
Chalmers Publication Library

Rationality authority for provable rational behavior

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

Citation for the published paper:
Dolev, S. ; Panagopoulou, P. ; Rabie, M. et al. (2015) "Rationality authority for provable
rational behavior".

http://dx.doi.org/10.1007/978-3-319-24024-4_5

Downloaded from: http://publications.lib.chalmers.se/publication/230780

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://dx.doi.org/10.1007/978-3-319-24024-4_5
http://publications.lib.chalmers.se/publication/230780

Rationality Authority for Provable
Rational Behavior

Shlomi Dolev1(B), Panagiota N. Panagopoulou2, Mikaël Rabie1,
Elad M. Schiller3, and Paul G. Spirakis2,4

1 Ben-Gurion University of the Negev, Beer Sheva, Israel
{dolev,rabie}@cs.bgu.ac.il

2 Computer Technology Institute, and Press “Diophantus”, Rio, Greece
{panagopp,spirakis}@cti.gr

3 Chalmers University of Technology, Gothenburg, Sweden
elad@chalmers.se

4 University of Liverpool, Liverpool, UK
P.Spirakis@liverpool.ac.uk

Abstract. Players in a game are assumed to be totally rational and
absolutely smart. However, in reality all players may act in non-rational
ways and may fail to understand and find their best actions. In particular,
participants in social interactions, such as lotteries and auctions, cannot
be expected to always find by themselves the “best-reply” to any situa-
tion. Indeed, agents may consult with others about the possible outcome
of their actions. It is then up to the counselee to assure the rationality
of the consultant’s advice. We present a distributed computer system
infrastructure, named rationality authority, that allows safe consulta-
tion among (possibly biased) parties. The parties’ advices are adapted
only after verifying their feasibility and optimality by standard formal
proof checkers. The rationality authority design considers computational
constraints, as well as privacy and security issues, such as verification
methods that do not reveal private preferences. Some of the techniques
resembles zero-knowledge proofs. A non-cooperative game is presented
by the game inventor along with its (possibly intractable) equilibrium.
The game inventor advises playing by this equilibrium and offers a check-
able proof for the equilibrium feasibility and optimality. Standard veri-
fication procedures, provided by trusted (according to their reputation)
verification procedures, are used to verify the proof. Thus, the proposed
rationality authority infrastructure facilitates the applications of game
theory in several important real-life scenarios by the use of computing
systems.

1 Introduction

Game theory is based on the assumption that (at least, some) players play
rationally. This assumption is questionable in the face of the sophistication for
obtaining the best strategy in (even simple) games. Thus, the application of game
theory in real life is limited by the degree in which the players (who are rarely
c© Springer International Publishing Switzerland 2015
C. Zaroliagis et al. (Eds.): Spirakis Festschrift, LNCS 9295, pp. 33–48, 2015.
DOI: 10.1007/978-3-319-24024-4 5

34 S. Dolev et al.

mathematicians, economic experts, or computer scientists) can understand the
meaning of the game rules and the way to act. One famous example is auctions
where every variant of an auction introduces the need for a new proof that, say,
reconfirms that the second price auction is the best to use [5,22]. We have in
mind a framework that will let the ordinary and inexperienced Joe and Jane
safely figure their best-reply.

Distributed computer systems can implement the rationality authority frame-
work that in turn, can enable (and ensure by audit schemes) rational behavior,
without sacrificing the players’ privacy, e.g., keeping the individual preferences
(utilities) private. The framework, as depicted in Fig. 1, includes:

– The game inventor, which may possibly gain revenues from the game. We
consider game inventors that create games for which they could predict the
best-reply and prove their feasibility and optimality to the players/agents.

– The agents are the game participants, for which they receive verifiable advices
on the feasible and optimal actions to take.

– The verifiers are trustable service providers that profit from selling general
purpose verification procedures, v(), (using formal methods and languages),
and therefore would like to have a good long-lasting reputation on being honest
in checking (a variety of) proofs. We note the possibility of having several
verifiers, such that their majority is trusted. The reputation of the verifiers
can be updated according to the (majority of their) results.

Fig. 1. The inventor sends the game
G with a procedure p() to the agents,
suggesting actions and proofs for the
optimality of the suggested actions. A
designated verifier v() sends verification
procedures to the agents to allow verifica-
tion of the proofs.

The verification procedures supplied
by the verifiers may be general purpose
procedures, not restricted to the context
of the rationality authority. They should
be able to check proofs [3] in an agreed
upon format, a detailed logic proof in 3-
SAT or Coq, probabilistically checkable
proofs, interactive proofs in the style of
zero-knowledge proofs, globally agreed
upon, and simple instructions for the
agents to check the proof (or even an
empty proof relying on the verifier pro-
cedure to check the suggested actions
in the style of nondeterministic Tur-
ing machines). The verifiers may use a
library for the specification of the solu-
tion concepts and inform the user con-
cerning the solution concept used and the consequences of the choice.

Verifying a best-reply could be as hard as computing it [24,29]. Computing
the best-reply is known to be intractable [6]. However, there are some cases in
which the game outcome is known, say, due to human innovation or statistically
emerging patterns [14]. For example, taxation authorities or system adminis-
trators can sometimes observe the outcome and advise the participants about
employing Nash equilibria, as in [32]. Thus, we may study the verification of

Rationality Authority for Provable Rational Behavior 35

such advised solutions, rather than only their (possibly unrevealed way of) com-
putation.

Online auctions have gained tremendous popularity in electronic commerce,
B2B applications, and Internet ad auction applications [11]. Much of the lit-
erature models these auctions as single stage games or as repeated games. In
some of our examples for the use of the rationality authority, we take a realistic
approach in which the agents join the game in some random order, rather than
participating in all game rounds (see Sects. 5 and 6).

Related Work

All agents are aware of the existence of the rationality authority as common
knowledge. Since it communicates with agents before they choose their actions,
one might view the authority as synchronization mechanisms that are used in
correlated equilibria [1] or as moderators that are used in multi-party computa-
tion [15]. However, the rationality authority is not trusted, where as synchroniza-
tion mechanisms are. Vis., the inventors must demonstrate their trustworthiness
and have only the (trusted) verifiers at their disposal. This assumption is directly
implied by the separation principles between the inventors and the verifiers.

Guerin and Pitt [19] present a framework for verification and compliance in a
multi-agent system. They discuss whether the verification depends on the infor-
mation that may be available (agent internals, observable behavior, normative
specifications) and the semantic definition of the communication language. More-
over, they consider the types of languages that permit verification and testing in
open systems where agents’ internals are kept private. Their analysis is useful in
enforcing compliance in open systems. Guerin [17] explains how to formally spec-
ify and verify subgame perfect equilibria. Tadjouddine [29] considers the com-
plexity of verifying an equilibrium. Tadjouddine shows that Nash and Bayesian
Nash equilibria can be verified in polynomial time. Moreover, dominant strategy
equilibrium is NP-complete. Other related work includes [18,20,28,30,31], to
name a few. None of the aforementioned results considers non-revealing verifica-
tion methods. In [9,10] we proposed the game authority, which is a self-stabilizing
middleware for assuring that all agents honestly follow the rules of the game.
In [8,9] we presented a self-stabilizing mechanism for deterring joint deviations.

Our Contribution

We propose the rationality authority infrastructure that separates the inter-
est, benefit and goals of the parties (game inventors, verifiers and agents) that
enables agents to take rational (feasible and optimal) actions. The separation
also includes the disjointment of the game inventor from game revenues and the
verifier from selling reliable verification procedures. We propose the following
specific case studies for the usefulness of the rationality authority framework.

– We explain how to use interactive theorem provers for verifying pure Nash
equilibria (Sect. 3).

36 S. Dolev et al.

– We present an equilibrium verification method that does not reveal the agent
preferences, and by that, preserves the users privacy and secures their actions
when acting upon the advised equilibria. As a second case study, we present a
general 2-agents (bimatrix) game for which a unique Nash equilibrium exists
but it is hard to compute. For this game, we present a polynomial-time equi-
libria verifier with privacy guarantees. Namely, the verifier does not reveal the
agent preferences in a way that resembles zero-knowledge proofs [16] (Sect. 4).

– We present the participation game, which has an equilibrium that is hard to
compute without the game inventor advice. We show how to use the advice
for computing the game equilibrium and verify it (Sect. 5).

– We study competitive on-line games in which each agent joins the game at
a different time (as in [12]). The game inventor keeps statistical information
about past agent actions. Each agent, upon arrival, has to choose a strategy.
With probability p, the agent follows the inventor’s suggested strategy. With
probability (1 − p), it chooses a strategy based on its knowledge about the
strategic (off-line) version of the game. The inventor chooses a strategy for
the agent based on its statistics. When the inventor suggests a strategy, it
must convince the agent that the strategy is beneficial for it. To do so, the
inventor provides the agent with a formal proof that can be checked by a
trusted verifier (Sect. 6).

The rationality authority enables agents to identify and take rational choices.
Not only does the rationality authority verify the feasibility and optimality of
proposed equilibria, but it can also cooperate with the game authority proposed
in [9,10] that guarantees that the agents employ the strategy equilibrium by
following the game rules.

This work appears as a brief announcement in [7].

2 Preliminaries

We use N to denote the set of agents that rationally and unilaterally choose
an action from the set Ai, where i ∈ N is an agent. A preference relation,
�i, expresses the desire of the individual agent for one particular outcome over
another. For game, G, the relation �i refers to agent i’s preferences. We can
replace �i with a payoff/utility function ui : A → R, for which ui(a) ≥ ui(b)
whenever a �i b. Namely, ui is a function A → Z, which associates with the
strategies of each agent the gain of agent i, where A = A0 × · · · × An−1. We
represent single stage games, G, in their strategic form as 〈N,A = (Ai),�= (�i)〉
(or 〈N,A = (Ai)i∈N , U = (ui)i∈N 〉).

Profiles

A strategy profile (a strategy combination) a = (ai)i∈N is a strategy set, one
for each agent, that completely implies all game actions by specifying a single
strategy for each agent. We borrow from [27] also the notation of profiles that

Rationality Authority for Provable Rational Behavior 37

Types
2 n; number of agents

4 TSi; associate each agent with its number of strategies

6 Si; for each agent i,Si(i) is the strategy played by i

8 u;u(i,Si) (utility) is i′s gain for the strategy profile Si

10 Functions and Properties
change(Si,si, i); a strategy profile that is different from Si by the strategy si for agent i. Note that this function

12 can build all the strategies needed for proving that a strategy profile is a Nash Equilibrium

14 isStrat(n,TSi,Si); verifies the strategy profile′s size; ∀i ≤ n : Si(i) ≤ TSi(i)

16 eqStrat(n,Si1,Si2); checks equality of two strategy profiles; ∀i ≤ n : Si1(i) = Si2(i)

18 leStrat(n,u,Si1,Si2); checks incomparability of Si1 and Si2;∃i, j : ui(Si1) < ui(Si2)∧u j(Si2) < u j(Si1)

20 leStrat(n,u,Si1,Si2); checks Si1 ≤u Si2;∀i ≤ n : ui(Si1) ≤ ui(Si2)

22 Pure Nash Equilibrium (definitions)
isNash(n,u,Si,TSi); verifies that Si is a Nash equilibrium;

24

isStrat(n,TSi,Si)∧∀i ≤ n,si ≤ Si(i) : ui(Si) ≤ ui(change(Si,si, i))
26

isMaxNash(n,u,Si,TSi); checks isNash∧∀ Nash equilibrium S′i : Si ≤s S′i
28

Verifying a Nash Equilibrium (proof scheme)
30 allStrat;∀Si : isStrat(n,TSi,Si) → eqStrat(n,Si,Si1)∨ eqStrat(n,Si,Si2)∨ . . .eqStrat(n,Si,Sim), where {Si j} j≤m

are possible strategies
32

allNash;∀Si : isNash(n,u,Si,TSi) → eqStrat(n,Si,NSi1)∨ eqStrat(n,Si,NSi2)∨ . . .eqStrat(n,Si,NSim),
34 where {NSi j} j≤m are Nash equilibrium

36 NashMax;∀Si : isNash(n,u,Si,TSi) → leStrat(n,u,Si,NSi)∨noComp(n,u,Si,NSi)

Fig. 2. Definition of the game model and its equilibria. These definitions are used for
verifying Pure Nash equilibria.

do not include the strategy of a single agent, i.e., (a−i, ai), as well as the profile
of action sets, A−i. We say that the strategy profile s ∈ A is greater than s′ ∈ A
if ∀i ∈ N : ui(s) ≥ ui(s′). We denote s ≥u s′.

Nash Equilibria

A strategy profile s ∈ A is a pure Nash equilibrium of game G = 〈N,A =
(Ai),�= (�i)〉, if ∀i ∈ N , ∀s′

i ∈ Ai, ui(s) ≥ ui((s−i, s
′
i)). We say that a pure

Nash equilibrium (PNE) s is maximal if for any pure Nash equilibrium s′, we do
not have s′ ≥u s.1 A game may not possess a PNE at all. However, if we extend
the game to include mixed strategy by allowing each agent to choose its strategy
with certain probabilities (and if we extend the payoff functions ui to capture
expectation), then an equilibrium is guaranteed to exist [23].

1 Similarly, we can define the minimal Nash equilibria; s is minimal if for any pure
Nash equilibrium s′, we do not have s′ ≤u s.

38 S. Dolev et al.

3 Verifying a Nash Equilibrium Using Coq

Agents are expected to act rationally. We consider agents that are offered a
strategy for which optimality is claimed. In order to familiarize the reader with
equilibria verification, we briefly explain how to verify that a strategy profile,
NSi, is a maximal Nash equilibrium. The proof presented in this section enumer-
ates all strategy profiles, i.e., intractable with respect to both time and space for
an unbounded number of agents or strategies (Sect. 4 addresses these important
complexity issues). We sketch the proof of a pure Nash equilibrium using the
theorem prover, Coq [2]. We use Coq because it is a standard and well-tested
theorem prover.

The proof sketch considers the definitions that appears in Fig. 2. We note
that Proposition all strat (line 30) enumerates all strategy profiles. The proof
of Proposition all strat (line 30) is demonstrated by destructing all Si(i) as long
as Si(i) ≤ TSi(i), and then concluding that the equality exists with one of the
strategies enumerated. The next step is to show that NSi is an equilibrium.
Then, we enumerate all Nash equilibria (constructing a proposition for each of
them). For each enumerated strategy in the Proposition all strat (line 30), if
it is an equilibrium, we use the corresponding proposition, if it is not, we show
a counter-example (i and si such as u(i, Si) < u(i, change(Si, si, i))). NSi’s
optimality is showed by verifying that there is no equilibrium Si greater than
the equilibrium NSi (Proposition Nash max, line 36). Proposition Nash max
assume that we are looking for a maximal equilibrium and in the opposite case
we just have to change le strat(n, u, Si,NSi) with le strat(n, u,NSi, Si)).

4 Provable Rationality Using Interactive Proofs

We study a 2-agent game, defined by the n × m matrices A,B of the payoffs
of the two agents. Broadly speaking, the equilibrium is hard to compute. We
present two interactive proofs that lead to an easy polynomial-time verification.
The second proof also has privacy guarantees.

Case Study: A General 2-agent Game with Privacy Guarantees

We now turn to consider a 2-agent game, defined by the n × m matrices A,B of
the payoffs of the two agents (the row agent , whose pure strategies are the n
rows, and the column agent, whose strategies are the m columns). Here an equi-
librium is, in general, hard to compute, i.e., complete in the complexity class
PPAD, see [6]. However, the interactive proofs P1 and P2 (Figs. 3 and 4, respec-
tively) lead to an easy polynomial-time verification with privacy guarantees in
the case of P2.

Lemma 1 shows that P1’s verifier algorithm has polynomial time complexity.
The proof follows from the second Nash theorem [23], i.e., that for each strategy
of the row agent in the support S1 the expected gain should be the same and no
less than the expected gain for strategies not in the support. It is easy to state
the Verifier for the column agent.

Rationality Authority for Provable Rational Behavior 39

Prover (inventor): Provide each agent the agents’ supports, i.e., strategy profiled played with
non-zero probabilities.
Verifier of the row agent i: Let the support S2 of the other agent (the column agent) be
{ j1, . . . , jk}. Let y j1 , . . . ,y jk be the Nash probabilities of the column agent. Let S1 be the
support of the row agent and S1 = {i1, . . . , i�}. The verifier solves the linear system (1) and
verifies that 0≤ yt ≤ 1 for all t ∈ { j1, . . . , jk} and also that, for each row i /∈ S1, the expected
gain y j1A(i, j1)+ · · ·+ y jkA(i, jk) < λ1.

λ1 = y j1A(i1, j1)+ y j2A(i1, j2)+ · · ·+ y jkA(i1, jk) (1)

...

λ1 = y j�A(i�, j1)+ y j2A(i�, j2)+ · · ·+ y jkA(i�, jk)

yi1 + · · ·+ y jk = 1

Fig. 3. Interactive prover P1.

Prover (inventor): Send to each agent just its support, its probabilities, and the values λ1,λ2.
Verifier of the row agent i: Agent i ∈ {1,2} asks the prover for two random indices j1, j2.
If the prover is honest, it will return whether j1 is in S2 (or not) and whether j2 is in S2 (or
not). Then the verifier computes the expected gains of the other agent for the two indices,
λ2(j1) and λ2(j2). The verifier can then check whether
• “both j’s in S2”, i.e., λ2(j1) = λ2(j2) = λ2, and
• “1-in/1-out”, say j1 is in, i.e., λ2(j1) = λ2 ≥ λ2(j2).
The test is inconclusive for both j1, j2 /∈ S2 but at least one will be in with probability at least
1/n. Thus, on average, O(n) random queries of the verifier will verify the equilibrium play.

Fig. 4. A private proof P2.

Lemma 1. The interactive proof P1 has verifier complexity of time LP (n,m)
(where LP is the time of a linear program solver of at most n equations and m
unknowns) and the number of bits communicated is O(n + m).

Proof Sketch. The verifier must solve a linear system of k + 1 equations and
k + 1 unknown variables, where k ≥ max(n,m) as implied by Fig. 3. Also, the
prover just sends the two support sets (indices); each is less than max(n,m) in
cardinality. Thus, it can actually send a vector of zeroes and ones, where the
ones indicate the support indices. �

Note that our proof P1 reveals both equilibrium supports to each agent.
However, P1 does not need to explicitly send any probability values. Moreover,
the verifier algorithm P2 extends P1, still has a polynomial time, and yet does
not reveal to any agent the Support (or probability values) of the other agents!

Remark 1. We can generalize the scheme of P1 and P2 to n agents. The prover
provides the support sets S1, . . . , Sn to all. The verifier of each agent then solves
the corresponding polynomial system to find the Nash equilibrium probabilities.

40 S. Dolev et al.

Remark 2. The interactive proof P2 does not reveal the actual equilibrium to
either agent. Namely, the row agent, for example, cannot in general compute the
Support (and hence the probability values) of the column agent if the row agent
knows λ1, λ2 and its own Support and probabilities. To see this, consider the
example in Fig. 5. Assume that the prover sends to the row agent its Support
S1 = {A}, its probabilities pA = 1, pB = 0, its payoff λ1 = 1, and the payoff
of the column player λ2 = 1. Then, the row agent cannot conclude which is the
actual equilibrium, since it is easy to see that any probabilities qC , qD of the
column agent such that qC + qD = 1, q ≤ 1/2, qC ≥ 0, qD ≥ 0 correspond to
Nash equilibrium probabilities with λ2 = 1.

Remark 3. In the case of large supports, e.g., θ(n), our verifier can test the equi-
librium in a constant, k, number of queries, because the probability is constant
in each case. Note that one can get the other’s support via n queries, i.e., each
query asks “is j in the other’s support?” for all j to get all the support of the
other agents. Thus, our verifier has a definite advantage in this case of large sup-
ports. The proposed test is always sublinear in n, except for the case of constant
size supports.

C D

A 1, 1 1, 1
B 0, 1 2, 0

Fig. 5. A bimatrix game example.

5 Equilibrium Consultant with Provable Advices

We present the Participation game in which c is the auction participation fee
and no gain is offered to the solo participant. The game’s equilibrium is hard to
compute without the rationality authority’s advice. We explain how the agent
can use the advice for computing the game equilibrium and verify the rationality
authority’s advice.

Consider n firms that are eligible to participate in an auction. The auction
rules are:

– A firm f gets a value v > 0 if at least k = 2 firms choose to participate and
f chooses not to.

– A firm f gets a value v − c > 0 when at least k = 2 firms participate and f is
one of them.

– If nobody participates, then each firm gains zero.
– If firm f participates but the total number of participants is less than k, then

f pays c > 0.

Rationality Authority for Provable Rational Behavior 41

The Participation game is a symmetric game and thus, by Nash’s theorem [23],
it has a symmetric Nash equilibrium in which each firm decides to participate
or not with probability p independent of the others.2 The equilibrium stability
implies equality between the expected payoffs of a firm f for participating and
for not participating:

(v − c) · Pr{at least 1 other participates |f participates} − (2)
cPr{no other firm participates |f participates} =
v Pr{at least 2 other firms participate |f does not} +

0 · Pr{at most 1 other firm participates |f does not}
Equation (2) defines the equilibrium’s probability p. Thus, the verifier can verify
Eq. (2) by computing Eq. (3).

(v − c) · A + (−c) · B = v · C + 0 · D, (3)

where

A = Pr{at least 1 other firm participates | f participates} = 1 − (1 − p)n−1

B = Pr{no other firm participates | f participates} = (1 − p)n−1

C = Pr{at least 2 other participate | f does not} = 1 − (1 − p)n−1 − (n − 1)p(1 − p)n−2

D = Pr{at most 1 other participates | f does not} = (1 − p)n−1 + (n − 1)p(1 − p)n−2

In fact, our simple example defines an easier job for the verifier since Eq. (3)
gives Eq. (4).

(v − c) − (v − c)(1 − p)n−1 + (−c)(1 − p)n−1 = v − v(1 − p)n−1 − v(n − 1)p(1 − p)n−2

(v − c) + (−v + c − c)(1 − p)n−1 = v − v(1 − p)n−1 − v(n − 1)p(1 − p)n−2

(v − c) − v(1 − p)n−1 = v − v(1 − p)n−1 − v(n − 1)p(1 − p)n−2

c = v(n − 1)p(1 − p)n−2 (4)

For c
v = 3

8 , n = 3, and p = 1
4 , the firm’s expected gain is v

(
1 − (

3
4

)2 − 2 · 1
4 · 3

4

)
=

v
16 . In the case of any k, the prover still has to provide each firm with the equilib-
rium value of p and the verifier asserts Eq. (5).

(v − c) · Ak + (−c) · Bk = v · Ck + 0 · Dk, where (5)
Ak = Pr{at least k firms participate | f participates}
Bk = Pr{at most k − 1 firms participate | f participates}
Ck = Pr{at least k firms participate | f does not}
Dk = Pr{at most k − 1 firms participate | f does not}

Note that, now, p’s value is hard to compute but, once it is given, it is easy to
compute the conditional probabilities Ak, Bk, and Ck and verify the equilibrium
2 We assume that firms do not differ significantly (or that they are aware of any

difference among themselves) and thus a symmetric equilibrium, in which each firm
participates with probability p > 0, is natural to assume.

42 S. Dolev et al.

play in which a firm expects to get the same by using p to decide whether to play.
Also note that for the Participation game, and for symmetric games in general,
the players can cross-check that the prover has sent the same probability p to each
of them, since it might be the case that more than one symmetric equilibrium
exists. The existence of multiple equilibria would allow a dishonest prover to send
different probabilities to the players, with each probability corresponding to a
different symmetric equilibrium.

On-line Participation. Let us again assume that k = 2 and consider the case in
which firms need to decide about their participation at different times. If firm f
is the last to choose, the prover’s “proof” is either p = 1, when at least one other
firm has entered the game, or p = 0 otherwise. If the advice is p = 1, firm f will
gain v − c = 5v

8 and if p = 0, firm f will gain v. In both cases, f gains more
in “on-line” advice in this setting. However, this verification method reveals the
number of firms that have already played.

Of course, such advice favors the late arriving agents. But if the order of
arrivals is random, the expected gain of any firm after advice is at least 1

3 · 5v
8 =

5v
24 , still better than v

16 in the off-line case. On the other hand, false advice to
the last agent, i.e., a flip of the value of p, will result in a loss! Thus it is crucial
here to verify that the advice given by the prover is truthful. Namely, that it can
lead to a best-reply given past history.

6 On-line Network Congestion Games

We study competitive games in a setting in which each agent joins the game at
a different time (on-line games [12]). The game inventor, named the inventor,
keeps statistical information about past agents. Each agent, upon arrival, has to
choose a strategy. With probability p, the agent follows the inventor’s suggested
strategy. With probability (1 − p), it chooses a strategy based on its knowledge
about the strategic (off-line) version of the game. The inventor chooses a strategy
for the agent based on its statistics. When the inventor suggests a strategy, it
must convince the agent that the strategy is beneficial. To do so, we assume that
the inventor provides the agent with a formal proof that can be checked by a
trusted verifier (as in Sect. 5).

After defining an online variation of congestion games, such as [13], we present
a greedy strategy for choosing a path based on the inventor’s statistics. Let us
consider a communication network, N = (V,E, (de)e∈E), where V is the set of
nodes, E is the set of arcs, and de : R+ → R+ is a non-decreasing function for
each e ∈ E, indicating the delay on arc e as a function of its congestion, i.e., the
total load on it. Initially, the set of agents (the network users) is unknown to
the inventor, which in the case of on-line congestion games is the operator of the
network. We assume, however, that the number of agents, n, is known. Each agent
i, at some point τi, joins the network and chooses a path πi from a source node
si ∈ V to a sink node ti ∈ V to route its load wi ∈ R+. The decision of each agent
on the path is irrevocable. Let [i] = {1, . . . , i}. The configuration of the network

Rationality Authority for Provable Rational Behavior 43

a

b

c

d

k+1 k+1

k k

a

b

c

d

k+1 k+1+1

k k

Fig. 6. An example in which the delay of each edge e is de(x) = x. Consider unit loads,
and agent 2k+1 that chooses a path from a to d. Observe that each edge has congestion
k. A best-reply for agent 2k + 1 would be a → b → d (shortest path). Suppose that
the next agent to enter the network, agent 2k + 2, has to choose a path from b to d.
Its only option is the path b → d. Therefore, at time τ2k+2, the delay experienced by
agent 2k +1 is 2k + 3, while its best-reply would be path a → c → d with a total delay
of 2k + 2.

at time τi (right after agent i joins) is π(i) = (πj)j∈[i]. Given a configuration
π(k), let We(π(k)) =

∑
j∈[k]:e∈πj

wj denote the total load on arc e ∈ E. At time
τk, the total delay experienced by agent i is then λi(π(k)) =

∑
e∈πi

de(π(k)).
The goal of each agent is to choose a path, πi, from si to ti so that λi(π(n))

is minimized in N . However, an agent i ∈ [n − 1] cannot be aware of the final
configuration π(n). At time τi, its best-reply is to choose a shortest path from
si to ti, but this path cannot remain a best-reply for agent i at time τn when
the game ends. To see this, consider the network shown in Fig. 6. The goal of
the inventor is to minimize total congestion Λ(π(n)) =

∑
e∈E de(π(n)).

Choosing a Path Based on the Inventor’s Statistics

The question now is, how should an agent choose its path since it is not aware
of the final configuration. We let each agent i have two options: either to choose
a shortest path given π(i − 1), or to ask the inventor for a suggested path.

What is the statistical information that the inventor maintains? We consider
two cases: In the first case, the inventor has prior knowledge about the loads
of the agents, knows for example that they are drawn from some particular
probability distribution. In the second case, the inventor dynamically updates
its information about the loads. That is, at each time τi, assuming that the total
number of agents n is known, the inventor knows that loads w1, . . . , wi have
appeared, and expects for example (n − i) loads of expected value

∑i
k=1 wk

i .

Greedy Strategies for Parallel Links

Assume that the network consists of a set [m] = {1, . . . m} of m parallel links
from a source node s to a sink node t. What is the best-reply of agent i of load
wi that arrives at time τi? The best-reply is not necessarily the least loaded link
at time τi, because agent i knows that the game has not ended, and expects n− i

44 S. Dolev et al.

0 42 92 142 192 242 292 342 392 442 492
60%

70%

80%

90%

100%

Number of links

Ite
ra

tio
ns

Fig. 7. The number of links (x-axis) and the iteration percentage (y-axis) in which the
final assignment is strictly better, w.r.t. makespan, than the greedy strategy, see also
Remark 4. We consider 1000 agents, uniform load distribution in [0, 1000], the number
of (equispeed) links is m = 2, . . . 500.

loads to arrive. Namely, at time τi, agent i knows: (1) The total congestion on
each link by time τi, (2) Its own load wi, and (3) That n − i loads are expected
to arrive.

We simulate a simple on-line congestion game where all agents ask the inven-
tor, i.e., p = 1 (see Fig. 7). We compare the greedy strategy (each agent on
arrival chooses the least loaded link) to the strategy suggested by the inventor:
The inventor takes into consideration the fact that more agents are expected.
For each agent i, the inventor computes the average load wi that has appeared
so far.3 Given the congestion on the links by time τi, agent i computes a Nash
equilibrium assignment of its own load wi and of n − i loads wi. Namely, each
load is assigned to the least loaded link, greatest load first. Then the inventor
suggests that agent i choose the link that is suggested by that Nash equilibrium
assignment. The greedy strategy is natural to assume while it also offers a per-
formance guarantee (see Lemma 2); however, it is clear from the figure that it
is outperformed by the strategy suggested by the inventor. The lemma refers to
the term makespan, which is the maximum load on any link.

Lemma 2 (Greedy Strategy). Let L1, . . . Lm be the total loads of links 1, . . . m
when all agents have entered the game. Lj ≤ (

2 − 1
m

) · OPT , where OPT is the
optimum makespan (given all wi’s).

Proof. Let Lij be the total load of link j right after agent i enters the game.
Clearly, Lj

n = Lj . Let ij be the last agent of load wij that is assigned to link j.

3 One can consider a way in which the agents can know that the inventor is not
cheating about the average loads. For example, the system can require the inventor
to publish the average loads with its signature at each round. In everyone record,
then the inventor is kept responsible when found cheating, as in [10].

Rationality Authority for Provable Rational Behavior 45

Since each agent chooses the least loaded link at the time it enters the game,
Expression (6) holds for any link j.

Lj
ij−1 ≤ Lk

ij−1 ∀k ∈ [m] \ {j} Lj
n − wij ≤ Lk

n ∀k ∈ [m] \ {j}
Lj

ij
− wij ≤ Lk

ij
∀k ∈ [m] \ {j} Lj − wij ≤ Lk ∀k ∈ [m] \ {j}

(6)

Expression (7) completes the proof by summing for all k ∈ [m] \ {j}.

(m − 1)(Lj − wij) ≤
n∑

i=1

wi − Lj (7)

Lj ≤
∑n

i=1 wi

m
+

m − 1

m
wij ≤

∑n
i=1 wi

m
+

m − 1

m
max

i
wi ≤

(
2 − 1

m

)
· OPT

Remark 4. Note that in Fig. 7, we plot the percentage of iterations where the
strategy suggested by the inventor outperforms the greedy strategy. Each itera-
tion involves an experiment, which considers random numbers, i.e., the agents’
loads. The chart illustrates that, for sufficiently large number of links, obeying
to the inventor’s suggestion outperforms greediness in the vast majority of iter-
ations. Note that we also observe particular cases in which the greedy strategy
outperforms the inventor, e.g., in the experiment with 332 edges, the inventor
was better at 99% of the cases than the greedy strategy.

7 Discussions

This work studies the rationality authority infrastructure for encouraging com-
puter agents to identify and make rational choices that are feasible and optimal.
The agents can use this infrastructure for consulting with possibly biased game
inventors. The agents verify these advices by using the verification procedures.

Anecdotes

There is a story about two folks, Ron (the rational) and Norton (the irrational),
who walk in a far away road in the middle of a rainy night. At some point
they both decide to sleep. Ron chooses to sleep on the muddy side of the road,
in order to avoid cars that may drive in the paved part of the road. Norton
decides to sleep on the more convenient paved part. A car arrives, the driver
sees Norton at the last minute, and turns to the side of the road, exactly where
Ron decided to sleep. . . Later, Norton may claim that he could not predict the
influence of his irrational action on Ron. The existence of rationality authority
suggests the way to act and produces a check-able proof for the optimality of the
suggestion, eliminates the possible validity of Norton’s excuse and may be used
(after auditing Norton’s actions) to blame Norton for not using the rationality
authority results to act rationally.

The theory of non-cooperative games considers agents that are capable of
identifying and making rational choices. However, non-cooperative game analy-
sis is complicated; it is the subject of extensive theoretical study [27]. In certain

46 S. Dolev et al.

games the ingenious observations that are needed in order to figure the game
outcome are even beyond the computer’s capabilities; many solution concepts
have no polynomial time decidability [26]. Such difficulties could be circumvented
when the game inventor has additional capabilities that enables the game inven-
tor to compute and propose solutions.

We consider game inventors that may have conflicts of interest with the
agents and attempt to misadvise them. Therefore, we require the game inventor
to equip the agents with a procedure to determine their actions for the game
and with a procedure that produces a rationality proof of the chosen actions.
The agent privately uses the procedures for choosing actions, possibly without
revealing their preferences (utilities). The agents may suspect that the supplied
procedures are biased or incorrect, as the inventor may benefit from the game.
Thus, the outcome of the procedure that defines the actions and the outcome
of the procedure that supplies the proof for the rationality of the chosen actions
are checked using proof verification procedures (that are possibly provided by
several verifiers).

The rationality authority design considers computational constraints as well
as computer security considerations. The game inventor that suggests the actions
and proofs, supplies procedures that are executed by the agents on their com-
puters, where users execute the procedures, with their preferences (utilities),
that are unknown to the rest of the world. To prevent information leakage, the
agents may protect the activity in their computers by isolating them from the
communication network. The rationality authority is designed to enable ratio-
nal behavior of agents, whether they are humans or processes acting as part of
electronic commerce.

Consider lottery with x raffle tickets to be sold. When the lottery is fair, the
possibility to win, after buying a raffle ticket, is 1/x. Suppose that the (game
inventor, which is the) lottery company, knows that there are fake raffle tickets,
which are almost indistinguishable from the valid ones. The lottery company
knows that these fake tickets are being sold in a certain geographic area A . The
lottery company can advise the lottery participants to avoid buying tickets sold
in area A , supplying convincing proofs for identifying these fake raffles. By doing
so, the lottery company allows the lottery participants to keep their chances at
1/x. In this case, the information disclosure is minimal but very useful to the
agents. The rationality authority can support such scenarios.

Conclusions

We focus on verification methods that do not violate the agents’ privacy by
revealing their preferences (utilities). Autonomous agents do not voluntarily
reveal their preferences, because it could jeopardize the success of their actions.
Moreover, even when such preferences are known to a trusted third party, secu-
rity concerns and privacy restrictions limit the use of such information. This
work presents examples in which such parties privately consult the agents using
knowledge that only they have, as in [32], and yet offer proof for their advices,
unlike [32]. Moreover, the local equilibrium verification allows us to consider a

Rationality Authority for Provable Rational Behavior 47

more general scenario in which the agents have private and public preferences
(as in [25]). Future research can further investigate efficient private verification
of online games and online best replies [24].

Once the rationality authority requirements are satisfied, a game authority [9,
10] can guarantee that all agents take rational and honest actions; actions that
follow the game rules. Moreover, actions of dishonest game inventors, agents, and
verifiers can exclude the participant from acting in games and can be reported
to a reputation system that audits their actions (e.g., see [8,9]).

The ordinary Joe and Jane do not have sufficient experience or the aca-
demic background for choosing best-replies and “perfect” maximum expected
utility [21]. Interestingly, they are assured of making the right choice when using
the rationality authority.

References

1. Aumann, R.J.: Subjectivity and correlation in randomized strategies. J. Math.
Econ. 1(1), 67–96 (1974)

2. Bertot, Y., Castéran, P., Huet, G., Paulin-Mohring, C., Pierre, C.: Interactive
Theorem Proving and Program Development: Coq’Art: The Calculus of Inductive
Constructions. Springer, New York (2004)

3. Brânzei, S., Procaccia, A.D.: Verifiably truthful mechanisms. CoRR abs/1412.0056
(2014)

4. Burkhard, H.-D., Lindemann, G., Verbrugge, R., Varga, L.Z. (eds.): CEEMAS
2007. LNCS (LNAI), vol. 4696, pp. 11–21. Springer, Heidelberg (2007)

5. Coy, P.: The secret to google’s success. Business Week/Bloomberg L.P., 6 March
2006. (ts innovative auction system has ad revenues soaring)

6. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing
a nash equilibrium. Commun. ACM 52(2), 89–97 (2009)

7. Dolev, S., Panagopoulou, P.N., Rabiey, M., Schiller, E.M., Spirakis, P.G.: Brief
announcement: Rationality authority for provable rational behavior. In: PODC
2011 TR 2011:03, Department CSE, Chalmers University of Technology (2011)

8. Dolev, S., Schiller, E.M., Spirakis, P.G., Tsigas, P.: Strategies for repeated
games with subsystem takeovers implantable by deterministic and self-stabilizing
automata. In: Manzalini, A. (ed.) Autonomics. ACM International Conference Pro-
ceeding Series, ACM (2008)

9. Dolev, S., Schiller, E.M., Spirakis, P.G., Tsigas, P.: Robust and scalable middleware
for selfish-computer systems. Comput. Sci. Rev. 5(1), 69–84 (2011)

10. Dolev, S., Schiller, E.M., Spirakis, P.G., Tsigas, P.: Game authority for robust and
scalable distributed selfish-computer systems. Theor. Comput. Sci. 411(26–28),
2459–2466 (2010)

11. Edelman, B., Ostrovsky, M., Schwarz, M.: Internet advertising and the generalized
second-price auction: selling billions of dollars worth of keywords. Am. Econ. Rev.
97(1), 242–259 (2007)

12. Foster, D.P., Vohra, R.: Regret in the on-line decision problem. Games Econ.
Behav. 29(1–2), 7–35 (1999)

13. Fotakis, D., Kontogiannis, S.C., Spirakis, P.G.: Atomic congestion games among
coalitions. ACM Trans. Algorithms 4(4), 52 (2008)

48 S. Dolev et al.

14. Freund, Y., Schapire, R.E.: Game theory, on-line prediction and boosting. In:
COLT, pp. 325–332 (1996)

15. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho, A.V. (ed.) Pro-
ceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987, pp.
218–229. ACM, New York (1987)

16. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: Sedgewick, R. (ed.) Proceedings of the 17th
Annual ACM Symposium on Theory of Computing, May 6–8, 1985, pp. 291–304.
ACM, Providence (1985)

17. Guerin, F.: An algorithmic approach to specifying and verifying subgame perfect
equilibria. In: Proceedings of the Eighth Workshop on Game Theoretic and Deci-
sion Theoretic Agents (GTDT-2006), Hakodate, Japan (2006)

18. Guerin, F.: Applying game theory mechanisms in open agent systems with com-
plete information. Auton. Agents Multi-Agent Syst. 15(2), 109–146 (2007)

19. Guerin, F., Pitt, J.: Verification and compliance testing. In: Huget, M.-P. (ed.)
Communication in Multiagent Systems. LNCS (LNAI), vol. 2650, pp. 98–112.
Springer, Heidelberg (2003)

20. Guerin, F., Tadjouddine, E.M.: Realising common knowledge assumptions in agent
auctions. In: IAT, pp. 579–586. IEEE Computer Society (2006)

21. Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk.
Econometrica 47(2), 263–291 (1979)

22. Mirrokni, V., Muthukrishnan, S., Nadav, U.: Quasi-proportional mechanisms:
prior-free revenue maximization. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS,
vol. 6034, pp. 565–576. Springer, Heidelberg (2010)

23. Nash, J.F.: Equilibrium point in n-person games. Proc. Nat. Acad. Sci. USA 36,
48–49 (1950)

24. Nikoletseas, S., Panagopoulou, P., Raptopoulos, C., Spirakis, P.G.: On the struc-
ture of equilibria in basic network formation. In: Gasieniec, L., Wolter, F. (eds.)
FCT 2013. LNCS, vol. 8070, pp. 259–270. Springer, Heidelberg (2013)

25. Nisan, N., Ronen, A.: Algorithmic Mech. Des. 35, 166–196 (2001)
26. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory.

Cambridge University Press, New York (2007)
27. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge

(1994)
28. Pauly, M.: Programming and verifying subgame-perfect mechanisms. J. Log. Com-

put. 15(3), 295–316 (2005)
29. Tadjouddine, E.M.: Complexity of verifying game equilibria. CEEMAS 4, 103–112

(2007)
30. Tadjouddine, E.M., Guerin, F.: Verifying dominant strategy equilibria in auctions.

In: [4], pp. 288–297(2007)
31. Tadjouddine, E.M., Guerin, F., Vasconcelos, W.W.: Abstractions for model-

checking game-theoretic properties of auctions. In: Padgham, L., Parkes, C.D.,
Müller, J., Parsons, S. (eds.) AAMAS (3), pp. 1613–1616. IFAAMAS, South
Carolina (2008)

32. Thaler, R.H., Sunstein, C.R.: Nudge: Improving Decisions About Health, Wealth,
and Happiness. Yale University Press, New Haven (2008)

	Rationality Authority for Provable Rational Behavior
	1 Introduction
	2 Preliminaries
	3 Verifying a Nash Equilibrium Using Coq
	4 Provable Rationality Using Interactive Proofs
	5 Equilibrium Consultant with Provable Advices
	6 On-line Network Congestion Games
	7 Discussions
	References

