An Approaching Global Phosphorus Crisis and Microalgal Biotechnology:

A Growing Problem & Strategies for Effective Use

Joshua Mayers

Mayers@chalmers.se

@MayersJosh

Industrial Biotechnology Biology and Biological Engineering Chalmers University of Technology Gothenburg, Sweden

1

Biology of P - Where and why?

Essential macronutrient:

Maintains membrane structure Synthesis and expression of genetic material Energy metabolism Regulatory processes

RNA > phospholipids > DNA > P-esters > Inorganic P

Total P content

Microalgae	0.2 – 2% % DW	(but upto 3.2% DW – luxury uptake
Corn & wheat	0.2 – 1.5 % DW	
Coffee beans	~ 0.4 % DW	
Saccharomyces	0.2 – 1.6 % DW	

So why worry about phosphorus?

Finite mineral resource + Non-even distribution + Environmental impacts

(Morocco & Western Sahara (74%), China (6%), Algeria (3%), Syria (3%))

Open-cast/strip mining & Processing

Large areal requirement

Soil erosion & desertification

Altered groundwater aquifers

Large water demand

Rock phosphorus mine, Togo, Africa. Photo: Alexandra Pugachevskaya

Land-use change

Ecosystem destruction & biodiversity loss

Eutrophication

Hydrofluoric gas emission

So why worry about phosphorus?

World reserves ~ 67,000,000 Mt World production in 2014 ~ 225 Mt yr⁻¹ Peak production in 30 – 100 yrs. > 80% of P used in fertilizers...

Monoammonium phosphate, DAP NH4PO4 Diammonium phosphate, MAP (NH4)2PO4 Triple super phosphate, TSP Ca(H2PO4)2

P fertiliser (% P)	Energy / kg (Mj kg P or N ⁻¹)	Cost / kg (\$ kg P or N ⁻¹)	GWP potential (kg CO ₂ -eq kg P or N ⁻¹)
MAP (27)	56.2	4.24	0.81
DAP (21)	73.8	3.11	1.54
TSP (25)	58.9	2.93	3.30
NH ₄ NO ₃	51.0	1.71	9.37

Calculated from Johnson, et al., 2013 and Handler, et al., 2012. GWP potential calculated using Ecoinvent 2013.

Phosphorus in alga-culture

Large cultivations are few & often not detailed = Reuse of non-representative numbers Contained production means low release of P to environment + more efficient resource use.

240

Biomass	kg P per tonne DW ⁻¹	kg P per tonne fuel ⁻¹	kg P per Gj fuel ⁻¹
Microalgae	3.1 – 20		
Soybean	8.1 – 14.2ª	79 – 192 ^b	2.0 - 4.8
Canola	3.2 – 15.7ª	16–42.1 ^b	0.4 - 1.1
Sunflower	9 – 47.3ª	35.3 - 186 ^b	0.9 – 4.7
Corn	6.5 - 8.8ª	15.7 – 20 ^c	0.6 – 0.7

6.7 – 222 kg P per 0.17 – 5.6 kg P tonne biodiesel per Gj fuel 2% P 2% P P-usage (kg P tonne fuel⁻¹) 200 5 **P-usage (kg P Gj fuel**-1) 160 120 1.2% 1.2% 80 0.6 % F 0.6 % 40 0.3% 0.3% P 0 20 20 n 40 60 n 40 60 **Lipid Content Lipid Content**

^a amount applied to production area required to produce 1 metric tonne, some lost to run-off; ^b biodiesel, fuel density = 40 Mj kg⁻¹; ^c ethanol, fuel density = 26.8 Mj kg⁻¹

Effect of biomass P content and lipid content on P requirements for production of 1 tonne fuel or 1 Gj energy. Assumes 90% of lipid converted to biodiesel, with energy content = 40 Mj kg⁻¹.

Literature: 0.6 – 1.5 kg P per Gj fuel⁻¹ (Pate, et al., 2011, Redford ratio of 106:16:1; 1.2% P)

Phosphorus in alga-culture

Pate, et al., 2011:

Algal biofuel production would consume **20 - 51%** of annual US P-fertilizer consumption to produce 38 billion litres (28% of USA EISA 2007 target)

Canter, et al., 2015:

34 – 53% to produce 19 billion litres (23% of USA EISA 2007 target).

- \rightarrow Contribute significantly to the negative energy balance for biofuel production.
- \rightarrow Concept of bioenergy production not feasible with current model of fertilizer usage.

STRATEGIES NEEDED TO REDUCE RELIANCE ON COSTLY FERTILIZERS

Optimising P-usage – N:P ratio

Nannochloropsis sp. cultured at different media N:P ratios in batch culture

Biomass production *by Nannochloropsis* sp. grown at different N:P ratios in batch culture.

Growth parameters of *Nannochloropsis* sp. batch cultures grown at different N:P supply ratios (n = 3, mean = 1SD)

N:P ratios	16:1	32:1	64:1	80:1
Exp. Growth	0.62 ±	0.62	0.60	0.56
rate (d ⁻¹)	0.01 ª	± 0.02 ª	± 0.01 ª	± 0.01 ^b
Max. DW Prod.	56.6	52.3	50.5	45.4
(mg L ⁻¹ d ⁻¹)	± 2.2 ª	± 0.4 ^{ab}	± 1.5 ^b	± 0.5 ^c
N content (% DW)	2.6	2.6	2.9	2.9
	± 0.2 ª	± 0.1 ª	± 0.1 ^b	± 0.1 ^b
P content (% DW)	0.24	0.16	0.10	0.08
	± 0.02 ª	± 0.01 ^b	± 0.01 ^c	± 0.01 ^c

Significantly different treatments are represented by different letters (One-way ANOVA with Tukey post hoc, p < 0.05).

Lipid content = 49 – 52% DW

Increase media N:P ratio to 64:1 without significant negative effects.

> 64:1 N:P, reduced growth rate, biomass production and lipid productivity.

P content down to 0.1% DW.

Nannochloropsis biomass nutrient requirements							
Lipid content (% DW)	kg N per tonne DW	kg P per tonne DW	kg N per tonne fuel	kg P per tonne fuel	kg P per Gj fuel		
N-starved, P-	replete						
20	60	2.5	333	13.9	0.35		
50	30	2.5	67	5.6	0.14		
N-starved, lo	w-P						
20	60	1.0	333	5.6	0.14		
50	30	1.0	67	2.2	0.06		

Literature: 0.6 – 1.5 kg P per Gj fuel⁻¹

(Pate, et al., 2011; Redfield ratio of 106:16:1; 50% C, 8.8% N, 1.2% P)

Significantly lower requirement than predicted using Redfield stoichiometry !!

Could reduced further with a P-starved system.

Models need to consider flexible C:N:P ratios

However, N still > 80% energy demand of macronutrient requirements in media

Reduced footprint of P-usage

N and P media comparison.

Based on use of ammonium nitrate and triple-super phosphate

Biomass N&P	Lipid	Per tonne DW ⁻¹		Per tonne fuel ⁻¹		% of biomass	
state	(% DW)	(% DW)	Cost (\$)	Energy (Gj)	Cost (\$)	Energy (Gj)	for N + P (just P) ^c
Redfield ^a	8.8 / 1.2	20% ^b	153	5.3	852	29.5	22.2% (3.4)
Replete	6 / 0.5	20%	94	3.4	537	18.9	14.2 % (1.4)
Minimum	3/0.1	50%	42	1.6	93	3.55	6.7% (0.3)

^a assumes a 50% C content; ^b not determined, but predicted to be likely content; ^c the higher heating value of algal biomass = 24 Gj tonne DW⁻¹

Cost and energy saving related to media N & P use compared to Redfield media

Per tonne DW	Cost savings (%)	Energy saving (%)
--------------	------------------	-------------------

Ratio increase 72.8

69.9

N is more significant contributor to media cost and energy.

Reducing fertilizer usage – Waste nutrients

Nannochloropsis sp. grown on anaerobic digestate effluent (ADE) to replace N. ADE = **1.6** g NH₄ L⁻¹ & **0.036** g PO₄ L⁻¹ (NP = 99:1)

ADE can replace **100%** of media N !!

Also tested at 32:1 and 64:1 ratios successfully.

For biomass of 3% N and 0.1% P, ADE use reduces P fertilizer input by **67%**.

Need to consider cost of sterilizing ADE. May limit applications of biomass.

Reduced footprint of nutrient usage

N and P media comparison.

Based on use of ammonium nitrate and triple-super phosphate

Biomass N&P L	Lipid	Per tonn	tonne DW ⁻¹ Po		e fuel ⁻¹	% of biomass	
state	(% DW)	(% DW)	Cost (\$)	Energy (Gj)	Cost (\$)	Energy (Gj)	for N + P (just P) ^c
Redfield ^a	8.8 / 1.2	20% ^b	153	5.3	852	29.5	22.2% (3.4)
Replete	6 / 0.5	20%	94	3.4	537	18.9	14.2 % (1.4)
Minimum	3/0.1	50%	42	1.6	93	3.55	6.7% (0.3)

^a assumes a 50% C content; ^b not determined, but predicted to be likely content; ^c the higher heating value of algal biomass = 24 Gj tonne DW⁻¹

Cost and energy saving related to media N & P use compared to Redfield media

Per tonne DW	Cost savings (%)	Energy saving (%)	
Ratio increase	72.8	69.9	
ADE use	98.5	99.0	

N is more significant contributor to media cost and energy.

Input of P equivalent to only 0.2% of biomass energy content

Conclusions

- Consideration of nutrient requirements not always accurate in literature
- Lipid content significantly affects system requirements
- Increase of media N:P ratio reduced P requirement by > 50%, reduces N + P cost and energy input by ~70%
- Use of ADE nutrients resulted in total N replacement and >70% of P (depending on N:P ratio)
- ADE reduces N + P cost and energy input by **99**%

CHALMERS

Chalmers University of Technology Prof. Eva Albers Dr Matty Janssen Swansea University, UK Prof. Kevin Flynn Dr Naomi Ginnever

Prifysgol Abertawe Swansea University

Work supported with funding from:

Optimising P-usage – Waste nutrients

Growth parameters of *Nannochloropsis* sp. grown on media with different percentages of N replaced with ADE (n = 3, mean + 1 SD).

	Control	25% N	50% N	100% N
Exp. Growth	0.53	0.52	0.53	0.51
rate (d ⁻¹)	± 0.05	± 0.06	± 0.04	± 0.03
Max. DW Prod.	56.2	57.6	56.2	54.5
(mg L ⁻¹ d ⁻¹)	± 2.2	± 2.6	± 1.4	± 3.8
Max. lipid	51.9	51.7	48.0	49.8
content (% DW)	± 1.2	± 0.8	± 2.3	± 1.1
N content	2.6	2.6	3.0	2.7
(% DW)	± 0.2	± 0.1	± 0.3	± 0.2
P content	0.40	0.34	0.36	0.38
(% DW)	± 0.02 ª	± 0.03 ^{ab}	± 0.02 ^{ab}	± 0.04 ^c

Significantly different treatments are represented by different letters (One-way ANOVA with Tukey post hoc, p < 0.05).