
Chalmers Publication Library

Practically Stabilizing Virtual Synchrony

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

Citation for the published paper:
Dolev, S. ; Georgiou, C. ; Marcoullis, I. et al. (2015) "Practically Stabilizing Virtual
Synchrony".

Downloaded from: http://publications.lib.chalmers.se/publication/230784

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://publications.lib.chalmers.se/publication/230784

ar
X

iv
:1

50
2.

05
18

3v
1

 [
cs

.D
C

]
 1

8
Fe

b
20

15

Practically Stabilizing Virtual Synchrony
(Preliminary Version)

Shlomi Dolev ∗ Chryssis Georgiou † Ioannis Marcoullis† Elad M. Schiller ‡

Abstract

Virtual synchrony is an important abstraction that is proven to be extremely useful when implemented
over asynchronous, typically large, message-passing distributed systems. Fault tolerant design is a key
criterion for the success of such implementations. This is because large distributed systems can be highly
available as long as they do not depend on the full operational status of every system participant. That
is, when using redundancy in numbers to overcome non-optimal behavior of participants and to gain
global robustness and high availability.

Self-stabilizing systems can tolerate transient faults that drive the system to an arbitrary unpredicted
configuration. Such systems automatically regain consistency from any such arbitrary configuration, and
then produce the desired system behavior. Practically self-stabilizing systems ensure the desired system
behavior for practically infinite number of successive steps e.g., 264 steps.

We present the first practically self-stabilizing virtual synchrony algorithm. The algorithm is a com-
bination of several new techniques that may be of independent interest. In particular, we present a new
counter algorithm that establishes an efficient practically unbounded counter, that in turn can be directly
used to implement a self-stabilizing Multiple-Writer Multiple-Reader (MWMR) register emulation. Other
components include self-stabilizing group membership, self-stabilizing multicast, and self-stabilizing em-
ulation of replicated state machine. As we base the replicated state machine implementation on virtual
synchrony, rather than consensus, the system progresses in more extreme asynchronous executions with
relation to consensus-based replicated state machine.

∗Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel. Email {dolev,
liba}@cs.bgu.ac.il Partially supported by Rita Altura Trust Chair in Computer Sciences, Lynne and William Frankel Center
for Computer Sciences and Israel Science Foundation (grant number 428/11).

†Department of Computer Science, University of Cyprus, Nicosia, Cyprus. Email {chryssis, imarco01}@cs.ucy.ac.cy
‡Department of Engineering and Computer Science, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden,

elad@chalmers.se.

http://arxiv.org/abs/1502.05183v1

1 Introduction

Virtual synchrony has been proven to be very important in the scope of fault-tolerant distributed systems [5].
Systems that support the virtual synchrony abstraction are designed to operate in the presence of fail-stop
failures of a minority of the participants. Such a design fits large computer clusters, data-centers and cloud
computing, where at any given time some of the processing units are nonoperational. Systems that cannot
tolerate such failures degrade their functionality and availability to the degree of unuseful systems.

Group communication systems that realize the virtual synchrony abstraction provide services, such as
group membership and reliable group multicast. The group membership service is responsible for providing
the current group view of the recently live and connected group members, i.e., a processor set and a unique
view identifier, which is a sequence number of the view installation. The reliable group multicast allows the
service clients to exchange messages with the group members as if it was a single communication endpoint
with a single network address and to which messages are delivered in an atomic fashion, where any message
is either delivered to all recently live and connected group members prior to the next message, or is not
delivered to any member. The challenges that are related to virtual synchrony consider the need to maintain
atomic message delivery in the presence of asynchrony and crash failures. The implementation of a reliable
multicast service that provides virtual synchrony can often continuously use the same group view over many
multicast rounds. Thus, virtual synchrony facilitates the implementation of a replicated state machine [5]
that is more efficient than classical consensus-based implementations that start every multicast round with
an agreement on the set of recently live and connected processors.

As such large multicomputer systems are hard to manage and control, one would prefer a system that
automatically recovers from unexpected failures, possibly as part of after-disaster recovery or even after
benign temporal violation of the assumptions made in the design of the system. For example, the assumption
that error detection ensures the arrival of correct messages and the discarding of corrupted messages. In
reality, error detection is a probabilistic mechanism that may not detect a corrupted message, and therefore,
the message can be regarded legitimate, driving the system to an arbitrary state after which, availability
and functionality may be damaged forever, unless there is human intervention.

The research in state machine replication (SMR) for obtaining fault tolerance is rich. E.g., SMR is
known as a general method to design and implement services [19]. However, when initiating a system in an
arbitrary state, there is no guarantee that the system will reach a legal state after which the participants
maintain a coherent state. A self-stabilizing algorithm [10] can guarantee such an automatic recovery of the
replicated state machine, starting in an arbitrary state, reached due to transient (faults) violations of the
design assumptions that lead the system to an arbitrary state.

New challenges appear when designing self-stabilizing systems. One significant challenge is to provide
an ordering for message delivery to the replicated state machines, which is an even more intriguing problem
when the system starts with inconsistent replicas. Usually, new events are identified by a new incarnation
number; a number greater than all previously used numbers. Counters of 64 bits, or so, are usually used to
implement such numbers. Such designs were justified by claiming that 64-bit values suffice for implementing
(practically) unbounded counters. However, a single transient fault may cause the counter to reach the upper
limit at once.

Lamport was the first to introduce SMR, presenting it as an example in [16]. Schneider [19] gave a
more generalized approach to the design and implementation of state replication protocols. Birman et al.
were the first to present virtual synchrony in [8], and improvements in the efficiency of ordering protocols
in subsequent publications [6, 7]. Birman gives a concise account of the evolution of the virtual synchrony
model for state replication in [5]. Group communication services can implement SMR by providing reliable
multicast that guarantees virtual synchrony [4].

The research during the last recent decades resulted in an extensive literature on ways to implement
virtual synchrony and replicated state machines, as well as industrial construction of such systems. A recent
research line about (practically) self-stabilizing versions of replicated state machines [1, 9, 13, 14] obtains self-
stabilizing replicated state machines in shared memory as well as synchronized and asynchronous message
passing systems.

The bounded labeling scheme and the usage of practically unbounded sequence numbers proposed in [1],

1

allow the creation of self-stabilizing bounded-size solutions to the never-exhausted counter problem in the
restricted case of a single writer. The labeling scheme in [9] extends these capabilities to the multi-writer
case by exchanging vector of labels. Here, we present a simpler and significantly more communication
efficient practically self-stabilizing (bounded-size never-exhausted) counter that supports many writers, where
a single value rather than a vector of such values is communicated to achieve the same goal. The new
counter is combined with a known self-stabilizing data-link and a token-passing algorithm, a new reliable
multicast algorithm, a known failure detector algorithm, and a new virtual synchrony management scheme
and replicated state machine implementation to obtain a complete practically stabilizing virtual synchrony
and replicated state machine. All the components use bounded memory, e.g., counter, history, message-
queues, to ensure self-stabilization in a system that can be started with arbitrary values in the (doomed to
be bounded) memory. We next overview our construction, describing the core techniques and the way they
establish the desired properties.

2 Our Results in a Nutshell

We start with the necessary succinct description of the system settings (more details in Section 3). We con-
sider an asynchronous message passing system consisting of n communicating processors; each with a unique
identifier. We assume that up to a minority of the processors might become inactive. The communication
network topology is of a fully connected graph. Any message that is sent infinitely often from one active
processor to another active processor is eventually received. We often use the term packets for low-level
messages, distinguishing packets that are retransmitted to ensure delivery of high-level messages exactly
once. Moreover, we assume that the communication links have known bounded capacity, and thus we can
use existing self-stabilizing data-link layer algorithms for emulating reliable FIFO communication channel
protocols that can even tolerate message omission, duplication as well as transient faults [11, 12].

2.1 Bounded labeling scheme for multiple writers. [Section 4.1]
As mentioned, Alon et al. [1] presented a bounded labeling scheme to implement a SWMR register emulation
in a message-passing system. The labels (also called epochs) allow the system to stabilize, since once a label
is established, the integer counter related to this label is considered to be practically infinite, as a 64-bit
integer is practically infinite and sufficient for the life-span of any reasonable system. We extend the labeling
scheme of [1] to support multiple writers, by including the epoch creator (writer) identity to break symmetry,
and decide which epoch is the most recent one, even when two or more creators concurrently create a new
label.

When all processors (and hence potential writers) are active, the scheme can be viewed as a simple
extension of the one of [1]. Informally speaking, the scheme assures that each processor pi eventually “cleans
up” the system from obsolete labels of which pi appears to be the creator (for example, such labels could
be present in the system’s initial arbitrary state). Specifically, pi maintains a bounded FIFO history of
such labels that it has recently learned, while communicating with the other processors, and creates a label
greater than all that are in its history; call this pi’s local maximal label. In addition, each processor seeks to
learn the globally maximal label, that is, the label in the system that is the greatest among the local maximal
ones. Unfortunately, when some processors are not active, finding a global maximal becomes challenging,
since these processors will not “clean up” their local labels. So, roughly speaking, the active processors need
to do this indirectly without knowing which processors are inactive. To overcome this problem, we have each
processor maintaining bounded FIFO histories on labels appearing to have been created by other processors.
These histories eventually accumulate the obsolete labels of the inactive processors. We show that even in
the presence of (a minority of) inactive processors, starting from an arbitrary state, the system eventually
converges to use a global maximal label.

Let us explain why obsolete labels from inactive processors can create a problem when no one ever cleans
(cancels) them up. Consider a system starting in a state that includes a cycle of labels ℓ1 ≺ ℓ2 ≺ ℓ3 ≺ ℓ1, all
of the same creator, say px, where ≺ is the label order relation. If px is active, it will eventually learn about

2

these labels and introduce a label greater than them all. But if px is inactive, the system’s asynchronous
nature may cause a repeated cyclic label adoption, especially when px has the greatest processor identifier, as
these identifies are used to break symmetry. Say that an active processor learns and adopts ℓ1 as its global
maximal label. Then, it learns about ℓ2 and hence adopts it, while forgetting about ℓ1. Then, learning
of ℓ3 it adopts it. Lastly, it learns about ℓ1, and as it is greater than ℓ3, it adopts ℓ1 once more, as the
greatest in the system; this can continue indefinitely. By using the bounded FIFO histories, such labels will
be accumulated in the histories and hence will not be adopted again, ending this vicious cycle.

2.2 Practically infinite counter for multiple writers. [Section 4.5]
Using our labeling scheme, we show how to implement a practically infinite counter supporting multiple
writers. The idea is to extend the labeling scheme to handle counters, where a counter consists of a label,
as used in the labeling scheme; an integer sequence number, ranging from 0 to 2b, where b is large enough,
say b = 64; and a processor id. Conceptually, if the system stabilizes to use a global maximal label, then the
pair of the sequence number and the processor id (of this sequence number) can be used as an unbounded
counter, as used, for example, in MWMR register implementations [17, 18]. Specifically, we say that counter
cnt1 = 〈ℓ1, seqn1, wid1〉 is smaller than counter cnt2 = 〈ℓ2, seqn2, wid2〉 if (ℓ1 ≺ ℓ2) or ((ℓ1 = ℓ2) and
(seqn1 < seqn2)) or ((ℓ1 = ℓ2) and (seqn1 = seqn2) and (wid1 < wid2)). Note that when processors have
the same label, the above relation forms a total ordering and processors can increment a shared counter also
when attempting to do so concurrently. We argue that starting from any initial configuration, eventually
the counter algorithm supports such increments.

The counter increment algorithm uses the same structures and procedures as the labeling algorithm, but
now with counters instead of labels. To increment the counter, a processor pi first sends a request to all
other processors querying the counter they consider as the global maximum and awaits for responses from a
majority. Using a similar procedure as the labeling algorithm it (eventually) finds the maximal epoch label
and the maximal sequence number it knows for this label. In other words, it collects counters and finds the
counter(s) with the largest global label; there can be more than one such counter, in which case it returns
the one with the highest sequence number, breaking symmetry with the sequence number processor ids.
Then it checks whether this maximal sequence number is exhausted, that is, the sequence number is equal or
larger than 264 (this could be, for example, due to the arbitrary values in the configuration the system starts
in). When this is the case, it proceeds to find a new maximal label until it finds one that is not exhausted
and uses the maximal sequence number it knows for this epoch label. Then the processor increments the
sequence number by one, sets its identifier as the writer of the sequence number and sends the new counter
to all processors, and awaits for acknowledgment from a majority (this is, in spirit, similar to the two-phase
write operation of MWMR register implementations, focusing on the sequence number rather than on an
associated value).

Note that when a processor pi establishes a new label ℓ as the global maximum, it sets the corresponding
counter cnt = 〈ℓ, 0, i〉; in this case, the label creator identifier and the sequence number writer identifier is
i. When there is an already established maximal label ℓ in the system and processor pi wants to increment
the counter, it increases the corresponding (to ℓ) maximal sequence number found (maxseqn) by one, and
sets the counter cnt = 〈ℓ,maxseqn+ 1, i〉; in this case, it is possible that the label creator identifier and the
sequence number writer identifier are not the same, i.e., if pi was not the creator of label ℓ. Also, note that
some extra care is needed with respect to counter bookkeeping so as not to increase the size of the bounded
histories used in the labeling algorithm. Having a counter increment algorithm, it is not difficult to obtain
a practically self-stabilizing MWMR register implementation; counters are associated with values and the
counter increment algorithm is run with this small amendment (more details in Sect. 4.5).

2.3 Practically self-stabilizing virtual synchrony and Replicated state machine.

[Section 5]
Our self-stabilizing Virtual Synchrony implementation combines the implementation of the our counter
algorithm and a self-stabilizing FIFO data link between any two participants; the latter is used to implement

3

a self-stabilizing reliable multicast service and a self-stabilizing failure detector (used for the membership
service).
Data link implementation: Roughly speaking, one version of a self-stabilizing FIFO data link implemen-
tation that we can use, is based on the fact that communication links have bounded capacity. Packets are
retransmitted until more than the total capacity acknowledgments arrive; while acknowledgments are sent
only when a packet arrives (not spontaneously) [11, 12]. Over this data-link, the two connected processors
can constantly exchange a “token”. Specifically, the sender (possibly the processor with the highest iden-
tifier among the two) constantly sends packet π1 until it receives enough acknowledgments (more than the
capacity). Then, it constantly sends packet π2, and so on and so forth. This assures that the receiver has
received packet π1 before the sender starts sending packet π2. This can be viewed as a token exchange. We
use the abstraction of the token carrying messages back and forth between any two communication entities.
We use this token exchange technique when implementing a reliable multicast procedure, as well as a the
basis for a heartbeat for detecting whether a processor is active or not; when a processor in no longer active,
the token will not be returned back to the other processor.
Reliable multicast implementation: As we will see next, we use a coordinator to exchange messages
(by multicasting) within the group. The coordinator requests, collects and combines input from the group
members, and then it multicasts the updated information. Specifically, when the coordinator decides to
collect inputs, it waits for the token to arrive from each group participant. Whenever a token arrives from
a participant, the coordinator uses the token to send the request for input to that participant, and waits
the token to return with some input (possibly ⊥, when the participant does not have a new input). Once
the coordinator receives an input from a certain participant with respect to this multicast invocation, the
corresponding token will not carry any new requests to receive input from the same participant; of course,
the tokens continue to move back and forth. When all inputs are received, the processor combines them and
again uses the token to carry the updated information. Once this is done, the coordinator can proceed to
the next input collection, when needed.
Failure detector implementation: Every processor p maintains a heartbeat integer counter for every
other processor q. Whenever processor p receives the token from processor q over their data link, processor p
resets the counter’s value to zero and increments all the integer counters associated with the other processors
by one, up to a predefined threshold value W . Once the heartbeat counter value of a processor q reaches
W, the failure detector of processor p considers q as inactive. In other words, the failure detector at processor
p considers processor q to be active, if and only if the heartbeat associated with q is strictly less than W. This
is essentially the failure detector mentioned in [9]. Note that for the correctness of our virtual synchrony
algorithm, we require a weaker failure detector. Specifically, we require that at least one processor is not
suspected, for sufficiently long time, only by a majority of the processors, as opposed to an eventually perfect
failure detector that ensures that after a certain time, no active processor suspects any other active processor.
Self-stabilizing virtual synchrony implementation: The algorithm is coordinator-based and we con-
sider a primary-group implementation [6]. To assign view identifiers, we use our counter increment algorithm.
Specifically, the view identifier is a triple that includes an epoch (label), the currently highest counter, cnt,
which the counter algorithm obtains, and the processor that has created this counter, cnt.wid (writer), which
is also the view coordinator. Note that this defines a simple interface with the counter algorithm, which
provides an identical output. Furthermore, the view membership uses the output of the coordinator’s failure
detector for defining the set of view members; this helps to maintain a consistent membership among the
group members, despite inaccuracies between the various failure detectors; as we show, this does not break
the virtual synchrony property, as long as the majority-based failure detector property is preserved. Recall
that the coordinator is responsible for the consistency of the multicast mechanism within the group.

It may happen that the system reaches a configuration with no coordinator. For example, this could be
the case in the arbitrary configuration that the system starts in, or in the case that the coordinator of an
installed view is no longer active. Each participant that detects that it has no coordinator, seeks for potential
candidates based on the exchanged information. A processor p regards a processor q as a candidate, if q is
active according to p’s failure detector, and there is a majority of processors that also think so (all these are
based on p’s knowledge, which due to asynchrony might not be up to date). When there is more than one

4

such candidate, processor p checks whether there is a candidate that has proposed a higher counter among
the candidates. If there is one, then p considers it to be the coordinator and waits to hear from it (or learn
that it is not active). If there is none, and based on its knowledge there is a majority of processors that also
do not have a coordinator, then processor p acquires a counter from the counter increment algorithm and
proposes a new view, with view ID, the counter, and group membership, the set of processors that appear
active according to its failure detector. As we show, if p receives an “accept” message from all the processors
in the view, then it proceeds to install the view, unless another processor who has obtained a higher counter
does so. In a transition from one view to the next, there can be several processors attempting to become
the coordinator (namely, those who according to their knowledge have a supporting majority). Still, by
exploiting the intersection property of the supporting majorities we prove that each of these processors will
propose a view at most once, and out of these, one view will be installed (i.e., we do not have never-ending
attempts for new views to be installed).

The virtual synchrony property essentially requires that any two processors that participate in two con-
secutive groups should have delivered the same messages. Roughly speaking, our algorithm preserves this
property as follows: Once a processor does not have a coordinator, it stops participating in group mul-
ticasting, and prior to delivering a new multicast message in a new view, the algorithm assures that the
coordinator of this new view has collected all the participants’ last delivered messages (in their prior views)
and resends the messages appearing not to have been delivered uniformly. To do so, each participant keeps
the last delivered message and the view identifier that delivered this message. We show that this, together
with the intersection property of majorities, (and after taking care of some subtle issues,) provides the virtual
synchrony property. Starting from an arbitrary configuration, we show that if there is no valid coordinator,
eventually a processor proposes a new view and, therefore, a valid coordinator is eventually elected. To assure
this, processors continuously exchange through the failure detector’s token their coordinator’s identifier (or
⊥ if there’s no such). This helps to detect initially corrupted states when, say a processor pi might consider
pj as its coordinator, but pj does not consider itself to be the coordinator. Combining the above with the
self-stabilization of the counter increment algorithm, the data links, the failure detector and multicast, we
are able to guarantee reaching a legal execution in which the virtual synchrony property is always satisfied.
Self-stabilizing replicate state machine implementation: Each participant maintains a replica of the
state machine and the last processed (composite) message. Note that we bound the memory used to store
the history of the replicated state machine by deciding to have the (encapsulated influence of the history
represented by the) current state of the replicated state machine. In addition, each participant maintains the
last delivered (composite) message to ensure common reliable multicast, as the coordinator may stop being
active prior to ensuring that all members received a copy of the last multicast message. Whenever a new
coordinator is elected, the coordinator inquires all members (forming a majority) for the most updated state
and delivered message. Since at least one of the members, say pi, participated in the group in which the last
completed state machine transition took place, pi’s information will be recognized as associated with the
largest counter, adopted by the coordinator that will in turn, assign the most updated state and available
delivered message to all the current group members, in essence satisfying the virtual synchrony property.
Then the coordinator, as part of the multicast procedure, collects inputs received from the environment
before ensuring that all group members apply these inputs to the replica state machine. Note that the
received multicast message consists of input (possibly ⊥) from each of the processors, thus, the processors
need to apply one input at a time, the processors may apply them in an agreed upon sequential order, say
from the input of the first processor to the last. Alternatively, the coordinator may request one input at a
time in a round-robin fashion and multicast it. Finally, to ensure that the system stabilizes when started
in an arbitrary configuration, every so often, the coordinator assigns the state of its replica to the other
members.

Perhaps some of the above ideas appear conceptually clear, however, there are low-level critical details
that are essential to realizing them and prove them correct, as we are ready to describe.

5

3 System Settings

We consider an asynchronous message passing system as the one used in [1]. The systems includes a set P
of n communicating processors; we refer to the processor with identifier i, as pi. We assume that up to a
minority of processors may become inactive. We assume that the system runs on top of a stabilizing data-
link layer that provides reliable FIFO communication over unreliable bounded capacity channels [11, 12].
The network topology is of a fully connected graph where every two processors exchange (low-level messages
called) packets to enable a reliable delivery of (high level) messages. When no confusion is possible we use the
term messages for packets. The communication links have bounded capacity, so that the number of packets
in every given instance is bounded by a constant. When processor pi sends a packet, pkt, to processor pj ,
the operation send inserts a copy of pkt to the FIFO queue that represents the communication channel from
pi to pj , while respecting an upper bound on the number of packets in the channel, possibly omitting the
new packet or one of the already sent packets. When pj receives pkt from pj , pkt is dequeued from the queue
representing the channel. We assume that packets can be spontaneously omitted (lost) from the channel,
however, a packet that is sent infinitely often is received infinitely often.

The code of self-stabilizing algorithms usually consists of a do forever loop that contains communication
operations with the neighbors and validation that the system is in a consistent state as part of the transition
decision. An iteration is said to be complete if it starts in the loop’s first line and ends at the last (regardless
of whether it enters branches).

Every processor, pi, executes a program that is a sequence of (atomic) steps, where a step starts with
local computations and ends with a single communication operation, which is either send or receive of a
packet. For ease of description, we assume the interleaving model, where steps are executed atomically,
a single step at any given time. An input event can be either the receipt of a packet or a periodic timer
triggering pi to (re)send. Note that the system is asynchronous and the rate of the timer is totally unknown.

The state, si, of a node pi consists of the value of all the variables of the node including the set of all
incoming communication channels. The execution of an algorithm step can change the node’s state. The
term (system) configuration is used for a tuple of the form (s1, s2, · · · , sn), where each si is the state of
node pi (including messages in transit for pi). We define an execution (or run) R = c0, a0, c1, a1, . . . as an
alternating sequence of system configurations cx and steps ax, such that each configuration cx+1, except the
initial configuration c0, is obtained from the preceding configuration cx by the execution of the steps ax. A
practically infinite execution is an execution with many steps (and iterations), where many is defined to be
proportional to the time it takes to execute a step and the life-span time of a system.

We define the system’s task by a set of executions called legal executions (LE) in which the task’s
requirements hold, we use the term safe configuration for any configuration in LE. An algorithm is self-
stabilizing with relation to the task LE when every (unbounded) execution of the algorithm reaches a safe
configuration with relation to the algorithm and the task. An algorithm is practically stabilizing with relation
to the task LE if in any practically infinite execution a safe configuration is reached.

The virtual synchrony task requires that any two processors that share the same sequence of views, ought
to deliver the same identical message sets in these views. The legal execution of virtual synchrony is defined in
terms of the input and output sequences of the system with the environment. When a majority of processors
are continuously active every external input (and only the external inputs) should be atomically accepted and
processed by the majority of the active processors. Note that there is no delivery and processing guarantee
in executions in which there is no majority, still in these executions any delivery and processing is due to a
received environment input.

4 Self-stabilizing Labeling Scheme and Increment Counter Algo-

rithm

In this section we first present and prove correct the self-stabilizing labeling algorithm and then explain how
this can be extended to implement self-stabilizing practical unbounded counters.

6

Algorithm 1: The nextLabel() function; code for pi

1 For any non-empty set X ⊆ D, function pick(d,X) returns d arbitrary elements of X;
input : S = 〈ℓ1, ℓ2 . . . , ℓk〉 set of k labels.
output : 〈i, newSting, newAntistings〉

2 let newAntistings = {ℓj .sting : ℓj ∈ S};
3 newAntistings← newAntistings ∪ pick(k − |newAntistings|, D \ newAntistings);
4 return 〈i, pick(1, D \ (newAntistings ∪ {∪ℓj∈Sℓj .Antistings})), newAntistings〉;

4.1 Labeling Algorithm for Concurrent Label Creations

4.2 Bounded Labeling Scheme.

We extend the labeling scheme of [1] to support wait-free multi-writer systems. We do so, by extending the
label with a label creator’s id, so as to break symmetry and decide about the most recent epoch even when
two or more writers concurrently attempt to create a new label.

Specifically, we consider the set of integers D = [1, k2+1]. A label (or epoch) is a triple 〈lCreator, sting,
Antistings〉, where lCreator is the identity of the processor that established (created) the label, Antistings ⊂
D with |Antistings| = k, and sting ∈ D. Given two labels ℓi, ℓj, we define the relation ℓi ≺lb ℓj
≡ (ℓi.lCreator < ℓj .lCreator) ∨ (ℓi.lCreator = ℓj .lCreator ∧ ((ℓi.sting ∈ ℓj.Antistings) ∧ (ℓj .sting
6∈ ℓi.Antistings))); we use =lb to say that the labels are identical. Note that the relation ≺lb does not define
a total order. For example, when ℓi =lCreator ℓj and (ℓi.sting 6∈ ℓj .Antistings) and (ℓj.sting 6∈ ℓi.Antisting)
these labels are incomparable. As in [1], we demonstrate that one can still use this labeling scheme as long
as it is ensured that eventually a label greater than all other labels in the system is introduced. We say that
a label ℓ cancels another label ℓ′, either if they are incomparable or they have the same lCreator but ℓ is
greater than ℓ′ (with respect to sting and Antistings).

Function nextLabel(), Algorithm 1, gets a set of labels as input and returns a new label that is greater
than all of the labels of the input. It has the same functionality as the function called Nextb() in [1], but
it additionally considers the label creator. Intuitively, the function composes a new Antistings set from the
stings of all the labels it has as input, and chooses a sting that is in none of the Antistings of the input
labels. In this way it ensures that the new label is greater than any of the input. Note that the function
takes k Antistings of k labels, implying at most k2 integers and thus the choice of |D| = k2 + 1 allows to
always obtain a greatest integer as the sting.

4.3 The Labeling Algorithm.

The algorithm specifies how the processors exchange their label information in the asynchronous system and
how they maintain proper label bookkeeping so as to “discover” their greatest label and cancel all obsolete
ones. As we will be using pairs of labels with the same label creator, for the ease of presentation, we will be
referring to these two variables as the (label) pair. The first label in a pair is called ml. The second label is
called cl and it is either ⊥, or equal to a label that cancels ml (i.e., cl indicates whether ml is an obsolete
label or not).

4.3.1 The processor state:

Each processor stores an array of label pairs, maxi[], where maxi[i] refers to pi’s maximal label pair
and maxi[j] considers the most recent label that pi knows about pj ’s pair. Processor pi also stores the pairs
of the most-recently-used labels in the array of queues storedLabelsi[]. The j-th entry refers to the queue
with pairs from pj ’s domain, i.e., that were created by pj . The algorithm makes sure that storedLabelsi[j]
includes only label pairs with unique ml from pj ’s domain and that at most one of them is legitimate, i.e.,
not canceled.

7

4.3.2 Information exchange between processors:

Processor pi takes a step whenever it receives two pairs 〈sentMax, lastSent〉 from some other processor.
We note that in a legal execution pj ’s pair includes both sentMax, which refers to pj’s maximal label pair
maxj [j], and lastSent, which refers to a recent label pair that pj received from pi about pi’s maximal label,
maxj [i] (line 16).

Whenever a processor pj sends a pair 〈sentMax, lastSent〉 to pi, this processor stores the arriving
sentMax in maxi[j] (line 19). Note that in a legal execution the arriving sentMax is always legitimate.
However, when pj acknowledges pi’s label, it is possible that pj needs to inform pi of a label from pi’s
domain that cancels pi’s maximal label, ml in maxi[i]. It does so by sending to pi a label that cancels ml
and thus it would be the case, lastSent will have a lastSent.cl, that is not ⊥. Specifically, it contains a label
that pj knows such that lastSent.cl 6�lb lastSent.ml, i.e., lastSent.cl is either greater or incomparable to
lastSent.ml. Thus, lastSent is illegitimate and in case this still refers to pi’s maximal label, pi must cancel
maxi[i] by assigning it with lastSent (and thus maxi[i].cl = lastSent.cl) as done in line 20. Processor pi
then processes the two pairs received (lines 21 to 28).

4.3.3 Label processing:

Processor pi takes a step whenever it receives a new pair message 〈sentMax, lastSent〉 from processor
pj (line 17). Each such step starts by removing stale information, i.e., misplaced or doubly represented labels
(line 9). In the case that stale information exists, the algorithm empties the entire label storage. Processor pi
then tests whether the arriving two pairs are already included in the label storage (storedLabels[]), otherwise
it includes them (line 22). The algorithm continues to see whether, based on the new pairs added to the
label storage, it is possible to cancel a non-canceled label pair (which may well be the newly added pair).
In this case, the algorithm updates the canceling field of any label pair lp (line 23) with the canceling label
of a label pair lp′ such that lp′.ml 6�lb lp.ml (line 23). It is implied that since the two pairs belong to the
same storage queue, they have the same processor as creator. The algorithm then checks whether any pair
of the maxi[] array can cause canceling to a record in the label storage (line 24), and also line 25 removes
any canceled records that share the same name. The test also considers the case in which the above update
may cancel any arriving label in max[j] and updates this entry accordingly based on stored pairs (line 26).

After this series of tests and updates, the algorithm is ready to decide upon a maximal label based on
its local information. This is the �lb-greatest legit label pair among all the ones in maxi[] (line 26). When
no such legit label exists, pi request a legit label in its own label storage, storedLabelsi[i], and if one does
not exist, will create a new one if needed (line 28). This is done by passing the labels in the storedLabeli[i]
queue to the nextLabel() function. Note that the returned label is coupled with a ⊥ and the resulting label
pair is added to both maxi[i] and storedLabeli[i].

4.4 Correctness.

We now outline the algorithm correctness. The full proof is given in Appendix A.1. The proof considers an
execution R of Algorithm 2 that may start in an arbitrary configuration. We first show some basic facts,
such as: (1) stale information is removed, i.e., storedLabelsi[j] includes only unique copies of pj ’s labels,
and at most one legitimate and (2) pi either adopts or creates the �lb-greatest legitimate local label. We
then show bounds on the number of adoption steps, first in the absence of label creations and then in the
presence of label creations:

Lemma 4.1 Let pi, pj ∈ P , be two processors. Suppose that pj has stopped adding labels to the system
configuration (the else part of line 28), and sending (line 16) these labels during R. Processor pi adopts
(line 27) at most (n+m) label pairs, lpj : (lpj =lCreator j), from pj’s unknown domain (lpj /∈ labelsi(lpj)),
where m is the maximum number of label pairs that can be in transit in the system.

Lemma 4.2 Let pi ∈ P be a processor. Let Li = lpi0 , lpi1 , . . . be the sequence of legitimate label pairs (i.e.,
lpik .cl = ⊥), ℓik =lCreator i, from pi’s domain, which pi stores in maxi[i] over time, where k ∈ N . It holds
that |Li| ≤ n(n2 +m).

8

Algorithm 2: Self-Stabilizing Labeling Algorithm; code for pi

1 Variables:

2 max[n] of 〈ml, cl〉: max[i] is pi’s largest label pair, max[j] refers to pj ’s label pair (canceled when
max[j].cl 6= ⊥).

3 storedLabels[n]: an array of queues of the most-recently-used label pairs, where storedLabels[j] holds the
labels created by pj ∈ P . For pj ∈ (P \ {pi}), storedLabels[j]’s queue size is limited to (n+m) w.r.t. label
pairs, where n = |P | is the number of processors in the system and m is the maximum number of label pairs
that can be in transit in the system. The storedLabels[i]’s queue size is limited to (n(n2 +m)) pairs. The
operator add(ℓ) adds lp to the front of the queue, and emptyAllQueues() clears all storedLabels[] queues. We
use lp.remove() for removing the record lp ∈ storedLabels[]. Note that an element is brought to the queue
front every time this element is accessed in the queue.

4 Notation: Let y and y′ be two records that include the field x. We denote y =x y′ ≡ (y.x = y′.x)
5 Macros:

6 legit(lp) = (lp = 〈•,⊥〉)
7 labels(lp) : return (storedLabels[lp.ml.lCreator])
8 double(j, lp) = (∃lp′ ∈ storedLabels[j] : ((lp 6= lp′) ∧ ((lp =ml lp

′) ∨ (legit(lp)∧ legit(lp′)))))
9 staleInfo() = (∃pj ∈ P, lp ∈ storedLabels[j] : (lp 6=lCreator j) ∨ double(j, lp))

10 recordDoesntExist(j) = (〈max[j].ml, •〉 /∈ labels(max[j]))
11 notgeq(j, lp) = if (∃lp′ ∈ storedLabels[j] : (lp′.ml 6�lb lp.ml)) then return(lp′.ml) else return(⊥)
12 canceled(lp) = if (∃lp′ ∈ labels(lp) : ((lp′ =ml lp) ∧ ¬legit(lp

′))) then return(lp′) else return(⊥)
13 needsUpdate(j) = (¬legit(max[j]) ∧ 〈max[j].ml,⊥〉 ∈ labels(max[j]))
14 legitLabels() = {max[j].ml : ∃pj ∈ P ∧ legit(max[j])}
15 useOwnLabel() = if (∃lp ∈ storedLabels[i] : legit(lp)) then max[i] ← lp else storedLabels[i].add(max[i] ←

〈nextLabel(),⊥〉) // For every lp ∈ storedLabels[i], we pass in nextLabel() both lp.ml and lp.cl.
16 upon transmitReady(pj ∈ P \ {pi}) do transmit(〈max[i], max[j]〉)
17 upon receive(〈sentMax, lastSent〉) from pj
18 begin

19 max[j] ← sentMax;
20 if ¬legit(lastSent) ∧ max[i] =ml lastSent then max[i]← lastSent
21 if staleInfo() then storedLabels.emptyAllQueues()
22 foreach pj ∈ P : recordDoesntExist(j) do labels(max[j]).add(max[j])
23 foreach pj ∈ P, lp ∈ storedLabels[j] : (legit(lp)∧ (notgeq(j, lp) 6= ⊥)) do lp.cl ← notgeq(j, lp)
24 foreach pj ∈ P, lp ∈ labels(max[j]) : (¬legit(max[j]) ∧ (max[j] =ml lp) ∧ legit(lp)) do lp← max[j]
25 foreach pj ∈ P, lp ∈ storedLabels[j] : double(j, lp) do lp.remove()
26 foreach pj ∈ P : (legit(max[j]) ∧ (canceled(max[j]) 6= ⊥)) do max[j]← canceled(max[j])
27 if legitLabels() 6= ∅ then max[i]← 〈max≺lb

(legitLabels()),⊥〉
28 else useOwnLabel()

We then show that active processors can eventually stop adopting or creating labels. We show that
incomparable label pairs eventually disappear from the system and thus no new labels are been adopted or
created, which then implies the existence of a global maximal label. Putting everything together, we show
that when starting from an arbitrary starting configuration, the system eventually reaches a configuration
in which there is a global maximal label.

Theorem 4.3 Suppose that there exists at least one processor, punknown ∈ P with unknown identity, that
takes practically infinite number of steps in R. Within a bounded number of steps, there is a legitimate
label pair ℓmax, such that for any processor pi ∈ P (that takes a practically infinite number of steps in
R), it holds that pi has that label pair maxi[i] = ℓmax when naming its (local) maximal label, maxi[i].ml.
Moreover, for any processor pj ∈ P (that takes a practically infinite number of steps in R), it holds that
((maxi[j] �lb ℓmax) ∧ ((∀ℓ ∈ storedLabelsi[j] : legit(ℓ))⇒ (ℓ �lb ℓmax))).

Proof Sketch. For any processor in the system which may take any (bounded or practically infinite) number
of steps in R, we know that there is a bounded number of label pairs, Li = lpi0 , lpi1 , . . ., that processor pi ∈ P
adds to the system configuration (the else part of line 28), where lpik =lCreator i (Lemma 4.2). Thus, by
the pigeonhole principle we know that within a bounded number of steps in R, there is a period during

9

which punknown takes a practically infinite number of steps in R whilst (all processors) pi do not add any
label pair, lpik =lCreator i, to the system configuration (the else part of line 28). During this practically
infinite period (with respect to punknown), in which no label pairs are added to the system (the else part of
line 28), we know that for any processor pj ∈ P that takes any number of (bounded or practically infinite)
steps in R, and processor pk ∈ P that adopts labels in R (line 27), lpj : (lpj =lCreator j), from pj ’s unknown
domain (lpj /∈ labelsk(lpj)), it holds that pk adopts such labels (line 27) only a bounded number of times
in R (Lemma 4.1). Again by pigeonhole principle we can say that there is a period during which punknown

takes a practically infinite number of steps in R whilst neither pi adds a label, lpik =lCreator i, to the system
(the else part of line 28), nor pk adopts labels (line 27), lpj : (lpj =lCreator j), from pj ’s unknown domain
(lpj /∈ labelsk(lpj)). Consequently, whilst punknown takes a practically infinite number of steps, all processors
(that takes practically infinite number of steps in R) name the same �lb-greatest legitimate label which the
theorem statement specifies. �

4.5 Increment Counter Algorithm

In this subsection, we explain how we can enhance the labeling scheme presented in the previous subsection
and obtain a practically self-stabilizing counter increment algorithm. To do so, we now need to work with
practically unbounded counters. As already mentioned in Section 2, a counter cnt is a triplet 〈lbl, seqn, wid〉,
where lbl is an epoch label as defined in the previous subsection, seqn is a 64-bit integer sequence number
and wid is the identifier of the processor that last incremented the counter’s sequence number, i.e., wid is
the counter writer. Then, given two counters cnti, cntj we define the relation cnti ≺ct cntj ≡ (cnti.lbl ≺lb

cntj .lbl) ∨ ((cnti.lbl = cntj .lbl)∧ (cnti.seqn < cntj.seqn)) ∨ ((cnti.lbl = cntj .lbl)∧ (cnti.seqn = cntj.seqn)∧
(cnti.wid < cntj .wid)). Observe that when the labels of the two counters are incomparable, the counters
are also incomparable.

Therefore, the relation ≺ct defines a total order (as required by practically unbounded counters) only
when processors share a globally maximum label, (i.e., the system runs within a “stable” epoch). As we
have shown in the previous subsection, starting from an arbitrary configuration, we eventually reach a
configuration where the active processors have adopted the same maximal label. Essentially, the counter
increment algorithm enhances the labeling algorithm to take care of the counter increment once such a
maximal label exists in the system. Due to lack of space, we do not provide the full details of the counter
increment algorithm (a detailed pseudocode is given in Appendix A.7). Instead, we highlight the main issues
one needs to consider when dealing with counters rather than labels.

Recall that in the labeling algorithm each processor pi was maintaining two main structures of pairs
of labels: array max[] that stored the local maximal labels of each other processor (based on the message
exchange) and storedLabels[], an array of queues of label pairs that each processor maintains in an attempt
to clean up obsolete labels created by itself or other processors. These structures now need to contain
counters instead of just labels (and these structures are called maxC[] and storedCnts[]). However, now
each label can yield many different counters. Therefore in order not to increase the size of these queues
(with respect to the number of elements stored), for each label we keep only the highest sequence number
observed (breaking ties with wids). Also, note that if there are counters in the system that are corrupted
(being in the initial arbitrary configuration), then they can only force a change of label if their sequence
number is exhausted (i.e., seqn ≥ 264). Exhausted counters are treated by the algorithm in a similar way as
canceled labels in the labeling algorithm; an exhausted counter cnti in a counter pair 〈cnti, cntj〉 is canceled,
by setting cnti.lbl = cntj.lbl (i.e., the counter’s own label cancels it) and hence making the counter non-legit
(thus it cannot be used as a local maximal counter in maxCi[i]). This cannot increase the number of labels
that are created due to the initially corrupted ones, as the total capacity of the links in the system still
corresponds to m.

Another issue worth mentioning is that the system might revert back to a previous legit label x, in case
the current maximal label y is canceled. Label x might have been used before to create counters, so it is
required to store the last sequence number written. If x is legit the system should not propose a new label
and instead revert to it. Otherwise the queues might grow with no bound. But as mentioned above, each
processor stores only the maximal sequence number learned for each label, inside storedCnts[] (i.e., the

10

counter with the maximal (seqn, wid) to the corresponding lbl).
Then, processors increment counters as described in Section 2 (by communicating with majorities of

processors). A pseudocode for the counter increment procedure can be found in Appendix A.7. So, putting
everything together we conclude the following:

Theorem 4.4 Given an execution of the counter increment algorithm in which up to a minority of processors
may become inactive, starting from an arbitrary configuration, the algorithm eventually ensures that counters
increment monotonically.

Proof Sketch. Using similar arguments as in the correctness of the labeling algorithm, the system starts
from an arbitrary configuration and reaches a configuration in which there exists a global maximal label.
Then the claim (which now focuses on (seqn, wid) pairs), follows by the intersection property of the majorities
used by the processors to increment the counter and the definition of ≺ct. �

Having a self-stabilizing counter increment algorithm, it is not hard to implement a self-stabilizing
MWMR register emulation. Each counter is associated with a value and the counter increment procedure
essentially becomes a write operation: once the maximal counter is found, it is increased and associated with
the new value to be written, which is then communicated to a majority of processors. The read operation
is similar: a processor first queries all processors about the maximum counter they are aware of. It collects
responses from a majority and if there is no maximal counter, it returns ⊥ so the processor needs to attempt
to read again (i.e., the system hasn’t converged to a maximal label yet). If a maximal counter exists, it sends
this together with the associated value to all the processors, and once it collects a majority of responses, it
returns the counter with the associated value (the second phase is a standard requirement for preserving the
consistency of the register (c.f. [3, 18]).

5 Virtually Synchronous Stabilizing Replicated State Machine

In this section, we present a practically self-stabilizing virtual synchrony algorithm that emulates state-
machine replication. As explained in Section 2, the algorithm, besides the counter incremental algorithm
of Section 4.5, also uses a reliable multicast and a failure detector built over a self-stabilizing FIFO data
link. Following [6], we assume that the algorithm works over the network’s primary partition and require a
majority of processors to be present in every view set. More specifically:

Definition 5.1 (Primary partition executions) We say that the output of the (local) failure detectors
in execution R includes a primary partition when it includes a supporting majority of processors, Pmaj ⊆ P ,
that (mutually) never suspect at least one processor, i.e., ∃pℓ ∈ P for which |Pmaj | > ⌊n/2⌋ and (pi ∈ (Pmaj

∩ FDℓ)) ⇐⇒ (pℓ ∈ (Pmaj ∩ FDi)) in every c ∈ R, where FDx returns the set of processors that according
to x’s failure detector are active.

We first describe the algorithm and then prove its correctness. For a full description of Algorithm 3 see
Appendix B.1.

5.1 The algorithm.

The existence of coordinator pℓ is in the heart of Algorithm 3. The algorithm determines pℓ’s availability
and acts towards finding a new coordinator when no valid coordinator exists (lines 5 to 9). The pseudocode
details the coordinator-side (lines 10 to 14) and the follower-side (lines 15 to 19) actions before it explains
how pℓ and its followers exchange messages (lines 21 to 24). The processor’s state and interfaces are defined
in lines 1 to 3.

5.1.1 Determining coordinator availability:

The algorithm takes an agile approach for multicasting with atomic delivery guarantees. Namely, a
new view is installed whenever the coordinator sees a change to its local failure detector, failureDetector(),

11

Algorithm 3: A self-stabilizing automaton replication using virtual synchrony, code for processor pi

1 Constants: PCE (periodic consistency enforcement) number of rounds between global state check;
2 Interfaces: fetch() next multicast message, apply(state,msg) applies the step msg to state (while producing

side effects), synchState(replica) returns a replica consolidated state, synchMsgs(replica) returns a
consolidated array of last delivered messages, failureDetector() returns a vector of processor pairs
〈pid, crdID〉, inc() returns a counter from the increment counter algorithm;

3 Variables: rep[n] = 〈view = 〈ID, set〉, status ∈ {Multicast, Propose, Install}, (multicast round number)
rnd, (replica) state, (last delivered messages) msg[n] (to the state machine), (last fetched) input (to the
state machine), propV = 〈ID, set〉, (no coordinator alive) noCrd, (recently live and connected component)
FD〉 : an array of state replica of the state machine, where rep[i] refers to the one that processor pi maintains.
A local variable FDin stores the failureDetector() output. FD is an alias for {FDin.pid}, i.e. the set of
processors that the failure detector considers as active. Let crd(j) = {FDin.crdID : FDin.pid = j}, i.e. the
id of pj ’s local coordinator, or ⊥ if none.

4 Do forever begin

5 let FDin = failureDetector();
6 let seemCrd = {pℓ = rep[ℓ].propV.ID.wid ∈ FD : (|rep[ℓ].propV.set| > ⌊n/2⌋) ∧ (|rep[ℓ].FD| > ⌊n/2⌋) ∧

(pℓ ∈ rep[ℓ].propV.set) ∧ (pk ∈ rep[ℓ].propV.set ↔ pℓ ∈ rep[k].FD) ∧ ((rep[ℓ].status = Multicast) →
rep[ℓ].(view = propV)) ∧ crdID(ℓ) = ℓ};

7 let valCrd = {pℓ ∈ seemCrd : (∀pk ∈ seemCrd : rep[k].propV.ID �ct rep[ℓ].propV.ID)};
8 noCrd ← (|valCrd| 6= 1);
9 if (|FD| > ⌊n/2⌋) ∧ (((|valCrd| 6= 1) ∧ (|{pk ∈ FD : pi ∈ rep[k].FD ∧ rep[k].noCrd}| > ⌊n/2⌋)) ∨

((valCrd = {pi}) ∧ (FD 6= propV.set))) then (status, propV) ← (Propose, 〈inc(), FD〉)
10 else if (valCrd = {pi}) ∧ (∀ pj ∈ view.set : rep[j].(view, status, rnd) = (view, status, rnd)) ∨ ((status

6= Multicast) ∧ (∀ pj ∈ propV.set : rep[j].(propV, status) = (propV,Propose)) then

11 if status = Multicast then

12 apply(state,msg); input← fetch();
13 foreach pj ∈ P do if pj ∈ view.set then msg[j]← rep[j].input else msg[j]← ⊥ rnd← rnd+ 1;

14 else if status = Propose then (state, status,msg)← (synchState(rep), Install, synchMsgs(rep)) else
if status = Install then (view, status, rnd)← (propV,Multicast, 0)

15 else if valCrd = {pℓ} ∧ ℓ 6= i ∧ ((rep[ℓ].rnd = 0 ∨ rnd < rep[ℓ].rnd ∨ rep[ℓ].(view 6= propV)) then
16 if rep[ℓ].status = Multicast then

17 if rep[ℓ].state = ⊥ then rep[ℓ].state← state /∗ PCE optimization, line 21 ∗/ rep[i]← rep[ℓ];
apply(state, rep[ℓ].msg); /∗ for the sake of side-effects ∗/

18 input← fetch();

19 else if rep[ℓ].status = Install then rep[i]← rep[ℓ] else if rep[ℓ].status = Propose then

(status, propV)← rep[ℓ].(status, propV)

20 let m = rep[i] /∗ sending messages: all to coordinator and coordinator to all ∗/ ;
21 if status = Multicast ∧ rnd(mod PCE) 6= 0 then m.state ← ⊥ /∗ PCE optimization, line 17 ∗/
22 let sendSet = (seemCrd ∪ {pk ∈ propV.set : valCrd = {pi}} ∪ {pk ∈ FD : noCrd ∨ (status =

Propose)})
23 foreach pj ∈ sendSet do send(m)

24 Upon message arrival m from pj do rep[j]← m;

which pi stores in FDi (line 5). Processor pi can see the set of processors, seemCrdi, that each seems to be
the view coordinator, because pi stored a message from pℓ ∈ FDi in which pℓ = rep[ℓ].propV.ID.wid. Note
that pi cannot consider pℓ as a (seemly) coordinator unless the conditions in line 6 hold. Also, as explained
in Section 2, using the failure detector heartbeat exchange, processors can detect initially corrupted states.
A processor considers as a valid coordinator, the processor in seemCrdi that has the �ct-greatest view
identifier (line 7). Note that set valCrdi is either a singleton or empty (line 8). In the latter case, pi will
not propose a new view before its failure detector indicates that there exists a supportive majority of live
and connected processors that also do not have a valid coordinator (line 9).

12

5.1.2 The coordinator-side:

Processor pi is aware of its valid coordinatorship when (valCrdi = {pi}) (line 10). During a normal
Multicast round, pi observes the round end, once for every view member pj it holds that (repi[j].(view,
status, rnd) = (viewi, statusi, rndi)). Depending on its status, the coordinator pi proceeds once it observes
a successful round conclusion. At the end of a normal Multicast round, the coordinator increments the round
number after aggregating the followers’ input (line 11). The coordinator continues from the end of a Propose

round to an Install round after using the most recently received replicas to install a synchronized state of
the emulated automaton (line 14). After a successful Install round, the coordinator proceeds to a Multicast

round after installing the proposed view and the first round number.

5.1.3 The follower-side:

Processor pi considers pℓ as its coordinator when (valCrdi = {pℓ}) and i 6= ℓ (line 15). It has to act
upon merely new messages, i.e., the first message round when installing a new view (rep[ℓ].rnd = 0), the
first time a message arrives (rnd < rep[ℓ].rnd) or a new view is proposed (rep[ℓ].(view 6= propV)). During
normal Multicast rounds (line 16) the follower pi applies the aggregated message of this round to its current
automaton state so that it produces the needed side-effects before adopting the coordinator’s replica (line 19).
While in a Propose round, pi does not overwrite its round number, and so the coordinator can know the
last round number that pi delivered a message during the latest installed view. Both the coordinator and
the followers periodically send their current replica (line 23) and store the replicas received (line 24). As an
optimization, during normal Multicast rounds, processors transmit their full replica state every PCE rounds,
where PCE is a predefined constant.

5.2 Correctness.

The correctness proof shows that starting from an arbitrary state in an execution R of Algorithm 3 and
once the primary partition property (Definition 5.1) holds throughout R, we reach a configuration c ∈ R in
which some processor pℓ proposes a view including a majority of processors and this view is accepted by all
its members. We conclude by proving that any execution suffix in R that begins from such a configuration
c will preserve the virtual synchrony property and implement state machine replication. The full proof is in
Appendix B.2.

We first show that a coordinator without a supporting majority stops being the coordinator. Then we
show that when there is no coordinator, a processor with a supporting majority eventually proposes a view
and all such processors propose at most once, leading to a unique coordinator.

Lemma 5.1 If the conditions of Definition 5.1 hold throughout an execution R of Algorithm 3, then starting
from an arbitrary configuration, the system reaches a configuration in which any processor pℓ with a sup-
porting majority may propose itself as the coordinator at most once. As a consequence, the system reaches a
configuration in which one of these processors is the global coordinator until the end of the execution.

Then we show the main result:

Theorem 5.2 Starting from any configuration, an execution R of Algorithm 3 satisfying Definition 5.1,
emulates automaton replication preserving the virtual synchrony property.

Proof Sketch. We consider a finite prefix R′ of R which has an arbitrary configuration c, and in which
there exists a primary partition (as per Definition 5.1) and assume that this prefix is sufficiently long for
Lemma 5.1 to hold. I.e., we reach a configuration csafe in which there exists a global coordinator for a
majority of processors. Then by careful consideration of the code and the way the coordinated multicast
steps take place we argue the claim of the theorem. �.

13

6 Conclusion

State-machine replication (SMR) is a service that simulates finite automata by letting the participating
processors to periodically exchange messages about their current state as well as the last input that has led
to this shared state. Thus, the processors can verify that they are in sync with each other. A well-known
way to emulate SMRs is to use reliable multicast algorithms that guarantee virtual synchrony [4, 15]. To
this respect, we have presented the first self-stabilizing algorithm that guarantees virtual synchrony, and
used it to obtain a self-stabilizing SMR emulation; within this emulation, the system progresses in more
extreme asynchronous executions in contrast to consensus-based SMRs, like the one in [9]. One of the key
components of the virtual synchrony algorithm is a novel self-stabilizing counter algorithm, that establishes
an efficient practical unbounded counter, which in turn can be directly used to implement a self-stabilizing
MWMR register emulation; this extends the work in [1] that implements SWMR registers and can also be
considered simpler and more communication efficient than the MWMR register implementation presented
in [9].

14

References

[1] Noga Alon, Hagit Attiya, Shlomi Dolev, Swan Dubois, Maria Potop-Butucaru, and Sébastien Tixeuil.
Practically stabilizing SWMR atomic memory in message-passing systems. Journal of Computer and
System Sciences, in press, 2015. A preliminary version has appeared in the Proc. of SSS 2011.

[2] Yair Amir, Danny Dolev, Shlomo Kramer, and Dalia Malki. Transis: A communication subsystem for
high availability. In Proceedings of FTCS’92, pages 76–84, 1992.

[3] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-passing systems.
J. ACM, 42(1):124–142, 1995.

[4] Alberto Bartoli. Implementing a replicated service with group communication. Journal of Systems
Architecture, 50(8):493–519, 2004.

[5] Ken Birman. A history of the virtual synchrony replication model. In Replication: Theory and Practice,
pages 91–120, 2010.

[6] Keneth Birman and Robbert Van Renesse. Reliable distributed computing with the Isis toolkit. Wiley-
IEEE Computer society press, Los Alamitos, 1994.

[7] Kenneth Birman, André Schiper, and Pat Stephenson. Lightweight causal and atomic group multicast.
ACM Trans. Comput. Syst., 9(3):272–314, 1991.

[8] Kenneth P. Birman, Thomas A. Joseph, Thomas Ruchle, and Amr El Abbadi. Implementing fault-
tolerant distributed objects. IEEE Trans. Softw. Eng., 11(6):502-508, 1985.

[9] Peva Blanchard, Shlomi Dolev, Joffroy Beauquier, and Sylvie Delaët. Practically self-stabilizing Paxos
replicated state-machine. In Proc. of the 2nd International Conference of Networked Systems (NE-
TYS’14), pages 99–121, 2014.

[10] Shlomi Dolev. Self-Stabilization, MIT press, 2000.

[11] Shlomi Dolev, Swan Dubois, Maria Potop-Butucaru, and Sébastien Tixeuil. Stabilizing data-link over
non-fifo channels with optimal fault-resilience. Inf. Process. Lett., 111(18):912–920, 2011.

[12] Shlomi Dolev, Ariel Hanemann, Elad Michael Schiller, and Shantanu Sharma. Self-stabilizing end-to-
end communication in (bounded capacity, omitting, duplicating and non-fifo) dynamic networks. In
Proc. of the 14th International Symposium on Stabilization, Safety, and Security of Distributed Systems
(SSS’12), pages 133–147, 2012.

[13] Shlomi Dolev, Ronen I. Kat, and Elad M. Schiller. When consensus meets self-stabilization. Journal of
Computer and System Sciences, 76(8):884 – 900, 2010.

[14] Shlomi Dolev, Limor Lahiani, Nancy A. Lynch, and Tina Nolte. Self-stabilizing mobile node location
management and message routing. In Self-Stabilizing Systems, pages 96–112, 2005.

[15] Roger Khazan, Alan Fekete, and Nancy A. Lynch. Multicast group communication as a base for a
load-balancing replicated data service. In Proc. of the 12th International Symposium on Distributed
Computing (DISC’98), pages 258–272, 1998.

[16] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. pages 558–565, 1978.
Commun. ACM, 21(7):558–565, 1978.

[17] Nancy A. Lynch and Alexander A. Shvartsman. Robust emulation of shared memory using dynamic
quorum-acknowledged broadcasts. In Proc. of the 27th Annual International Symposium on Fault-
Tolerant Computing (FTC 1997), pages 272–281, 1997.

15

[18] Seth Gilbert, Nancy A. Lynch and Alexander A. Shvartsman. RAMBO: A robust, reconfigurable atomic
memory service for dynamic networks. In Distributed Computing, 23(4):225–272, 2010.

[19] Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial.
ACM Comput. Surv., 22(4):299–319, 1990.

16

Appendix

A Omitted Details from Section 4

A.1 Correctness of Algorithm 2

We now give in detail the proof of Algorithm 2. We begin with some terminology and notation.

A.2 Definitions.

We define H to be the set of all label pairs that can be in transit in the system; |H| = m. So in the arbitrary
configuration, there can be up to m corrupted label pairs in the system. We also denote Hi,j as the set of
label pairs that are in transit from processor pi to processor pj.

Recall that the data structures used (e.g., maxi[], storedLabelsi[], etc) store label pairs. For convenience
of presentation and when clear from context when we will be referring to a label rather than a label pair we
mean the ml part of the pair. When we say a legitimate label we essentially mean that the cl part of the
label is ⊥.

A.3 Correctness proof.

The proof considers an execution R of Algorithm 2 that may start in an arbitrary configuration. It start
by showing some basic fact, such as: (1) stale information is removed, i.e., storedLabelsi[j] includes only
unique copies of pj’s labels, and at most one legitimate (Corollary A.1), and (2) pi either adopt or create the
�lb-greatest legitimate local label (Argument A.2). The proof then presents bounds on the number adoption
steps (arguments A.3 and A.4).

The proof continues and show that active processors can eventually stop adopting of creating labels. In are
particularity interested in looking into cases in which canceled label pairs and incomparable ones. We show
that they eventually disappear from the system (Argument A.5) and thus no new label are been adopted
or created (Argument A.6), which then implies the existence of a global maximal label (Argument A.7).
Namely, there is a legitimate label ℓmax, such that for any processor pi ∈ P (that takes practically infinite
number of steps in R), it holds that maxi[i] = ℓmax. Moreover, for any forever active processor pj ∈ P , it
holds that ((maxi[j] �lb ℓmax) ∧ ((∀ℓ ∈ storedLabelsi[j] : legit(ℓ))⇒ (ℓ �lb ℓmax))).

We then demonstrates that, when starting from an arbitrary starting configuration, the system eventually
reaches a configuration in which there is a global maximal label (Theorem A.2). Note that the convergence
holds also when starting from a configuration, c ∈ R, that is obtained by taking a configuration c′ in which
risk = ∅ and apply at least one step in which one processor pi ∈ P (that takes practically infinite number
of steps in R) calls useOwnLabel(), say, due to the exhaustion of the sequence number in its timestamp.

A.3.1 No stale information

Argument A.1 says the predicate staleInfo() (line 9) might not hold only but only during the first
execution of the receive() event (line 17).

Argument A.1 Let pi ∈ P be a processor for which ¬staleInfoi() (line 9) does not hold during the k-th
step in R that includes complete execution of the receive() event (from line 17 and 28). Then k = 1.

Proof. Since R starts in an arbitrary configuration, there could be a queue in storedLabelsi[] that holds two
label records from the same creator, a label that is not stored according to its creator identifier, or more than
one legitimate label. Therefore, staleInfoi() might hold during the first execution of the receive() event.
However, as we show, during that event execution (and any event execution after) pi adds records to a queues
in storedLabelsi[] (according to the creator identifier) only after checking whether recordDoesntExist()
holds (line 22). Any other access to storedLabelsi[] merely update cancelations or remove duplicates. Namely,

17

canceling labels that are not �lb-greatest among the ones that share the same creating processors (line 23)
and canceling record that were canceled by other processors (line 24) as well as removing legitimate records
that share the same name (line 25). �

Argument A.1, line 9 and line 26, implies Corollary A.1.

Corollary A.1 After any step that include the execution of the receive() event, other than the first one, it
holds that ∀pi, pj ∈ P , the state of pi encodes at most one legitimate label, ℓj =lCreator j, which appears in
storedLabelsi[j] rather than storedLabelsi[k] : k 6= j and possibly in maxi[] as well.

A.3.2 Local �lb-greatest legitimate local label

Argument A.2 considers processors for which staleInfo() (line 9) does not hold. Note that staleInfo()
holds at any time after the first step that includes the receive() event (Argument A.1). Argument A.2 shows
that pi either adopt or create the �lb-greatest legitimate local label and stores it in maxi[i].

Argument A.2 Let pi ∈ P be a processor, such that ¬staleInfoi() (line 9), and Lpre(i) = {maxi[j].ml :
∃pj ∈ P ∧ legit(maxi[j]) ∧ (∃〈maxi[j].ml, x〉 ∈ (labels(maxi[j]) \ {maxi[j]}) ⇒ (x = ⊥))} be the set of
maxi[]’s labels that, before pi executes lines 21 to 28, are legitimate both in maxi[] and in storedLabelsi[]’s
queues. Let Lpost(i) = {maxi[j].ml : ∃pj ∈ P ∧legit(maxi[j])} and 〈ℓ,⊥〉 be the value of maxi[i] immediately
after pi executes lines 21 to 28. The label 〈ℓ,⊥〉 is the �lb-greatest legitimate label in Lpost(i). Moreover,
suppose that Lpre(i) has a �lb-greatest legitimate label, then that label is 〈ℓ,⊥〉.

Proof. 〈ℓ,⊥〉 is the �lb-greatest legitimate label in Lpost(i). Suppose that immediately before
line 27, we have that legitLabelsi() 6= ∅, where legitLabelsi() = {maxi[j].ml : ∃pj ∈ P ∧ legit(maxi[j])}
(line 14). Note that in this case Lpost(i) = legitLabelsi(). By the definition of �lb-greatest legitimate label
and line 27, maxi[i] = 〈ℓ,⊥〉 is the �lb-greatest legitimate label in Lpost(i). Suppose that legitLabelsi() = ∅
immediately before line 27, i.e., there are no legitimate labels in {maxi[j] : ∃pj ∈ P}. By the definition of
�lb-greatest legitimate label and line 15, maxi[i] = 〈ℓ,⊥〉 is the �lb-greatest legitimate label in Lpost(i).
Suppose that rec = 〈ℓ′,⊥〉 is a �lb-greatest legitimate label in Lpre(i), then ℓ = ℓ′. We show
that the record rec is not modified in maxi[] until the end of the execution of lines 21 to 28. Moreover, the
records that are modified in maxi[], are not included in Lpre(i) (it is canceled in storedLabelsi[]) and no
records in maxi[] become legitimate. Therefore, rec is also the �lb-greatest legitimate label in Lpost(i), and
thus, ℓ = ℓ′.

Since we assume that staleInfoi() does not hold, lines 21 does not modify rec. Lines 22, 23 and 25 might
add, modify, and respectively, remove storedLabelsi’s records, but it does not modify maxi[]. Since rec is
not canceled in storedLabelsi[] and the �lb-greatest legitimate label in maxi[], the predicant (legit(max[j])∧
notgeq(j)) does not hold and line 23 does not modifies rec. Moreover, the records in maxi[], for which that
predicant holds, become illegitimate. �

A.4 Bounding the number of labels

Arguments A.3 and A.4 present bounds on the number adoption steps.

A.4.1 Maximum number of label adoption in the absence of creations

Suppose that there exists a processor, pj, that has stopped adding labels to the system (the else part
of line 28), say, because it became inactive (crashed), or it names a maximal label that is the �lb-greatest
label among all the ones that the network ever delivers to pj . Argument A.3 bounds the number of labels
from pj ’s domain that any processor pi ∈ P adopts in R.

Argument A.3 Let pi, pj ∈ P , be two processors. Suppose that pj has stopped adding labels to the system
configuration (the else part of line 28), and sending (line 16) these labels during R. Processor pi adopts
(line 27) at most (n+m) labels, ℓj : (ℓj =lCreator j), from pj’s unknown domain (ℓj /∈ labelsi(ℓj)) where m
is the maximum number of label pairs that can be in transit in the system.

18

Proof. Let pk ∈ P . At any time (after the first step in R) processor pk’s state encodes at most one
legitimate label, ℓj , for which ℓj =lCreator j (Corollary A.1). Whenever processor pi adopts (line 27) a label,
ℓj : (ℓj =lCreator j) from pj’s domain, because ℓj is not added to the pi’s state (the else part of line 28) and
send (line 16) during R (as in this argument statement). Thus, ℓj must come from pk’s state or delivered
via the network. The bound holds since there are n processors, such as pk, and m bounds the number of
labels in transient. �

A.4.2 Maximum number of label creations

Argument A.4 shows a bound on the number adoption steps that does not depends whether the labels
are from the domain of an active or (eventually) inactive processor.

Argument A.4 Let pi ∈ P be a processor. Let Li = ℓi0 , ℓi1 , . . . be the sequence of legitimate labels,
ℓik =lCreator i, from pi’s domain, which pi stores in maxi[i] over time, where k ∈ N . It holds that
|Li| ≤ n(n2 +m).

Proof. Let Li,j = ℓi0,j , ℓi1,j , . . . be the sequence of legitimate labels that pi stores in maxi[j] during R and
Ci,j = ℓi0,j , ℓi1,j, . . . be the sequence of legitimate labels that pi receives from processor pj’s domain. We
consider the following cases in which pi stores L’s values in maxi[i].
(1) When ℓik = ℓj0,j′ , where pj, pj′ ∈ P and k ∈ N . This case considers the situation in which maxi[i]
stores a label that appeared in maxj [j

′] at the (arbitrary) starting configuration. There are at most n2 such
legitimate label values from pi’s domain.
(2) When ℓik = ℓj′

k
,j′ , where pj , pj′ ∈ P , k, k′ ∈ N and ℓj′

k
,j′ 6= Lj′

k
,j. This case considers the situation

in which maxi[i] stores a label that appeared in the communication channel between pj and pj′ at the
(arbitrary) starting configuration. There are at most m such values.
(3) When ℓik is the return value of nextLabel() (the else part of line 28). Processor pi aims
at adopting the �lb-greatest legitimate label that is stored in maxi[], whenever such exists (line 27). Oth-
erwise, pi uses a label from its domain; either one that is the �lb-greatest legit label among the ones in
storedLabelsi[i], whenever such exists, or the returned value of nextLabel() (line 28).

The latter case (the else part of line 28) refers to labels, ℓik , that pi stores in maxi[i] only after checking
that there are no legitimate labels stored in maxi[] or storedLabelsi[]. Note that every time that pi executes
(the else part of line 28), pi stores the returned label, ℓik , in storedLabelsi[i]. After that, there are only
three ways for ℓik not to be stored as a legitimate label in storedLabelsi[i]: (i) execution of line 21, (ii) the
network delivers to pi a label, ℓ′, that either cancels ℓik or for which ℓ′ 6�lb ℓik , and (iii) ℓik overflows from
storedLabelsi[i] after exceeding the (n(n2 +m) + 1) limit.

Note that argument A.1 says that case (i) can occur only once (during pi’s first step). Moreover, only
pi can generate labels that are associated with its domain (in the else part of line 28). Each such label is
�lb-greater-equal than all the ones in storedLabelsi[i] (be definition of nextLabel() in Algorithm 1).

Case (ii) cannot occur after pi has learned all the labels ℓ ∈ remoteLabelsi for which ℓ /∈ storedLabelsi[i],
where remoteLabelsi = (((∪pj∈P localLabelsi,j) ∪H) \ localLabelsi,i) and localLabelsi,j = {ℓ′ : ℓ′ =lCreator i
∃pj ∈ P : ((ℓ′ ∈ storedLabelsj[i]) ∨ (∃ pk ∈ P : ℓ′ = maxj [k].ml))}. During this learning process pi cancels
(or update the cancellation) labels in localLabelsi,i before adding a new legitimate label. Thus, this learning
process can be seen as moving labels from remoteLabelsi to storedLabelsi[i] and then keeping at most one
legitimate label available in storedLabelsi[i]. Once storedLabelsi[i] accumulates another label, ℓ, that was
unknown to pi until the returned value, ℓik , that pi gets from nextLabel() is �lb-greater-equal than any label
storedLabelsi[i] as well as the ones in remoteLabelsi.

Note that remoteLabelsi’s labels must come from the (arbitrary) start of the system, because pi is
the only one that can add label to the system from its domain. We show that case (ii) stops occurring
before case (iii) can occur by demonstrating that |remoteLabelsi| < n(n2 +m). Namely, |remoteLabelsi| =
(n− 1)(|max[]|+ |storedLabels[i]|) + |H| = (n− 1)(n+ (n2 +m)) +m = n3 + (m− 1)n.

19

Note that, since we are interested in a bound on the number of adoption steps, this proof does not
distinguish between processors that takes bounded or practically infinite number of steps in R and considers
all processors as the ones that take a practically infinite number of steps. �

A.5 Pair diffusion

The proof continues and show that active processors can eventually stop adopting or creating labels. We are
particularity interested in looking into cases in which canceled label pairs and incomparable ones. We show
that they eventually disappear from the system (Argument A.5) and thus no new label are been adopted or
created (Argument A.6), which then implies the existence of a global maximal label (Argument A.7).

Arguments A.5 and A.6, as well as Argument A.7 and Theorem A.2 assume the existence of at least one
processor, punknown ∈ P whose identity is unknown, that takes practically infinite number of steps in R.
Suppose that processor pi ∈ P takes a bounded number of step in R during a period in which punknown takes
a practically infinite number of steps. We say that pi has become inactive (crashed) during that period and
assume that it does not resume to take steps at any later stage of R (in the manner of fail-stop failures, as
in Section 3).

Given processor pi ∈ P that takes any number (bounded or practically infinite) of steps in R, two
processors pi, pj ∈ P (that take a practically infinite number of steps in R), we use the following definitions
for estimating whether there are label pairs, ℓ and ℓ′, that have the potential to disturb the system by
bringing pj to either add a label, ℓj =lCreator i, to the system configuration (the else part of line 28), or
adopt labels (line 27), ℓj : (ℓj =lCreator j), from pj ’s unknown domain (ℓj /∈ labelsk(ℓj)).

There is a risk for two label pairs, ℓj and ℓk, say, from pi’s domain to cause such a disturbance when either
they cancel one another or when it can be found that one is not greater than the other. Thus, we use the
predicate riski,j,k(ℓj, ℓk) = (ℓj =i ℓk)∧ legit(ℓj)∧ (notGreater(ℓj , ℓk)∨canceled(ℓj, ℓk)) to estimate whether
pj ’s state encodes a label pair, ℓj =lCreator i, from pi’s domain that may disturb the system due to another
label, ℓk, from pi’s domain that pk’s state encodes, where canceled(ℓj, ℓk) = (legit(ℓj)∧¬legit(ℓk)∧ℓj =ml ℓk)
refers to a case in which label ℓj that is canceled by label ℓk, notGreater(ℓj , ℓk) = (legit(ℓj)∧legit(ℓk)∧ℓk 6�lb

ℓj) that refers to a case in which label ℓk is not �lb-greater ℓj and (ℓj =i ℓk) ≡ (ℓj =lCreator ℓk =lCreator i).
These two label pairs, ℓj and ℓk, can be the ones that processors pj and k name as their local max-

imal label, as in maxi,j,k = {(maxj [j],maxk[k])}, or recently received from one another, as in acki,j,k =
{(maxj [j],maxk[j])}. These two case also appear when considering the communication channel (or buffers)
from pk to pj, as in hNamei,j,k = {(ℓj, ℓk) : ℓj = maxj [j]∧ (∃〈ℓk, •〉 ∈ Hk,j)} and hAcki,j,k = {(ℓj, ℓk) : ℓj =
maxj [k]∧ (∃〈•, ℓk〉 ∈ Hk,j)}. We also note the case in which pk stores a pair label that might disturb the one
that pj names as its (local) maximal, as in storedi,j,k = {maxj [j]}×storedLabelsk[i], where stoppedi = true
when processor pi is inactive (crashed) and false otherwise. This, we define the set risk = {(ℓj, ℓk) ∈
maxi,j,k∪acki,j,k∪hNamei,j,k∪hAcki,j,k∪storedi,j,k : ∃pi, pj , pk ∈ P ∧stoppedj∧stoppedk∧riski,j,k(ℓj , ℓk)}
as the union of these cases.

Argument A.5 Suppose that there exists at least one processor, punknown ∈ P whose identity is unknown,
that takes practically infinite number of steps in R during a period whilst neither pj adds a label, ℓj =lCreator i,
to the system (the else part of line 28), nor pj adopts labels (line 27), ℓj : (ℓj =lCreator i), from pi’s unknown
domain (ℓj /∈ labelsj(ℓj)). Then risk = ∅ eventually.

Proof Sketch. Suppose this argument statement is false, i.e., the assumptions of this argument hold and yet
in any configuration c ∈ R, it holds that (ℓj , ℓk) ∈ risk 6= ∅. We use risk’s definition to study the different
cases and their proof sketch. By the definition of risk, we can assume, without the lose of generality, that
pj and pk are alive throughout R.
The case of (ℓj , ℓk) ∈ maxi,j,k. Here the label pairs ℓj and ℓk are named by pj and pk as their local
maximal label. The assumptions that, throughout R, processors pj and pk are alive, as well as (ℓj , ℓk) ∈
maxi,j,k = {(maxj [j],maxk[k])} implies that eventually pj and pk exchange messages. Moreover, (ℓj , ℓk) ∈
maxi,j,k implies that riski,j,k(ℓj , ℓk) holds and thus we cannot have that both pj and pk continue forever in
R to name ℓj , and respectively, ℓk as their local maximal label pairs. Thus, a contradiction.

20

The case of (ℓj , ℓk) ∈ acki,j,k. This case follows by similar arguments to the case of (ℓj , ℓk) ∈ maxi,j,k =
{(maxj [j],maxk[j])} the shows that eventually processor pk replaces maxk[j] with a more recent value of
maxj [j] and thus (ℓj , ℓk) /∈ acki,j,k, a contradiction, or processor pj eventually receives ℓk = maxk[j] from pk.
Since (ℓj, ℓk) ∈ acki,j,k then riski,j,k(ℓj , ℓk) holds and thus pj must change its the value of maxj [j] = ℓj in a
way that will take into account the received label pair ℓk and after this change it holds that (ℓj , ℓk) /∈ acki,j,k.
Thus, a contradiction.
The case of (ℓj , ℓk) ∈ hNamei,j,k. hNamei,j,k = {(ℓj , ℓk) : ℓj = maxj [j]∧ (∃〈ℓk, •〉 ∈ Hk,j)} This case
follows by the same arguments to the case of (ℓj , ℓk) ∈ maxi,j,k.
The case of (ℓj , ℓk) ∈ hAcki,j,k. hAcki,j,k = {(ℓj , ℓk) : ℓj = maxj [j] ∧ (∃〈•, ℓk〉 ∈ Hk,j)} This case
follows by the same arguments to the case of (ℓj , ℓk) ∈ acki,j,k.
The case of (ℓj , ℓk) ∈ storedi,j,k. storedi,j,k = {maxj [j]}×storedLabelsk[i] This case follows by similar
arguments to the case of (ℓj , ℓk) ∈ maxi,j,k. Namely, pk eventually receives the label pair ℓj = maxj [j].
The assumption that riski,j,k(ℓj, ℓk) holds implies that one of the tests in lines 23 and 26 will either update
storedLabelsk[i], and respectively, maxk[j] with canceling values. We note that for the latter case we argue
that pj eventually received the canceled label pair in maxk[j], because we assume that pj does not change
the value of maxj [j] throughout R. Therefore, in both cases we have a contradiction. �

These two label pairs, ℓj and ℓk, can be the ones that processors pj and k name as their local
maximal label, as in maxi,j,k = {(maxj [j],maxk[k])}, or recently received from one another, as in
acki,j,k = {(maxj [j],maxk[j])}. These two case also appear when considering the communication channel
(or buffers) from pk to pj , as in hNamei,j,k = {(ℓj, ℓk) : ℓj = maxj [j] ∧ (∃〈ℓk, •〉 ∈ Hk,j)} and hAcki,j,k =
{(ℓj, ℓk) : ℓj = maxj [j]∧ (∃〈•, ℓk〉 ∈ Hk,j)}. We also note the case in which pk stores a pair label that might
disturb the one that pj names as its (local) maximal, as in storedi,j,k = {{maxj [j]} × storedLabelsk[i]},
where stoppedi = true when processor pi is inactive (crashed) and false otherwise.

Argument A.6 Suppose that risk = ∅ in every configuration throughout R and that there exists at least
one processor, punknown ∈ P whose identity is unknown, that takes practically infinite number of steps in R.
Neither pj adds a label, ℓj =lCreator i, to the system (the else part of line 28), nor pj adopts labels (line 27),
ℓj : (ℓj =lCreator i), from pi’s unknown domain (ℓj /∈ labelsj(ℓj)).

Proof Sketch. Note that the definition of risk consider almost every possible combination of two label
pairs ℓj and ℓk from pi’s domain that are stored by processor pj , and respectively, pk (or in the channels to
them). The only combination that is no considered is (ℓj , ℓk) ∈ storedLabelsj[i]×storedLabelsk[i]. However,
this combination can indeed reside in the system during a legal execution and it cannot led to a disruption
for the case of risk = ∅ in every configuration throughout R because before that could happen, either pj
or pk would have to adopt ℓj, and respectively, ℓk, which means a contradiction with the assumption that
risk = ∅. Similarly one can argue for the case of two messages in transit, Hj,k ×Hk,j . �

Argument A.7 Suppose that risk = ∅ in every configuration throughout R and that there exists at least
one processor, punknown ∈ P whose identity is unknown, that takes practically infinite number of steps in R.
There is a legitimate label ℓmax, such that for any processor pi ∈ P (that takes practically infinite number of
steps in R), it holds that maxi[i] = ℓmax. Moreover, for any processor pj ∈ P (that takes practically infinite
number of steps in R), it holds that ((maxi[j] �lb ℓmax)∧((∀ℓ ∈ storedLabelsi[j] : legit(ℓ))⇒ (ℓ �lb ℓmax))).

Proof Sketch. Since, throughout R, any two active processors forever exchange their local maximal label
pairs and yet risk = ∅ is empty, we have that all of the no two active processors ever name in R two
incomparable (local) maximal labels. Therefore, there is a (local) maximal label, ℓmax, that is ≺lb-greater
than all other labels that other active processors name as their (local) maximal labels. Thus, label ℓmax will
be adopted by every active processors in the system eventually. �

A.6 Convergence

Theorem A.2 demonstrates that, when starting from an arbitrary starting configuration, the system eventu-
ally reaches a configuration in which there is a global maximal label.

21

Theorem A.2 Suppose that there exists at least one processor, punknown ∈ P whose identity is unknown,
that take practically infinite number of steps in R. Within a bounded number of steps, there is a legitimate
label pair ℓmax, such that for any processor pi ∈ P (that take a practically infinite number of steps in
R), it holds that pi has that label pair maxi[i] = ℓmax when naming its (local) maximal label, maxi[i].ml.
Moreover, for any processor pj ∈ P (that take a practically infinite number of steps in R), it holds that
((maxi[j] �lb ℓmax) ∧ ((∀ℓ ∈ storedLabelsi[j] : legit(ℓ))⇒ (ℓ �lb ℓmax))).

Proof. For any processor in the system, which may take any (bounded or practically infinite) number of
steps in R, we know that there is a bounded number of label pairs, Li = ℓi0 , ℓi1 , . . ., that processor pi ∈ P
adds to the system configuration (the else part of line 28), where ℓik =lCreator i (Argument A.4). Thus,
by the pigeonhole principle we know that, within a bounded number of steps in R, there is a period during
which punknown takes a practically infinite number of steps in R whilst (all processors) pi do not add any
label pair, ℓik =lCreator i, to the system configuration (the else part of line 28). During this practically
infinite period (with respect to punknown), in which no label pairs are added to the system configuration
(the else part of line 28), we know that for any processor pj ∈ P that take any number of (bounded or
practically infinite) steps in R, and processor pk ∈ P that adopts labels in R (line 27), ℓj : (ℓj =lCreator j),
from pj ’s unknown domain (ℓj /∈ labelsk(ℓj)), it holds that pk adopts such labels (line 27) for at most a
bounded number times in R (Argument A.3). Therefore, we can again follow the pigeonhole principle and
say that there is a period during which punknown takes a practically infinite number of steps in R whilst
neither pi adds a label, ℓik =lCreator i, to the system (the else part of line 28), nor pk adopts labels (line 27),
ℓj : (ℓj =lCreator j), from pj’s unknown domain (ℓj /∈ labelsk(ℓj)). Consequently, whilst punknown takes a
practically infinite number of steps, all processors (that takes practically infinite number of steps in R) name
the same �lb-greatest legitimate label which the theorem statement specify (Argument A.7). �

A.7 Pseudocode and Description of the Counter Algorithm

We provide a pseudocode of the counter increment algorithm that extends the labeling algorithm using
sequence numbers.

As detailed in Section 4.5 the counter increment algorithm enhances the labeling algorithm to take care of
the counter increment once a maximal label exists in the system. The structures max[] and storedLabels[]
that were used for label pairs 〈ml, ct〉 in the labeling algorithm are now defined to contain counter pairs
〈mct, cct〉 and are renamed to maxC and storedCnts[] respectively . The maintenance of these structures
is similar to the labeling algorithm. We define enqueue(ctp) to add a counter pair to a queue if it doesn’t
exist, or to keep the one which is greatest w.r.t. ≺ct if it exists. In case at least one of the two counter pairs
is canceled then we keep a canceled version. Note that in this way the system can revert back to a label
that had not been canceled but was not used because a greater one existed. Procedure cancelExhausted()
(line 29), cancels an exhausted counter pair ctp, by setting ctp.cct = ctp.mct (i.e., the counter’s own label
cancels it) and hence making the counter non-legit (thus it cannot be used as a maximal counter).

The increment counter algorithm executed in lines 12 to 20 follows the logic of a writer in a MWMR
register emulation. The processor inquires a quorum (lines13) and aggregates the responses, maintaining the
structures (lines 25- 26). Note that process() (line 15) performs the same operations as lines 21 to 28 in the
labeling algorithm, to keep the consistency of the counter storage. The maximal legit non-exhausted counter
in maxCi[] is the greatest of the counters from the quorum, or, in case such a counter was not found, it is a
newly created counter. This is increased in line 19 and written to a quorum (line 20).

22

Algorithm 4: Counter Increment; code for pi

1 Variables:

2 A label 〈lbl〉 is extended to the triple 〈lbl, seqn,wid〉 called a counter where: seqn, is the sequence number
related to the lbl label, and wid is the identity of the creator of this seqn (as detailed in section 4.5). A
counter pair 〈mct, cct〉 is the natural extension of a label pair, where cct is a canceling counter for mct, such
that cct.lbl 6�lb mct.lbl or cct.lbl = ⊥. We extend the storedLabels() and max[] structures of Algorithm 2 to
structures of counter pairs (instead of label pairs) under the names storedCnts[] and maxC[]. We refer to
process() as the execution of lines 21 to 28 of Algorithm 2. To ease the presentation of the pseudocode, we
assume that a label created by processor pi in line 28 of the labeling algorithm is initiated with a seqn set to 0
and a wid = i before added to maxC[i] and storedCnts[i].

3 The operator enqueue(ctp) places a counter pair ctp at the front of a queue. If ctp.mct.lbl already exists in the
queue, it keeps the greatest counter w.r.t. ≺ct and places it at the front of the queue. If one counter pair is
canceled then the canceled copy is the one retained.

4 Notation: Let y and y′ be two records that include the field x. We denote y =x y′ ≡ (y.x = y′.x).
5 Macros:

6 exhausted(ctp) = (ctp.mct.seqn ≥ 264)
7 legit(ctp) = (ctp.cct.lbl = ⊥〉)
8 retCounterQ(ct) : return (storedCnts[ct.lbl.lCreator])
9 diffSeq(mct,mct′) = (mct 6= mct′ ∧mct =lbl mct′)

10 legitCounters() = {maxC[j].mct : ∃pj ∈ P ∧ legit(maxC[j])}
11 getMaxSeq() : return maxCwid({maxCseqn({ctp : ctp.mct ∈ legitCounters() ∧maxC[i] =mct.lbl ctp)}})
12 procedure incrementCounter() begin
13 quorumRead();
14 repeat

15 process();
16 maxC[i]← getMaxSeq();
17 if exhausted(maxC[i]) then cancelExhausted()

18 until ¬exhausted(maxC[i]);
19 maxC[i].mct.seqn← maxC[i].mct.seqn+ 1; maxC[i].mct.wid← i;
20 if ∃ctp ∈ retCounterQ(maxC[i]) : ctp =mct.lml maxC[i] then retCounterQ(ctp.mct).enqueue(maxC[i])

quorumWrite(maxCi[i])

21 procedure quorumRead() begin
22 foreach pj ∈ P do send quorumMaxRead() to pj repeat

23 upon receipt of 〈sentMaxj, lastSentj〉 from pj ∈ P
24 begin

25 maxC[j]← sentMaxj;
26 if ¬legit(lastSentj) ∧ maxC[i] =mct.lbl lastSentj then maxC[i]← lastSentj foreach ctp′.mct′ ∈

{sentMaxj , lastSentj}, ctp ∈ retCounterQ(mct′) : legit(ctp′) ∧ legit(ctp)∧ diffSeq(ctp, ctp′) do
retCounterQ(mct′).enqueue(ctp′)

27 until responses from a quorum received ;

28 upon request for quorumMaxRead() from pj do send(〈maxCi[i], maxCi[j]〉) to pj ;
29 procedure cancelExhausted() begin
30 foreach pj ∈ P, ctp ∈ maxC[j] ∧ retCounterQ(ctp) : ctp =ml maxC[i] do

retCounterQ(ctp).cct← ctp.mct

31 procedure quorumWrite(maxCi[i]) begin

32 foreach pj ∈ P do send quorumMaxWrite(maxCi[i]) wait for ACK from a quorum;

33 upon request for quorumMaxWrite(maxj) from pj begin

34 maxCi[j]← maxj ;
35 if ∃ctp ∈ retCounterQ(maxCj) : ctp =mct maxj then retCounterQ(ctp.mct).enqueue(maxj) send

ACK to pj ;

23

B Omitted Details from Section 5

B.1 Detailed Description of Algorithm 3

The existence of coordinator pℓ is in the heart of Algorithm 3. The algorithm determines pℓ’s availability
and acts towards the election of a new one when no valid coordinator exists (lines 5 to 9). The pseudocode
details the coordinator-side (lines 10 to 14) and the follower-side (lines 15 to 19) actions before it explains
how pℓ and its followers exchange messages (lines 21 to 24).

B.1.1 The processor state and interfaces:

The state of each processor includes its current view, status, which can refer to normal operation
during Multicast rounds, or view recovery rounds in which the coordinator can Propose a new view and
Install a new one once all preparations are done (line 3). During multicast rounds, rnd denotes the round
number, state stores the replica, msg[n] is an array that includes the last delivered messages to the state
machine, which is the input fetched by each group member and then aggregated by the coordinator during
the previous multicast round. During normal multicast rounds, it holds that propV = view. However,
whenever propV 6= view we consider propV as the newly proposed view and view as the last installed one.
Each processor also uses noCrd and FD to indicate whether it is aware of the absence of recently active
and connected valid coordinator, and respectively, the set of processor present in the connected component,
as indicated by its local failure detector. The processors exchange their state via message passing and store
the arriving messages in the replica’s array, rep[n] (line 24), where rep[i].(view, . . ., noCrd) is an alias to
aforementioned variables and rep[j] refers to the last arriving message from processor pj . Our presentation
also uses subscript k to refer to the content of a variable at processor pk, e.g., repk[j].view, when referring
to the last installed view that processor pk last received from pj .

Algorithm 3 assumes access to application’s message queue via fetch(), which returns the next multicast
message, or ⊥ when no such message is available (line 2). It also assume the availability of the automaton
state transition function, apply(state,msg), which applies the aggregated input array, msg, to the replica’s
state and produces the local side effects. The algorithm also collects the followers’ replica states and uses
synchState(replica) to return the new state. The function failureDetector() provides access to pi’s failure
detector, and the function inc() (counter increment) fetches a new and unique (view) identifier, ID, that can
be totally ordered by �ct and ID.wid is the identity of the processor that incremented the counter, resulting
in counter value ID (hence view IDs are counters as defined in 4.5). Note that when two processors attempt
to concurrently increment the counter, due to symmetry breaking, one of the two counters is the largest.
Each processor will continue to propose a new view based on the counter written, but then (as described
below) the one will the highest counter will succeed (line 7).

B.1.2 Determining coordinator availability:

Algorithm 3 takes an agile approach for multicasting with atomic delivery guarantees. Namely, a
new view is installed whenever the coordinator sees a change to its local failure detector, failureDetector(),
which pi stores in FDi (line 5). Processor pi can see the set of processors, seemCrdi, that are each seems
to be the view coordinator, because pi stored a message from pℓ ∈ FDi for which pℓ = rep[ℓ].propV.ID.wid.
Note that pi cannot consider pℓ as a (seemly) coordinator when pℓ’s proposal view does not includes a
majority, pℓ is not a member in the view it claims to coordinate and, in the case of Multicast rounds, their
view fields match their view proposal fields (line 6). Also, using the failure detector heartbeat exchange,
processors communicate the identifier of the processor they consider to be their coordinator, or ⊥ if none.
As shown in the correctness proof, this helps to detect initially corrupted states where a processor pi might
consider processor pjj to be its coordinator, but processor j does not consider itself to be the coordinator.

The algorithm considers as a valid coordinator the processor that seems to have the �ct-greatest view
identifier among the set of seemly coordinators (line 7). Note that the set valCrdi either includes a single
processor, pℓ which pi considers to be a valid coordinator, or pi does not consider any processor to be a
valid coordinator that was recently live and connected (line 8). In the latter case, pi will not propose a

24

new view before its (local) failure detector indicates that it is within the primary component and that a
supportive majority of recently live and connected processors also do not observe the availability of a valid
coordinator (line 9). Note that in case the pi is a valid coordinator, it will propose a new view whenever the
last proposed view does not match the set of processors that were recently live and connected according to
its (local) failure detector.

B.1.3 The coordinator-side:

Processor pi is aware of its valid coordinatorship when (valCrdi = {pi}) (line 10). It has to act upon
its coordinatorship upon the round end. During a normal Multicast rounds, pi observes the round end once
for every view member pj it holds that (repi[j].(view, status, rnd) = (viewi, statusi, rndi)). For the case
of Propose and Install rounds, the algorithm does not need to consider the round number, rnd.

Depending on its status, the coordinator pi proceeds once it observes the successful round conclusion.
At the end of a normal Multicast round, the coordinator increments the round number after aggregating the
followers’ input (line 11). The coordinator continues from the end of a Propose round to an Install round after
using the most recently received replicas to install a synchronized state of the emulated automaton (line 14).
At the end of a successful Install round, the coordinator proceeds to a Multicast round after installing the
proposed view and the first round number. (Note that implicitly the coordinator creates a new view if it
detects that the round number is exhausted (rnd > 264), or if there is another member of its view that has
a greater round number than the one this coordinator has. This can only be due to corruption in the initial
arbitrary state which affected rnd part of the state.)

B.1.4 The follower-side:

Processor pi is aware of its coordinator’s identity when (valCrdi = {pℓ}) and i 6= ℓ (line 15). It has
to act upon merely new messages, i.e., the first message round when installing a new view (rep[ℓ].rnd = 0),
the first time a message arrives (rnd < rep[ℓ].rnd) or a new view is proposed (rep[ℓ].(view 6= propV)).

During normal Multicast rounds (line 16) the follower pi applies the aggregated message of this round
to it current automaton state so that it produces the needed side-effects before adopting the coordinator
replica (line 19). Note that in the case of a Propose round it avoids overwriting its round number so that the
coordinator could know what was the last round number that it delivered during the latest installed view.

B.1.5 The exchanging message and PCE optimization:

Each processor periodically send it current replica (line 23) and stores the received ones (line 24).
As an optimization, we propose to avoid sending the entire replica state in every Multicast round. Instead,
we consider a predefined constant, PCE (periodic consistency enforcement), that determines the maximum
number of Multicast rounds during which the followers do not transmit their replica state to the coordinator
and the coordinator does send its state to them (lines 17 and 21). Note that the greater the PCE’s size,
the longer it takes to recover from transient faults. Therefore, one has to take this into consideration when
extending the approach of periodic consistency enforcement to other elements of replica, e.g., in view and
propV , one might want to reduce the communication costs that are associated with the set field and the
epoch part of the ID field.

B.2 Correctness Proof of Algorithm 3

The following remark is used in the correctness proof.

Remark B.1 As Definition 5.1 suggests, we can have more than one such processor pℓ. Note that in this
case, it is not necessary to have the same supporting majority. Thus for two such processors pi, pj, we define
the supporting majority of pi as Pmaj(i) and we note that Pmaj(i) ∩ Pmaj(j) 6= ∅.

25

The correctness proof shows that starting from an arbitrary state in an execution R of Algorithm 3 and
once the primary partition property (Definition 5.1) holds throughout R, we reach a configuration c ∈ R
in which some processor pℓ proposes a view including a majority of processors and this view is accepted by
all its member processors. We conclude by proving that any execution suffix in R that begins from such a
configuration c will preserve the virtual synchrony property and implement state machine replication. We
begin with some definitions.

Once the system considers processor pℓ as the view coordinator (Definition 5.1) its supporting majority
can extend the support throughout R and thus pℓ continues to emulate the automaton with them. Fur-
thermore, there is no clear guarantee for a view coordinator to continue to coordinate for an unbounded
period when it does not meet Definition 5.1’s criteria throughout R. Therefore, for the sake of presentation
simplicity, the proof considers any execution R with only definitive suspicions, i.e., once processor pi suspects
processor pj , it does not stop suspecting pj throughout R. The correctness proof implies that eventually,
once all of R’s suspicions appear in the respective local failure detectors, the system elects a coordinator
that has a supporting majority throughout R.

Consider a configuration c in an execution R of the Algorithm 3 and a processor pi ∈ P . We define
the local (view) coordinator of pi, say pj, to be the only processor that, based on pi’s local information,
has a proposed view satisfying the conditions of lines 6 and 7 such that valCrd = pj . pj is also considered
the global (view) coordinator if ∀pk ∈ Pmaj(j) in configuration c, it holds that every pk’s local variable
valCrd = pj . When pi has a (local) coordinator then pi’s local variable noCrd = False, whilst when it has
no local coordinator noCrd = True. We are now ready to prove the correctness of the algorithm.

Lemma B.1 Let c be an arbitrary configuration in an execution, R, of Algorithm 3 such that Definition 5.1
holds. Consider a processor pi ∈ Pmaj which has a local coordinator pk, such that pk is either inactive or it
does not have a supporting majority throughout R. There is a configuration c ∈ R, after which pi does not
consider pk to be its local coordinator.

Proof. There are the two possibilities regarding processor pk:
Case 1: We first consider the case where pk is inactive throughout R. By the design of our failure detector,
pi is informed of pk’s inactivity such that line 5 will return an FDi to pi where pk /∈ FDi. The threshold we
set for our failure detector (Section 2) determines how soon pk is suspected. By the first condition of line 6
since pk /∈ seemCrd we deduce pk /∈ valCrdi i.e., pi stops considering pk as its local coordinator. It is clear
that pi does not stop suspecting pk throughout R.

We now turn to the case where pk is active, however it does not have a supporting majority throughout
R, but pi still considers pk as its local coordinator, i.e. valCrdi = pk. Two sub-cases exist:
Case 2(a): pk considers itself to have a supporting majority, and pi ∈ propVk. Note that the latter
assumption implies that pk is forced by lines 20 - 23 to propagate repk[k] to pi in every iteration. By
the failure detector, there exists an iteration where pk will be informed that |FD| < n/2. If pk does not
find a new coordinator thus noCrdk = True, then pk propagates its repk[k] to pi. But this implies that pi
receives repk[k] and stores it in repi[k]. Upon the next iteration of this reception, pi will remove pk from
its seemCrd set because pk does not satisfy the condition |repi[k].FD| < ⌊n/2⌋ of line 6. We conclude that
pi seizes considering pk as its local coordinator if it does not find a new coordinator. Nevertheless, pk may
find a new coordinator before propagating repk[k]. If pk has a coordinator other than himself, then it only
propagates repk[k] to its coordinator. We thus refer to the next case:
Case 2(b): pk has a different local coordinator than itself. This can occur either as described in case 2(a)
or as a result of an arbitrary initial state in which pi believes that pk is its local coordinator but pk has
a different local coordinator. We note that the difficulty of this case is that pk sends repk[k] only to its
coordinator, and thus the proof of case 2(a) is not helpful. As explained in Algorithm 3, the failure detector
carries the identity (pid) of any processor it regards as active, as well as the identity of the local coordinator
of each such processor. As per the algorithm’s notation, the coordinator of processor pk is given by crd(k).
Since pi’s failure detector regards pk as active, then crd(k) is indeed updated (pi receives the token with pk’s
crd(k) infinitely often from pk), otherwise pk is removed from FD and is not a valid coordinator. But pk does
not consider itself as its coordinator (by case 2(b) assumption) and thus it holds that crd(k) 6= k. Therefore,

26

eventually the condition crd(k) = k required in line 6 fails and pk 6∈ seemCrd and thus valCrdi 6= pk. We
conclude that pk stops being pi’s coordinator and by the assumption of definitive suspicions we reach to the
result. �

Lemma B.2 If the conditions of Definition 5.1 hold throughout an execution R of Algorithm 3, then starting
from an arbitrary configuration in which there is no global coordinator, the system reaches a configuration in
which at least one processor with a supporting majority will propose a view.

Proof. By Definition 5.1, at least one processor with supporting majority exists. Denote any such processor
as pℓ. Assume for contradiction that no such processor pℓ proposes a view, i.e., it does not hold or create
a propV that can satisfy the conditions in lines 6 and 7 of the algorithm. This implies that pℓ either has
a coordinator that is not global or does not have a coordinator, but also does not know of a majority of
processors that do not have a coordinator and thus cannot propose by the third condition of line 9. Note that
the first condition in line 9 is satisfied by our assumption that pℓ is not suspected by a majority throughout
R.

If pℓ has a local coordinator, say pk, then there are two sub-cases: Either this coordinator has a supporting
majority or it does not. If this coordinator does not have a supporting majority then by Lemma B.1 the
execution will reach a configuration in which pℓ does not have pk as its coordinator.

Therefore, it must be that this coordinator pk has a supporting majority Pmaj(k) but is not the global
coordinator. If its proposal is the result of a view propVk that existed in its arbitrary state and it is not
accepted by some processors of its majority, then there must exist some condition that based on arbitrary
local state, prevents some processor pr ∈ propVk.set to accept propVk. We note that all the conditions that
are based on rep[k] must hold for all processors in propV.set, since repk[k] is propagated by pk to the whole
propV.set. Thus any third processor pr ∈ propVk.set that receives this, is able to exclude or include pk from
its seemCrd set in the same way as pℓ can, since this becomes common knowledge. There are only two other
conditions:
(1) crdID(k) = k in line 6. But this should eventually be true for all processors in FDk if pk considers itself
as the coordinator.
(2) Condition (pj ∈ repr[k].propV.set ⇔ pk ∈ repr[j].FD) requires that a processor pr will accept propVk

only if its local knowledge of some processor q ∈ propVk.set suggests that pk 6∈ FDq. This may indeed be
true due to corrupt initial state. But if this is the case, then pk’s failure detector will also eventually exclude
q from FDk and by this it will hold for pk that valCrdk 6= pk it is a coordinator. This leads pk to either
choose a different coordinator or set noCrdk = True.

By the same reasoning as in case (2b) of Lemma B.1, pℓ will also stop regarding pk to be a coordinator.
If pℓ is not entering a noCrd state it must be that it also holds some other proposal that is still valid. But
with the same conjectures as above, we can argue that pℓ will reject any label from any processor that cannot
become the global coordinator. If it can become the global coordinator then this is a contradiction because
we assumed that no processor with supporting majority proposes. Thus pℓ is forced to set noCrd = True.
But so will any processor in Pmaj(ℓ). Since Pmaj > ⌊n/2⌋ some pℓ will be able to satisfy the condition in
line 9 and propose at least one view. �

Lemma B.3 If the conditions of Definition 5.1 hold throughout an execution R of Algorithm 3, then starting
from an arbitrary configuration, the system reaches a configuration in which any processor pℓ with a sup-
porting majority may propose itself as the coordinator at most once. As a consequence, the system reaches a
configuration in which one of these processors is the global coordinator until the end of the execution.

Proof. We distinguish the following cases:
Case 1: Assume there is only a single processor pℓ that has a supporting majority throughout R. By
Lemma B.2 it is deduced that pℓ will propose a view propVℓ. Then by Lemma B.1 any other processor that
does not have supporting majority will eventually stop being a local coordinator for any pj ∈ Pmaj(ℓ), and
since they do not have a supporting majority the first condition of line 9 will prevent them from proposing.
Assume that pℓ proposes for a second time. Given that no other processor can propose, there exists some
proposal that has a greatest view identifier than the one pℓ has proposed. We note that the increment counter

27

algorithm will return the greatest identifier of all the previous generated. In cases of concurrent calls, each
processor proposes the view with its own view identifier without any guarantees on which is the greatest.
Thus, there must have been a second processor that called inc() either concurrently or after pℓ. But pℓ was
the only processor that can propose (is the only one having a supporting majority), hence a second proposal
is not possible. By the propagation of the proposal (lines 20-24) we conclude that that every processor in
propVℓ.set will accept propVℓ (line 19) and pℓ will not propose itself again throughout R. Furthermore, since
no other processor can propose (the ones in the supporting majority of pℓ have a coordinator, and the others,
even if they believe pℓ is inactive, they cannot form a majority of processors with no coordinator (they are
a minority).
Case 2: Consider two processors pℓ, pℓ′ that have a supporting majority such that they each create an ID
(line 9), with which they propose a new view. Without loss of generality, we assume that propVℓ proposed
by pℓ has the greatest identifier of all the labels created by the concurrent calls to inc(). We identify two
subcases:
Case 2(a): pℓ ∈ FDℓ′∧pℓ′ ∈ FDℓ. In this case pℓ′ will propose its view propVℓ′ and wait for all pi ∈ propVℓ′

to adopt it (line 10). pℓ may or may not receive propVℓ′ but it ignores it since propVℓ′ .ID �ct propVℓ.ID
(line 7). Then propVℓ is propagated to all pi ∈ propVℓ.set. Since there is no other greatest proposed view ID
than propVℓ.ID this is adopted by all pi ∈ propVℓ which also includes pℓ′ as well. Thus any processor with
supporting majority that belonged to the proposed set of pℓ will propose at most once, and pℓ will become
the sole coordinator.
Case 2(b): pℓ 6∈ FDℓ′ ∧pℓ′ 6∈ FDℓ. Since both processors were able to propose, this implies that a majority
of processors that belonged to each of their supporting majority informed them that it had no coordinator
(line 9). Each of these processors proposes its view to its propV.set, and waits for acknowledgments from all
the processors in set propV.set (line 10), in order to install the view. Since pℓ 6∈ FDℓ′ , pℓ′ does not consider
propVℓ a valid proposal (line 6) and retains its own proposal that it propagates. The same is done by pℓ.
Since pℓ has the greatest label, any pi ∈ Pmaj(ℓ)∩Pmaj(ℓ

′) might initially adopt propVℓ′ but it will eventually
choose the greatest propVℓ. If pℓ′ ’s proposal was accepted by all then this means that pℓ′ became the global
coordinator but will then lose the coordinatorship because of propVℓ that will be established with a greater
view ID. Nevertheless, pℓ′ cannot make another proposal, since it will not have a majority of processors
that do not have a coordinator. This is deduced from the intersection property of the two majorities. Since
the processors in the instersection pi ∈ Pmaj(ℓ) ∩ Pmaj(ℓ

′) have pℓ as a coordinator, pℓ′ does not satisfy
condition (|{pk ∈ FDℓ′ : p

′

ℓ ∈ rep[k].FD ∧ rep[k].noCrd}| > ⌊n/2⌋)) of line 9 thus cannot propose a new
view. Processor pℓ installs its view and thus does not create a new view and remains the sole coordinator.
�

Theorem B.4 Starting from an arbitrary configuration, any execution R of Algorithm 3 satisfying Defini-
tion 5.1, simulates automaton replication preserving the virtual synchrony property.

Proof. We consider a finite prefix R′ of R which has an arbitrary configuration c, and in which there exists
a primary partition (as per Definition 5.1) and assume that this prefix is sufficiently long for Lemma B.3
to hold. I.e., we reach a configuration csafe in which there exists a global coordinator for a majority of
processors. For this configuration we define a view v that has a coordinator pℓ and that any processor pi ∈ v
that is not the coordinator is a follower of pℓ. We define a multicast round to be a sequence of ordered
events: fetch() input and propagate to coordinator, coordinator disseminates messages to be delivered in
this new round, messages delivered and side effects produced by all processors. Our proof is broken into
three steps:
Step 1: Virtual synchrony is preserved between any two multicast rounds.
Suppose that there exists an input and a related message m in round r that is not delivered within r. We
follow the multicast round r. First observe the following.
Remark: Within any multicast round, the coordinator executes lines 12 to 13 only once and a follower
executes lines 16 to 18 only once, because the conditions are only satisfied the first time that the coordinator’s
local copy of the replica changes the round number.

By our remark we notice that fetch() is called only once per round to collect input from the environment.
This cannot be changed/overwritten since followers can never access rep[i] ← rep[ℓ] that is the only line

28

modifying the input field, unless the receive a new round number greater than the one they currently hold.
We notice that the followers have produced side effects for the previous round (using apply()) based on
the messages and state of the previous round. Similarly, the coordinator executes fetch() exactly once
and only before it populates the msg array and after it has produced the side effects for the environment
that were based on the previous messages (line 12). Line 13 populates the msg array with messages and
including m. The coordinator then continuously propagates its current replica but cannot change it by our
remark and condition (∀ pi ∈ v.set : repℓ[i].(view, status, rnd) = (viewℓ, statusℓ, rndℓ)). This ensures
that the coordinator will change its msg array only when every follower has executed line 17 which allows
the condition to hold. Any follower that keeps a previous round number does not allow the coordinator to
move to the next round. If the coordinator moves to a new round it is implied that rep[i]← rep[ℓ] and thus
message m was received by any follower pi, by our assumptions that the replica is propagated infinitely often
and the data links are stabilizing. Thus, given the assumptions, any message m is certainly delivered in the
view and round it was sent in, and thus the virtual synchrony property is preserved, whilst at the same time
common state replication is achieved.
Step 2: Virtual synchrony is preserved in two consecutive view installations where there is no change of
coordinator.
We now turn to the case where from one configuration csafe we move to a new c′safe that has a different
view v′ but has the same coordinator. Once pℓ (the coordinator) is in an iteration where the condition
FD 6= propV.set of line 9 holds, a view change is detected. Note that since pℓ is the global coordinator, no
other processor can propose a new view given that Lemma B.2 know holds. pℓ creates a new propV with
a new view ID taken from the increment counter algorithm, which is greater than the previous established
view ID v.ID. The last condition of line 10 guarantees that pℓ will not execute lines 12 to 14 and thus will
not change its rep.(state, input,msg) fields, until all the expected followers of the proposed view have sent
their replicas. Followers that receive the proposal will accept it, since none of the conditions that existed
before can change that valCrd = {pℓ}, and thus enter status Propose and adopt the new view. What is
important is that virtual synchrony is preserved since no follower is changing rep.(state, input,msg) fields,
and moreover each sends its replica to the pℓ by line 22. Once the replicas of all the followers have been
collected, the coordinator creates a consolidated state and msg array of all messages that where delivered
or pending. Interfaces synchState() and synchMsg return a consolidated state and message array, based
on the message and the view and round number rnd it was sent in. pℓ’s new replica is communicated to the
followers who adopt this state as their own. Thus virtual synchrony is preserved and once all the processors
have replicated the state of the coordinator, a new series of multicast rounds can begin by producing the
side effects required by the input before the view change.
Step 3: Virtual synchrony is preserved in two consecutive view installations where the coordinator changes.
We assume that pℓ had a supporting majority throughout R′. We define a matching suffix R′′ to prefix R′,
such that R′′ results from the loss of supporting majority by pℓ. Notice that since Definition 5.1 is required
to hold, then some other processor with supporting majority, say p′ℓ will by Lemma B.2 propose the view v′

with the highest view ID. We note that by the intersection property and the fact that a view set can only be
formed by a majority set, ∃pi ∈ v ∩ v′. Thus, the “knowledge” of the system, (state, input,msg) is retained
within the majority.

As detailed in step 2, if a processor pi had noCrd = True for some time or was in status Propose it did
not incur any changes to its replica. If it entered the Install phase, then this implies that the proposing
processor has created a consolidated state that pi has replicated. What is noteworthy is that whether in
status Propose or Install, if the proposer collapses (becomes inactive or suspected), the virtual synchrony
property is preserved. It follows that once status Multicast is reached by all followers, the system can start
a practically infinite number of multicast rounds.

Thus, by the self-stabilization property of all the components of the system (counter increment algorithm,
the data links, the failure detector and multicast) a legal execution is reached in which the virtual synchrony
property is guaranteed and common state replication is preserved. �

29

	1 Introduction
	2 Our Results in a Nutshell
	2.1 Bounded labeling scheme for multiple writers. [Section ??]
	2.2 Practically infinite counter for multiple writers. [Section ??]
	2.3 Practically self-stabilizing virtual synchrony and Replicated state machine. [Section ??]
	3 System Settings
	4 Self-stabilizing Labeling Scheme and Increment Counter Algorithm
	4.1 Labeling Algorithm for Concurrent Label Creations
	4.2 Bounded Labeling Scheme.
	4.3 The Labeling Algorithm.
	4.3.1 The processor state:
	4.3.2 Information exchange between processors:
	4.3.3 Label processing:

	4.4 Correctness.
	4.5 Increment Counter Algorithm

	5 Virtually Synchronous Stabilizing Replicated State Machine
	5.1 The algorithm.
	5.1.1 Determining coordinator availability:
	5.1.2 The coordinator-side:
	5.1.3 The follower-side:

	5.2 Correctness.

	6 Conclusion
	A Omitted Details from Section ??
	A.1 Correctness of Algorithm ??
	A.2 Definitions.
	A.3 Correctness proof.
	A.3.1 No stale information
	A.3.2 Local lb-greatest legitimate local label

	A.4 Bounding the number of labels
	A.4.1 Maximum number of label adoption in the absence of creations
	A.4.2 Maximum number of label creations

	A.5 Pair diffusion
	A.6 Convergence
	A.7 Pseudocode and Description of the Counter Algorithm

	B Omitted Details from Section ??
	B.1 Detailed Description of Algorithm ??
	B.1.1 The processor state and interfaces:
	B.1.2 Determining coordinator availability:
	B.1.3 The coordinator-side:
	B.1.4 The follower-side:
	B.1.5 The exchanging message and PCE optimization:

	B.2 Correctness Proof of Algorithm ??

