initialize the two expansions with αi =

1
2 , i = 1, ..., na

an βj =
1
2 , j = 1, ..., nb.

(4) Minimize the cost function (12) and determine the
values for α, β, where α, β appear as unknown
in the Taylor coefficients. The nonlinear parameters
θNL are estimated at this step as well. This can
be implemented through the standard Levenberg-
Marquardt algorithm (Marquardt, 1963).

(5) Place poles and zeros according to the computed
values of αi and βj and re-parameterized them as
well as the nonlinearity.

(6) Re-fit poles and zeros and nonlinear parameters.

Fig. 2. Poles (x) and zeros (o) of the two linear parts of
the true system.

Fig. 3. a) True nonlinearity. b) Poles (x) and zeros (o) of
the BLA.

5. RESULTS

5.1 Simulation Example

In this section the proposed algorithm is tested on data
generated by W-H model. A white Gaussian signal with
standard deviation 5 is used as input signal to a system
with the W-H structure. Figure 2 depicts the poles and
zeros of the two linear parts and Figure 3a) shows the
true nonlinearity. With this true system, 3000 data
samples were generated. The output is corrupted with
white Gaussian noise with standard deviation 0.1. The
steps of the identification algorithm are described in the
following.

(1) The BLA is estimated. For that, standard linear
system idendentification algorithms are used. The
poles and zeros of the BLA are shown in Figure 3b).

(2) Poles and zeros from the BLA are used to initialize
the fractional functions (15) and (16). Since the BLA
consists of two pairs of complex conjugate poles and
one real zero, two α and one β have to be introduced.
The expansion of (15) and (16) can be performed.
The index n1 is chosen to be equal to 3 (two α and
one β), while n = 14 gives a root mean square error
of 18.66, close to the one of the BLA (18.52).

(3) Parameters α1, α2, β1 are initialized with 0.5.
(4) The cost fuction (12) is minimized, obtaining values

for α, β (α1 = −0.11424, α2 = 1.05687, β1 = 1.16543)
and θNL. Values of α, β are classified to one or zero:
α∗
1 = 0, α∗

2 = 1, β∗
1 = 1.

(5) According to α∗
1, α

∗
2, β

∗
1 , the position of poles and

zeros is defined and they can be re-parameterized for
the final optimization step.
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be zero. This simple example shows that it is possible to
uniquely identify the parameter vectors α, β from a system
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series. It also shows that, for uniqueness, index n1 has to
be chosen equal to the sum of the dimensions of vectors
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results regarding uniqueness of the solution in the α, β
parameters. This, together with the identification of the
nonlinear parameters θNL, provides an initial guess θ(0) for
the iterative optimization. The values of α and β obtained
with this approach explain how the dynamics are divided
in the two linear parts. The next step of the identification
procedure consists in placing the poles and zeros in the
first or second linear part, according to the values of α and
β, and re-fitting both dynamics and nonlinear parameters.
Motivation for that is the fact that the BLA, as already
explained in Section 3.1, is only an approximation of the
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the identification procedure is presented.

(1) Estimate the BLA of the plant as a rational form.
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2 , j = 1, ..., nb.

(4) Minimize the cost function (12) and determine the
values for α, β, where α, β appear as unknown
in the Taylor coefficients. The nonlinear parameters
θNL are estimated at this step as well. This can
be implemented through the standard Levenberg-
Marquardt algorithm (Marquardt, 1963).

(5) Place poles and zeros according to the computed
values of αi and βj and re-parameterized them as
well as the nonlinearity.

(6) Re-fit poles and zeros and nonlinear parameters.

Fig. 2. Poles (x) and zeros (o) of the two linear parts of
the true system.

Fig. 3. a) True nonlinearity. b) Poles (x) and zeros (o) of
the BLA.

5. RESULTS

5.1 Simulation Example

In this section the proposed algorithm is tested on data
generated by W-H model. A white Gaussian signal with
standard deviation 5 is used as input signal to a system
with the W-H structure. Figure 2 depicts the poles and
zeros of the two linear parts and Figure 3a) shows the
true nonlinearity. With this true system, 3000 data
samples were generated. The output is corrupted with
white Gaussian noise with standard deviation 0.1. The
steps of the identification algorithm are described in the
following.

(1) The BLA is estimated. For that, standard linear
system idendentification algorithms are used. The
poles and zeros of the BLA are shown in Figure 3b).

(2) Poles and zeros from the BLA are used to initialize
the fractional functions (15) and (16). Since the BLA
consists of two pairs of complex conjugate poles and
one real zero, two α and one β have to be introduced.
The expansion of (15) and (16) can be performed.
The index n1 is chosen to be equal to 3 (two α and
one β), while n = 14 gives a root mean square error
of 18.66, close to the one of the BLA (18.52).

(3) Parameters α1, α2, β1 are initialized with 0.5.
(4) The cost fuction (12) is minimized, obtaining values

for α, β (α1 = −0.11424, α2 = 1.05687, β1 = 1.16543)
and θNL. Values of α, β are classified to one or zero:
α∗
1 = 0, α∗
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(5) According to α∗
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zeros is defined and they can be re-parameterized for
the final optimization step.
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Fig. 4. Root Mean Square Errors of the identification pro-
cedure when the BLA (front) and the productGW GH

(back) is used to initialize the model structure. From
the left: 1) RMSE of the BLA and GW GH . The BLA
shows a lower error, since it describes the best linear
model of the system; 2) RMSE of the product of the
expansions; 3) RMSE of the W-H model after the
fitting of α, β and θNL. In this case the model ini-
tialized with product GW GH performs better, since
the nonlinearity is now fitted and the position of poles
and zeros, for this model, is the true one; 4) RMSE of
the W-H model where α and β are classified to {0,1};
5) RMSE of the W-H model where poles and zeros
are re-fitted together with the nonlinear parameters;
6) Noise level.

Fig. 5. True and identified nonlinearity. The two curves
are overlapping.

(6) Poles, zeros and nonlinear parameters are re-fitted.
The result is a W-H model whose RMSE is compara-
ble with the noise level.

In Figure 4, the prediction errors of the main steps of
the identification procedure are shown. For comparison,
the prediction errors of the identification procedure when
the product of the true GW and GH is used, instead
of the BLA, are shown as well. Finally, Figure 5 shows
the comparison between the true nonlinearity and the
identified one.

The key point of the present approach is that the position
of poles and zeros from the BLA is parameterized and
the best position is retrieved. In order to compare this
result with the approach in Wills and Ninness (2012), the
position of the two complex pairs of poles of this example
has been randomly initialized between the first and the
second linear parts. The result of the test is that in the

25% of the cases the poles were not able to ”move” to the
best position, showing that a local minimum was found.

6. CONCLUSIONS

A time-domain formulation of the fractional approach for
initializing W-H models has been introduced. With this
formulation the initialization problem consists of two main
parts:

• using Taylor expansion, the time-domain predictor is
written as a linear regression where the coefficients
are algebraic expressions in the fractional exponents
and in the parameters of the static nonlinearity.
This result holds in general, under the assumption
of linearly-parameterized nonlinearity;

• given the coefficients, values for the algebraic expres-
sions can be identified. This allows to analytically
compute the fractional exponents, meaning that the
position of poles and zeros is determined. On a low
order example, uniquess of the solution is shown.
Generalization of this result to any model order is
addressed in future research.

This approach allows to retrieve a good initial estimate
which does not suffer of local minima problems. The initial
estimate is then used for the final optimization in all model
parameters.
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