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 

Abstract—This paper presents the design of a high efficiency 

corporate-fed 8×8-slot array antenna in the 60 GHz band. The 

antenna is built using three unconnected metal layers based on 

Artificial Magnetic Conductor (AMC) in gap waveguide 

technology. A 2×2 cavity-backed slot subarray is designed in a 

groove gap waveguide cavity. The cavity is fed through a 

coupling slot from a ridge gap waveguide corporate-feed network 

in the lower layer. The subarray is numerically optimized in an 

infinite array environment. The corporate-feed network is 

realized by a texture of pins and a guiding ridge. There is very 

good agreement between simulated and measured results. The 

fabricated antenna shows a relative bandwidth of 14% with input 

reflection coefficient better than -10 dB and an overall aperture 

efficiency larger than 65% (i.e. – 2 dB) with about 25 dBi realized 

gain between 56.2 and 65.0 GHz. 

 
Index Terms— Artificial Magnetic Conductor (AMC), gap 

waveguide, high efficiency, millimeter wave, slot array antenna. 

 

I. INTRODUCTION 

igh gain, high efficiency and low profile antenna is one 

of the main challenges of millimeter wave wireless 

systems. Millimeter wave applications such as 77 GHz high 

resolution automotive radar and unlicensed 60 GHz high data 

rate radio links have got more attention over the last few 

years. Directive antennas for radio links are normally realized 

by using reflector antennas [1]. However, thin planar antennas 

are more desirable for millimeter wave applications because of 

their lower volume and weight. Microstrip and Substrate 

Integrated Waveguide (SIW) arrays have low profile. 

However, they suffer from dielectric losses, which are a 

disadvantage for high gain millimeter wave applications [2], 

[3]. The losses can be partly reduced by using low loss 

dielectrics, but these materials are expensive, and also quite 

soft. Therefore, it becomes difficult to machine and make via 

holes through those types of planar structures. Hybrid 

corporate-fed array antennas are proposed in [4] and [5] to 
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reduce the dielectric loss of the distribution network, by using 

a microstrip ridge gap waveguide feed network and Substrate 

Integrated Cavity (SIC) radiating layer.  

An alternative is to use the double-layer slot array presented in 

[6]. This is based on normal rectangular waveguide 

technology realized by diffusion bonding of many thin 

perforated metal plates. It shows high efficiency and wideband 

performance, but the diffusion bonding is expensive in mass 

production. Therefore, we will instead realize a similar slot 

array antenna by using three separate metal layers that are 

integrated without requiring any metal contact between them. 

This is possible by using new materials in the form of an 

Artificial Magnetic Conductor (AMC).  

The gap waveguide technology [7], [8] shows good 

characteristics such as low loss, flexible planar manufacturing, 

and cost effectiveness in particular at millimeter wave 
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Fig. 1. 2×2 cavity-backed slot subarray realized in gap waveguide 
technology. 
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frequencies. In gap waveguides, AMCs (e.g., in the form of 

metal pins) are used in combination with a smooth metal plate, 

with an air gap between them. When the gap is smaller than 

quarter wavelength [9], there is a cut-off of all mode 

propagation within the gap. This can be used to control waves 

by introducing grooves or ridges between the pins. Thereby, 

there is no need for electrical contact between the textured 

surface and the metal plate. Therefore, gap waveguides can be 

mass-produced by molding, die pressing or die-sink EDM 

(Electrical Discharge Machining). This offers new 

opportunities for making cost-effective antennas and in 

particular corporate feed networks [10]-[12]. Moreover, the 

AMC of the gap waveguide technology can be used to 

package active circuits [13], [14] and low-cost bandpass filters 

[15],[16], which thereby could be integrated with the feed 

network.  The metamaterial/metasurface background in gap 

waveguide technology is described in more detail in [17]. The 

book chapter in [18] gives a handbook description of all works 

on gap waveguides till now with 107 references including 

related works. 

In this paper, we propose a high efficiency and low profile 

planar antenna working at 60 GHz. This is a corporate-fed 4×4 

subarray realized by three unconnected metal layers. The 

subarray is optimized in an infinite array environment. 

Thereafter, the feed network for 4×4 subarray is designed, and 

the whole antenna is manufactured and measured. This paper 

presents for the first time such 8×8-slot planar array based on 

a fully corporate distribution network in ridge gap waveguide 

technology. 

II. ANTENNA CONFIGURATION AND DESIGN 

The subarray consists of two layers as illustrated in Fig. 1. 

There is an air-filled cavity formed by pins, and this feeds four 

radiating slots in the top layer. The slots have a spacing of 

nearly one wavelength. The lower layer contains pins and 

ridges forming a ridge gap waveguide distribution network 

that excites the cavity via a coupling slot. There is a small air 

gap between each layer so there is no requirement for 

TABLE I 

DIMENSIONS OF 2×2 CAVITY-BACKED SLOT SUBARRAY 

(REFERS TO FIG. 1) 

Parameter Value (mm) 
 

 4 Slot spacing in the x and y direction  

w 1 Width of the ridge 

dr 1.1 Height of the ridge 

g 0.25 Air gap  

tc 1 Thickness of the cavity layer 

ts 0.3 Thickness of the slot layer 

dc 1.15 Height of the cavity pins 

df 1.3 Height of the feeding pins 

p 0.8 Pins period 

a 0.4 Width of pins 

wm 0.5  

wT 0.86  

lm 0.88  

lT 2  

wc 0.89 Width of the coupling slot 

lc 2.8 Length of coupling the slot 

ws 1.54 Width of the slot 

ls 2.7 Length of the slot  

 

 

Fig. 2. Configuration of the proposed corporate-fed 8×8 slot array antenna; 

wq = 1.35 mm, lq = 1.35 mm, wt = 2.66 mm, lt = 0.85 mm. 
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Fig. 3. Simulated reflected coefficient of subarray, 4×4 ridge gap 

waveguide feed network and complete antenna. 

 

Fig. 4. Fabricated antenna made of three separate metal layers. 
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electrical contact between them. The pins in the top and 

bottom layers present a stopband for parallel-plate modes [9]. 

The designed subarray has 8×8 mm2 dimensions in E- and H-

plane. The subarray is optimized in the infinite array 

environment by using CST Microwave Studio by cut-and-try 

method, based on using the geometry in [6] as a starting point. 

The mutual coupling between subarrays are automatically 

included by using the infinite array approach. The slot spacing 

is close to one wavelength in order to give as large gain as 

possible, but we had to be careful to avoid grating lobes. The 

subarray was also carefully optimized to avoid grating lobes 

around 30° due to the two wavelength subarray spacing. 

The antenna configuration is shown in Fig. 2. The 

distribution network feeds all 2×2-slot subarrays with the 

same amplitude and phase. This has been designed gradually 

by using knowledge from previous papers on ridge gap 

waveguides [10]. It was a big challenge to realize the 

distribution network in the limited space available, in such a 

way that there is no observed effect of mutual coupling 

between close ridges. This was ensured by keeping at least 

two pin row between neighboring ridges, except for a few 

places, such as near some of the T-shaped ridges feeding the 

coupling slots to the upper cavities. The distribution network 

is fed from a simple transition to WR-15 rectangular 

waveguide in the bottom plate.  

Fig. 3 shows the simulated input reflection coefficient S11 

for the subarray in the infinite array, the whole feed network 

with terminated ports (without radiating elements), and of the 

complete full 8×8 slot array as seen on the input WR-15 port. 

The latter was determined by full wave simulation. We see 

that the feed network works very well with an S11 below -22 

dB over a very large bandwidth. The final simulated S11 is 

below -15 dB between 57 and 64 GHz. 

III. MEASURED RESULTS 

The fabricated antenna is illustrated in Fig. 4. It 

manufactured by a Computer Numerical Control (CNC) 

milling machine. The measured and simulated reflection 

coefficient of the whole 8×8-element slot array are shown in 

Fig. 5. There is some discrepancy between simulated and 

measured results, explained by manufacture tolerances. Still, 

the measured reflection coefficient is below -13 dB from 56.8 

to 65 GHz except for an increase of 3 dB from 60.5 to 62.8 

GHz. The computed and measured far-field patterns are shown 

in Fig. 6. We see an extraordinary good agreement between 

them. This means that the feed network is working well and 

has wide bandwidth, and that the element spacing is small 

enough to avoid grating lobe problems. 

The simulated and measured directivities and gains are 

shown in Fig. 7. The results illustrate that the simulated 
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(c) 

Fig. 6. Measured and Simulated radiation pattern in E- and H-plane at (a) 
57 GHz, (b) 62 GHz, and (c) 65GHz. 
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Fig. 7. Measured gain compared with simulated gain and directivity. The 

dashed lines show directivities for an aperture of the same size when the 

aperture efficiencies are 80%, 70%, and 60%.  
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Fig. 5.Simulated and measured reflected coefficient of the 8×8-element array. 
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aperture efficiency (i.e. the directivity relative to the 

maximum available directivity of an array) over the whole 

band is above 80% (-1.0 dB), over most of it is actually close 

to 90% (-0.5 dB). The simulations show larger aperture 

efficiencies for larger arrays, so this reduction is due to the 

finiteness of the array, i.e. edge effects. The simulated and 

measured realized gains are very close at the lower end of the 

band, but has a difference of about 1 dB at the higher end. 

Thus, there is a potential for improvements. It should here be 

noted that the antenna is made of aluminum, and that this has 

almost a factor two larger surface resistance than Silver, so the 

losses could probably be reduced by a factor two by silver-

plating. Above 65 GHz the gain drops fast due to the 

mismatch. The discrepancies between measured and simulated 

results can also be allocated to measurement uncertainties 

because the measurements were done in an outdoor range.  

The manufacturing tolerances can also explain the gain 

reductions.  

IV. CONCLUSION 

We have presented an 8×8 slot array realized by three metal 

layers that do not need any electrical contact between them. 

This has been possible by using an AMC to control the wave 

propagation between the plates, i.e. gap waveguide 

technology. The subarray shows better radiation pattern and 

higher aperture efficiency than the presented unit cell in [12]. 

The unique mechanical design opens up for new fabrication 

methods such as die-sink EDM or die forming that can 

provide low-cost millimeter wave antennas for 5G 

applications. 
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