
Convex modeling of conflict resolution at traffic intersections

Nikolce Murgovski, Gabriel Rodrigues de Campos, Jonas Sjöberg

Abstract— We study the problem of optimally controlling au-
tonomous vehicles to safely cross an intersection. The problem
is approached by solving an optimal control subproblem for
all permutations of crossing sequences. For a chosen crossing
sequence, we show that the subproblem of optimal longitudinal
vehicle control, subject to collision avoidance constraints, can
be formulated as a convex program. The proposed method
transforms the problem from the original time domain to
a space domain, and introduces a change of optimization
variables by replacing vehicles’ speed with its inverse. A case
study is provided showing the effectiveness of the proposed
method.

I. INTRODUCTION

The development of Intelligent Transportation Systems
(ITS) has enabled safer, smarter, and greener solutions by
leveraging advances in information technology to alleviate
major problems in the current road traffic system [1]. Recent
research has been focusing, among others, in prevention
of accidents, reduction of greenhouse gas emissions and
efficiency in terms of energy and infrastructure utilization.

A particular area of interest is efficient collision avoidance
algorithms for traffic intersections [2], [3], [4]. In Europe,
intersections-related accidents are responsible for 21 % of
traffic related deaths and 43 % of the non-fatal injuries [5].
Similar numbers have been reported from the U.S. [6]. Due
to the high risk of accidents, these scenarios are among
the most regulated, with vehicles guided simultaneously by
traffic lights, signs, road-markings and right-of-way rules.
As a consequence, they often form bottlenecks and even
when not causing congestion, existing coordination rules are
inherently inefficient, enforcing unnecessary decelerations
and stops and thereby wasting both fuel and time.

Cooperative ITS have the potential to improve traffic flow
and safety near intersections, without relying on inefficient
traffic lights or error-prone human control. Instead, vehicles
equipped with communication devices, have to coordinate
and agree on how to cross the intersection without collisions.
Ideally, by exploiting their communication capabilities, the
vehicles should be able to coordinate and achieve a quality
of service requirement, such as the minimization of the
aggregate fuel-consumption (e.g., by slowing down a light
vehicle instead of a bus or a heavy truck).
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This article focuses on cooperative conflict resolution tech-
niques for fully autonomous vehicles. Motivated by increas-
ing levels of autonomy in passenger cars, a lot of research
efforts have been focusing on such scenarios. Using a rule-
based approach, several works approached the coordination
problem based on the multi-agent systems paradigm [7], [8],
[9], [10]. Others, instead, used Model Predictive Control
(MPC) coordination strategies [11], [12], [13], [14], [15].
For instance, the authors of [13] exploit the structure of a
centralized, finite time optimal control problem, in order to
propose an approximate solution, while [14] considered a
fully decentralized solution based on sub-optimal decision-
making heuristics, using the concept of decision sequence.
This results were later extended in [15], where a low
complexity receding horizon control framework is described.
It is worth mentioning that collision avoidance has also
been approached from a safety verification point of view,
where the driver is overridden in case safety is compromised.
Among others, [2], [16], [17] exploited hybrid systems theory
and [18], [19], [20], [21] a scheduling-based approach.

In this paper, we propose a novel approach where op-
timal control subproblems are solved for all permutations
of crossing sequences. For such a set of solutions, our
control algorithm provides optimal control trajectories for
all vehicles, such that a quadratic cost function is minimized
and collisions avoided. We show that the optimal control
subproblems can be formulated as a convex program where
collision avoidance is enforced through spatial constraints
rather than temporal conditions, as usually used in literature.
To the best of our knowledge, such a convention, which may
offer sound advantages when tackling complex scenarios,
has not been proposed so far in literature. The contributions
of this paper are presented as follows: 1) modeling steps
are provided that translate the linear time-dependent vehicle
model into a linear position-dependent system; 2) vari-
able changes are proposed translating the time-dependent,
non-convex, mixed-integer safety constraints into convex,
position-dependent, linear constraints; 3) convex objective
functions suitable for the position-dependent formulation are
derived and analyzed.

The paper is organized as follows. Section II formulates
the intersection crossing problem in time domain. Section
III decouples the optimization problem in scheduling and
optimal control subproblem. In Section IV the optimal con-
trol subproblem is reformulated as a convex program, where
collision avoidance is enforced through spatial constraints.
Section V provides a case study that shows the efficiency of
the proposed method. Section VI closes the paper with final
discussions and conclusions
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Fig. 1. Illustration of a scenario where several autonomous vehicles
approach an intersection, defined by a range of positions over pre-defined
paths. Vehicles are approaching the intersection with a desired speed, where
the control variable is the longitudinal acceleration.

II. PROBLEM FORMULATION

Consider N > 1 autonomous vehicles approaching a
traffic intersection as shown in Fig. 1. For each vehicle i,
we assume that:

• a path is given and is known;
• the assigned path is perfectly followed;
• the acceleration along the path can be varied;
• all vehicles have synchronized clocks and are located

within a certain control radius centered at the intersec-
tion.

The case where several vehicles approach the intersection on
the same path, following each other, is not considered in this
study.

1) Longitudinal dynamics: Let xi(t) = [pi(t) ṗi(t)]
T de-

note the state vector of vehicle i, consisting of the longitu-
dinal position pi(t) and velocity ṗi(t) along its path. A full
measurement of the state xi(t) is available at all times. Each
vehicle is represented by a linear system

ẋi(t) = Axi(t) + Bui(t), ∀i ∈ N , (1)

with

A =

[
0 1
0 0

]
, B =

[
0
1

]
, (2)

where longitudinal acceleration is chosen as a control sig-
nal, i.e., ui(t) = p̈i(t). The set of vehicle indices is
N = {1, ..., N}.

As a part of the assigned driving task, each vehicle i is
tracking a reference velocity vir(t).

2) State and control constraints: Each vehicle i is subject
to state and control constraints

xi(t) ∈ [ximin(t),ximax(t)], ∀i ∈ N , (3)
ui(t) ∈ [uimin(t), uimax(t)], ∀i ∈ N , (4)

where the inequalities are imposed for all time instances
t ∈ [0, tif ]. The final time tif , when the vehicle reaches its
final destination pif , is free.

3) Critical set: For each vehicle i ∈ N , let Ci denote the
critical set,

Ci = {pi(t) ∈ [0, pif ] | pi(t) ∈ [Li, Hi]} , (5)

i.e., the set of all positions along the path where a collision is
possible. Here, Li and Hi, with Li < Hi ≤ pif , are bounds
on the position along the path of vehicle i. Note that these
parameters are dependent on the geometry of the workspace
and are time-invariant.

4) Occupancy interval: For each vehicle i, the occupancy
interval

Gi(ui(t)) = {t ∈ [0, tif ] | pi(t) ∈ Ci}, (6)

defines the set of time instances when the vehicle i resides
within the critical set Ci. Collision among vehicles is avoided
if only one vehicle at a time resides within its respective
critical set, i.e.,

Gi(ui(t)) ∩ Gj(uj(t)) = ∅, ∀i, j ∈ N , j 6= i. (7)

5) Problem statement: The performance of the system is
evaluated by a sum of cost functions

N∑
i=1

Ji(xi(t), ui(t), u̇i(t),xi(tif ), tif ), (8)

where the individual cost functions may differ for different
vehicles. The functions Ji(·) may include penalties on final
state, penalties for deviation from the reference velocity
vir(t), penalties for the control actions, penalties for changes
in control actions (e.g., discomfort penalties associated to
longitudinal jerk), or penalties for the total travel time, etc.
Detailed implementation of these functions is deferred to
Section IV-B.

We can now formulate the optimization problem as

min
ui(t),tif

N∑
i=1

Ji(xi(t), ui(t), u̇i(t),xi(tif ), tif ) (9a)

subject to
ẋi(t) = Axi(t) + Bui(t), ∀i ∈ N (9b)
xi(t) ∈ [ximin(t),ximax(t)], ∀i ∈ N (9c)
ui(t) ∈ [uimin(t), uimax(t)], ∀i ∈ N (9d)
xi(0) = xi0, xi(tif ) = xif , ∀i ∈ N (9e)
Gi(ui(t)) ∩ Gj(uj(t)) = ∅, ∀i, j ∈ N , j 6= i, (9f)

where the constraints are imposed element-wise,
∀t ∈ [0, tif ]. The initial and final state values are
denoted by xi0 and xif , respectively, and satisfy
xi0 ∈ [ximin(0),ximax(0)], xif ∈ [ximin(tif ),ximax(tif )].
Note that the actual final state values xi(tif ) are included
both in the objective function and as a hard constraint
in (9). This formulation is useful when only part of the
states are constrained to a target state (e.g., the final position
pif ), while other states (such as the final velocity) are only
penalized in the objective. Optimization variables are the
control trajectories ui(t) and the final times tif , ∀i ∈ N .



It is important to mention that the optimization prob-
lem (9) is non-convex and mixed-integer. More precisely, the
non-convexity arises from the mixed-integer constraint (9f)
enforcing safety, i.e., collision avoidance. This constraint
is central in the formulation (9), since it decides both the
crossing order of the vehicles over the intersection, while at
the same time preventing collisions by not allowing more
than one vehicle to occupy their critical set at the same
time. As such, the problem (9) is difficult to solve. In order
to tackle the complexity issue, the problem is decoupled
in Section III into two subproblems: 1) one that decides
the crossing sequence, which we refer to as the scheduling
problem, and 2) one that decides the control signals ui(t)
and prevents collisions, which we refer to as the optimal
control subproblem. Later, in Section IV, we provide our
main contribution by proposing a computationally efficient
method for solving the optimal control subproblem.

III. DECOUPLED SCHEDULING/CONTROL FORMULATION

One possible way to approach problem (9) is by a nested
optimization, where the optimal control subproblem is solved
for all possible crossing sequences generated in an outer
loop. The optimal solution is then obtained by selecting
the crossing sequence that minimizes the objective (9a).
Therefore, for the optimal crossing sequence, the optimal
control policies are those minimizing objective (9a) while
avoiding collisions among vehicles.

1) Crossing sequence: Let O ∈ NM×N be a matrix with
M = N ! rows and N columns, where each row contains a
unique permutation of the elements in N . Then, a crossing
sequence m is indicated as the m-th row in O, while
the index of the n-th vehicle in that crossing sequence is
indicated by Om,n.

For a given crossing sequence m, the optimal control
subproblem can be formulated as

Vm(·) = min
ui(t),tif

N∑
i=1

Ji(xi(t), ui(t), u̇i(t),xi(tif ), tif )

subject to
ẋi(t) = Axi(t) + Bui(t), ∀i ∈ N (10a)
xi(t) ∈ [ximin(t),ximax(t)], ∀i ∈ N (10b)
ui(t) ∈ [uimin(t), uimax(t)], ∀i ∈ N (10c)
xi(0) = xi0, xi(tif ) = xif , ∀i ∈ N (10d)
tk ≤ tl, ∀tk ∈ GOm,n(·), ∀tl ∈ GOm,n+1(·)

n = 1, ..., N − 1,
(10e)

where collision avoidance is enforced by (10e), which states
that the time when vehicle k exits the critical set must be
less than or equal to the time when the following vehicle l
in the sequence enters the critical set.

The solution to the original problem (9) is then obtained
by selecting the crossing sequence with minimum cost such
that

min
m

Vm(u∗i (t), t∗if ), m = 1, ...,M, (11)

where the star superscript indicates the optimal solution
obtained by solving the optimal control subproblem (10) for
the crossing sequence m.

The difference between the control problem (10) and
the original formulation (9) may seem subtle, as these
formulations differ only at the constraints (10e) and (9f).
However, the constraint (9f) requiring zero cardinality of
occupancy intervals intersection, is transformed in (10e) into
a simpler inequality constraint. However, problem (10) is
still not easy to solve, as there is no easy way to obtain the
optimal entry/exit times satisfying the collision avoidance
constraint (10e). A final transformation of problem (10) will
be provided in the following section, where the optimal
control subproblem is reformulated as a convex program.

IV. CONVEX MODELING OF THE CONTROL SUBPROBLEM

In this section, the optimal control subproblem (10) is
reformulated as a convex program, given that cost functions
Ji(·) are chosen to be convex. A central point in the proposed
method is the collision avoidance constraint (10e), for which
we propose an exact convex reformulation. The proposed
convex modeling steps include sampling in distance, change
of variables and linearization.

A. Sampling in distance and variable change

In order to reformulate (10e) as a convex constraint,
two problem transformations are performed. First, the linear
system (10a) is transformed via sampling in space, rather
than time. Here, we use a shorthand notation (·)′ to denote a
derivative with respect to distance, i.e., x′ = dx/dp. Second,
we propose a variable change zi(t) = 1/ṗi(t), which denotes
the inverse of vehicle speed.

1) Lethargy: The variable zi, with unit seconds/meters,
indicates the slowness or lack of energy of the system. In
the rest of the paper we refer to zi as lethargy.

2) Longitudinal dynamics: Let x̃i(p) = [ti(p) zi(p)]T de-
note the state vector of vehicle i, when the system is sampled
in the spatial coordinate p. Each vehicle is now represented
by the linear system

x̃′i(p) = Ax̃i(p) + Bũi(p), ∀i ∈ N , (12)

where spatial derivative of lethargy is chosen as the control
signal, i.e., ũi(p) = z′i(p), and the matrices A and B are
exactly as in (1). Note that in this formulation the travel
time of each vehicle i becomes a state in the system. Starting
from the basic definition of vehicle speed, ṗi(t) = dp/dt, it
follows that the travel time of each vehicle is related to the
lethargy by t′i(p) = zi(p).

3) Occupancy interval for a given crossing sequence:
The safety constraint (10e) is now transformed into N − 1
linear inequality constraints given by

tk(Hk) ≤ tl(Ll), k = Om,n, l = Om,n+1,

n = 1, ..., N − 1,
(13)

where k, l are indices of consecutive vehicles in a certain
crossing sequence m. The constraints (13) simply state that
the time the vehicle k exits the critical set must be less than



or equal to the time the following vehicle l enters the critical
set.

4) State and control constraints: Let vimin(t), vimax(t),
aimin(t), aimax(t), with 0 < vimin(t) ≤ vimax(t), aimin(t) ≤ 0,
aimax(t) ≥ 0, ∀t ∈ [0, tif ], denote the minimum and max-
imum speed and acceleration limits of the time-dependent
formulation (9). Then, the limits of the spatial state vector
x̃i(p) can be expressed as

x̃i(p) ∈ [x̃imin(p), x̃imax(p)], ∀i ∈ N , (14)

where the inequalities are imposed for all sampling instances
p ∈ [0, pif ], and the limits are defined as

x̃imin(p) =

[
0

1/vimax(p)

]
,

x̃imax(p) =

[ ∫ pif

0
dp/vimin(p)

1/vimin(p)

]
,

(15)

where the spatial speed limits vimin(p), vimax(p) in (15) are
an exact translation of the time-dependent state limits in (3).
Note that the total travel time of each vehicle is free, as we
mentioned earlier, but it is upper bound by

∫ pif

0
1/vimin(p)dp.

The upper bound simply states that the longest travel time for
each vehicle is the time needed to drive the distance [0, pif ]
with the minimum allowed speed vimin(p).

An exact translation of the acceleration limits into the
spatial domain is given as

− ũi(p) ∈ z3i [aimin(p), aimax(p)], (16)

which defines a non-convex set. The set (16) can be con-
vexified by linearizing z3i (p) about the reference speed vir,
giving

ũimin(·) = aimax(p) (2− 3vir(p)zi(p)) /v3ir(p)

ũimax(·) = aimin(p) (2− 3vir(p)zi(p)) /v3ir(p)
(17)

ũi(p) ∈ [ũimin(p, zi(p)), ũimax(p, zi(p))], ∀i ∈ N . (18)

This approximation underestimates the spatial domain max-
imum acceleration limit aimax(p) and overestimates the
minimum acceleration limit aimin(p), thus ensuring that a
solution obtained by enforcing (18) is feasible to the original
formulation as well. In normal driving conditions, when
the vehicle is rarely operated at the acceleration limits, the
linearization error will have small influence on the results.
The error could be further decreased by re-linearizing about
the optimal velocity trajectory, when the control problem is
to be solved iteratively. This is a standard MPC practice [22].

5) Initial and final state constraints: Let xi0 = [0 vi0]T ,
xif = [pif vif ]T , denote the initial and final state values
of the time-dependent state vector xi(t), where, without
loss of generality, all vehicles are placed at zero initial
position. Then, the initial and final values of the spatial
state vector x̃i(p) can be expressed as x̃i0 = [0 1/vi0]T ,
x̃if = [free 1/vif ]T .

6) Problem statement: We can now formulate the optimal
control subproblem as

min
ũi(p)

N∑
i=1

Ji(x̃i(p), ũi(p), ũ′i(p), x̃i(pif )) (19a)

subject to
x̃′i(p) = Ax̃i(p) + Bũi(p), ∀i ∈ N (19b)
x̃i(p) ∈ [x̃imin(p), x̃imax(p)], ∀i ∈ N (19c)
ũi(p) ∈ [ũimin(p, zi(p)), ũimax(p, zi(p))], ∀i ∈ N (19d)
x̃i(0) = x̃i0, x̃i(pif ) = x̃if , ∀i ∈ N (19e)
tk(Hk) ≤ tl(Ll), k = Om,n, l = Om,n+1,

n = 1, ..., N − 1,
(19f)

where, for a given crossing sequence m, the constraints
(19b)-(19f) are linear. Hence, if the cost functions Ji(·) are
convex, the optimization problem (19) is a convex program.

B. Convex cost functions

In this section we analyze cost functions that are com-
monly used in literature for the time-dependent problem
formulation (9), and we propose convex alternatives for the
spatial problem formulation (19).

1) Velocity tracking: A commonly used cost function,
penalizing the deviation from a reference velocity, is given
as

Ji1(ṗi(t)) = wi1

∫ tif

0

(ṗi(t)− vir(t))2dt, (20)

where wi1 is a nonnegative penalty parameter that may have
assigned a certain unit. An exact translation of (20) into a
spatial formulation with the usage of lethargy is

Ji1(zi(p)) = wi1

∫ pif

0

(
1√
zi(p)

− vir(p)
√
zi(p)

)2

dp,

(21)

which can be formulated as a convex second order cone
function [23]. The resulting control problem (19) is then a
convex second order cone program (SOCP).

However, it is often desirable to formulate the problem as a
convex quadratic program (QP), since QP solvers technology
is more mature than SOCP, and QPs can be solved faster
than SOCPs [23]. A quadratic cost alternative of (21) can
be obtained by linearizing the term in parentheses about the
reference velocity, yielding

J̃i1(zi(p)) ≈ wi1

∫ pif

0

v3ir(p)

(
zi(p)− 1

vir(p)

)2

dp. (22)

When the reference velocity vir(p) does not vary signifi-
cantly along the path, then the following quadratic formula-
tion is also possible

J̃i1(zi(p)) ≈ wi1v̄
3
ir

∫ pif

0

(
zi(p)− 1

vir(p)

)2

dp, (23)

where v̄ir is the mean value of the reference velocity vir(p).



2) Discomfort/actuator penalties: A simple model for
obtaining a comfortable drive and limiting actuator usage,
is to penalize high longitudinal acceleration and jerk as

Ji2(·) = wi2

∫ tif

0

u2
i (t)dt + wi3

∫ tif

0

u̇2
i (t)dt, (24)

with wi2, wi3 ≥ 0. An exact translation of (24) into the space
domain

Ji2(·) = wi2

∫ pif

0

zi(p)

(
ũi(p)

z3i (p)

)2

dp

+ wi3

∫ pif

0

zi(p)

(
−ũ′i(p)

z4i (p)
+ 3

ũ2
i (p)

z5i (p)

)2

dp,

(25)

is, however, a non-convex function. Therefore, we propose a
quadratic function of the form

J̃i2(·) = wi2

∫ pif

0

v5ir(p)ũ2
i (p)dp

+ wi3

∫ pif

0

v7ir(p)ũ′2i (p)dp,

(26)

which can be approximated as

J̃i2(·) ≈ wi2v̄
5
ir

∫ pif

0

ũ2
i (p)dp + wi3v̄

7
ir

∫ pif

0

ũ′2i (p)dp

(27)

for the case when the reference velocity does not vary
significantly along the path.

3) Travel time: Penalizing travel time, which is not trivial
in the time-dependent formulation, has a straightforward
description in the proposed spatial formulation. An example
of a simple, linear cost function is

Ji3(·) = wi4ti(pif ), (28)

where wi4 is a nonnegative weighting parameter.

V. CASE STUDY: OPTIMAL CONTROL OF THREE VEHICLES

This section provides a case study where three passenger
vehicles approaching an intersection, as in Fig. 1, need to
be optimally controlled. For simplicity, the same speed and
acceleration limits have been assigned to all vehicles, and the
same length of 10 m for their critical set. The optimization
horizon is 140 m for all the vehicles. Different initial and
reference velocities and initial distances to the critical set
are chosen, such that the optimal solution is not trivial. The
final states are free. The cost function for each vehicle is
Ji(·) = J̃i1(·) + J̃i2(·), where the individual cost terms are
defined as in (23) and (27). The problem data is presented
in Table I.

TABLE I
PROBLEM DATA.

[v1r(p), v2r(p), v3r(p)] = [47, 48, 50]km/h, ∀p ∈ [0, 140]m
[L1, L2, L3] = [76, 78, 80]m, [H1, H2, H3] = [86, 88, 90]m
vi0 = vir(0), ai0 = 0, i = 1, 2, 3
[vimin, vimax] = [30, 90]km/h, i = 1, 2, 3
[aimin, aimax] = [−3, 3]m/s2, i = 1, 2, 3
wi1 = 1 s/m2, wi2 = 1 s3/m2, wi3 = 0.5 s5/m2, i = 1, 2, 3

For a given crossing sequence, the optimal control prob-
lem (19) is a convex QP. The problem is transferred to a
discrete form using a first order Euler discretization with
a sampling interval of 1 m. Finally, the problem is auto-
matically translated to a standard SOCP by using the CVX
modeling language [?], [24]. The problem is solved with the
SOCP solver ECOS [25].

Having N = 3 vehicles, the number of unique crossing
sequences is M = 3! = 6. The optimal control subprob-
lem (19) is solved for each crossing sequence, for which
CVX reported an average computation time of about 70 ms
spent on the solver, on a PC with 2.67 GHz dual-core
processor and 4 GB RAM. Note that, in the relatively low
computation time, the solution of this subproblem provides
optimal control trajectories of all the vehicles, such that
the selected cost function is minimized and collisions are
avoided for a given crossing sequence. The computation time
can be further decreased by using a dedicated QP solver,
instead of the generalized SOCP solver.

By comparing the costs among the different crossing
sequences, it was found that the optimal crossing sequence
is [3 1 2]. The optimal control and state trajectories obtained
by solving the optimal control subproblem for the optimal
control sequence are given in Fig. 2. It can be observed
in the top plot of Fig. 2 that vehicle 3, which is initially
farthest away from the critical set, accelerates and crosses
the critical set first with maximum speed of about 60 km/h.
The acceleration profile is smooth (see middle plot in Fig. 2)
and reaches significantly low values when compared with
the maximum acceleration limit of 3 m/s2. Hence, the lin-
earized acceleration limits in (18) are not activated, and the
obtained optimal solution is optimal to the non-approximated
formulation as well. After agent 3, which enters and exits
the critical set at t3(80 m) = 5.1 s, t3(90 m) = 5.7 s,
respectively, the second vehicle passing the critical set is
vehicle 1, at t1(76 m) = 5.7 s, t1(86 m) = 6.5 s. This vehicle
is initially closest to the critical set, but with the lowest
reference velocity. Finally, vehicle 2 is the last one to cross
the intersection from t2(78 m) = 6.5 s to t2(88 m) = 7.5 s.
The optimal travel time vs. travel distance is shown in the
bottom plot of Fig. 2, where it can be observed, as expected,
that each vehicle enters the critical set just after the previous
vehicle exits the critical set.

VI. DISCUSSION AND CONCLUSION

This paper provides convex modeling steps for the prob-
lem of optimally controlling autonomous vehicles at inter-
sections. For a chosen crossing sequence, we show that the
remaining optimal control subproblem can be formulated as
a convex program that can be efficiently solved. The method
includes problem transformation from time to space domain
and change of optimization variables, where vehicle speed
is replaced by its inverse. We also provide simulation results
showing the effectiveness of the proposed method.

Note that this paper proposes a centralized control strategy.
However, having shown that the optimal control subproblem
is convex, it is possible to solve the control subproblem
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Fig. 2. Optimal state trajectories for an intersection scenario with three
vehicles. The results depict the optimal crossing sequence [3 1 2], where
the subplots, from top to bottom, show the optimal speed, acceleration and
travel time for each vehicle. The critical set, showing the position and time
when each vehicle enters and exists the critical set, is depicted by the shaded
region in the bottom plot.

by distributed optimization [26], where vehicles co-optimize
their own objective in a parallel way.

The globally optimal solution of the original mixed-integer
problem (9), is obtained here by solving the optimal control
subproblem (19) for all possible permutations of crossing
sequences. An obvious computational speedup with this ap-
proach would be to parallelize the computations over several
processors, as the optimal control subproblems can be solved
independently for the different crossing sequences. Another
possibility is to solve the combined problem as a mixed-
integer convex program, where branch and cut techniques
can be used to reduce the number of crossing sequences that
need to be investigated [27]. Future research may include
also the case where several vehicles travel on the same path,
and where precedency constraints also need be considered
for safety enforcement.
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