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ABSTRACT

We investigate the carrier dynamics in Landau-quantized graphene within the density matrix formalism. In
particular, we focus on the carrier-light interaction addressing the impact of higher-order polarizations beyond
the optical selection rules. We find that these terms are in general negligible, however, there are regimes, where
they even become crucial for the carrier dynamics. Our calculations show that for short excitation pulses,
very small Landau level broadenings, and certain configurations of magnetic field strength, Fermi energy, and
excitation energy, higher-order polarizations need to be taken into account.

Keywords: Landau-quantized graphene, carrier dynamics, carrier-light interaction, higher-order polarizations,
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1. INTRODUCTION

Since the groundbreaking experiments on the exfoliation of graphene within the scotch-tape method in 2004,1

graphene has attracted much attention,2 and has been discussed as a new material for a variety of technological
applications.3–10 A profound understanding of the carrier dynamics in photo-excited graphene is the key to
exploit the full potential of this interesting material in the field of optoelectronics.11 While the ultrafast relaxation
dynamics in graphene has been extensively studied,12–27,27–36 the research investigating the dynamics of charge
carriers in graphene subject to an external magnetic field has recently started.37–43 In an external magnetic
field, the energy is quantized into Landau levels (LLs).44 Here, unlike in an usual semiconductor, the energetic
spacing between the discrete energy levels is non-equidistant resulting in an interesting behavior of photo-excited
charge carriers.38,40,41

In this Article, we investigate the carrier-light interaction in Landau-quantized graphene based on the density
matrix formalism resulting in optical Bloch equations.45–48 The latter present a coupled system of differential
equations describing the density matrix σi→f (t) = 〈a†fai〉(t), where a†i and ai are fermionic creation and an-
nihilation operators of the state i. While the diagonal elements of the density matrix σi→f=i = ρi describe
carrier occupation probabilities and are important e.g. to model pump probe experiments,49 the off-diagonal
elements σi→f 6=i = pi→f , also called coherences or microscopic polarizations, describe the optical excitation of
the material. Considering low-energetic Landau levels with the indices n = 0, 1, 2, . . . , N in the conduction and
valence bands (λ = v, c), the density matrix has (2N + 1)2 entries including the zeroth LL n = 0 that belongs
to both bands. The computational effort for the numeric solution of the Bloch equations can be considerably
reduced by taking into account only off-diagonal elements σn→n±1(t) that fulfill the optical selection rules. In
this work, we show that in certain situations this approximation is not valid requiring higher-order off-diagonal
elements σn→n±2(t) to be included.

2. OPTICAL BLOCH EQUATIONS

Here, we briefly present the derivation of optical Bloch equations for Landau-quantized graphene. The starting
point is the Hamilton operator

H =
∑
i

εia
†
iai + i~

∑
i,f

Ωi→f a
†
fai, (1)
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Figure 1. Sketch illustrating a situation in which higher-order polarizations are important. The low-energetic Landau
levels in the conduction band of graphene are shown (green lines) with the Dirac cone in the background. The Fermi
energy is assumed to lie between LL3 and LL4, hence, the occupation of all LLs up to LL3 is approximately 100% (blue-
shaded area). Resonantly pumping the transition 2 → 3, no electrons can be optically excited from LL2 to LL3, since LL3

is already completely occupied. Instead, the off-resonant transition 3 → 4 is induced. Moreover, since the lowest order
polarization p2→3 is strongly suppressed, higher-order coherences p2→4 become important.

where the first term is the free energy depending on the Landau level dispersion ελn = λvF
√

2~ne0B with the
elementary charge e0 and the magnetic field B. The second term describes the carrier-light interaction expressed
by the Rabi frequency Ωi→f (t) = e0

m0
Mi→f ·A(t) that is the product of the optical matrix element Mi→f and

the vector potential A(t). An analytic expression for the optical matrix element can be derived by exploiting
tight-binding wave functions in combination with the Peierls substition considering the impact of the magnetic
field40,50

Mi→f = iδξi,ξf δmi,mf

αniαnf
m0vF

2
√

2~
[
λiε̂
−δnf ,ni−1 + λf ε̂

+δnf ,ni+1

]
= −M∗f→i. (2)

Here, ξ = ±1 is the valley index,44 m = 0, 1, . . . is a quantum number expressing the Landau level degeneracy,44

the constant αn=0 equals
√

2 for n = 0 and is 1 otherwise, m0 denotes the free electron mass, vF ≈ 1 nm/fs
is the Fermi velocity,51 and ε̂± = (êx ∓ iêy)/

√
2 are Jones vectors describing left (+) and right (−) circularly

polarized light.52 The optical selection rules are expressed by the Kronecka deltas δnf ,ni±1. As a consequence,
only polarizations of the form pn→n±1 are directly driven by an optical excitation and in general it is a good
approximation to neglect higher-order coherences. The next order of such coherences is either pn→n±2 or pvcn→n.
While the latter always corresponds to a transition between the valence (v) and the conduction (c) band, the first
can be both intra- and interband Landau level transitions. These higher-order terms are negligible, as long as the
build-up of the directly optically driven polarization pn→n±1 is not strongly suppressed due to Pauli blocking,
cf. Fig. 1.

To investigate the carrier-light coupling and the influence of higher-order polarizations, we derive the optical
Bloch equations for Landau-quantized graphene. Exploiting the Heisenberg equation of motion, we obtain the
most general form of these equations11,53

σ̇i→f (t) = [i4ωif − γ]σi→f (t) +
∑
l

[Ωl→i(t)σl→f (t)− Ωf→l(t)σi→l(t)] . (3)

Here, ~4ωif = (εf − εi) is the transition energy and γ corresponds to a dephasing describing the impurity-
induced Landau level broadening Γ = ~γ. The optical interaction conserves all quantum numbers characterizing
the state l except for the band index λl and the Landau level index nl, cf. Eq. 2. Taking into account the optical

Proc. of SPIE Vol. 9585  95850D-2



selection rules that are reflected by the Kronecker deltas δnf ,ni±1 in Eq. 3, the sum over the Landau level index
is reduced to a few terms. Fixing i = f = n and λ either to c or v, we perform the appearing sum over λl and
obtain the first Bloch equations describing the carrier occupation probabilities ρλn

ρ̇cn = −2 Re
[
−
(
Ωccn→n+1p

cc
n→n+1

)∗
+ Ωccn−1→np

cc
n−1→n + Ωvcn+1→np

vc
n+1→n + Ωvcn−1→np

vc
n−1→n

]
, (4)

ρ̇vn = −2 Re
[
Ωvvn+1→np

vv
n+1→n −

(
Ωvvn→n−1p

vv
n→n−1

)∗ − (Ωvcn→n+1p
vc
n→n+1

)∗ − (Ωvcn→n−1pvcn→n−1)∗] . (5)

Fixing i = n, f = n± 1, we obtain for the optically driven polarizations pλλ
′

n→n±1:

ṗccn→n+1 =
(
i4ωccn→n+1 − γ

)
pccn→n+1 +

[ (
Ωccn→n+1

)∗ [
ρcn − ρcn+1

]
+
(
Ωvcn→n+1p

vc
n→n

)∗
+ Ωvcn+1→np

vc
n+1→n+1 (6)

+ Ωccn−1→np
cc
n−1→n+1 − Ωccn+1→n+2p

cc
n→n+2 + Ωvcn−1→np

vc
n−1→n+1 +

(
Ωvcn+2→n+1p

vc
n+2→n

)∗ ]
,

ṗvvn→n−1 =
(
i4ωvvn→n−1 − γ

)
pvvn→n−1 +

[ (
Ωvvn→n−1

)∗ [
ρvn − ρvn−1

]
− Ωvcn−1→np

vc
n→n −

(
Ωvcn→n−1p

vc
n−1→n−1

)∗
(7)

+ Ωvvn+1→np
vv
n+1→n−1 − Ωvvn−1→n−2p

vv
n→n−2 −

(
Ωvcn→n+1p

vc
n−1→n+1

)∗ − Ωvcn−1→n−2p
vc
n→n−2

]
,

ṗvcn→n+1 =
(
i4ωvcn→n+1 − γ

)
pvcn→n+1 +

[ (
Ωvcn→n+1

)∗ [
ρvn − ρcn+1

]
+
(
Ωccn→n+1

)∗
pvcn→n + Ωvvn+1→np

vc
n+1→n+1 (8)

−
(
Ωvcn→n−1

)∗
pccn−1→n+1 +

(
Ωvcn+2→n+1p

vv
n+2→n

)∗ − (Ωvvn→n−1)∗ pvcn−1→n+1 − Ωccn+1→n+2p
vc
n→n+2

]
,

ṗvcn→n−1 =
(
i4ωvcn→n−1 − γ

)
pvcn→n−1 +

[ (
Ωvcn→n−1

)∗ [
ρvn − ρcn−1

]
− Ωccn−1→np

vc
n→n −

(
Ωvvn→n−1

)∗
pvcn−1→n−1 (9)

−
(
Ωvcn→n+1p

cc
n−1→n+1

)∗
+
(
Ωvcn−2→n−1

)∗
pvvn→n−2 + Ωvvn+1→np

vc
n+1→n−1 +

(
Ωccn−2→n−1

)∗
pvcn→n−2

]
.

Examining Eqs. (6)-(9), we observe that the optically driven polarizations also couple to higher-order polar-
izations of the forms pvcn→n as well as pn→n±2. To investigate the importance of these terms, we derive the
corresponding equations of motion by accordingly performing the sum in Eq. 3

ṗvcn→n = (i4ωvcn→n − γ) pvcn→n (10)

+

[
−
(
Ωvcn→n+1p

cc
n→n+1

)∗ − (Ωvcn→n−1)∗ pccn−1→n +
(
Ωvcn+1→np

vv
n+1→n

)∗
+
(
Ωvcn−1→n

)∗
pvvn→n−1

− Ωccn→n+1p
vc
n→n+1 + Ωvvn+1→np

vc
n+1→n +

(
Ωccn−1→n

)∗
pvcn→n−1 −

(
Ωvvn→n−1

)∗
pvcn−1→n

]
,

ṗccn→n+2 =
(
i4ωccn→n+2 − γ

)
pccn→n+2 (11)

+

[ (
Ωccn+1→n+2

)∗
pccn→n+1 −

(
Ωccn→n+1

)∗
pccn+1→n+2 +

(
Ωvcn+1→n+2p

vc
n+1→n

)∗
+ Ωvcn+1→np

vc
n+1→n+2

]
,

ṗvvn→n−2 =
(
i4ωvvn→n−2 − γ

)
pvvn→n−2 (12)

+

[ (
Ωvvn−1→n−2

)∗
pvvn→n−1 −

(
Ωvvn→n−1

)∗
pvvn−1→n−2 − Ωvcn−2→n−1p

vc
n→n−1 −

(
Ωvcn→n−1p

vc
n−2→n−1

)∗ ]
,
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Figure 2. Temporal evolution of the carrier occupation ρ3 (a)-(d) and the real part of the polarization pcc2→3 (e)-(h) with
and without the impact of higher-order coherences of the form pn→n±2 and pvcn→n during an optical excitation with a
width of 0.5 ps (yellow shaded region). The situation corresponds to the case sketched in Fig. 1 with a resonant excitation
of the inter-LL transition 2 → 3. Furthermore, the Fermi energy lies between LL3 and LL4 and the applied magnetic
field corresponds to 4 T. The orange lines show the carrier dynamics taking only into account the directly optically
driven polarizations of the form pn→n±1. In direct comparison, the blue lines show the carrier dynamics considering also
higher-order polarizations. Results are shown for different values of the Landau level broadening Γ.

ṗvcn→n+2 =
(
i4ωvcn→n+2 − γ

)
pvcn→n+2 (13)

+

[
−
(
Ωvcn→n+1

)∗
pccn+1→n+2 +

(
Ωvcn+1→n+2p

vv
n+1→n

)∗
+
(
Ωccn+1→n+2

)∗
pvcn→n+1 + Ωvvn+1→np

vc
n+1→n+2

]
,

ṗvcn→n−2 =
(
i4ωvcn→n−2 − γ

)
pvcn→n−2 (14)

+

[
−
(
Ωvcn→n−1p

cc
n−2→n−1

)∗
+
(
Ωvcn−1→n−2

)∗
pvvn→n−1 − Ωccn−2→n−1p

vc
n→n−1 −

(
Ωvvn→n−1

)∗
pvcn−1→n−2

]
.

Here, we have negleted even higher-order polarizations of the form pn→n±3.

3. CARRIER DYNAMICS

Now, we have everything at hand to investigate the impact of higher-order coherences on the carrier dynamics
in Landau-quantized graphene. Solving the Bloch equations with and without the impact of the higher-order
contributions pvcn→n and pn→n±2, we can demonstrate their importance for the inter-Landau level dynamics.

We assume n-doped graphene with a Fermi energy of εF = 140 meV that lies between LL3 and LL4 according
to Fig. 1. The applied external magnetic field has the strength of B = 4 T and the temperature is set to
T = 10 K. The initial carrier occupations correspond to the Fermi-Dirac distribution at this temperature, while
the initial value for polarizations is set to zero. Figure 2 shows the temporal evolution of the carrier occupation
ρ3 as well as the real part of the polarizations pvc2→3, while the system is excited by a linearly polarized pump
pulse with an energy matching the inter-LL transition 2→ 3, a pump fluence of εpf = 0.05µJcm−2, and a width
of 0.5 ps. The carrier dynamics is evaluated for different Landau level broadenings ranging from Γ = 0.1 meV to
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Γ = 2 meV. Although the transition 2 → 3 is completely blocked, since the initial occupation of LL3 is 100%,
the occupation significantly changes during the optical excitation, cf. Figs. 2(a)-(e). We observe a decrease right
after switching on the excitation pulse. This is attributed to off-diagonal pumping of the transition 3 → 4, cf.
Fig. 1. This depopulation of LL3 enables a resonant excitation of the transition 2 → 3 after some time and
as a result ρ3 increases again. After the turning point of the occupation ρ3, the transitions 2 → 3 and 3 → 4
have the same strength resulting in constant ρ3. Note that ρ3 shows clear oscillations at the beginning of the
dynamics. Interestingly, their frequency does not correspond to the energy of the resonant optically allowed
transition 2 → 3, but to the transition 2 → 4. This illustrates that this oscillation results from the interplay of
the optically driven polarizations pcc2→3 and pcc3→4 inducing the higher-order coherence pcc2→4.

The direct comparison of the carrier dynamics with and without taking into account higher-order polar-
izations reveals the rather large impact of these higher-order contributions, cf. blue and orange lines in Fig.
2(a)-(e). In fact, neglecting them results in a strongly unphysical behavior for small LL broadenings, where the
occupation ρ3 reaches values higher than 100%, cf. Figs. 2(a),(b). For higher values of the LL broadening, the
higher-order terms become less important. This is a consequence of the generally faster dephasing of the coher-
ences, as illustrated in Figs. 2(e)-(h) showing the temporal evolution of the polarization pcc2→3 with and without
the impact of higher-order coherences. We find that the dephasing of the polarization significantly increases for
enhanced Landau level broadenings. Furthermore, the influence of the higher-order coherences becomes smaller.

In summary, we have presented an investigation of the carrier-light interaction in Landau-quantized graphene
based on optical Bloch equations. Our calculations reveal the crucial importance of higher-order coherences in
specific situations, where the directly optically driven coherence is strongly suppressed due to Pauli blocking. We
show that for short excitation pulses, very small Landau level broadenings, and certain configurations of magnetic
field strength, Fermi energy, and excitation energy, higher-order coherences need to be taken into account to
avoid unphysical behavior in the inter-Landau level carrier dynamics.
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30. Kadi, F., Winzer, T., Malic, E., Knorr, A., Göttfert, F., Mittendorff, M., Winnerl, S., and Helm, M.,
“Microscopic Description of Intraband Absorption in Graphene: The Occurrence of Transient Negative
Differential Transmission,” Phys. Rev. Lett. 113, 035502 (2014).

31. Mittendorff, M., Winzer, T., Malic, E., Knorr, A., Berger, C., de Heer, W. A., Schneider, H., Helm, M., and
Winnerl, S., “Anisotropy of Excitation and Relaxation of Photogenerated Charge Carriers in Graphene,”
Nano Lett. 14(3), 1504–1507 (2014).

32. Jago, R., Winzer, T., Knorr, A., and Malic, E., “Graphene as Gain Medium for Broadband Lasers,”
arxiv:1409.8182 (2014).

33. Plötzing, T., Winzer, T., Malic, E., Neumaier, D., Knorr, A., and Kurz, H., “Experimental Verification of
Carrier Multiplication in Graphene,” Nano Lett. 14(9), 5371–5375 (2014). PMID: 25144320.

34. Johannsen, J. C., Ulstrup, S., Crepaldi, A., Cilento, F., Zacchigna, M., Miwa, J. A., Cacho, C., Chapman,
R. T., Springate, E., Fromm, F., Raidel, C., Seyller, T., King, P. D. C., Parmigiani, F., Grioni, M., and
Hofmann, P., “Tunable Carrier Multiplication and Cooling in Graphene,” Nano Lett. 15(1), 326–331 (2015).
PMID: 25458168.

35. Winzer, T., Ciesielski, R., Handloser, M., Comin, A., Hartschuh, A., and Malic, E., “Microscopic View on
the Ultrafast Photoluminescence from Photoexcited Graphene,” Nano Lett. 15(2), 1141–1145 (2015).

36. Gierz, I., Calegari, F., Aeschlimann, S., Cervantes, M. C., Cacho, C., Chapman, R. T., Springate, E., Link,
S., Starke, U., Ast, C. R., and Cavalleri, A., “Tracking primary thermalization events in graphene with
photoemission at extreme timescales,” arXiv:1506.00120 (2015).

37. Plochocka, P., Kossacki, P., Golnik, A., Kazimierczuk, T., Berger, C., de Heer, W. A., and Potemski, M.,
“Slowing hot-carrier relaxation in graphene using a magnetic field,” Phys. Rev. B 80, 245415 (2009).

38. Mittendorff, M., Wendler, F., Malic, E., Knorr, A., Orlita, M., Potemski, M., Berger, C., de Heer, W. A.,
Schneider, H., Helm, M., and Winnerl, S., “Carrier dynamics in Landau-quantized graphene featuring strong
Auger scattering,” Nature Phys. 11, 75–81 (2015).

39. Wendler, F., Knorr, A., and Malic, E., “Resonant carrier-phonon scattering in graphene under Landau
quantization,” Appl. Phys. Lett. 103(25), 253117 (2013).

40. Wendler, F., Knorr, A., and Malic, E., “Carrier multiplication in graphene under Landau quantization,”
Nature Commun. 5, 3703 (2014).

41. Wendler, F. and Malic, E., “Population inversion in Landau-quantized graphene,” arXiv:1410.2080 (2014).

42. Mittendorff, M., Orlita, M., Potemski, M., Berger, C., de Heer, W. A., Schneider, H., Helm, M., and Winnerl,
S., “Intraband carrier dynamics in Landau-quantized multilayer epitaxial graphene,” New J. Phys. 16,
123021 (2014).

43. Wang, Z.-W., Liu, L., and Li, Z.-Q., “Fast two-phonon relaxation process between the Landau levels of
graphene on different polar substrates,” Europhys. Lett. 108, 36005 (2014).

44. Goerbig, M. O., “Electronic properties of graphene in a strong magnetic field,” Rev. Mod. Phys. 83, 1193–
1243 (2011).

45. Lindberg, M. and Koch, S. W., “Effective Bloch equations for semiconductors,” Phys. Rev. B 38, 3342–3350
(Aug 1988).

46. Haug, H. and Koch, S. W., [Quantum Theory of the Optical and Electronic Properties of Semiconductors ],
World Scientific (2009).

47. Kira, M. and Koch, S., “Many-body correlations and excitonic effects in semiconductor spectroscopy,” Prog.
Quantum Electron. 30(5), 155 – 296 (2006).

48. Rossi, F. and Kuhn, T., “Theory of ultrafast phenomena in photoexcited semiconductors,” Rev. Mod.
Phys. 74, 895–950 (Aug 2002).

49. Wendler, F., Funk, H., Mittendorff, M., Winnerl, S., Helm, M., Knorr, A., and Malic, E., “Efficient Auger
scattering in Landau-quantized graphene,” Proc. SPIE 9361, 936105–936105–7 (2015).

50. Rao, K. M. and Sipe, J. E., “Coherent photocurrent control in graphene in a magnetic field,” Phys. Rev.
B 86, 115427 (2012).

Proc. of SPIE Vol. 9585  95850D-7



51. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., and Geim, A. K., “The electronic
properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).

52. Jones, R. C., “A New Calculus for the Treatment of Optical Systems,” J. Opt. Soc. Am. 31, 488–493 (1941).

53. Malic, E., Winzer, T., Bobkin, E., and Knorr, A., “Microscopic theory of absorption and ultrafast many-
particle kinetics in graphene,” Phys. Rev. B 84, 205406 (2011).

Proc. of SPIE Vol. 9585  95850D-8


