
Intelligent transportation systems
A collision avoidance system incorporating probabilistic threat-
assessment and decision-making protocols

Master’s Thesis within the division of Systems, Control and Mechatronics

CHARLIE SJÖDIN
ISABELLA JOHANSSON

Department of Signals and Systems (S2)
CHALMERS UNIVERSITY OF TECHNOLOGY, Gothenburg, Sweden
EX075/2015





Master’s thesis 2015:01

Intelligent transportation systems

A collision avoidance system incorporating probabilistic
threat-assessment and decision-making protocols

CHARLIE SJÖDIN
ISABELLA JOHANSSON

Department of Signal and Systems (S2)
Chalmers University of Technology

Gothenburg, Sweden 2015



Intelligent transportation systems
A collision avoidance system incorporating probabilistic threat-assessment and decision-
making protocols
CHARLIE SJÖDIN
ISABELLA JOHANSSON

Supervisor: Gabriel Rodrigues de Campos, Department of Signals and Systems;
Klas Alenljung, DENSO Sales Sweden AB
Examiner: Paolo Falcone, Department of Signals and Systems

Master’s Thesis 2015:01
Department of Signals and Systems (S2)
Division of Systems, Control and Mechatronics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

iv



Intelligent transportation systems
A collision avoidance system incorporating probabilistic threat-assessment and decision-
making protocols
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Abstract
The scope of this thesis has been on developing a Collision Avoidance (CA) system
being able to cope with the accident-prone urban intersections. These types of
complex sections within the road network will have the need to account for both the
different road-users but also the topology. This thesis will however constrain the
problem to only consider the EGO vehicle and one Perceived Other Vehicle (POV),
hence limiting the scope.

The proposed CA-system is divided into three modular blocks for the ability of
individual future developments. The first block captures the states and predicts the
future paths of the accounted vehicles with the aid of the observed road geometry.
Each vehicle’s state is computed using an Interacting Multiple Model (IMM) filter
that matches a motion model to the probable manoeuvre, whereas the topology is ob-
served and accounted for by a Bayesian Network (BN). The information given from
both the IMM and BN are combined for the ability to accurately predict, through
an Unscented Kalman Filter (UKF), the future behaviour of each vehicle. At each
prediction step, a probability of an imminent collision will, by the second block, be
calculated using the joint cumulative distribution. If this probability reaches above a
certain threshold, the final and third block will be invoked to evaluate the detected
threat for the need of a collision avoidance intervention. The evaluation will be
made through a formal threat assessment method based on reachability tools, with
the aim of finding the Point-of-No-Return stating which point in time the vehicle
inevitable ends up in a collision. The only considered intervention method is by the
use of emergency braking (AEB) to be able to keep the driver in the loop as the
decision maker as long as possible.

The developed CA-system was evaluated through several different scenarios in
an urban intersection spanning the possible configurations that could occur. The
unfolded result revealed a robust system being able to sufficiently predict the future
paths of both accounted vehicles for the ability to detect a probable collision. When
the detected collision was evaluated to be unavoidable by the driver, the collision
avoidance system triggered an emergency brake intervention being able to prevent
or at least mitigate the collision.

Keywords: Threat Assessment, Decision-making, Collision Avoidance, Active Safety,
Bayesian Network, Interactive Multiple Model Filtering, Unscented Kalman Filter,
Driver Intention, Urban Intersections.
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1
Introduction

Development within the automotive industry has in recent years had significant
progress in the area of active safety for passenger cars. Yet one challenging problem
still needing attention is collision avoidance at intersections. For new intelligent
safety systems focus on collision avoidance at intersections is therefore of impor-
tance, since road intersections are among the most accident-prone and complex sec-
tions within the road network. This compels Advanced Driver Assistance Systems
(ADAS) the need to cope with highly complex road scenarios, such as urban inter-
sections, where the hard-to-predict road-users and surrounding environment need to
be accounted for. This thesis will propose a collision avoidance (CA) system with
the ability to deal with these accident-prone urban intersections.

1.1 Background

The automotive industry is an area that is in constant development, where Intelligent
Transport Systems (ITS) is a key factor to increase safety and to tackle congestion
and growing emission. With the use of ITS, transport can get safer, more efficient
and more sustainable [1].

Today, there are several research projects within the automotive industry with
focus on developing fully automated vehicles to be put on the roads in a near fu-
ture. Extensive research has been conducted within Vehicle-to-Vehicle (V2V) [2][3]
and Vehicle-to-Infrastructure (V2I) [4][5] communication, but as it will take several
decades before the traffic network is fully utilised by automated vehicles, the need
for a standalone automatisation solution is necessary. Even though substantial re-
search has been conducted for standalone automatisation such as lane keeping [6],
adaptive cruise control [7] and self-driving cars [8] as illustrated in Figure 1.1, coping
with all parts of the complex road network has not yet been fully addressed.

An especially accident-prone part of the complex traffic network is urban inter-
sections as there are several different road-users co-existing in the same road section,
all having multiple choices of direction. Road safety statistics for Europe [9][10][11]
discloses that around 20% of the fatalities and around 43% of the overall accidents
are at intersections, which in fact has been the trend for over a decade.

The first problem encountered in intersection scenarios, both for humans as
well as machines, is to determine the paths of the other road users. The path
prediction is needed to evaluate if and where the paths of the vehicles will intersect.
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1. Introduction

(a) Lane keeping system
from Toshiba [12]

(b) Rear breaking system by
Subaru [13]

(c) City safety system from
Volvo Cars [14]

Figure 1.1: Research within active safety functions for the three different manufacturers
Toshiba, Subaru and Volvo Cars.

If the paths are evaluated to intersect at the same time step, then consequently a
collision will occur. In theory this seems to be trivial, but in reality is the time span
from a collision is detected to when the collision actually occurs often very short.
A human is affected by both reaction and decision latency as well as distractions,
which also adds a time delay when evaluating the collision risk. A machine on the
other hand cannot get distracted, but can nevertheless have uncertainties in the
sensor measurements.

The safest approach would be to stop the vehicle as soon as there is a risk
of collision, but for a machine to gain acceptance among drivers as a tool to avoid
collisions, the system will need to give very few false interventions. If and when to
initiate a braking intervention is therefore of importance.

1.2 Purpose
In this thesis, the goal is to develop and demonstrate formal decision-making and
threat-assessment algorithms with a particular attention to complex traffic intersec-
tion scenarios. Given an unknown complex intersection, the objective is to provide
a decision-making protocol preventing/mitigating a potential collision. Moreover
should formal analysis methods, verifying safety requirements, be provided for novel
intelligent control strategies.

This Master thesis project will, in collaboration between DENSO Sales Sweden AB
and Chalmers University of Technology, develop a Collision Avoidance (CA) system.
The purpose is to develop a system dealing with a long-term path prediction for the
included vehicles, a collision risk detection and finally a collision avoidance strategy
as later illustrated in Figure 1.2. The proposed system shall be kept modular for
the possibility to improve individual parts of the system in the future.
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1.3 General objectives
In accordance with the background and purpose described in the previous sections,
the general objectives for this thesis are stated as:

• Proposing a method to merge pertinent information of the surrounding envi-
ronment in order to accurately predict the behaviour of oncoming traffic.

• Developing a stochastic solution evaluating the risk of collision using the pre-
vious mentioned predictions.

• Defining a formal, robust decision making procedure for least-invasive braking
interventions.

• Evaluating the proposed Collision Avoidance (CA) system with both simula-
tions as well as with real-time implementation.

1.4 Contributions
The contributions of this thesis are:

• A combination of a Bayesian Network (BN) and an Interacting Multiple Model
(IMM) filter together with an Unscented Kalman filter (UKF) to be able to
compute long-term path predictions of vehicles.

• A novel way of defining a collision, resulting in the ability to detect a big
variety of possible collision configurations. The method is probabilistic, i.e.
calculates the probability of collision.

• A CA system being able to predict and avoid/mitigate several different colli-
sion configurations in intersection scenarios.

The content of this thesis also serves as a basis for a technical article which will be
submitted in the nearby future.

1.5 System overview of the proposed solution
A graphical overview of the approach of the presented system is illustrated in Figure
1.2. Here, a Long-term path prediction is executed first which henceforth progresses
into a Collision detection assessment, and finally continues into a Collision avoidance
procedure. A flow chart of the information distributed through the system is shown
in Figure 1.3. The figure illustrates how map and sensor data serves as inputs to
the Bayesian Network (BN), where the result from the BN is transferred, together
with the sensor data, to the IMM. The combined result from the BN and IMM
then provides a decision of probable vehicle motion to the Unscented Kalman Filter
(UKF), which finally provides a trajectory propagation along the whole prediction
horizon. All of these cooperative functions are referred to as the long-term path
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prediction block. The predictions are thereafter sent to the collision detection block
for evaluation of probable collision and finally sent to the collision avoidance block
for an intervention decision. The respective blocks are described in Chapter 3, 4
and 5.

Long-term path prediction Collision detection Collision avoidance

Figure 1.2: Block scheme showing a graphical overview of the total system with the
three different objectives

Bayesian Network

Map data Sensor data

IMM

Collision Detection

Collision Avoidance

Block 1:
Long-term path prediction

UKF

Block 2:
Collision detection

Block 3:
Collision avoidance

Figure 1.3: Block scheme showing a flow of information throughout the total system
with the three different objectives.
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1.6 Thesis organisation
Chapter 2 provides the objectives, assumptions, defined models and other prereq-
uisites necessary for the reader to get an underlying understanding of the system
design. The focus of Chapter 3 lies at explaining the theory and design of how to
track and predict the states of both the Perceived Other Vehicle (POV) as well as
the EGO vehicle. Chapter 4 defines the risk of collision, evaluated based on the
probabilistic predictions from Chapter 3. Chapter 5 are thereafter outlining the
threat assessment, based on the probability of collision obtained in Chapter 4.

In Chapter 6 are the results from the long-term path prediction, Chapter 3,
collision detection, Chapter 4, and collision avoidance, Chapter 5, subsystems evalu-
ated both separately, as well as combined into the complete CA system. A discussion
of the obtained results and concluding remarks with possible future developments
is presented in Chapter 7.
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Preliminaries

This chapter describes the prerequisites, defined problems and preliminary work
prior to the research conducted in regard to the first three objectives presented in
Section 1.3. Section 2.1 provides a problem description, further explaining the gen-
eral objectives from Section 1.3, whereas the made assumptions will be outlined in
Section 2.2. This chapter is also giving the vehicle and environment representa-
tions, in Section 2.3 and 2.4 respectively. Finally is the intended evaluation setup
described in Section 2.5.

2.1 Problem description
As described in the general objectives, the overall problem to be solved is the detec-
tion and avoidance (or at least the mitigation) of a collision. Moreover, the intention
is to keep the number of false interventions few enough1. The stated problems are
divided into three main areas, which as stated before are; Long-term path prediction,
Collision detection and Collision avoidance.

The problems to be addressed for the Long-term path prediction are:
• How to fuse the information from map and sensor data to make long-term

predictions for both the ego vehicle (EGO) and the Perceived Other Vehicle
(POV)?

• How to incorporate sensor imperfections?
The Collision detection should consider:

• How to detect a collision?

• How to determine and define the probability of a collision?

• How to define the characteristics of a collision (time to collision, duration of
collision, distance to collision)?

The Collision avoidance should finally answer:
• How to decide whether an intervention is needed?

• How to make an avoidance intervention (by performing an emergency braking)
as late as possible and with very few false interventions?

1ISO26262 requires less than one false Autonomous Emergency Braking (AEB) intervention
during 10 years or within 100 000 km of driving. This is though out of the scope of the thesis since
extensive test hours will be needed to evaluate the system fully.
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2.2 Assumptions
When solving the problems stated in Section 2.1, some assumptions should be re-
garded to simplify and delimit the scope of the thesis. The following assumptions
are therefore considered throughout the entire thesis report:

• Only two vehicles are considered in each scenario, the EGO and one POV.
The EGO is the vehicle with the Collision Avoidance (CA) system.

• Perfect weather and road conditions, i.e. little or no slip is considered.

• The vehicles are moving with a maximum velocity according to the speed limit
in urban areas of 50 km/h.

• Reliable digital map data is assumed to be given as input, i.e. no investigation
of how map data is created will be concerned.

• Only one lane in each driving direction will be considered, i.e. no lane iden-
tification will be needed and collision with vehicles in the own driving lane is
not considered.

• The POV and EGO are assumed to be cars (no other road-users will be con-
sidered).

• No communication with surrounding objects (moving or stationary), as for
example Vehicle-to-Vehicle (V2V) or Vehicle-to-Infrastructure (V2I) commu-
nication, is considered in this work.

• The sensors used for the EGO are assumed to give global state information.
The positions in longitude and latitude as well as global heading. Velocity and
angular velocity is assumed to be measured by the vehicles internal measure-
ment unit (IMU) and wheel speed sensors.

• The sensors used to observe the POV are assumed to give measurements rel-
ative the EGO. This could be achieved for example by the use of a radar or a
camera.

2.3 Vehicle model
The mathematical representation of the EGO and the POV play a crucial role in the
robustness and precision of the developed system. The state information of the EGO
is easily obtained by on-board sensors such as GPS, IMU and wheel speed sensors.
The POV on the contrary, will be observed by sensors mounted on the EGO such
as, for example, camera or radar. The state information of the POV will thus never
be completely accurate, due to imperfections introduced by the sensors such as for
example measurement speed, measurement accuracy or reflection misinterpretation.
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With the sensorial information at hand, the representation of the EGO and POV
will be made with polar and spherical state space representation, respectively. The
state vector configuration will therefore be:

xEGO =


x
y
θ
v
w

 and xPOV =


x
y
vx
vy
w

 (2.1)

where x and y are the global cartesian positions and w represents the angular veloc-
ity, being the same notations for both the EGO and POV. The disparity between
the two representations is that the EGO’s heading is denoted as θ and the speed as
v, whereas the POV’s velocities, measured in x- and y-direction, will be denoted as
vx and vy respectively.

The spherical representation is used due to the intention of considering a radar
as on-board sensor, which can only accurately measure positions and the radial com-
ponents of the velocity, i.e the instantaneous change in range between the radar and
the target. Heading and angular velocity can therefore not be observed for the POV.
The angular velocity will not be measured, but is nevertheless in the state vector
for the ability to include a constant turn rate to be used in a turn model.

To model a vehicle in the most accurate way possible is a well known problem, for
example is a review of the most common motion models described by [15]. Here the
authors define models describing a constant motion such as with the Constant Veloc-
ity/Acceleration (CV/CAcc) or the Constant Turn-rate (CT) model. More compre-
hensive models are also presented, where some include several motions in the same
model such as the Constant Turn Rate and Velocity/Acceleration (CTRV/CTRA)
model or with the inclusion of topology knowledge through the Constant Curvature
and Acceleration (CCA) model.

These models all have pros and cons with respect to their ability to accurately
model a vehicle, but where none really manages to be as exact as the other in their
respective ”motion of expertise”. The conclusion is that each model describing a
single motion (CV, CT or CAcc), is the best suited model to use in their respective
motion. The problem thus occurs when trying to represent a vehicle that transitions
between different motions.

One solution is an Interacting Multiple Model (IMM), which uses a specific
model when it is suited. This methodology will be described in Chapter 3, where
the CV- and CT-models for both the EGO and POV denoted according to (2.1) is
given as:

CVP:


x
y
θ
v
w


x(t+ ∆T )

=


x
y
θ
v
0


x(t)

+


v · cos(θ) ·∆T
v · sin(θ) ·∆T

0
0
0


x(∆T )

(2.2)
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CTP:


x
y
θ
v
w


x(t+ ∆T )

=


x
y
θ
v
0


x(t)

+


v · cos(θ) ·∆T
v · sin(θ) ·∆T

w ·∆T
0
v/R


x(∆T )

(2.3)

CV:


x
y
vx
vy
w


x(t+ ∆T )

=


x
y
vx
vy
0


x(t)

+


vx ·∆T
vy ·∆T

−vy · w ·∆T
vx · w ·∆T

0


x(∆T )

(2.4)

CT:


x
y
vx
vy
w


x(t+ ∆T )

=


x
y
0
0
0


x(t)

+



vx
w
· sin(w ·∆T )− vy

w
· (1− cos(w ·∆T ))

vx
w
· (1− cos(w ·∆T )) + vy

w
· sin(w ·∆T )

vx · cos(w ·∆T )− vy · sin(w ·∆T )
vx · sin(w ·∆T ) + vy · cos(w ·∆T )

v/R


x(∆T )

(2.5)

where ∆T denotes the time step between samples. CVP (Constant Velocity Polar)
and CTP (Constant Turn-rate Polar) describes the EGO’s motion, where CVP will
be the used model for straight path and CTP for turning. The CV model, used
for straight path, and CT model, used for turning manoeuvre, describe the POV’s
intended motion.

2.4 Environmental representation
Since the representation of the EGO and POV should be made as accurately as
possible, the environment representation plays a key part in the Collision Avoidance
(CA) system’s ability to work as intended.

Hence, since sensors collect data from different point-of-views, all the data need
to be brought to the same reference frame. For example, a GPS gives information
of longitudinal and lateral position at the earths surface (Geodetic frame) whereas
mounted sensors such as a radar or a camera generates data relative the object its
mounted on (Local frame).

Since the observations of the EGO will be captured in the geodetic frame
and the POV in the local frame, these will need to be transformed into a common
coordinate frame. To also be able to benefit from map-based constraints and traffic
rules, the states of the accounted vehicles will need to be mapped up to the global
cartesian coordinate frame.
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On-board sensors

Geodetic 
(Longitude
- Latitude) 

ECEF/Global 
frame

(Earth-Centered, 
Earth-Fixed)

Local 
frame

DGPS/GPS + Digital Map

Mapping of oncoming 
road-users/obstacles 

Map-matching through DGPS/GPS, 
digital map and sensor fusion of 
on-board sensors

Figure 2.1: Block scheme showing how the different objectives will be regarded as seen
to different coordinate systems

This conversion process is illustrated in Figure 2.1, where the use of the three dif-
ferent coordinate systems are described as:

• Geodetic; which is a global coordinate system seen to the earths surface, e.g.
positions in longitude and latitude.

• Earth-Centered, Earth-Fixed (ECEF); which is a global cartesian coordinate
system.

• Local; is a local cartesian coordinate system, with origin on the EGO vehicle.

The chosen strategy is to transform all the state information to the middle layer,
ECEF, thus being able to combine all the data, with the additional possibility of
locating the vehicles on a digital map.

10



2. Preliminaries

2.5 Evaluation setup
The proposed algorithms should be integrated in simulation environments such as
MATLAB/Simulink and PreScan [16]. Furthermore, experimental validation tests
should be driven, in collaboration with DENSO’s technical staff, using fully equipped
Volvo S60 demo vehicles.

Verification of the system functionality is conducted through a variety of test scenar-
ios, and is evaluated in both four-way intersections as well as T-intersections. The
scenarios are including both non-evasive and evasive manoeuvres and are further
explained in Chapter 6. For full evaluation of the system, different restrictions on
the vehicles’ possible paths are set offline e.g. the possible driving directions in an
intersection, which in reality would have been given by a digital map.
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3
Long-term path prediction

In a traffic situation where an imminent threat has been observed, the time before
colliding is often very short. Hence within an occurrence of a collision, it is not suf-
ficient to start braking when the observed threat has entered your designated path,
instead the brakes need to be applied before it has entered. Being able to accurately
predict the road participants future behaviour, to gain invaluable extra time to act,
will increase a Collision Avoidance (CA) system’s performance immensely.

The focus of this chapter is therefore to present a solution being able to evaluate
information of the ego vehicle’s (EGO’s) surrounding environment to accurately
predict future occurrences. The information comprises of road network and road
user knowledge along the intended path, which could be collected by a variety of
sensors and tools such as GPS, Inertial Measurement Unit (IMU), radar and digital
map. This chapter thus contains a description of how support from map and sensor
data can improve the ability to recognise a drivers intended manoeuvre, illustrated
in Figure 3.1.

The intended design of the long-term path prediction as a part of the full
system is depicted in Figure 3.2. Here the propagated trajectories are calculated in
parallel for both the EGO and the Perceived Other Vehicle (POV) at each time step.
The subsystem contains three in series coupled parts taking care of data collection
and validation, filtering and finally prediction.

This chapter is divided into five sections. First, an introduction of the related
work will be given in Section 3.1. Secondly, the method for incorporation of driver
behaviour and map data to predict a future manoeuvre is explained in Section
3.2. Section 3.3 describes the implemented motion models with associated filtering
method to represent a vehicle’s state. Thereafter is the method to perform long-
term path predictions explained in Section 3.4. Finally, the combination of the three
blocks leading to the complete long-term path prediction, is described in Section 3.5

3.1 Related work

In the literature, several approaches are used for the purpose of positioning the EGO
and POV as well as predicting their probable paths. The most common method used
to estimate the current position and predicting the future position, is by the use of
a Kalman filter, or its extensions such as the Extended Kalman Filter (EKF) or
the Unscented Kalman Filter (UKF) as has been done in [17]. With the use of a
Kalman filter comes the ability of adding state constraints, which as for example
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has been made in [18]. Here, the authors use map data providing information of
road restrictions to be used as constraints. With the use of such constraints, some
approaches resulted in methods able to detect in which lane a vehicle is travelling. As
for example in [19], where a Bayesian Network is used to identify the most probable
driving lane by fusing map and sensor data.

Bayesian Network

Map data Sensor data

IMM

Collision Detection

Collision Avoidance

Block 1:
Long-term path prediction

UKF

Figure 3.1: Overview of the Long-term path prediction subsystem as a part of the whole
system, where the Bayesian Network (BN) is covered in Section 3.2, Interacting Multiple
Models (IMM) in Section 3.3 and Unscented Kalman Filter(UKF) described in Section
3.4. The left part of the figure illustrates the intended procedure with predictions (shown
as ellipses) for both vehicles included in the scenario.

The approach of pinpointing a vehicles position on a map is denoted as map-
matching, which has been extensively studied within the literature. Since the devel-
opments in this area are so extensive, the map data could either be assumed to be
fully reliable as in [19] or with a small uncertainty as in [20]. In [21] the positioning
is achieved with an UKF assuming ”perfect” map knowledge, where the POV’s lo-
cation on the map is made through Vehicle-to-Vehicle (V2V) communication. This
is also the underlying assumption for the propossed design, hence will only consider
reliable map data to be given as input, i.e. no investigation of how map data is
created will be concerned.

With the position of a vehicle considered to be reliably defined, focus could instead
lie on looking at how to predict the future trajectory of the vehicle. An approach
presented by [22], combines information from traffic rules, digital map and sensor
data to result in a predicted trajectory for the considered vehicle.
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BN

IMM

UKF

BN

IMM

UKF

EGO POV

Collision Detection

Collision Avoidance

Choosing motion model that best 
describes the driver’s intent

Choosing motion model that best 
describes the driver’s intent

Figure 3.2: Overview of the connection between BN, IMM and UKF, which is running
in parallel for the EGO and POV. Their respective probable paths are then compared
and analysed with aim at predicting and preventing an imminent collision through the
Collision Detection and Collision Avoidance blocks.

This approach uses an EKF for vehicle positioning in accordance with the provided
observations. Additionally an Object Oriented Bayesian Network (OOBN) is used
to define probabilistic relations between the different information parameters for the
ability to predict a probable future trajectory.

In [23] the authors use a Bayesian Network (BN) to combine driver behaviour
(i.e. turn signal) and the layout of a specific intersection in order to estimate drivers’
probable manoeuvres. A similar solution using Dempster Shafer’s theory is pre-
sented in [24], where instead the different probabilities are set as hypotheses (stop
before the intersection or taking a right, left or straight path) dependent on velocity
changes. The hypotheses could thereafter be given altered probabilities depending
on road network constraints. The profiles for the hypotheses were in this approach
statistically created using real data.

The filtering technique, such as in Kalman filters, usually requires a model to rep-
resent the moving objects probable motion. A common approach incorporating a
vehicles movement is by the use of a singular motion model such as the Constant
Velocity (CV), Constant Turn rate (CT) or Constant Acceleration (CAcc) models.

Tracking driver intentions is however complicated since vehicles do not exhibit
one type of motion but rather tend to switch between a set of typical motions. An
alternative way of including several motion models simultaneously (such as CT for
turning and CV or CAcc for straight driving) and switching to the most suitable
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model, could be done with the use of Interacting Multiple Model (IMM) theory as
in [25][26][27].

The proposed solution presented in this chapter is inspired by [26], where they use
a combination of BN hypothesis and an IMM-filtering technique for the possibility
to estimate the EGO and POV’s probable path. This thesis’s proposed design will
thus use both a BN and an IMM for validation of sensor and map data. The BN will
observe the acquired data and compare these to predefined thresholds. If above these
thresholds, an answer could be given of probable driver manoeuvre. The IMM will
however use the data to tune the motion models representing the different probable
behaviours. The BN and IMM will then collaborate to gain a robust decision of
which motion model best describing the future probable manoeuvre. The decided
model will thereafter be used in an UKF to make predictions some time steps into
the future.

Note that the CA system will only be implemented in the EGO, hence all
calculations will be made in respect to the own driven vehicle.

3.2 Bayesian Network

A Bayesian Network (BN) is a structured graphical representation of probabilistic
relationships between different independent variables. A general description of BNs,
with theory according to [28], is presented in the sequel, where as the BN applied
in the proposed solution is presented in Section 3.2.2.

3.2.1 General description
For the sake of clearness, the main ideas behind the BN will be explained throughout
an example. Consider Figure 3.3, where the BN is composed of nodes (A to E) and
interconnected with arrows to demonstrate the nodes respective dependencies. A
node in a BN represents a random independent variable in the sense that they may
be observable quantities, latent variables, unknown parameters or hypotheses. The
arrows represent probabilistic links, also called edges, being conditional dependencies
between two nodes.

A description of the intermediate dependencies between all nodes in a network
can be defined in a Conditional Probability Table (CPT). Nodes not being connected
represent variables that are conditionally independent of each other. A parent is
defined as the predecessor of a node, e.g. node A is the parent of node C in Figure
3.3. Each node is thus associated with a probability distribution, taking different
values depending on the observations made by the considered node and connected
nodes (child and parent nodes).

The key components of a BN are therefore how the structure of the network
as well as how the CPT are built up. For example, since the random variable E,
in Figure 3.3, has parents B,C,D a CPT needs to be defined as P (E|B,C,D). If
instead E would have had no parents (predecessor nodes), an Unconditional Proba-
bility Table P (E) should be defined.
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B

E

C

A

D

Figure 3.3: Example of DAG (Directed Acyclic Graph) for a BN. A to E are called
nodes and the arrows are called edges. The graph shows for example that A, B and D are
independent and that A is a parent to C.

Furthermore, to combine observations for different nodes, a well known equation in
probability theory is used. The equation is called Bayes’ rule, defined in [28], which
calculates a posterior probability distribution of a parameter V given an observation
y. This is given as:

P (V |y) = P (y|V )P (V )
P (y) (3.1)

This rule can thus be used to update our beliefs regarding V , given the obtained
information of the observation y. P (V ) denotes the prior probability distribution
of V and P (y|V ) is the likelihood of y given the information of V . If V can take a
number of m different values (V = [V1, V2, ..., Vm]), the normalisation constant P (y)
can be calculated as:

P (y) =
m∑
j=1

P (y|Vj)P (Vj) (3.2)

On the contrary, if there exist multiple observations y1, ..., yn being conditionally in-
dependent, the joint likelihood distribution of all the observations will be the product
of each individual observation. This results in a posterior probability distribution
based on Bayes’ rule, called Naive Bayes, which is defined as:

P (V |y1, ..., yn) = cnormP (V )
n∏
i=1

P (yi|V ) (3.3)

where cnorm is a normalisation constant given as cnorm = 1/P (y1, ..., yn), and calcu-
lated with the use of (3.2) according to:

1
P (y1, ..., yn) =

m∑
j=1

P (Vj)
n∏
i=1

P (yi|Vj) (3.4)

3.2.2 Application
A BN can be used as a tool to process and evaluate information gained from a
digital map accompanied with sensor data. The fusion of sensor and map data
can infer a drivers behaviour, hence the BN’s purpose in the proposed design is to
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evaluate surrounding information in the same manner as a human driver. Similar to
if you would drive a vehicle, you would regard information such as lane alignment
of oncoming vehicles, if they decrease in speed or have the turn signal activated.
Additional information could be how you interpret the road network to be connected.
Each of these perceptions could infer a probable behaviour of the oncoming vehicle.
The BN could in the same fashion evaluate this information to predict an EGO’s
probable behaviour. The desired result is to verify if the driver’s intended trajectory
leads to a collision, meanwhile performing the avoidance intervention if concluded
to be necessary.

Figure 3.4 shows a graphical representation of the proposed BN as a Directed Acyclic
Graph (DAG). The BN is built up by a number of nodes, as seen in the figure,
namely Road restrictions, Angular velocity, Turn signal, Acceleration changes, Road
markings/Traffic rules, Lateral alignment and Probable manoeuvre. Static profiles
for acceleration, angular velocity and lane alignment have been created by the use
of real data, to continuously compare with acquired observations such as map and
sensor data. The profiles are built up by statistical information and will thus work
in a similar fashion as a lookup-table.

The node Probable manoeuvre will finally gather the parent nodes’ resulting
probabilities and compose these into the probability of left PLeft, right PRight and
straight PStraight driving direction for each vehicle separately.

Road Markings/ 
Traffic rules

Road restrictions Acceleration changes Turn signalLateral alignment

Colour coding:
Basic road rules

Driver affected

Predicted manoeuvre

Probable manoeuvre
[PLeft , PRight , PStraight]

Angular velocity

Figure 3.4: Directed Acyclic Graph (DAG) for the BN depicting the different nodes.
When new observations are made for each node a new posterior probability will be cal-
culated in node Probable manoeuvre, which is the output of the BN. The Probable ma-
noeuvre will give the probability of left PLeft, right PRight and straight PStraight

.

The network’s different nodes and associated profiles are described in Section A
to F, where the last Section G describes the final node Probable manoeuvre giving
the probability of left, right and straight manoeuvre respectively. The statistical
profiles for the nodes Acceleration changes, Lateral alignment and Angular velocity,
in Section C, D and F, were created from driving data in an intersection at Bäckebol,
Gothenburg seen in Figure 3.5 and 3.6. The statistical profiles were thus created
from the behaviour at intersections when performing either a straight, left or right
driving manoeuvre.
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Figure 3.5: Global driving paths for the
vehicle when data was collected for creation
of the profiles. The distances are measured
in meters, with the origin placed in the cen-
ter of the intersection. North is up and
south is down in the figure. The intersec-
tion was driven from north to south in the
sense that the driven vehicle went from the
upper to lower part of the figure.

Figure 3.6: Global driving paths for the
vehicle when data was collected for creation
of the profiles. The distances are measured
in meters, with the origin placed in the cen-
ter of the intersection. North is up and
south is down in the figure. The intersec-
tion was driven from south to north in the
sense that the driven vehicle went from the
lower to upper part of the figure.

A Road restrictions

The node Road restrictions describes how the roads, in for example an intersection,
are linked together. Based on the possible connections for the road the vehicle is
travelling on, probabilities of possible manoeuvres will be given. Observe that this
node is to be distinguished from Road markings/traffic rules since it only depends
on the interconnection between the roads, without any consideration of traffic rules.
The information for the road restrictions is collected from a digital map. In this work,
it will give the probability of a left, right and straight path in an intersection, and
can be described by the likelihood of the Road restrictions RR given the manoeuvre
M as:

P (RR|M) = froadRestrict(roadL(k), roadR(k), roadS(k)) (3.5)

where froadRestrict is a look-up table dependent on the three boolean variables in
time step k roadL, roadR and roadS which are set true if there exists a road to the
left, right and straight respectively.

B Road markings/traffic rules

The difference between Road restrictions and Road markings/traffic rules is, that
this node evaluates information about possible legal driving directions. The infor-
mation for the Road markings/traffic rules can similar to the observation of road
restrictions be collected from a digital map, or by observation of markings in the
road, such as painted arrows. With respect to the predefined traffic rules for the
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interconnected roads, the probability of going left, right and straight will be given
as the likelihood of the Road markings, RM , given the manoeuvre M , according to:

P (RM |M) = ftrafficRules(LinkL(k), LinkR(k), LinkS(k)) (3.6)

where LinkL, LinkR and LinkS are boolean variables in time step k set to true if a
legal manoeuvre can be made in the direction of left, right and straight respectively.
These variables serves as inputs for the function ftrafficRules, where the function
works as a look-up table.

C Acceleration changes

The node regarding the acceleration changes has a dependency on stop lines. If
there is a stop line, a vehicle is restricted to be stopping in either case, hence
the acceleration behaviour cannot be included in the overall evaluation. If braking
occurs and there is a stop line, consequently left, right and straight manoeuvre will
be set with equal probability.

If there is no stop line and the vehicle is at a certain distance to the intersection,
the acceleration is collected and compared to the predefined profile seen in Figure 3.7
to determine the probability of a left, right and straight driving direction. The
profile was created from collected data for normal driving where turning or straight
driving manoeuvres were performed. As seen in Figure 3.7, the profile has three
different level curves; -0.3, -0.5 and -0.7 [m/s2], to be used in the absence of stop
line. Furthermore, the reason for setting the first level at -0.3 [m/s2] can also be
observed in the figure. The data for the straight manoeuvre can be seen to always
be above the -0.3 [m/s2] limit, hence this is the limit which distinguishes a turn
from a straight manoeuvre. The other limits are used to increase the certainty that
a turning manoeuvre will be performed, i.e. the higher deceleration, the higher the
probability will be of a future turn to be made.

The likelihood of the Acceleration Changes, AC, given the manoeuvre M can
be described by:

P (AC|M) = faccChange(stopline(k), acc(k)) (3.7)

where faccChange serves as a the look-up table with the boolean input stopline, which
is true if a stopline exists, and the input describing the acceleration acc, both in time
step k.

D Lateral alignment

This node evaluates information of vehicles’ alignment in the lane to estimate the
probabilities of a straight, left and right manoeuvre. If the vehicle is located more
on the left side of the lane, an indication of a probable turning manoeuvre to the left
can be given. Likewise, if the vehicle is located more on the right side, a probable
turning manoeuvre to the right can be indicated. If instead the vehicle aligns itself
with the centerline, this provides information of a probable straight manoeuvre.
The node’s resulting probabilities will never be set high for any of the manoeuvres
since this evidence is considered to be uncertain. For instance, drivers handle their
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Figure 3.7: Collected real data used for creation of the acceleration profile for the accel-
eration evidence in the Bayesian Network. The profile levels can be seen as the black lines
and are placed on -0.3, -0.5 and -0.7 [m/s2]. Blue colour represents the driving behaviour
when turning left, green when going straight and red representing right turn.

vehicles differently, because of for example how drivers have been taught to drive
or depending on vehicle properties. Some drivers align their vehicles to make a big
turn hence acts in the opposite way of what was described previously. The node can
therefore be used to detect if a turn will be made, but not in which direction it will
be.

The node will thus monitor how much the vehicle addresses either side of
the road, by looking at the ratio between the distances from the vehicle to each
side of the lane. The data used to create the profile, for the ability of defining
the probabilities of each manoeuvre, can be seen in Figure 3.8. The different test
scenarios, used when collecting the data, can be compared and seen in Figure 3.5
and 3.6. The result from the collected data shows that if the vehicle is detected
to lean more than 50 [cm] towards either side of the own lane, a high probability
will be given to the two turning manoeuvres. Otherwise a higher probability will be
given to the straight manoeuvre. These probabilities are described by the function
flateralAlign, which is used to compute the likelihood of the lateral alignment LA,
given the manoeuvre M :

P (LA|M) = flateralAlign(LeftDelim(k), RightDelim(k)) (3.8)

where LeftDelim and RightDelim are the distances to the lane markers on the left
and the right side of the vehicle respectively, in time step k.

E Turn signal

The node regarding the turn signal is observing if, and in which direction, the turn
signal is activated. If a turn signal is activated the probability of a turn is set high.
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Figure 3.8: Profile for the lateral alignment node in the Bayesian Network.

If a left turn signal is activated, then it is highly probable that a turn to the left will
be made and vice versa for a right turn signal. If no turn signal is activated, the
probability for a straight manoeuvre is higher, but not equally high as for left/right
when a turn signal is on, since the driver could have forgotten to activate the turn
signal. Likewise for the left/right turn, the indicator could have been set on by
mistake or been set in the opposite direction from the intended, hence could not be
fully reliable. Either way, as there in most countries 1 exist laws for the use of turn
signals, this is considered to be a strong evidence. The likelihood for Turn signal,
TS, given the manoeuvres M , can be calculated as:

P (TS|M) = fturnSignal(turnsignal(k)) (3.9)

where fturnSignal referres to the look-up table used for the input turnsignal(k), set
to the activated turn signal (left, right, none), in time step k.

F Angular velocity

Since the Lateral alignment node has uncertainty in the alignment, the Angular ve-
locity node observes the turn rate as a complement to give a more certain indication
of which direction the vehicle will travel. By analysing collected data, seen in Figure
3.9, two thresholds were found and set to ±10 [deg/s]. If the observed data is above
the threshold of 10 [deg/s] the probability of right turn will be high. Likewise, if
the data is below -10 [deg/s], the probability of left turn will be high. Otherwise a
high probability is set for the straight path. The likelihood of the Angular velocity
AV given the manoeuvre M is given by:

P (AV |M) = fyaw(yawRate(k)) (3.10)
1In Sweden regulated in ”Trafikförordning (1998:1276)”
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where fyaw is a look-up table, with the angular velocity, yawRate, in time step k as
input.

Figure 3.9: Profile for the angular velocity node in the Bayesian Network.

G Probable manoeuvre

The Probable manoeuvre node gives the final probability for each manoeuvre based
on the probabilities given from the parent nodes, previously described. The resulting
probability distribution can be described as:

P (M |e1, ..., e6) = cnormP (M)
6∏
i=1

P (ei|M) (3.11)

similar to (3.3), where cnorm is a normalisation constant given as cnorm = 1/P (e1, ..., e6)
and calculated according to (3.4) as:

1
P (e1, ..., e6) =

6∑
j=1

P (Mj)
n∏
i=1

P (ei|Mj) (3.12)

Here, M represents the probability distribution of the driving manoeuvres [L,R, S],
where L is left, R is Right and S is Straight. The different observations ei are
given by e = {RR,AC,RM,AV, LA, TS}, which corresponds to the parent nodes
RR (Road Restrictions), AC (Acceleration Change), RM (Road Markings/Traffic
rules), AV (Angular velocity), LA (Lateral alignment) and TS (Turn signal). The
probabilities are thereafter calculated separately as:

PLeft = P (L|RR,AC,RM,AV, LA, TS) (3.13)
PRight = P (R|RR,AC,RM,AV, LA, TS) (3.14)

PStraight = P (S|RR,AC,RM,AV, LA, TS) (3.15)
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where PLeft, PRight and PStraight are the probabilities for left, right and straight
manoeuvre respectively. Observe that the prior probability P (M), stated in (3.11),
is set equal for all three directions, i.e. 1/3 on each of them. Recall that the
likelihoods (P (ei|M)) were described in (3.5) to (3.10).

The result of the Probable manoeuvre node will act as complementary weights, via a
Transition matrix, to the filtering part of the Long-term path prediction subsystem.
This matrix is used in the Interacting Multiple Model (IMM) filter to provide the
probabilities of transitioning from one model to another. The Transition matrix is
therefore formed, based on (3.13), (3.14) and (3.15), as:

Π =

 ΠLeft|Left ΠRight|Left ΠStraight|Left
ΠLeft|Right ΠRight|Right ΠStraight|Right

ΠLeft|Straight ΠRight|Straight ΠStraight|Straight

 =

PLeft PRight PStraight
PLeft PRight PStraight
PLeft PRight PStraight


(3.16)

where each row corresponds to the currently used model (Left, Right, Straight) as
well as the probability of either staying or transitioning to another model in the next
time step. For example, if the current model is left, the matrix gives the probability
of either transitioning to the straight or right model or of staying in the left model.

3.2.3 Proposed Bayesian Network algorithm
The input to the BN is the acquired digital map data as well as the state information
of the EGO and a possible POV, collected via sensor data. The output from the
subsystem is the transition matrix, Π, giving the probability associated with left,
right and straight driving direction. The BN for both the EGO and POV will be
executed in parallel, resulting in one transition matrix for the EGO and one for the
POV.

Algorithm 1 Bayesian Network
Input: Map data, Sensor data
Output: Π

Each of the functions are called with associated observations as input
Collect P (RR|M) according to (3.5)
Collect P (RM |M) according to (3.6)
Collect P (AC|M) according to (3.7)
Collect P (LA|M) according to (3.8)
Collect P (TS|M) according to (3.9)
Collect P (AV |M) according to (3.10)

Compute PLeft according to (3.13) with use of (3.11)
Compute PRight according to (3.14) with use of (3.11)
Compute PStraight according to (3.15) with use of (3.11)

return Π . Formed using Equation 3.16
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3.3 Interacting Multiple Model (IMM) filter
As Chapter 1.2 and 2.1 mentioned, one of the stated problems is how to model the
EGO and POV as accurate as possible. As previously explained, tracking driver
intentions is however complicated by the fact that vehicles do not exhibit one type
of motion but rather tend to transition between a set of typical motions. A way
of including several motion models simultaneously and switching to the model best
describing the intended driver behaviour, can be done with the use of an Interacting
Multiple Model (IMM) filter.

The purpose of using an IMM is the possibility to include two or more filters,
each associated with different motion models for target tracking. Filtering can be
done with any desired filter, such as for example an Extended Kalman Filter (EKF)
or Unscented Kalman Filter (UKF). The IMM will moreover form a weighted sum
of each filter’s output, hence being able to rapidly adjust to the observed vehicles
probable manoeuvre. Computational complexity can become a problem since there
will be as many filters running in parallel as incorporated motion models. The EKF
is therefore chosen in the proposed design due to being an admitted and computa-
tional light filtering technique.

In an IMM approach, the system state is described by a certain motion model de-
noted as mo. The estimated true model is thereafter determined from a finite and
predefined set of alternative models. If a change of manoeuvre has been made by
the observed driver, a transition to another model best describing the new vehicle
dynamics is required. The motion model that best matches the observed behaviour,
is therefore said to be changeable between each consecutive time step k.

To be able to accurately predict which motion model best representing the
probable next manoeuvre, each model and associated filter will need to be contin-
uously updated. The state and measurement estimate is therefore computed for
each of the N number of models. The mathematical formulations in this section
have notations according to [29], with the linear state x(k) and measurement ẑ(k)
representation given as:

x(k) = fmo(k − 1,x(k − 1), q(k − 1))
ẑ(k) = hmo(k − 1,x(k), ε(k)) (3.17)

where fmo and hmo are dependent on the corresponding model. Here, q(k-1) and
ε(k) represent the process and measurement noise respectively. The reason why
the state and measurement representation should be on the same form, is due to
the IMM-algorithms requirement of being computed the same way irrespectively of
motion model. These requirements are reflected in the state space representation of
(3.17) as:

x(k) = Amox(k − 1) +Bmoq(k − 1)
ẑ(k) = Cmox(k) +Dmoε(k) (3.18)

where Amo, Bmo, Cmo and Dmo are defined matrices in accordance with the associ-
ated motion model, as defined in Section 2.3. These matrices are restricted by the
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requirement that they need to be of the same size irrespectively of which model in
use.

A summary of the IMM approach is thus that the main purpose is to estimate the
true model from a finite and predefined set of motion models. This true model
is assumed to change in time, hence both previous state information and future
probability need to be considered in the evaluation.

A cycle of an IMM-algorithm can be computed in four steps, illustrated in
Figure 3.10, which comprises of:

1. Calculation of Mixing probability update and Mixing, which integrates the pre-
vious state with the probable future behaviour given by both the Bayesian
Network (BN) and the result from the previous iteration time step, hence
mixing the provided information. This is described in Section 3.3.1.

2. Filtering, delivering the current state for each motion model, further described
in Section 3.3.2.

3. Calculation of Model probability update, hence delivers the updated belief of
probable manoeuvre. This is described more thoroughly in Section 3.3.3.

4. Output estimate calculation, giving the weighted output of the different models
with probability of next manoeuvre incorporated into the resulting state and
covariance. The final step is given in Section 3.3.4.

Section 3.3.5 describes the intended application of the IMM with the associated
pseudo-code given in Section 3.3.6.

Figure 3.10: Overview of a cycle in the IMM-filter comprised of four computation steps.
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3.3.1 Mixing probability update and mixing

The mixing step of the IMM-filter has the purpose of integrating/mixing knowledge
of state and covariance from previous iteration, accompanied with the probability
of future driver manoeuvre. The mixing probability update µ̂(k − 1) is defined in
regard to the probable future manoeuvre predicted by both the Bayesian Network,
through the Transition matrix Π(k) given in (3.16), and model probability given
from previous iteration µ̄(k − 1).

The output from the mixing step will be an update of the previously estimated
state and covariance, working as an input to the filtering step.

The updated mixing probability for each model µ̂mo(k − 1) can be calculated as:

µ̂mo(k − 1) = Πmo · µ̄(k − 1)∑N
r=1 Πr · µ̄(k − 1)

, for mo = 1, ..., N (3.19)

where Πmo (and similarly Πr in the summation) denotes each model’s probability
for left, right and straight in the matrix described in (3.16).

The mixed initial state estimate for each model, denoted as x̂mo(k − 1|k − 1), can
thereafter be updated with the combined knowledge of each model’s previous state
x̄mo(k − 1|k − 1) and mixing probability µ̂mo(k − 1) as:

x̂mo(k − 1|k − 1) =
N∑
r=1

x̄r(k − 1|k − 1) · µ̂mo(k − 1), for mo = 1, ..., N (3.20)

and correspondingly can the initial estimated covariance for each model P̂mo(k−1|k−
1) be updated, using each model’s previous covariance P̄mo(k − 1|k − 1) together
with the difference between previous and updated state estimate, as:

P̂mo(k − 1|k − 1) =
N∑
r=1
µ̂mo(k − 1) ·

{
P̄mo(k − 1|k − 1) + [x̄r(k − 1|k − 1)− x̂mo(k − 1|k − 1)]·

[x̄r(k − 1|k − 1)− x̂mo(k − 1|k − 1)]T
}
, for mo = 1, ..., N

(3.21)

3.3.2 Filtering

The initial state estimate x̂(k − 1|k − 1) and corresponding initial covariance
P̂ (k − 1|k − 1), acquired from Section 3.3.1, are thereafter used for a prediction
through the predefined filters, described in Subsection A, for each model. The state
is thereafter compared with an observed measurement z(k) in Subsection B, for the
ability to make an accurate prediction and update. The result will be an update of
the initial state estimate, denoted as x̂mo(k|k) and covariance P̂mo(k|k) working as
inputs in both the Model probability update and Output estimate calculation, as well
as being used in the next iteration step of the IMM-filter.
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A Prediction update

The predicted state x̂mo(k|k−1) and covariance P̂mo(k|k−1) are calculated for each
model according to:

x̂mo(k|k − 1) = Amo · x̂mo(k − 1|k − 1) (3.22)
P̂mo(k|k − 1) = Amo · P̂mo(k − 1|k − 1) · ATmo +Bmo ·Qmo ·BT

mo (3.23)

where Qmo is the process noise covariance matrix and Amo together with Bmo are
the defined matrices acquired from Section 2.3, for each motion model.

B Measurement update

The state x̂mo(k|k) and covariance P̂mo(k|k) are computed using the observed mea-
surement z(k), predicted state x̂mo(k|k − 1) and covariance P̂mo(k|k − 1). This is
calculated as:

ẑmo(k) = Cmo · x̂mo(k|k − 1) (3.24)
Smo(k) = Cmo · Pmo(k|k − 1) · CT

mo +Dmo ·R ·DT
mo (3.25)

Kmo(k) = P̂mo(k|k − 1) · CT
mo · Smo(k)−1 (3.26)

x̂mo(k|k) = x̂mo(k|k − 1) +Kmo(k) · (z(k)− ẑmo(k)) (3.27)
P̂mo(k|k) = P̂mo(k|k − 1)−Kmo(k) · Smo(k) ·Kmo(k)T (3.28)

where ẑmo(k) denotes the predicted measurement, Smo(k) the innovation covari-
ance matrix and Kmo(k) the Kalman gain for each motion model. Cmo and Dmo

are defined matrices according to Section 2.3. Notice that the measurement noise
covariance matrix R is defined irrespectively of which motion model in use.

3.3.3 Model probability update
After the filtering has been conducted, the probability of using each motion model
needs to be updated in accordance with the newly estimated covariance P̂mo(k|k)
and innovation covariance Smo(k) matrix. The updated model probability µ̂mo(k),
also denoted as the weights, will thereafter be passed to the Output estimate calcu-
lation step as well as being used in the next iteration step of the IMM-filter.

With the state and covariance as well as the observed measurement z(k) and pre-
dicted measurement ẑmo(k), the likelihood of probable future motion model can be
expressed as:

Λmo(k) = 1√
|2πP̂mo(k|k)|

exp
(
−0.5 (z(k)− ẑmo(k))T (Smo(k))−1 (z(k)− ẑmo(k))

)
(3.29)

The model probabilities µ̂mo(k) will thereafter be updated to be used in the next
iteration, using the likelihood Λmo(k), according to:

µ̂mo(k) = Λmo(k) · c̄mo∑N
r=1 Λr(k) · c̄r

, for mo = 1, ..., N (3.30)
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where the normalisation constant c̄mo is calculated, in accordance with (3.19), as:

c̄mo =
N∑
r=1

Πr · µ̂mo(k − 1), for mo = 1, ..., N (3.31)

3.3.4 Output estimate calculation

The resulting output estimated state x̌(k|k) and covariance P̌ (k|k) are finally com-
puted using the weighted sum which incorporates the updated model probability
µi(k) as well as state x̂mo(k|k) and covariance P̂mo(k|k) for each of the correspond-
ing models. This is given as:

x̌(k|k) =
N∑
r=1

x̂r(k|k) · µ̂r(k) (3.32)

P̌ (k|k) =
N∑
r=1

µ̂r(k) ·
(
P̂r(k|k) + (x̂r(k|k)− x̌(k|k)) · (x̂r(k|k)− x̌(k|k))T

)
(3.33)

the variables used for the next iteration is finally assigned as:

x̄mo(k) = x̌(k)
P̄mo(k) = P̌ (k)
µ̄(k) = µ̂(k)

3.3.5 Application
As presented in Section 2.3, three different motion models are incorporated in the
proposed solution describing left, right and straight manoeuvre. The estimated
state and covariance will thus be updated at every time step for each motion model
separately using the IMM-filter. These estimates are thereafter combined to result
in a weighted sum to be used in the output state and covariance computation.

Instead of only relying on the manoeuvre probability computed by the Bayesian
Network (via the Transition matrix), the manoeuvre probability from the IMM cal-
culated at the current time step will also be accounted for. This choice is motivated
by the fact that the two subsystems give results with respect to different time as-
pects, where the IMM delivers near-term predictions while the BN makes long-term
predictions. The intended application therefore uses a combined manoeuvre prob-
ability in the decision process of which motion model best representing the future
manoeuvre.

Since the mixing step considers the IMM’s manoeuvre probability at the previous
iteration step, this needs to be initially defined as:

µ̂(0) =
[
0.05 0.05 0.9

]
(3.34)

where µ̄(0) is represented by the probabilities for left, right and straight model.
The manoeuvre for straight path is initially set to have the highest likelihood (90%
certainty), due to that for analysis of data it is assumed that a vehicle’s initial
pathway has a straight direction.
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3.3.6 Proposed IMM algorithm
The proposed IMM-algorithm will continuously compute the filtered state and co-
variance for the EGO as long as a detected movement has been monitored. If a
detection of a POV occurs, simultaneous filtering computations will be conducted
using the same IMM-algorithm. To be noted is that the initial covariance matrix
P (1) is a predefined matrix with values given in Appendix A.4.

The filtered estimates of each accounted vehicle will thereafter be sent to the
final part of the long-term path prediction block, the prediction part by the use of
UKF.

Algorithm 2 Interacting Multiple Models filter
Input: Π(k), Sensor data z(k), Model specifications fmo, Qmo

Output: x̌(k), P̌ (k)

Initialise: x̄mo(0) = z(1), P̄mo(0) = P (1)
for mo = 1 : N do

Perform integration of previous estimations using (3.19) to (3.21)
[x̂mo(k − 1), P̂mo(k − 1)] = Mixing

(
x̄mo(k − 1), P̄mo(k − 1),Π(k), µ̄(k − 1)

)
Perform filtering using the defined model fmo according to (3.23)
to (3.28)
[x̂mo(k), P̂mo(k)] = Filtering

(
x̂mo(k − 1), P̂mo(k − 1), z(k), fmo, Qmo, R

)
end for
Update the model probability using (3.30)
[µ̂(k)] = ModelProbabilityUpdate

(
P̂ (k), z(k), µ̂(k − 1)

)
Compute the output estimates using (3.33)
[x̌(k), P̌ (k)] = OutputEstimate

(
x̂mo(k), P̂mo(k), µ̂(k)

)
Assign the next iteration variables
x̄mo(k) = x̌(k), P̄mo(k) = P̌ (k), µ̄(k) = µ̂(k)

return x̌(k), P̌ (k)
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3.4 Trajectory prediction using UKF
The Unscented Kalman Filter (UKF)-algorithm is comprised of two parts. The
first part computes a prediction of the states with corresponding covariances for
the chosen motion model, where in the second part these predictions are updated
through comparison with received measurements. Thus if the aim is to predict a
future trajectory, only the first part of the UKF will be used.

The main advantage with an UKF is the possibility of incorporating the fil-
tering technique irrespectively of the system functions linearity. Another purpose of
using an UKF for trajectory prediction is the possibility of having Gaussian distri-
butions to represent driver uncertainty.

The UKF is using a sampling technique called the Unscented Transform which
selects a minimal set of sample points, denoted as sigma points, around the state
mean. The sigma points χ, are thereafter propagated through the linear or nonlinear
function to accurately capture the mean and covariance of the estimates at each time
step. The result is a filter that subsequently can be used to calculate a new estimated
mean and covariance.
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For a state model with added noise, as described in (3.17), the prediction part of the
UKF forms the Gaussian approximation (with the underlying equations from [30])
according to step 1 and 2 below. This is computed for the whole prediction horizon
i = 1,...,npredictions.

1. A set of 2n+1 sigma points are derived for the augmented state mean x̃ and
covariance P̃ , with n being the state dimension, as:

χ0 = x̃(i)

χc = x̃(i) +
√
n+ λ ·

√
P̃ c(i)

χc+n = x̃(i)−
√
n+ λ ·

√
P̃ c(i) for c = 1,..,n (3.35)

where c denotes the column of a matrix. The scaling parameter λ is given as:

λ = α2(n+ κ)− n (3.36)

where x̃ and P̃ is given from the previous iterations predicted state and covari-
ance, which at the first prediction step will be initiated with the IMM-filter
output (x̌ and P̌ ). The constants α and κ determines the spread of the sigma
points around the mean (how large uncertainty you have).

2. Compute the predicted moments by propagation of the sigma points through
the function:

x̃(i+ 1) =
2n∑
s=0

f̄mo(χs) ·W x̃
s (3.37)

P̃(i+ 1) =
2n∑
s=0

(f̄mo(χs)− x̃(i))(f̄mo(χs)− x̃(i))T ·W P̃
s + Q̃mo(i) (3.38)

where f̄mo is the function and Q̃mo is the process noise covariance matrix for the
chosen motion model described in Section 2.3. The weights W , are calculated
as:

W x̃
0 = λ

n+ λ
(3.39)

W P̃
0 = λ

n+ λ
+ (1− α2 + β) (3.40)

W x̃
Γ = W P̃

Γ = 1
2(n+ λ) , for Γ = 1, ..., 2n (3.41)

with β as a parameter to use for incorporating prior information of the input
state’s distribution.
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3.4.1 Application
The proposed long-term prediction design follows the conventional filtering algo-
rithm of the UKF, hence resulting in an estimated state and covariance at each
propagated time step. The propagation will be made along a predefined prediction
horizon using the chosen model that describes the most probable vehicle trajectory.

An optional part is added to the subsystem being able to monitor the distance
to intersection if this is given as input data. The long-term path predictions could
thus benefit from the result given by the Bayesian Network. For instance, it could
rely on which motion model to use for the predictions once being in the intersection,
making for example better predictions of a turn even before the vehicle enters the
curve. If the distance to intersection can not be acquired, the chosen prediction
model will solely be the result from the IMM.

3.4.2 Proposed trajectory prediction algorithm
The proposed trajectory prediction algorithm follows the mathematical formulations
stated in (3.35) to (3.41). The resulting output from the prediction algorithm will
be a state vector and covariance matrix describing the whole prediction horizon for
each considered vehicle. The calculated state and covariance will be subject to the
motion model chosen for the predictions and will be denoted x̃EGO and P̃EGO for
the EGO as well as x̃P OV and P̃P OV for the POV.

Algorithm 3 Trajectory prediction using UKF
Input: x̌(k), P̌ (k), f̄mo
Output: x̃, P̃

Initialise: x̃(0) = x̌(k), P̃ (0) = P̌ (k)
for i = 1 : npredictions do

Derive a set of 2n+1 sigma points by the use of (3.35) and (3.36)
χ = FormSigmaPoints

(
x̃(i− 1), P̃ (i− 1), n, α, κ

)
Compute state and covariance prediction using (3.37) to (3.41)
[x̃(i), P̃ (i)] = ComputePredictions

(
χ, f̄mo, x̃(i− 1), P̃ (i− 1), Q̃mo

)
end for
return x̃ = [x̃(0), ..., x̃(npredictions)], P̃ = [P̃ (0), ..., P̃ (npredictions)]

3.5 Long-Term Path Prediction Procedure
As the introduction in this chapter described, the Long-term path prediction sub-
system comprises of the three parts Bayesian Network (BN), Interacting Multiple
Model (IMM) filter and Unscented Kalman Filter (UKF). These have been defined
in Section 3.2, 3.3 and 3.2 respectively, and will in this last section be tied together
to describe the overall procedure of the first subsystem, as illustrated in Figure 3.11.
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Figure 3.11: Overview of the Long-term path prediction subsystem’s flow of input and
output signals from the different parts.

As illustrated in figure 3.11, the BN sends the Transition matrix Π to the IMM. Both
the BN and IMM is thereafter sending the state and covariance for the chosen motion
model giving the highest probability as output, denoted as fmo,BN and fmo,IMM

respectively. The IMM’s choice of motion model is however partially affected by the
input Transition matrix. Note that both the BN as well as the IMM will have the
measurement data as input.

Both the BN’s and IMM’s output will therafter be sent to an evaluation algo-
rithm determining which motion model being best suited for the prediction horizon.
If a distance to the intersection is known, the decided motion model to use in the
UKF part will vary along the prediction horizon. Namely, the model given by the
IMM will be used for the predictions up to the intersection and the BN’s chosen
model will be used for the prediction horizon in and through the intersection. How-
ever, if the distance to intersection is unobtainable, then only the IMM’s computed
best fit motion model will be used. This evaluation algorithm is in the presented
solution integrated into the UKF algorithm, but for the sake of clarity it is described
as a stand-alone algorithm.

As the last part of the subsystem, will the UKF use the input motion model
properties to propagate the state and covariance along the predefined prediction
horizon. The state and covariance for both observed vehicles will thereafter be sent
to the Collision detection subsystem for evaluation of a probable collision.
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3.5.1 Long-term Path Prediction Algorithm
The algorithm described in this section is comprised of the algorithms stated in Sec-
tion 3.2.3, 3.3.6 and 3.4.2. As mentioned before, the evaluation algorithm have been
integrated into the UKF, hence will not be a separate procedure as was illustrated
in Figure 3.11.

Algorithm 4 Long-term path prediction algorithm
Input: Map data, Sensor data
Output: x̃, P̃

Make a long-term prediction using the BN:
[Π(k), fmo,BN(k)] = BN(Map data, Sensor data)

Make a near-term prediction using the IMM:
[x̌(k), P̌(k)] = IMM(Π(k), Sensor data z(k))

Propagate the state and covariance using the chosen motion model
along the predefined prediction horizon:
[x̃, P̃ ] = UKF(fmo,BN , x̌(k), P̌(k))

return x̃ = [x̃(0), ..., x̃(npredictions)], P̃ = [P̃ (0), ..., P̃ (npredictions)]
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4
Collision detection

This Chapter describes how to detect a collision, based on the predictions provided
by the Unscented Kalman Filter (UKF) from Chapter 3, as well as how to charac-
terise a collision. Figure 4.1 provides an overview of the collision detection block as
a part of the full system, marked in blue. Furthermore, the connections with the
other subsystems are also illustrated, where primarily a direct link from the UKF
and another link to the Collision Avoidance (CA) subsystem can be seen.

This chapter is organised as follows. First an introduction to collision detec-
tion is given with related work described in Section 4.1. Section 4.2 explains how
a collision is considered and defined in the scope of this work. Section 4.3 and 4.4
describes a deterministic and probabilistic collision detection algorithm respectively.
Finally, the connection and inter-dependencies between the collision detection sub-
system and the overall system is outlined in Section 4.5.

Bayesian Network

Map data Sensor data

IMM

Collision Detection

Collision Avoidance

UKF

Block 2:
Collision detection

Figure 4.1: Overview of the full system with the collision detection subsystem’s position
marked in blue.
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4.1 Related Work

There are several different methods in the literature to define a collision. One
method presented in [31], is based on the intersection of two vehicles’ respective
areas. Firstly, the authors establish a pessimistic approximation of possible inter-
sections between the ego vehicle (EGO) and the Perceived Other Vehicles (POVs)
using circular areas to define the vehicles. If the areas intersect, a more accu-
rately analysis is made using tighter and more representative areas of the vehicles
to evaluate if a collision indeed is imminent. This approach is used to reduce the
computational burden as well as analysing oncoming threats at an earlier stage. It
is worth mentioning that this approach however is fully deterministic.

In [17], a collision detection is performed by defining appropriate collision and col-
lision free domains/areas. The collision areas are defined with respect to the center
of both vehicles’ front bumper whereas the collision free area is defined according
to the center of the POV’s rear bumper and the center of the EGO’s front. These
areas are dependent on the length and the width of both vehicles and are later used
to evaluate the eminency of a collision. The evaluation is conducted by computing
the probability density over the area of interest with the use of the joint cumulative
distribution. Note that their collision detection algorithm only can be applied in a
specific traffic situation, namely a left turn by the POV across the EGO’s path.

Instead of defining the collision area around the EGO, some research has been con-
ducted on defining one or more collision areas on a map [2][3][22]. This means that,
by making assumptions that each vehicle follows a specific path in a lane, the area
where a collision can occur is the intersection of two (or more) lanes. Within each
specific traffic intersection, the collision area would therefore be defined dependent
on the possible intersecting paths of the vehicles.

The objective of this work is to provide a collision detection algorithm suitable for all
traffic situations, even if no map/road topology information is available. Since the
positions of the vehicles are estimations, the idea is to use a probabilistic approach
for evaluation of an imminent collision where [17] has worked as an inspiration.

4.2 Collision Definition

There are a number of different ways to define a collision, as well as the area occupied
by a vehicle. The chosen representation of a vehicle area is here based on sets.
Simply speaking, when two vehicles are considered, the area of one of the vehicles is
represented as a set bounded by the size of the vehicle, whereas the other vehicle is
represented by a set, bounded by the size of the vehicle but also rotated according
to both vehicles heading.

To explain further, the first step is to define the sets representing the areas of
both vehicles. The sets of the EGO and the POV, AEGO and APOV respectively, are
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bounded by their length and width relative their center point as:

AEGO =
{
AxEGO : − l

2 ≤ AxEGO ≤ l
2

AyEGO : −w
2 ≤ AyEGO ≤ w

2

}
(4.1)

APOV =
{
AxPOV : − l̄

2 ≤ AxPOV ≤ l̄
2

AyPOV : − w̄
2 ≤ AyPOV ≤ w̄

2

}
(4.2)

where l is the length and w is the width of the EGO whereas l̄ and w̄ are the
length and width of the POV, respectively. Furthermore, AxEGO and AxPOV are
the restrictions in the x-axis, whereas AyEGO and AyPOV are the restrictions in the
y-axis. An illustration is presented in Figure 4.2.

AEGO APOV

Figure 4.2: Illustration of sets representing the vehicle areas. Here l is the length and w
is the width of the EGO, resulting in the EGO set AEGO, whereas l̄ and w̄ are the length
and width of the POV representing the set, APOV .

To be able to evaluate the collision risk, the next step is to define the vehicle areas
as global sets of points. Since the measurements, and therefore also the predictions,
of the positions are assumed to be the center point of the vehicle, the vehicle areas
are defined around this point, e.g. (xEGO(i), yEGO(i)) the center point of the
EGO in prediction step i. An illustration of the global sets, defined around each
vehicle’s global cartesian position, can be seen in Figure 4.3. For each prediction
step i = 1, 2, ..., npredictions (where npredictions is the number of predictions) the sets
are then globally defined as:

AglobalEGO (i) =
{
AxEGO(i) : xEGO(i)− l

2 ≤ AxEGO(i) ≤ xEGO(i) + l
2

AyEGO(i) : yEGO(i)− w
2 ≤ AyEGO(i) ≤ yEGO(i) + w

2

}
(4.3)

AglobalPOV (i) =
{
AxPOV (i) : xPOV (i)− l̄

2 ≤ AxPOV (i) ≤ xPOV (i) + l̄
2

AyPOV (i) : yPOV (i)− w̄
2 ≤ AyPOV (i) ≤ yPOV (i) + w̄

2

}
(4.4)

where xEGO(i), yEGO(i) and xPOV (i), yPOV (i) are the cartesian coordinates of
the predicted position in prediction step i for the EGO and POV respectively. Fur-
thermore, AxEGO(i) and AxPOV (i) are the restrictions in the global x-axis, whereas
AyEGO(i) and AyPOV (i) are the restrictions in the y-axis.
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(xPOV,yPOV)

(xEGO,yEGO)

xglobal

yglobal

Figure 4.3: Illustration of definition of occupied areas by the vehicles, represented as
sets. The sets, here for a specific i, are defined in global coordinates xEGO, yEGO and
xPOV, yPOV, without any consideration of heading.

The next step is to rotate the global sets (4.3) and (4.4) according to heading with
the use of a rotation matrix. More specifically, first the sets are rotated according
to the own vehicle’s heading (θEGO or θPOV ) and secondly, rotated according to
the other vehicle’s heading (θPOV or θEGO). An illustration can be seen in Figure
4.4, where an example of a scenario is depicted in the leftmost figure. The next
two figures show how the scenario is interpreted, where the green colour depicts
the vehicles in neutral position (zero heading) according to (4.3) and (4.4) and red
demonstrates the sets rotated according to heading. In the middle figure is the
EGO in neutral position, whereas in the rightmost the POV is. These last two
figures show two distinct representations of the global situation, each centered on
the perspective of one of the vehicles.

xglobalxglobal

yglobalyglobal

xglobal

yglobal

xEGO xPOV

yEGO

yPOV

xEGO

yEGO
yPOV

xPOV

θEGO

θPOV

Figure 4.4: Illustration of the interpretation of a traffic scenario, where the scenario can
be seen in the leftmost figure. The next two figures shows how the scenario is interpreted,
where the green colour depicts the vehicles in neutral position (zero heading) according
to (4.3) and (4.4) and red, the global sets rotated according to heading. In the middle
figure is the EGO in neutral position, whereas in the rightmost the POV is. These last
two figures show two distinct representations of the global situation, each centered on the
perspective of one of the vehicles.

With the two representations of the vehicle areas explained above, a collision can
be defined. Intuitively, a collision occurs when some part of each vehicle overlap or
touches the other. For the defined global sets this can be translated into: if at least
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one point of a set belongs to the other area, a collision is present.

Note that for simplicity and computational reasons, the global sets defined according
to (4.3) and (4.4) are chosen to be represented by a fixed number of points η evenly
spread over the vehicle. Moreover, these η rotated points in each prediction step
i will be denoted by Epj(i) and Opj(i) for the EGO and POV respectively, where
j = 1, 2, ..., η. Epj(i) is used for the points when the interpretation is made as in
the rightmost figure of Figure 4.4, whereas Opj(i) is used when the interpretation
is made as in the middle figure. The two interpretations are needed to be able
to find the correct probability of collision, since in some configurations one of the
representations can give a higher probability of collision than the other. Observe
that it is also possible to distribute the points in other patterns rather than uniformly
distributed, since discrete points are used.

4.3 Deterministic Collision Detection
The η rotated points distributed over the EGO in each prediction step i is defined
by Epj(i), where j = 1, 2, ..., η is denoting each point. Additionally, the predicted
middle point of the POV in the ith prediction step, xPOV (i), yPOV (i), is used as
a reference point for the POV’s vehicle area, referred to as O(i). For each point
on the EGO, Epj(i), a translation is made by considering O(i) as the origin of the
frame space according to:

OEpj(i) = [Epjx(i)−Ox(i), Epjy(i)−Oy(i)] for j = 1, 2, ..., η (4.5)

Here OEpj(i) denotes the position of Epj(i) after the translation, where (.)x and
(.)y are the cartesian coordinates of each point. Similarly for the POV, η rotated
points Opj(i) are distributed in each prediction step i for each point j = 1, 2, ..., η.
For the EGO the predicted middle point in prediction step i, xEGO(i), yEGO(i),
is denoted by E(i). The translation of Opj(i), by placing the origin in E(i), is
thereafter obtained by:

EOpj(i) = [Opjx(i)− Ex(i), Opjy(i)− Ey(i)] for j = 1, 2, ..., η (4.6)

Similarly, here EOpj(i) denotes the position of Opj(i) after the translation where,
as stated before, (.)x and (.)y are denoting the cartesian coordinates of each point.

The existence of a collision, in each prediction time step i, is then calculated
by:

Pcollision(i) =


1 if ∃ j : OEpj(i) ∈ APOV
1 if ∃ j : EOpj(i) ∈ AEGO for j = 1, 2, ..., η
0 otherwise

(4.7)

where AEGO and APOV are defined according to (4.1) and (4.2). For the deterministic
case, where both vehicle’s exact position is known, a collision is then present in
prediction step i when (4.7) equals 1. Observe that the reason why there are two
equations leading to collision (equals 1) is that a discrete number of points are picked
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out from the sets. This can thus, in some configurations, lead to one of the equations
being set to 1 and the other one not, if only one of the points is inside the other
vehicle.

Note that since the trajectories of the vehicles are represented in a stochastic
way, a probabilistic collision detection is needed.

4.4 Probabilistic Collision Detection
In this section, a probabilistic collision detection method is described. Firstly, a bi-
variate normal distribution will be described, and secondly will the joint cumulative
distribution be presented for the calculation of the probability of collision.

4.4.1 Bivariate Normal Distribution
A bivariate normal distribution (BND) is a multivariate normal distribution of di-
mension two. For example, a random cartesian point’s position r = (x, y) can be
described as a BND according to:

[
x

y

]
∼ N


m︷ ︸︸ ︷[
mx

my

]
,

Σ︷ ︸︸ ︷[
σ2
x ρσxσy

ρσxσy σ2
y

] (4.8)

where mx and my are the mean of x and y respectively. Furthermore, σx > 0 and
σy > 0 denote the variance of the position in the x and y axis respectively, whereas
|ρ| < 1 is the correlation between the two variables. For the previously mentioned
point, the joint density function φ(r) can then be calculated as:

φ(r) = 1
2π|Σ|1/2 e

−Dms(r)/2 (4.9)

where |Σ| denotes the determinant of the covariance matrix. The squared Maha-
lanobis distance between the random point r and the mean m, denoted Dms(r), can
be calculated according to:

Dms(r) = (r−m)TΣ−1(r−m) (4.10)

Next, the goal is to find the probabilistic equivalent to the deterministic transla-
tion between two BNDs. In accordance with (4.5) and (4.6) this results in linear
combinations of the distributions. As an example, for a bivariate distribution with
two independent random variables, X1 ∼ N (m1,Σ1) and X2 ∼ N (m2,Σ2), with
mean m1 and m2 as well as covariances Σ1 and Σ2, the linear combination of the
distributions is generally formulated as:

a1X1 + a2X2 ∼ N (a1m1 + a2m2, a
2
1Σ1 + a2

2Σ2 + 2a1a2Σ12) (4.11)

where a1, a2 are arbitrary constants and Σ12 represents the cross-correlation between
X1 and X2.
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In a similar way, the estimated positions of the EGO and POV in prediction step i
can be seen as the bivariate normally distributed variables E(i) ∼ N (mE(i),ΣE(i))
and O(i) ∼ N (mO(i),ΣO(i)), respectively. Similarly, the η points, distributed over
each vehicle area and rotated according to heading, can be seen as bivariate normal
distributed variables, Epj(i) ∼ N (mEpj (i),ΣE(i)) andOpj(i) ∼ N (mOpj (i),ΣO(i)).
Here, mEpj (i) and mOpj (i) are the mean of point j for the EGO and POV respec-
tively, whereas the variances are the same as for the estimated position. Equation
(4.5) and (4.11) are thereafter used to define the distribution Dj

1(i), for the new
representation of the points Epj(i) with the reference frame located in O(i), as:

Dj
1(i) ∼ N (mEpj (i)−mO(i),ΣE(i) + ΣO(i)) for j = 1, 2, ..., η (4.12)

Similarly are (4.6) and (4.11) used to define a second distribution Dj
2(i), for the new

representation of Opj(i) with the reference frame located in E(i), as:

Dj
2(i) ∼ N (mOpj (i)−mE(i),ΣO(i) + ΣE(i)) for j = 1, 2, ..., η (4.13)

Note that the covariance ΣOE(i) = 0, given that the positions of the vehicles are
uncorrelated.

4.4.2 Joint Cumulative Distribution

To be able to compute the probability of a collision, the joint cumulative distribution
function (JCDF) of two variables is used. To get to a probabilistic version of Equa-
tion (4.7), first the probability of collision for each point j needs to be calculated
according to:

Pjr (i) =
∫∫
A

Dj
r(i) dx dy =

b∫
a

d∫
c

Dj
r(i) dx dy for j = 1, 2, ..., η and r = 1, 2

(4.14)
where A denotes the set APOV when r = 1 or AEGO when r = 2 and j is the η points
distributed over the EGO or POV. With the use of the sets, the limits are defined
according to (4.1) and (4.2) where a and b are the lower and upper limits in x-axis
whereas c and d are the in lower and upper limits in y-axis. The integral can then
be solved according to [32].

This results in a vector containing all the collision probabilities for each point
j = 1, 2, ..., η on both vehicles as:

P1,2(i) =
[
P1

1 (i) P2
1 (i) · · · Pη1 (i) P1

2 (i) P2
2 (i) · · · Pη2 (i)

]
(4.15)

The probability of collision in prediction step i will thereafter be defined as the
maximum probability found in the vector according to:

Pcollision(i) = max(P1,2(i)) (4.16)
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4.5 Collision Detection Procedure

The following section describes the connection between the collision detection block
and the rest of the system. First, the acquired inputs given by the UKF will be pre-
sented, secondly, the characteristics of a collision required by the collision avoidance
subsystem will be defined. Lastly, the collision detection algorithm in pseudo-code
will be given.

4.5.1 Predicted states

The predicted state vectors and the corresponding covariance matrices for both the
EGO and POV are given from the UKF as output from the long-term path prediction
subsystem. The given states are denoted x̃EGO, x̃P OV and the covariances P̃EGO,
P̃P OV , as seen in Section 3.4.2. The states, whose structure follows the definition in
(2.1), and the covariances are given as inputs to the collision detection subsystem
as:

x̃EGO(i) =



x(i)
y(i)
θ(i)
v(i)
...

 =



xEGO(i)
yEGO(i)
θEGO(i)

vpredictions(i)
...

 , (4.17)

P̃EGO(i) =



σ2
x(i) σx,y(i)

...

σx,y(i) σ2
y(i)

...

. . .
...

· · · · · · · · ·


=



σ2
xEGO

(i) σx,yEGO(i)
...

σx,yEGO(i) σ2
yEGO

(i)
...

. . .
...

· · · · · · · · ·


(4.18)

x̃P OV (i) =



x(i)
y(i)
vx(i)
vy(i)
...

 =



xPOV (i)
yPOV (i)
vxPOV (i)
vyPOV (i)

...

 , (4.19)

P̃P OV (i) =



σ2
x(i) σx,y(i)

...

σx,y(i) σ2
y(i)

...

. . .
...

· · · · · · · · ·


=



σ2
xPOV

(i) σx,yPOV (i)
...

σx,yPOV (i) σ2
yPOV

(i)
...

. . .
...

· · · · · · · · ·


(4.20)
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where the estimated positions with their respective part in the covariance matrix
are collected and thereafter defined for the EGO and POV as:

E(i) ∼ N


mE(i)︷ ︸︸ ︷[
xEGO(i)
yEGO(i)

]
,

ΣE(i)︷ ︸︸ ︷[
σ2
xEGO

(i) σx,yEGO(i)
σx,yEGO(i) σ2

yEGO
(i)

] (4.21)

O(i) ∼ N


mO(i)︷ ︸︸ ︷[
xPOV (i)
yPOV (i)

]
,

ΣO(i)︷ ︸︸ ︷[
σ2
xPOV

(i) σx,yPOV (i)
σx,yPOV (i) σ2

yPOV
(i)

] (4.22)

Since the global sets are rotated according to predicted heading, as stated in Section
4.2, both vehicles heading must be known. As seen in (4.17) and (4.19), the EGO’s
heading can be collected directly whereas the POV’s heading needs to be calculated
with respect to its values of vxPOV and vyPOV .

The EGO’s velocity, vpredictions, for all prediction steps is also collected from
(4.17) since the velocity is needed for the Collision Avoidance subsystem.

4.5.2 Characteristics of a collision
A vector defining the probability of collision in each prediction step i is given by
(4.16) for npredictions predictions as:

Pcollision =
[
Pcollision(1) Pcollision(2) · · · Pcollision(npredictions)

]
(4.23)

Τ

TTC ΔTTC
collision free

Prediction Horizon

Figure 4.5: Illustration of the definition of Time To Collision (TTC) and collision time
interval (∆TTC), where the y-axis denotes the probability of collision, Pcollision, over the
predicted time horizon. TTC is calculated from the current time step and up to the
probability to be above a threshold T , whereas ∆TTC is calculated as the first time the
probability is above the threshold until is it below the same mentioned threshold.

This vector will result in a curve, an example depicted in Figure 4.5. The vector can
be used to define the characteristics of a collision (i.e. Time To Collision (TTC),
collision time interval (∆TTC) and Distance To Collision (DTC)) needed as inputs
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4. Collision detection

to the collision avoidance subsystem. As illustrated in Figure 4.5, a collision is
detected when Pcollision is above the threshold T . Moreover, the TTC is calculated
as the first time step when the probability crosses the threshold, whereas the ∆TTC
is the time difference between TTC and the time when Pcollision goes below the
previously mentioned threshold. This can mathematically be described as:

Pcollision(icollision) ≥ T (4.24)
Pcollision(ifree) < T ∧ ifree > icollision (4.25)
tC = icollision ·∆T (4.26)
∆tC = (ifree − icollision) ·∆T (4.27)

where icollision denotes the first time step when the probability of collision is above
the threshold T and ifree the first time step where the probability of collision again
reaches values lower than T . Furthermore, ∆T is the time interval between each
prediction, tC and ∆tC denote the TTC and the ∆TTC, respectively.

Additionally, the velocity of the EGO in each prediction step, vpredictions, and
the DTC, dC , as well as the corresponding variance, σ2

dC
, are needed to characterise

a collision. As mentioned in Section 4.5.1, the velocity is collected directly from the
predictions, but the DTC needs to be computed appropriately.

The DTC is defined as the distance the EGO will travel before it reaches the
collision point and is calculated as the euclidean distance between two consecutive
points. The DTC from the EGO’s current position until it reaches prediction time
step i can then be calculated by:

dC(0) = 0 (4.28)

dC(i) = dC(i− 1) +
√

∆xEGO2 + ∆yEGO2 for i = 1, 2, ..., npredictions (4.29)

with:

∆xEGO = xEGO(i)− xEGO(i− 1) (4.30)
∆yEGO = yEGO(i)− yEGO(i− 1) (4.31)

where xEGO and yEGO are the cartesian coordinates for the EGO.

To transform a two-dimensional variance of xEGO and yEGO into a combined
variance in the one-dimensional space for the DTC, the Jacobian G(i) of dC(i), and
the variance Pvar(i) need to be defined as:

G(i) =
[

∆xEGO
h(x,y)

∆yEGO
h(x,y)

−∆xEGO
h(x,y)

−∆yEGO
h(x,y)

]
(4.32)

where:
h(x, y) =

√
∆xEGO2 + ∆xEGO2 (4.33)

and:
Pvar(i) =

[
ΣE(i) 0

0 ΣE(i− 1)

]
(4.34)
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where ΣE(i) and ΣE(i− 1) are the variances in x and y position for prediction step
i and i−1 respectively, according to (4.21). The resulting variance for the DTC can
then finally be calculated according to:

σ2
dC

(i) = G(i) · Pvar(i) ·G(i)T (4.35)

which will serve as an input to the collision avoidance subsystem.

4.5.3 Collision Detection Algorithm
The presented collision detection algorithm will have inputs as defined in Sec-
tion 4.5.1, as well as the length and width of both vehicles. An additional input
is the time interval between each prediction, ∆T . Outputs will be the variables
described in Section 4.5.2, as well as an additional boolean variable Danger being
set to true if a risk of collision is detected.

Note that when a collision risk has been detected, the predictions will maybe
not include a time step where the probability of collision is below the predefined
threshold T . The index ifree is then consequently not defined, which is required
in the presented solution as was seen in (4.27). This index will therefore, in these
situations, be set to the time step after the prediction horizon (npredictions + 1).
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4. Collision detection

Algorithm 5 Collision detection
Input: x̃EGO, P̃EGO, l, w, x̃P OV , P̃P OV , l̄, w̄,∆T
Output: Danger, tC ,∆tC , dC , σ2

dC
, vpredictions

Define the sets AEGO and APOV according to (4.1) and (4.2)
Collect E and O according to (4.21) and (4.22)
Collect θEGO from θ and θPOV from vx and vy in (4.17) and (4.19)

Initialise: dC(0) = 0
for i = 1 : npredictions do

Define global sets according to (4.3) and (4.4)
Rotate sets according to θEGO and θPOV , choose η points i.e. create Ep and
Op
for j = 1 : η do

Create the distributions according to (4.12) and (4.13)
Create the vector P1,2 by the use of (4.14)

end for
Calculate Pcollision according to (4.16)
Calculate dC and σ2

dC
according to (4.29) to (4.35)

end for

if any(Pcollision) > T then
icollision = find(Pcollision ≥ T, 1)
ifree = find(Pcollision < T )
tempindex = find(ifree > icollision)

If no collision free index is found along the predictions
if isempty(tempindex) then

ifree = npredictions + 1
else

ifree = ifree(tempindex(1))
end if
tC = icollision ·∆T
∆tC = (ifree − icollision) ·∆T
Collect vpredictions from (4.17)
Danger = true
dC = dC(icollision)
σ2
dC

= σ2
dC

(icollision)
else

Danger = false
end if
return Danger, tC ,∆tC , dC , σ2

dC
, vpredictions
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Collision avoidance

A Collision Avoidance (CA) system consists of two major parts, detection of an
oncoming threat and an avoidance decision in concern to that threat. Since the
detection of a probable threat is described in Chapter 4, this chapter focuses on the
assessment and decision made in regard to this threat.

The assessment should aim at finding the point in time where the driver is
unable to avoid a collision. Within the automotive industry, a false intervention is
looked on with disapproval, hence the biggest difficulty when assessing a threat is to
find a good level of conservativeness. This level is found when having a balance of
preventing a too high level of false interventions meanwhile having a fully functional
system. The system will therefore need to cope with these requirements1 i.e., keeping
the false interventions to a minimum.

A decision should thereafter culminate into an intervention aiming at avoiding
or mitigating the collision, where an intervention could be comprised of different
motions such as braking, steering or acceleration. Since this Thesis only concern
Autonomous Emergency Braking (AEB) interventions, no further research will be
conducted within the area of incorporating a choice for different intervention meth-
ods.

Figure 5.1 gives an overview of the collision avoidance part, blue encirclement, in
the whole system. The figure also illustrates the intended intervention method in
accordance with the formal threat assessment, as shown in the graphical represen-
tation. The chapter comprises of the related work within this area given in Section
5.1, the proposed collision avoidance strategy in Section 5.2 and applied collision
avoidance procedure in Section 5.3.

5.1 Related work
CA systems have been extensively researched within the field of fully autonomous
vehicles such as for cooperative collision avoidance solutions. Here, a scenario can
involve several vehicles in motion, where the assessment and decision will aim to
cooperatively calculate each vehicle’s trajectory under tight time constraints for the
ability to avoid a collision. Solutions based on this approach can be viewed in
[31][33][34].

Since the intended system aims at supporting the driver and the Decision
1ISO26262 requires verification tests to give less than one false AEB intervention during 10

years or within 100 000 km of driving.
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5. Collision avoidance

Making (DM) algorithm is restricted to emergency braking (AEB) as intervention
method, the Threat Assessment (TA) algorithm gains a greater purpose in the pro-
posed solution. The aim of the TA algorithm is to trigger an intervention at the
latest possible time instance, hence keeping the driver as the decision making con-
stituent as long as possible.

Bayesian Network

Map data Sensor data

IMM

Collision Detection

Collision Avoidance

UKF

Block 3:
Collision avoidance

Figure 5.1: Overview of the collision avoidance subsystem as part of the whole system
with graphical view of the intended outcome.

A well-known concept within active safety applications is the Point-Of-No-Return
(PNR) which corresponds to the time instance where the accounted vehicle in-
evitably ends up in a collision. It is consequently this point in time that will need to
be avoided to evade or, if this point is reached, mitigate a collision. The aim of the
CA system should therefore be to identify the PNR and consequently intervene just
before, with the use of a pre-calculated control input, with as few false interventions
as possible.

In literature there are several approaches based on the same avoidance strategy
as the above mentioned, presented in [35][36][37]

A way of calculating the PNR, is by the use of reachability analysis. Reachability
tools can be used to evaluate if the current state belongs to a set that over a specific
prediction horizon evolves into a given target set for all feasible external inputs. In
the adaption of identifying the PNR, the reachability analysis has the purpose of, by
back propagation, finding the time instance where the vehicle inevitable ends up in
a collision. The collision instant will here act as the target set and the reachability
tools will define the back propagated sets. The propagated sets will thereafter
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5. Collision avoidance

describe the state in each time instance which consequently could be used to identify
the PNR.

This approach has mainly, within the automotive industry, been applied to
research regarding fully automated vehicles, as for example within cooperative driv-
ing as presented in [38] and [39]. As a result, instead of making a collision avoiding
intervention, they use a decision parameter for cooperative crossing of an intersec-
tion. The approach presented in [17] reformulated the solution of [38] by defining
the back propagated sets as the relation of maximum velocity at a certain distance
to collision. Essentially, a comparison were performed between the current state of
the EGO and each back propagated state, thus working in the same fashion as a
look-up table. They also incorporated emergency braking (AEB) intervention to be
triggered just before the PNR.

The approach presented in [17] will work as an inspirational basis for the pro-
posed system with additional adjustments made in accordance with the previously
presented subsystems in Chapter 3 and 4.

5.2 Collision avoidance definition

When the collision detection algorithm forwards a signal of an imminent threat, the
main objective of the subsystem stated in this chapter is to trigger an intervention
with the aim of avoiding this threat. With state predictions and accompanied un-
certainties given along the whole prediction horizon, the primary part of the CA
system is to determine when to trigger an emergency braking.

The Collision Detection subsystem provides the distance and time to detected
collision by comparison of each vehicle’s propagated trajectory along the prediction
horizon. In the scope of this work, in order to avoid a collision, this can therefore
be defined as keeping the EGO from travelling the distance to collision (DTC), dC ,
within the time span of time to collision (TTC), tC and the collision time interval
∆tC . In addition to tC and ∆tC , for the ability to compute an accurate time left to
required emergency braking intervention, a vehicle brake’s actuation time need to
be taken into consideration. Here, the actuation time tB comprises of the brake’s
pressure build up phase as well as the triggering time of a braking intervention.

The collision is then avoided by back propagation of the EGO’s predicted
velocity vpredictions and DTC over the prediction horizon. If vpredictions at a certain
distance dC is detected to be above or at the maximum allowed velocity vmax given
for the system, a braking intervention is triggered. Due to uncertainties in both
velocity and position, a way of including those uncertainties is by the use of Robust
Controllable Sets as presented in [40].

5.2.1 Robust controllable sets
In the scope of this thesis, when integrating the Robust Controllable sets, the sys-
tems considered are autonomous systems with additive disturbances. Therefore only
the theory and formulations concentrated to these types of systems will be covered
in this section.
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An autonomous system fa, can formally be described as:

x(k + 1) = fa(x(k), w(k)) (5.1)

where w is a disturbance which, together with the state x, is subject to constraints
as:

x(k) ∈ X , w(k) ∈ W ,∀k ≥ 0 (5.2)
where both X and W will have the geometrical shape of a polyhedron.

The set of states that could evolve into the target set, S, in one time step are
called the pre-set to the target set, denoted by Pre(S,W), and given as:

Pre(S,W) = {x ∈ Rn : fa(x, w) ∈ S s.t. ∀w ∈ W} (5.3)

The set Pre(S,W) defines the set of arbitrary system states, given by (5.1), to
consequently evolve into the predefined target set S in one time step for all possi-
ble disturbances w ∈ W . An illustration of the one-step Robust Controllable set
Pre(S,W) can be viewed in Figure 5.2, which depicts the subjected constraints, red
color, as disregarded areas.

Pre(Ꮪ,W)

Ꮪ

x1

x2

Figure 5.2: Illustration of the one-step Robust Controllable set, Pre(S,W) ∩ S, repre-
senting the set Pre(S,W) to be evolved into the target set S subject to state constraints.

The N -step Robust Controllable Set KN(S,W) could then, by iterating (5.3) given
a target set S ⊆ X , be derived as:

KΥ(S,W) = Pre(KΥ−1(S,W),W) ∩ X , K0(S,W) = S, Υ ∈ {1, ..., N} (5.4)

This means that all states x, given from (5.1), belonging to the N -step Robust
Controllable Set KN(S,W) could evolve, for all possible disturbances w ∈ W , into
the target set S in N steps, while satisfying the constraints stated in (5.2).

50
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5.2.2 Derivation of the attraction sets
In the scope of this Thesis, the notion of Robust Controllable sets is exploited by
considering a control input as the defined disturbance. This will thus constitute
as a special case of a Robust Controllable set denoted as an Attraction set. The
derivation of the Attractions sets for the intended application is inspired by [38] and
[17].

The system, denoted in (5.1), will be reformulated as a linear system with a control
input instead of disturbance in accordance with the Attraction set definition. This
yields the arbitrary system for each time step as:

xCA(k + 1) = AxCA(k) +Bu(k), with: xCA(k) =
[

dC(k)
vpredictions(k)

]
(5.5)

where dC describes the distance to the imminent collision and vpredictions the EGO’s
predicted velocity at each dedicated time step.

The target set S, denoted in (5.3), can be formulated as:

S =
{

dC(k) : 0 ≤ dC(k) ≤ dmax
vpredictions(k) : 0 ≤ vpredictions(k) ≤ vmax

}
, ∀k ≥ 0 (5.6)

where vmax represents the maximum allowable velocity given for the system and
dmax the maximum possible distance travelled during a full prediction horizon re-
spectively. The target set thus defines a collision to occur at distance dC(k) = 0

In the derivation of the Attraction sets, the system will be subject to state constraints
given as:

xCA(k) ∈ X =
{

dC(k) : −dmax ≤ dC(k) ≤ dmax
vpredictions(k) : 0 ≤ vpredictions(k) ≤ vmax

}
(5.7)

While the control input is defined to belong to the set:

u(k) ∈ U =
{
u(k) : −amax ≤ u(k) ≤ 0

}
, (5.8)

Here the control input states the possible actions to be made, hence when solely
considering deceleration (emergency braking) interventions, trajectories requiring
acceleration to avoid a collision is excluded (upper limit being zero). The lower
limit −amax, is set as the maximum possible deceleration by the emergency braking
system (AEB).

The Attraction Sets A, can iteratively be derived using the formulation described
in Section 5.2.1 with the system and target set as defined in (5.5) to (5.8). These
sets will span all possible configurations of velocity and distance that, for the given
deceleration, unavoidably ends up in a collision. The sets can be denoted as:

A = {A1, ...,AL} (5.9)
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As illustrated in Figure 5.3 the sets will decrease in size, thus the set AL denotes
the last set inevitably ending up in a collision, hence further away will the sets be
empty.

The derived Attraction Sets are finally computed using a Multi-Parametric
Toolbox (MPT) for Matlab [41].

Figure 5.3: Definition of the target set S, and the back propagated Attraction sets Aζ
for ζ = 1,...,L. The set AL denotes the last set inevitably ending up in a collision, hence
further away from the target set the sets will be empty.

5.2.3 Formal definition of the collision avoidance constraints
As stated in the beginning of Section 5.2, the main objective for the Collision Avoid-
ance subsystem is to keep the EGO from travelling dC , within the time span of tC
and ∆tC . This can be translated as assuring the EGO’s future trajectory to not
intersect another vehicle’s area, hence ending up in a collision.

If the vehicles involved in a collision could be assumed to have known tra-
jectories driven with constant speed, it would simplify the determination of if the
two vehicles were on trajectories leading to a collision. Recall that the definition
of the ζth Attraction set is to span the configuration of distance left to collision
and velocity that in ζ time steps, for all admissible inputs, inevitably ends up in a
collision. Using this definition, a formulation of if and when to trigger a braking
intervention can be made. Hence, if it is known that the state of a vehicle in one
time step from the current time k will belong to the attraction set AtC leading to
a collision, then a braking intervention should be triggered immediately. Here, AtC
represents being tC time steps away from the collision area described by the target
set S. This condition can therefore be formally defined as:

xCA(k + 1) ∈ AtC (5.10)
To assume trajectories with constant speed is however in most cases not a valid
hypothesis. It is thus necessary to account for unpredictable driver behaviour be-
yond the current time step. Since (5.7) does not incorporate driver acceleration or
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steering, there is consequently a possibility for the EGO to progress into any part
of the collision area spanned by the time to collision tC and the additional duration
of collision tC + ∆tC . This is formally defined as the states of the EGO that did
not belong to the attraction set AtC , to instead progress into any of the subsequent
attraction sets between AtC to AtC+∆tC . This is illustrated in Figure 5.4.

Figure 5.4: Illustration of an unpredictable behaviour such as acceleration or turning
manoeuvre that could lead the EGO from being on a clear path to an imminent collision.

To ensure a correctly triggered intervention, the safety membership test thus need
to ensure that the vehicle will not belong to any of the intermediate attraction sets
between AtC and AtC+∆tC . In regard to (5.10), this can be reformulated as:

xCA(k + 1) ∈ AtC+τ , for: τ = 0, ...,∆tC (5.11)

Both (5.10) and (5.11) are however assuming that the vehicle will be able to avoid
entering an attraction set in just one time step i.e., assuming immediate actuation
which is not a realistic assumption. Hence to make (5.11) accurately ensure safety,
a consideration of the vehicle brake’s actuation time tB is required. Recall that tB
is comprised of the brake’s pressure build up time as well as the triggering time of
a braking intervention.

For the safety critical membership test to be properly defined, the vehicle state
propagated tB + 1 time steps from the current time k will need to be evaluated of
belonging to an attraction set leading to a collision. The attraction sets included
into the safety membership test will thus also need to be translated in accordance
with the brake’s actuation time. This can be defined as:

xCA(tB + 1) ∈ AtC+τ−(tB+1), for: τ = 0, ...,∆tC (5.12)

Hence the vehicle’s propagated states at the time step of tB + 1 is evaluated of
belonging to any of the attraction sets from AtC−(tB+1) to AtC+∆tC−(tB+1). For the
sake of clearness, see footnote2 for an example.

2If tB = 5, tC = 10 and ∆tC = 4 (note that all these values are given as number of time steps).
Then (5.12) checks if the vehicle’s states at time step 5+1=6 belongs to any of the Attraction sets
between the time steps of 10-(5+1)=4 to 10+4-(5+1)=8 (A4 to A8)
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5.2.4 Integration of uncertainties
Equation (5.12) denotes the condition of establishing if the current time k is the
time step just before the PNR. If so, this should trigger an emergency braking inter-
vention. However, as previously mentioned, false interventions are looked on with
disapproval within the automotive industry, hence a correctly triggered intervention
need to be assured. Thus, if measurement uncertainties are apparent, these will also
need to be included into the safety membership test.

When using robust controllable sets as a tool, all the system uncertainties could
be incorporated as a disturbance W , described in Section 5.2.1. In the derivation
of the Attraction sets, the properties of both the state and control input constraints
are incorporated. Therefore, when altering the limits of these constraints, the size of
each iterative attraction set changes accordingly. As an example, if the vehicle has
the ability of braking with a higher deceleration, it will cause the sets to be more
narrow hence having the possibility to avoid a collision later in time, as illustrated
in Figure 5.5.

Figure 5.5: Illustration of the effect of altering the control input constraint’s U limits
in comparison to the spread of the Attraction sets. In this specific example, the coloured
sets are derived for a higher deceleration.

Since the attraction sets, in some applications, could be too computational heavy to
compute online they are instead required to be derived offline. An a priori estimate
of the included disturbances is then needed. Including the uncertainties in DTC
are difficult due to the transformation of the uncertainties in two dimensions, x and
y, into the one dimensional space as seen in (4.28) to (4.35). This will therefore
most likely result in a too conservative estimate of when to trigger an intervention.
The uncertainties in DTC can instead be accounted for by stochastically incorporate
these into the safety membership test. As given by (4.28) to (4.35), the estimated
distance to collision is defined as:

d̂C ∼ N (dC , σ2
dC

) (5.13)
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The probability of belonging to a certain Attraction set AtC+τ−(tB+1) can then be
formulated as:

PBelong =
∫
AtC+τ−(tB+1)

d̂C dAtC+τ−(tB+1), for: τ = 0, ...,∆tC (5.14)

where the integral can be numerically approximated by uniformly distributing p
points along a 3σ-region around each DTC estimate as illustrated in Figure 5.6.

A vector spanning the uniformly distributed p points along the 3σ-region around
each estimate can be defined as:

~Dip = αD + (ip − 1) · ε (5.15)

where αD = −3σdC , ε = 6σdC
p−1 and ip = 1, ..., p. Evaluating a point along the

3σ-region to belong to a certain Attraction set AtC+τ−(tB+1) in the region of τ =
0,...,∆tC , can then be done by:

~Mip =
1, if ~Dip ∈ AtC+τ−(tB+1), for ip = 1, ..., p
0, otherwise

(5.16)

which results in a vector containing either a one or a zero at each index ip. The
vector of ones and zeros thereafter need to be compared to a vector ~R describing
the probability of randomly picking a value from the standard normal distribution.
The normal distribution can be divided into segments describing the approximate
percentage of the area lying under the curve between the standard deviations as
illustrated in Figure 5.7.
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5. Collision avoidance

Figure 5.6: Illustration of how the safety membership is made for the predicted EGO’s
states tB + 1 time steps into the future. The uncertainties is here incorporated into the
membership tests of the Attraction sets AtC+∆tC−(tB+1) to AtC−(tB+1), by spanning up
the 3σ-region for a normal distribution centered at the estimated DTC. If the probability
given by P is higher than the predefined threshold TCA, then the intervention is triggered.

-3σ μ

68%

95%

99.7%

-2σ -1σ 1σ 2σ 3σ
34% 13.5% 2.35%34%13.5%2.35% σ-σ

Figure 5.7: Illustration of the normal distribution divided by the 3σ-region describing the
approximate percentage of the area lying under the curve between the standard deviations.

The vector ~R, should therefore span the probability along the normal distribution,
in the same fashion as (5.15), according to:

~Rip = βR + (ip − 1) · γ (5.17)

with βR = −3σ and γ = 6σ
p−1 where ip = 1, ..., p.
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5. Collision avoidance

The membership tests giving the probability of belonging to a certain Attraction set
i.e. calculating the numerical approximation of the integral, is then given as:

PBelong = ~M · ~R (5.18)

This probability will thereafter need to be compared to a predefined threshold, TCA,
to determine the reliability of the timing for an intervention, before making the
actual intervention. The threshold will therefore control how certain the CA system
should be before applying the emergency braking intervention and should be set
high enough to avoid unnecessary false interventions.

5.3 Collision Avoidance Procedure
The Collision Avoidance subsystem requires the dC , with estimated uncertainties
σ2
dC

as well as the tC and the predicted velocities for the EGO along the whole
prediction horizon vpredictions as inputs given from the Collision Detection subsystem.
The CA system also requires the prediction time step ∆T .

The inputs will be used to make a back propagation from the Target set S,
through the Attraction sets, A. The aim of the back propagation is to find the PNR,
hence gaining information of at which time step the intervention should be triggered.
The identification of the PNR incorporates both a vehicle brake’s presumed pressure
build up phase as well as the triggering time of the brakes. Thus, when the brakes
are applied, the vehicle’s future behaviour is anticipated and incorporated into the
time step of the triggered intervention.

5.3.1 Collision Avoidance Algorithm
The algorithm described in this section concerns the procedure explained in the
introductory text to this section as well as the mathematical formulations described
in Section 5.2. As mentioned in Section 5.2.2, the Attraction sets is to be calculated
offline prior to the given pseudo code with the toolbox Multi-Parametric Toolbox for
Matlab.
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5. Collision avoidance

Algorithm 6 Collision avoidance algorithm
Input: tC ,∆tC , dC , σ2

dC
,∆T, vpredictions

Output: Brake

Initialise:
tL = Prediction horizon considered as the limit
tB = Brakes initiation time
A = All Attraction Sets
TCA = Membership probability threshold
for τ = 0 : ∆tC do
PBelong = MembershipTest(tC , dC , σ2

dC
, vpredictions,AtC+τ−(tB+1), tB)

Calculated according to (5.18)

if PBelong > TCA then
Brake = true
break

else
Brake = false

end if
end for
return Brake
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6
Results and analysis

The focus of the developed system has been on gaining a robust collision avoidance
system able to cope with accident prone environments as in urban intersections. The
main objective during the development was to answer the stated problems described
in Section 2.1, with limitations as defined in Section 2.2.

The evaluation of the resulting three-block system will be described in this
Chapter, where an overview of the complete system’s functionality will firstly be
given. Thereafter will the three subsystems Long-term Path Prediction, Collision
Detection and Collision Avoidance be evaluated more closely. Alongside the evalua-
tion of the systems ability to cope with the desired properties, a robustness analysis
will also be presented.

6.1 System parameters

The defined system parameters in this section will be set static throughout the
collision avoidance (CA) system, if not stated differently for a specific scenario.
Some parameters are set irrespectively of external influences with focus on gaining
a general and robust solution, whilst some parameters are directly dependent on
which intended vehicle the system is to be implemented in.

The system parameters have been divided into:

• Time parameters e.g. the time step, ∆T and the prediction horizon, Tpredictions.

• Thresholds for the collision detection as well as the collision avoidance subsys-
tem, TCD and TCA, described in Chapters 4 and 5.

• Vehicle parameters giving maximum accounted velocity, vmax and possible
deceleration, −amax as well as the vehicle’s possible stop time, tstop, defined as
the reaction time combined with the braking time.

• Uncertainty- and disturbance parameters given by the process noise covariance
matrix, Q, and measurement noise covariance matrix, R, described in Chapter
3.

The parameter values and further descriptions is given in Appendix A.
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6. Results and analysis

6.2 System performance
The performance of the system was evaluated in a series of test scenarios as described
in Section 2.5. The aim of the test scenarios were to validate the system’s ability
to detect and avoid, or at least mitigate, an imminent collision. The robustness of
the system was also evaluated in the sense of how well it could handle uncertainties
and disturbances.

The evaluated test scenarios have been divided into two categories, non-evasive
and evasive manoeuvres. The non-evasive manoeuvres demonstrate the system’s be-
haviour in scenarios where it is not supposed to intervene. The evasive manoeuvres
on the contrary, show the performance of the system when it is supposed to inter-
vene. In the following subsections, a number of test scenarios will be explained and
evaluated to show the flexibility of the system. For the sake of brevity, some of the
scenarios are presented in Appendix B.

The evaluation was made by looking at how the BN and IMM behaved for
the EGO and POV respectively, how the probability of collision was changing over
time and how well the system could cope with an oncoming collision. To evaluate
the quality of the collision avoidance subsystem, each scenario was compared to an
optimal braking as seen in Figure 6.1.

t0 + tC(t0)

tbrake ΔtC(t0)
0

1

t0

Figure 6.1: The optimal braking profiles were created by looking at the TTC, tC(t0)
in the time step before the braking occurs, t0. The optimal braking starts tbrake seconds
before and finishes ∆tC seconds after tC(t0).

The optimal braking for each scenario was assumed to be most accurately calculated
based on the TTC, tC(t0), in the time step before the braking was initiated, t0.
The braking should optimally start tbrake seconds before and finish ∆TTC, ∆tC(t0),
seconds after the tC(t0).

It is also worth noting that the TTC and DTC in the colliding trajectory, of
the TTC and DTC plots over time example seen in Figure 6.2, are the calculated
ones when the threat assessment function is switched off. Therefore can the DTC
and TTC increase or decrease from one time step to another even though a braking
intervention is not performed. The reason for this change is due to that the estima-
tions can change when the vehicles for example are turning where in most cases the
vehicles also are decelerating. The result of this can be a curve that does not look
smooth over time.

An overview of the full system, which will be evaluated, can be seen in Figure 6.3.
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Figure 6.2: Example showing the behaviour of the colliding trajectory in the DTC and
TTC plots over time

.

The flow through the system could be described as starting by acquiring the mea-
surements for processing. These measurements will then flow through both the BN
and IMM to give a probability of driver intent. Thereafter will the vehicle states
be propagated using an UKF with the model describing the most probable driving
path. The predicted states of each vehicle is then compared to evaluate an imminent
threat and if so, return the time and distance to collision as well as the collision time
interval. The final check evaluates if the current time is the time step just before
PNR and if so, activates the emergency brake system.

Along the evaluation process, the nodes and default values stated below is the
default BN setup, if nothing else is stated. To be able to have a BN being the most
beneficial, the nodes used for the EGO were:

• turn signal (default: not set)

• road restrictions (default: possible to go straight, left and right)

• acceleration change (measured by the vehicle’s internal sensors)

• lateral alignment (measured by a lane marker sensor)

• traffic rules (default: legally possible to go straight, left and right)

• angular rate (measured by the vehicles internal sensors)
The POV will however not be able to have the same nodes as the EGO, where the
turn signal and lateral alignment would be indistinguishable, hence the nodes being
used in the POV’s BN were instead set as:

• road restrictions (default: possible to go straight, left and right)

• acceleration change (measured by the EGO’s radar sensor)

• traffic rules (default: legally possible to go straight, left and right)

• angular rate (measured by the EGO’s radar sensor)
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6. Results and analysis

Figure 6.3: Flowchart of the sys-
tem. The flow through the system
could be described as starting by ac-
quiring the measurements for pro-
cessing. These measurements will
then flow through both the BN and
IMM to give a probability of driver
intent. Thereafter will the vehi-
cle states be propagated using an
UKF with the model describing the
most probable driving path. The
predicted states of each vehicle is
then compared to evaluate an im-
minent threat, and if so then return
the time and distance to collision as
well as the collision time interval.
The final check evaluates if the cur-
rent time is the time step just before
PNR, and if so activates the emer-
gency brake system.
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6.2.1 Non-evasive manoeuvres
For the non-evasive manoeuvres, the expected and desired outcome is to have a
fully reliable system, not giving any unwanted interventions. This is evaluated
using two scenarios denoted as Abandoned turn and Avoidance manoeuvre, where
only the results for the Abandoned turn will be given in this section. The Avoidance
manoeuvre can instead be seen in Section B.1 of Appendix, where it is illustrated
that the scenario is carried without any false interventions, due to the probability
of collision is kept below the collision detection threshold.

Abandoned turn:

Test scenario: Both the EGO and POV is travelling on a straight path. The POV
then initiates a turn but gets to a full stop before crossing the EGO’s lane, as can
be seen in the illustration given by Figure 6.4.

Figure 6.4: Illustration of the used scenario for evaluation. Blue represents the EGO’s
trajectory whereas red represents the POV’s, black represents the end positions for both
vehicles in the scenario.

In Figure 6.5 is the BN and IMM for both the EGO and POV illustrated, where
the path with the highest probability for the EGO can be seen to be straight,
Figure 6.5a and 6.5b, which corresponds to reality. Note that the highest probability
in the BN for the EGO, Figure 6.5a, changes around 4.9 seconds but is corrected
by the IMM filter, Figure 6.5b. This change is due to the information gained by the
lane marker sensor, which in the centre of the intersection cannot detect any lane
markers. Furthermore is the POV’s BN seen in Figure 6.5c, where the BN cannot
differentiate between a left or right turn. The IMM on the other hand have the
ability to differentiate between them, as seen in Figure 6.5d. This demonstrates the
BN’s incapability of evaluating the driver intent on itself, hence shows the need of
cooperation between the IMM and the BN.
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(a) BN for the EGO.
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(b) IMM for the EGO.
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(c) BN for the POV.
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(d) IMM for the POV.

Figure 6.5: The BN probabilities as well as the IMM weights for each of the three models
are here shown for both the EGO and the POV. The three different models are represented
by red for left turn, black for right turn and blue for going straight.

Figure 6.6 illustrates the collision probability, where there is a risk of collision de-
tected at around 3.5 seconds, but since the TTC has not reached PNR, a decision
of braking is not made as seen in Figure 6.7. The other peak around 5 seconds is
though both triggering a Danger signal and initiating the braking sequence. But in
the end no braking is performed since the danger signal only is active for one time
step.
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Figure 6.6: Probability of collision according to the collision detection subsystem, where
Figure 6.6a also illustrates the threshold that triggers the Danger signal.
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Figure 6.7: Illustration of the intervention timing from when a threat is detected to
when a braking intervention is performed. From top to bottom, threat detected in collision
detection subsystem (red), intervention performed in collision avoidance subsystem (blue),
brakes initiated after reaction time (black) and optimal braking profile (magenta, dotted).
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6.2.2 Evasive manoeuvres
The evasive manoeuvres have the demonstration effect of showing the systems abil-
ity to make a least restrictive, but maximally evasive intervention decision. The
scenarios used to demonstrate this are a collision with a stationary obstacle, dur-
ing two vehicles’ crossing paths or when attempting a turning manoeuvre across or
into the oncoming vehicles intended path. For the sake of brevity, only the most
interesting results are presented in this chapter. More scenarios were nevertheless
evaluated and is presented in Section B.2 of Appendix.

The scenarios found in appendix has a mixed outcome, a summary is given be-
low but the reader is directed to Appendix B.2 for further details. The first scenario
to be presented in the appendix is given by a stationary obstacle scenario. Here, a
prevention of a collision was accurately performed ending up with the EGO getting
to a full stop close to the POV. The second scenario instead evaluates an aggressive
left turn by the POV across the EGO’s path, where a safe braking procedure was
performed ending up with a high DTC and TTC. In this scenario were the EGO
able to get to a full stop at a safe distance to the POV. Three scenarios is thereafter
conducted and presented where the EGO and the POV attempts a turn into the
same lane. Two of the scenarios were close to a collision, but nevertheless avoided.
The last scenario however were not fully avoided, but mitigated to a large degree.
The last presented scenario is a road merging scenario, where two lanes merges into
one, conducted to evaluate a scenario performed on other road sections than inter-
sections. A collision was here avoided, thus instead initiating an intervention in a
too early time step due to the scenario layout.

A Crossing paths:

Test scenario: Both the EGO and the POV is travelling on a straight path leading
to a crossing intersection, an illustration can be seen in Figure 6.8.

Figure 6.8: Illustration of the used scenario for evaluation. Blue represents the EGO’s
trajectory whereas red represents the POV’s, black represents the end positions for both
vehicles in the scenario.
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(a) BN for the EGO.
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(b) IMM for the EGO.
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(c) BN for the POV.
Time [s]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

P
ro

b
a

b
ili

ty
 [

%
]

0

10

20

30

40

50

60

70

80

90

100

Left

Right

Straight

(d) IMM for the POV.

Figure 6.9: The BN probabilities as well as the IMM weights for each of the three
models in the simulation are here shown for both the EGO and the POV. The three
different models are represented by red for left turn, black for right turn and blue for
going straight. Additionally is the influence of the braking included for the EGO (black,
dotted).

In Figure 6.9a and 6.9b are the BN and IMM probabilities illustrated for the EGO’s
three different models. The model having the highest probability in the BN changes
from straight to turn model which can be explained by the braking graph seen in
Figure 6.11a since deceleration is monitored by one of the information nodes in
the BN. The IMM is though correcting this, hence the straight model is chosen as
desired. The BN and IMM for the POV can be seen in Figure 6.9c and 6.9d, which
show a high probability for the straight model as also desired.

The probability of collision in the simulation, seen in Figure 6.10a and 6.10b,
has a probability above the threshold at around 2 seconds, but goes below when
the EGO starts to brake. It finally increases again at around 4 seconds when a
new threat has been detected. This behaviour follows from that the vehicle in the
simulation case is braking and shortly thereafter accelerates, which most likely would
not occur in reality.
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Figure 6.10: Probability of collision according to the collision detection subsystem, where
Figure 6.10a and 6.10c also illustrates the threshold that triggers the Danger signal.

Figure 6.10c and 6.10d is instead illustrating the results from the real tests, which
as seen is not behaving in the same fashion as in the simulation case. The in-vehicle
tests was, as previously described in the Stationary obstacle scenario, however not
performing any braking interventions which affects the length of the collision detec-
tion interval. The main purpose of the in-vehicle results is instead to demonstrate
the system’s threat assessment and supposed intervention ability, as also illustrated
in Figure 6.11b.

The probability of collision is triggering a Danger signal when it rises above the
specified threshold. The collaboration between the Collision detection and Collision
avoidance subsystems is thus illustrated in Figure 6.11a, where a threat is detected
early but the brakes are however not applied until around 0.4 seconds later.
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Figure 6.11: Illustration of the intervention timing from when a threat is detected to
when a braking intervention is performed. From top to bottom, threat detected in collision
detection subsystem (red), intervention performed in collision avoidance subsystem (blue),
brakes initiated after reaction time (black) and optimal braking profile (magenta, dotted).
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Figure 6.12: Here are the DTC and TTC over time seen for the simulation. Blue repre-
sents the estimated DTC/TTC in each time step when the EGO executes an intervention.
The red circles represent when the brakes are triggered and later released. Magenta rep-
resents the estimated DTC/TTC for a vehicle without a CA system. Figure 6.12a also
illustrates the distance uncertainty with vertical bars. The idea is that the vehicle should
never end up in a DTC or TTC equal to 0, since this is when a collision occurs.

The braking profile for the simulation, the DTC and the TTC as a factor of time,
can be seen in Figure 6.12. This illustrates that the DTC and TTC ends up close
to collision, but since the POV is travelling at a constant speed of 13 m/s and the
EGO is standing still, in the end no collision occurs.
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B Left turn by the POV across the EGO’s path:

Test scenario: The EGO is travelling on a straight path whilst the POV makes a
left turn across the EGO’s lane, an illustration can be seen in Figure 6.13.

Figure 6.13: Illustration of the used scenario for evaluation. Blue represents the EGO’s
trajectory whereas red represents the POV’s, black represents the end positions for both
vehicles in the scenario.

Two different scenarios have been evaluated for the LTAP by the POV. In both
scenarios is the POV slowing down before the turn, where in one of the scenarios
the turn is taken in a high speed, hereafter referred to as LTAP fast, and in the other
is it taken with a low speed, whereas the turn is performed during a longer time
period, hereafter referred to as LTAP slow. Both of these scenarios were evaluated
using simulations, whereas results with data recorded from real test can be seen in
Appendix B.

Similar to before, the EGO is going straight and brakes when there is an
imminent risk of collision, which results in the BN and IMM seen in Figure 6.14.
In the BN and IMM for the LTAP slow, Figure 6.14c and 6.14d, the slower speed
can be seen to result in a longer braking phase. The main difference is illustrated
when comparing the IMM result for the slow and fast case, Figure 6.14b and 6.14d.
The BN has during this brake phase altered its perception of likely driver intent,
from straight to a turning motion. This affects the IMM for a longer time period in
the slow speed case, hence it consequently counteracts the IMM’s belief of straight
driving direction in such a degree that the left turning motion has the highest
probability at around 5.5 seconds.

Figure 6.15 illustrates the BN and IMM for the two different turns made by
the POV. As can be seen, the duration of the turn is longer in the LTAP slow,
Figure 6.15c and 6.15d, resulting in a more certain IMM when the turn actually
occurs since the IMM-filter has more time to adjust. Note that the axis is longer
for the LTAP slow than the LTAP fast.
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(a) BN for the EGO in LTAP fast.
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(b) IMM for the EGO in LTAP fast.
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(c) BN for the EGO in LTAP slow.
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(d) IMM for the EGO in LTAP slow.

Figure 6.14: The BN probabilities as well as the IMM weights for each of the three
models are here shown for the EGO when the POV makes a fast and a slow turn. The
three different models are represented by red for left turn, black for right turn and blue for
going straight. Additionally is the influence of the braking included for the EGO (black,
dotted).

Figure 6.16 depicts the probability for the LTAP fast scenario, Figure 6.16a and
6.16b, and the LTAP slow scenario in Figure 6.16c and 6.16d. The probability
of collision is generally higher and has a longer duration above the threshold for
the slow turn case. The main difference is that the LTAP slow has a decreased
probability of collision with a subsequent increase. The decrease of probability in
Figure 6.17b can be explained by a braking intervention being performed in the time
period between 4 and 5.5 seconds. The EGO is here accelerating which results in the
probability to increase, hence the second peak would not be reasonable in reality.

The braking can be seen to have a longer duration and also a second peak for
the LTAP slow, due to the already mentioned reasons, as seen in Figure 6.17b. The
differences between the TTC and DTC for the LTAP fast and the LTAP slow can
be seen in Figure 6.18. Since the POV passes by the EGO’s intended path faster in
the LTAP fast, the braking is released at a safe DTC and TTC.

71



6. Results and analysis

Time [s]

0 1 2 3 4 5 6

P
ro

b
a
b
ili

ty
 [
%

]

0

10

20

30

40

50

60

70

80

90

100

Left

Right

Straight

(a) BN for the POV in LTAP fast.
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(b) IMM for the POV in LTAP fast.
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(c) BN for the POV in LTAP slow.
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(d) IMM for the POV in LTAP slow.

Figure 6.15: The BN probabilities as well as the IMM weights for each of the three
models are here shown for the POV. The three different models are represented by red for
left turn, black for right turn and blue for going straight.

For the LTAP slow scenario is the braking released first when being at a safe DTC
and TTC, but since the EGO starts to accelerate, the risk of collision increases
accordingly. Because of the EGO vehicle’s low speed, it is though still possible to
avoid a collision.
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(b) Probability of collision in each predic-
tion step for every time step. Result for
LTAP fast.
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(c) Maximum probability of collision of the
prediction horizon, for each time step. Re-
sult for LTAP slow.
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(d) Probability of collision in each predic-
tion step for every time step. Result for
LTAP slow.

Figure 6.16: Probability of collision according to the collision detection subsystem, where
Figure 6.16a and 6.16c also illustrates the threshold that triggers the Danger signal.
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Figure 6.17: Illustration of the intervention timing from when a threat is detected to
when a braking intervention is performed. From top to bottom, threat detected in collision
detection subsystem (red), intervention performed in collision avoidance subsystem (blue),
brakes initiated after reaction time (black) and optimal braking profile (magenta, dotted).
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(b) The evolvement of TTC over time for
LTAP fast.
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(d) The evolvement of TTC over time for
LTAP slow.

Figure 6.18: Here are the DTC and TTC over time seen for the two simulations. Blue
represents the estimated DTC/TTC in each time step when the EGO executes an in-
tervention. The red circles represent when the brakes are triggered and later released.
Magenta represents the estimated DTC/TTC for a vehicle without a CA system. Fig-
ure 6.18c and 6.18a also illustrates the distance uncertainty with vertical bars. The idea
is that the vehicle should never end up in a DTC or TTC equal to 0, since this is when a
collision occurs.
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C Left turn by the EGO across the POV’s path:

Test scenario: The POV is travelling on a straight path whilst the EGO makes a left
turn across the POV’s path. The EGO’s left turn signal is in this scenario activated
close to the intersection which leads to a faster detection of the turn, an illustration
can be seen in Figure 6.19.

Figure 6.19: Illustration of the used scenario for evaluation. Blue represents the EGO’s
trajectory whereas red represents the POV’s, black represents the end positions for both
vehicles in the scenario.

Two different types of LTAP by the EGO across the POV’s path are compared in this
subsection, one where the EGO begins the turning manoeuvre early and therefore
performs a longer turn, hereafter referred to as LTAP long, and the other where the
turn is performed later, hereafter referred to as LTAP short. Both of these scenarios
were evaluated using simulations, but additional results with data recorded from
real test can be seen in Appendix B.

Figure 6.20 illustrates the EGO’s BN and IMM probabilities for the two dif-
ferent turns, both of them behaving similar, as desired. As demonstrated by the
figures, the EGO’s initiated left turn is clearly detected. The BN and IMM for the
POV is similar to what was seen in Figure 6.9c and 6.9d, the crossing path scenario,
since the POV is travelling on a straight path.

In Figure 6.21 can the probability be seen for the different turns. Figure 6.21a
and 6.21b illustrates the LTAP long scenario, where the probability of collision
changes drastically at around 4 seconds due to the change of model in this interval
as seen in the IMM for the EGO. This demonstrates the Collision detection subsys-
tems vulnerability towards the choice of threshold, where an evaluation to find the
optimal threshold can be seen in Section 6.3.2. Figure 6.21c and 6.21d illustrates
the probability of collision for the LTAP short scenario, where the probability of
collision is growing drastically and becomes very high hence reveals information of
a collision to occur.
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(a) BN for the EGO in LTAP long.
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(b) IMM for the EGO in LTAP long.
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(c) BN for the EGO in LTAP short.
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(d) IMM for the EGO in LTAP short.

Figure 6.20: The BN probabilities as well as the IMM weights for each of the three
models are here shown for the EGO. The three different models are represented by red for
left turn, black for right turn and blue for going straight. Additionally is the influence of
the braking included for the EGO (black, dotted).

The intervention timing is seen in Figure 6.22, where the timing for the LTAP long
is shown Figure 6.22a, which is fluctuating because of the change of the Danger
signal. The reason for the Danger signal to alter between high and low, is due
to the change of decided motion model to use for the predictions during the turn.
At the beginning of the turn, a straight motion model is used hence detecting an
imminent collision. Thus with the transition to the left turning motion model, a
collision is not deemed likely at first but is at 3.8 seconds set as being an imminent
collision.

A braking intervention is triggered first 0.5 seconds after the first received
Danger signal, however not kept sustained until the time of 3.8 seconds as illustrated
in Figure 6.22b. The collision is thus mitigated due to the initial braking at 3.5
seconds, but not entirely avoided. As compared to the optimal braking, the braking
phase should ideally be set as being sustained earlier for the ability to completely
avoid the collision.
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(b) Probability of collision in each prediction
step for every time step. Result for LTAP
long.
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(d) Probability of collision in each prediction
step for every time step. Result for LTAP
short.

Figure 6.21: Probability of collision according to the collision detection subsystem, where
Figure 6.21a and 6.21a also illustrates the threshold that triggers the Danger signal.

The DTC and TTC as a function of time can be seen in Figure 6.23. Figure 6.23a
and 6.23b, for the LTAP long, shows that even though the EGO is braking, it is
really close to a collision.

Figure 6.23c and 6.23d, for the LTAP short, shows that the collision time
interval is really narrow and consequently the collision is seen really late. When the
braking starts, the TTC is 0.3 seconds which means that the oncoming collision is
unavoidable.
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Figure 6.22: Illustration of the intervention timing from when a threat is detected to
when a braking intervention is performed. From top to bottom, threat detected in collision
detection subsystem (red), intervention performed in collision avoidance subsystem (blue),
brakes initiated after reaction time (black) and optimal braking profile (magenta, dotted).
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(b) The evolvement of TTC over time for
LTAP long.

Time [s]

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3

D
T

C
 [
m

]

-20

-15

-10

-5

0

Colliding trajectory

Actual trajectory

Collision

Braking started/stopped

(c) The evolvement of DTC over time for
LTAP short.
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(d) The evolvement of TTC over time for
LTAP short.

Figure 6.23: Here are the DTC and TTC over time seen for the two simulations. Blue
represents the estimated DTC/TTC in each time step when the EGO executes an in-
tervention. The red circles represent when the brakes are triggered and later released.
Magenta represents the estimated DTC/TTC for a vehicle without a CA system. Fig-
ure 6.23c and 6.23a also illustrate the distance uncertainty with vertical bars. The idea is
that the vehicle should never end up in a DTC or TTC equal to 0, since this is when a
collision occurs.
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6.3 Robustness analysis
The overall system performance has been presented through evaluation of different
scenarios as seen in Section 6.2.1 and 6.2.2. These scenarios were evaluated with,
for this system, parameters giving the best performance as presented in Section 6.1
and 6.2. Although the system works optimally for the given vehicle setup with the
stated parameter values, other sensors with better or worse capacity could change
the presented system’s ability to perform.

To be able to determine the systems performance and capacity, a robustness
analysis is needed to expose the critical limits. Section 6.3.1 presents an analysis
made in regard to critical velocity levels and in Section 6.3.2 is an analysis made for
critical noise levels. In Section 6.3.3, 6.3.4 and 6.3.5 is instead the performance and
critical parameters of each individual subsystem Long-term path prediction, Collision
detection or Collision avoidance presented.

6.3.1 Critical velocity limits
The purpose of stressing the system with different velocities, is to determine which
critical velocity limits that gives unwanted system performance. Such an unwanted
system performance could be an undesired intervention as seen to the driver’s ex-
pectation, hence could lead to a disastrous outcome. The awareness of the critical
velocity limits could thus be used to narrow down the usage of the presented system
to some particular scenarios or sections of the road network. Moreover could it point
out which future work needing more attendance.

To determine the critical velocity limits, the four scenarios Abandoned turn, Crossing
intersection, Left turn across path made by the EGO and Left turn across path made
by the POV were used for evaluation. The different scenarios demonstrate one case
where no braking should be applied, one where both vehicles are heading straight
at each other and two cases where either the EGO or the POV makes a turn across
the others intended path.

The velocities determined to be the system’s critical limits are categorised
as the lower velocity limit at 6 [m/s] (21.6 [km/h]), regular velocity limit in urban
intersections at 13 [m/s] (46.8 [km/h]) and the upper velocity limit at 16 [m/s]
(57.6 [km/h]) where the result using these critical limits is presented in each section
representing a specific scenario.

A Abandoned turn

Performing the abandoned turn scenario should result in a non-evasive manoeuvre,
which is accomplished for all velocity levels as seen in Figure 6.24b, 6.25b and 6.26b.

Figure 6.24a reveals that the collision detection rate at low speeds is high
but concentrated to approximately one time step. On the contrary, the detection
rate at high speeds, shown in Figure 6.26a, becomes low as well as scattered across
more time steps. It can thus be explained by the fact that at low speeds, the
prediction horizon will not extend as far as for higher speeds. An intersection of two
oncoming vehicles with either low or high speed will therefore be detected either
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later or earlier accordingly. Figure 6.25 illustrates the perception for the regular
speed setup where an imminent collision is detected, but without an intervention
being activated as illustrated in Figure 6.25b. This figure is thus also showing that
a braking intervention is recommended, blue curve, but not applied due to a too
short collision detection time span.
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Figure 6.24: Abandoned turn scenario with low speed setup. Illustration of the prob-
ability of collision in each prediction step for each consecutive time step seen in (a) and
the steps from an indicated threat to an actual braking intervention in (b).
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Figure 6.25: Abandoned turn scenario with regular speed setup. Illustration of the
probability of collision in each prediction step for each consecutive time step seen in (a)
and the steps from an indicated threat to an actual braking intervention in (b).
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Figure 6.26: Abandoned turn scenario with high speed setup. Illustration of the prob-
ability of collision in each prediction step for each consecutive time step seen in (a) and
the steps from an indicated threat to an actual braking intervention in (b).

B Crossing intersection

The crossing intersection scenario is classified as a forgiving scenario in the sense
that the long-term path predictions could be done sufficiently accurate, even for
vehicles with high speed, since both vehicles travel in a straight direction. This is
illustrated for low speed in Figure 6.27, same speed as the regular setup in 6.28 and
at high speed seen in Figure 6.29.

2

Time [s]

4

6

8
0.2

0.4

0.6

Prediction Horizon [s]

0.8

1

1.2

1.4

0

50

100

P
ro

b
a

b
ili

ty
 [

%
]

0

10

20

30

40

50

60

70

80

90

(a) 3D-probability

0 1 2 3 4 5 6 7 8 9 10

0

1

0 1 2 3 4 5 6 7 8 9 10

0

1

0 1 2 3 4 5 6 7 8 9 10

0

1

Time [s]

0 1 2 3 4 5 6 7 8 9 10

0

1

(b) Threat/brake assessment

Figure 6.27: Crossing intersection scenario with low speed setup. Illustration of the
probability of collision in each prediction step for each consecutive time step seen in (a)
and the steps from an indicated threat to an actual braking intervention in (b).

The main difference is at what detection rate the EGO can identify the imminent risk
of collision. The low speed case is illustrated in Figure 6.27, where 6.27b demon-
strates that a threat is detected later in time and 6.27a shows that the collision
probability will be concentrated to just a few time steps. For the regular and high
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speed case, the imminent danger could be detected earlier as illustrated in both
Figure 6.28 and 6.29.
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Figure 6.28: Crossing intersection scenario with regular speed setup. Illustration of the
probability of collision in each prediction step for each consecutive time step seen in (a)
and the steps from an indicated threat to an actual braking intervention in (b).
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Figure 6.29: Crossing intersection scenario with high speed setup. Illustration of the
probability of collision in each prediction step for each consecutive time step seen in (a)
and the steps from an indicated threat to an actual braking intervention in (b).
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C Left turn across path made by the EGO

A left turn by the EGO across the POV’s path is illustrated for the three speed
levels with low speed in Figure 6.30, same speed as the regular setup in 6.31 and
high speed seen in 6.32.

The low and regular speed cases are shown to be manageable by the system,
whereas at the high speed level, a full collision avoidance could not be accomplished
due to too late detection time as shown in Figure 6.32b. Figure 6.32b also demon-
strates a comparison between the actual braking and the referenced need of braking,
magenta dashed line, where the braking intervention at latest should be made at the
reference start. Even though the collision is not avoided, it is nonetheless mitigated.
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Figure 6.30: Left turn across path by the EGO scenario with low speed setup. Illustra-
tion of the probability of collision in each prediction step for each consecutive time step
seen in (a) and the steps from an indicated threat to an actual braking intervention in (b).
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Figure 6.31: Left turn across path by the EGO scenario with regular speed setup.
Illustration of the probability of collision in each prediction step for each consecutive time
step seen in (a) and the steps from an indicated threat to an actual braking intervention
in (b).
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Figure 6.32: Left turn across path by the EGO scenario with high speed setup. Illustra-
tion of the probability of collision in each prediction step for each consecutive time step
seen in (a) and the steps from an indicated threat to an actual braking intervention in (b).
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D Left turn across path made by the POV

A left turn by the POV across the EGO’s path, is in the same fashion as previously
demonstrated results illustrated for the three speed levels with low speed in Figure
6.33, regular speed in 6.34 and high speed seen in 6.35. The low and regular speed
cases are again shown to be manageable by the system. The low speed case is also
demonstrating the system’s ability to disregard a threat until the time step just
before the PNR. The turn at high speed is thus detected too late hence the collision
could not be avoided, but is nonetheless mitigated.
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Figure 6.33: Left turn across path by the POV scenario with low speed setup. Illustration
of the probability of collision in each prediction step for each consecutive time step seen
in (a) and the steps from an indicated threat to an actual braking intervention in (b).
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Figure 6.34: Left turn across path by the POV scenario with regular speed setup.
Illustration of the probability of collision in each prediction step for each consecutive time
step seen in (a) and the steps from an indicated threat to an actual braking intervention
in (b).
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Figure 6.35: Left turn across path by the POV scenario with high speed setup. Illustra-
tion of the probability of collision in each prediction step for each consecutive time step
seen in (a) and the steps from an indicated threat to an actual braking intervention in (b).
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6.3.2 Noise robustness
During the evaluation of the system’s robustness to noise, it was noticed that the
main parameter being sensitive to added noise was the position. The systems ro-
bustness has therefore been evaluated by low, intermediate and high noise on the
position with noise values as given by Table 6.1.

Table 6.1: Noise values given as Low, Medium, Medium/High and High noise levels given
on the x- and y-position of both the EGO and POV. Units given in meters.

Parameters Low noise Medium noise Medium/High noise High noise Units
σx,EGO 0.25 0.50 0.75 1 meters
σy,EGO 0.25 0.50 0.75 1 meters
σx,POV 0.25 0.50 0.75 1 meters
σy,POV 0.25 0.50 0.75 1 meters

Noise added to the position will in the proposed solution have an impact on the BN
as well as the IMM since both of them get the observed measurements as input.
With a noisy position, the information nodes such as the Lane alignment node for
the BN could give a false perception of the reality. The IMM on the other hand
could have difficulties in deciding which motion model to best represent the driver
intent, or consequently choose a faulty model. With both the BN and IMM being
vulnerable to added noise, the model chosen for the predictions could be wrong
hence the UKF is directly affected accordingly. This could lead to propagations of
two colliding trajectories which in fact are not an imminent collision, thus both the
Collision detection and most likely the Collision avoidance is affected.

To be able to foresee and prevent the CA system to behave incorrect, a noise
robustness analysis is needed. Here, the analysis is presented by the use of a Re-
ceiver operating characteristic (ROC)-curve. This type of analysis method is mostly
used to illustrate a system’s performance for different threshold-levels, but could at
the same time illustrate the performance with different noise levels. The analysis is
made by evaluating a certain scenario with both a positive case (scenario leading to
a collision) and a negative case (scenario with no collision). The scenario used for
evaluation is the left turn by POV across the EGO’s path, with two negative cases
where one is the POV making the turn just before the EGO passes and one when
the POV initiates a turn but stops to let the EGO pass.

The noise robustness evaluation was made with the collision detection threshold
swept from (0% to 100%) for the four different noise levels presented in Table 6.1.
The collision detection threshold was selected since it was found out that it had a
bigger influence on the over all system performance, compared to the collision avoid-
ance threshold. The chosen representation of the ROC-curve is thereafter shown as
the number of accurately made braking interventions, denoted as the True positive
rate (TP), in comparison to the number of falsely intervened negative cases, denoted
as a False positive rate (FP). The ROC-curve for the given scenario is illustrated in
Figure 6.36.

The reason for the chosen scenario to be evaluated with the different threshold
levels is to determine the best fitted threshold giving a high TP whilst having a low
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FP. The dotted line in the figure illustrates the reference to be above for the system
to be better than a Collision Avoidance (CA) system randomly deciding if there is an
imminent collision or not. The desired result is a system being minimally restrictive
whilst being maximally evasive, hence not making any unwanted interventions. An
optimal result of such a system is when having a 100% true positive rate whilst
having 0% false positive rate.
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Figure 6.36: ROC-curve for the negative case when the POV performs a left turn across
the EGO’s path, thus passing just before the EGO. The illustration demonstrates the sys-
tem’s collision avoidance ability for a sweeping threshold level analysis with four different
noise levels. A desirable system gives a TP/FP result above the dotted reference line.

Figure 6.36 and 6.37 demonstrates the system’s noise robustness for the four different
noise levels stated in Table 6.1, using the two different negative case scenarios. The
threshold level is here zero at the upper right corner, TP and FP equal to 100, and
decreases towards the lower left corner, TP and FP equal to 0. The threshold was
swept from 0% to 100%, with a 2% interval hence equal to 0%, 2%, ..., 100%. This
should generate 50 points along each curve, but as can be seen only around 20 values
are illustrated, since some of them are overlapping.

Figure 6.36 illustrates that all noise levels are well above the reference line,
where a collision detection threshold TCD level above 25% generates a TP/FP at
the upper left corner of the plot. Figure 6.37 is however revealing the systems
limitations and difficulties with the negative case. The Low and Medium noise level
is well above the reference line where the threshold level of 40% is indicated with
the red squares in the figure. The system is thus having problems handling the
scenario for the Medium/High and High noise levels. The Medium/High noise level
is here kept around or slightly below the reference, whereas the High noise level is
well below. Hence both of these noise levels generates an undesirable result.
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Figure 6.37: ROC-curve for the negative case when the POV attempts a left turn
across the EGO’s path, but stops before the EGO passes. The illustration demonstrates
the system’s collision avoidance ability for a sweeping threshold level analysis with four
different noise levels. A desirable system gives a TP/FP result above the dotted reference
line.

The explanation on why the first negative case is handled better than the second,
is due to the presented solution’s problem of handling approaching vehicles doing a
rapid stop when aiming for a turn. The system will in this scenario still propagate
a turn trajectory for some time steps hence both trajectories intersect, as explained
in the Abandoned turn scenario of Section 6.2.1. This is mainly because the pro-
posed IMM approach does not include a model that covers a performed deceleration
motion.

The ROC-curves described in Figure 6.36 and the Low as well as Medium
noise level ROC-curves in Figure 6.37 concludes that the desired threshold should
be set above 40%. The collision detection threshold used for the proposed solution,
TCD was however set to 50%, due to this threshold being able to keep the false
interventions to a minimum while keeping the correct braking interventions high.

Both the Medium/High and High noise levels in Figure 6.37 concludes the
limits of the presented approach. The system could in this case not manage to push
any of these noise levels toward a high percentage of correct braking interventions
without introducing a high unwanted intervention percentage.

91



6. Results and analysis

6.3.3 Long-term path prediction
In the subsystem of Long-term path prediction mainly two parts influence the per-
formance of the overall system’s ability to detect a collision, namely the Bayesian
Network (BN) and the Interacting Multiple Models (IMM)-filter. Both of these sub-
systems receive measurements which are compared to computed predictions of what
left, right and straight driving direction are set to be.

This section will explain the benefit of each part of the subsystem and their
affecting parameters. The evaluation will be made with a performance comparison
between the ordinary system setup, the BN turned off and the IMM turned off (using
only a Constant Velocity (CV) model) as seen in Subsection A.

An evaluation has also been made of the BN’s as well as the IMM’s internal
performance, presented in Subsections B and C respectively.

A Performance comparison

A performance comparison has been made using the scenarios Abandoned turn,
Crossing intersection and Left turn across path made by either the EGO or POV.
The comparison was made in regard to the advantage of using:

• The BN (evaluated by turning this part off, but keeping the IMM active)

• The IMM-filter (evaluated by only using one of the filter models such as the
CV-model, hence both the BN and IMM are deactivated)

Abandoned turn

As previously mentioned, during the Abandoned turn scenario, the EGO vehicle
should not perform an evasive manoeuvre such as a braking intervention, which
according to Figure 6.38b did not occur.
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Figure 6.38: Illustration of how each part influences the overall subsystems behaviour
for the abandoned turn scenario, where (a) shows the probability of collision and (b) the
threat/brake assessment for the three different setups.
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(c) Setup without the IMM

Figure 6.39: A probability graph showing the detection rate of a probable collision for
the abandoned turn scenario, where (a) illustrates the ordinary setup, (b) without the BN
and (c) shows the affect of not using the IMM as well.

Figure 6.39 shows the collision detection rate along the whole prediction horizon
for the three different cases where Figure 6.39a illustrates the ordinary case, Figure
6.39b shows the case without the BN and Figure 6.39c shows the case without the
BN as well as the IMM.

When using the ordinary system setup, the information nodes associated with
the POV could not distinguish a left from a right turn, hence both being equally
likely at the beginning of the turn. This will therefore affect the overall perception
of the likely manoeuvre giving a slightly lower likelihood of actually making a left
turn. When disconnecting the affect of the BN, the subsystem fully relies on the
IMM hence making a more, in this case, reliable perception of the likely course of
action. Needless to say, this will give a higher likelihood of collision which actu-
ally is something not wanted, therefore the result from the ordinary case is more
advantageous.

As illustrated by Figure 6.38 and 6.39, it is however evidently an even greater
advantage of having both the BN and IMM deactivated in this particular case. This
is explained by the presented system’s difficulty in regarding a decelerating motion.
Thus, when initiating a turning motion and then brakes to a full stop, it will be
falsely modelled by both the BN and IMM as continuing the turn for some time
steps. In this case will therefore the POV’s predictions slightly intersect with the
EGO’s predicted trajectory and the collision probability goes above the threshold.
As Figure 6.38b illustrates, it will however not lead to a braking intervention as this
point in time is not evaluated to be the time step just before the PNR.

Crossing intersection

The evaluation of the crossing intersection scenario resulted in the system being
equally good at detecting and evade a collision irrespective of if either the BN or
IMM was active. This is explained by that the intended manoeuvre in the cross-
ing intersection scenario is a straight path hence even without both BN and IMM,
the system is being able to evaluate this scenario to be an imminent risk of colli-
sion. Therefore no further analysis will be conducted and the results can be seen in
Appendix C.
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Left turn across path made by the EGO

When the EGO makes a left turn across the POV’s path, the long-term path predic-
tion has a crucial part in the ability to detect an imminent collision. Figure 6.40 and
6.41 shows the difference in ability to detect a collision when using the ordinary sys-
tem setup in comparison when not using the BN or IMM. Figure 6.40 illustrates the
importance of all the parts in the subsystem which, with the ordinary system setup,
has the ability to predict a left turn at an early stage making it possible to prevent
a collision. Without either BN or IMM, a collision will occur, but nonetheless be
mitigated as shown in Figure 6.40b.
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Figure 6.40: Illustration of how each part influences the overall subsystems behaviour
for the left turn across path by EGO scenario, where (a) shows the probability of collision
and (b) the threat/brake assessment for the three different setups.
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(b) Setup without the BN
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(c) Setup without the IMM

Figure 6.41: A probability graph showing the detection rate of a probable collision for
the left turn across path by EGO scenario, where (a) illustrates the ordinary setup, (b)
without the BN and (c) shows the affect of not using the IMM as well.
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Left turn across path made by the POV

In the scenario where the POV makes a left turn across the EGO’s path, the differ-
ence in the comparison of the different parts of the subsystem is less divergent as
seen in Figure 6.42 and 6.43. The setup without the BN does not contribute to any
difference due to the lack of evidences given from the POV in the original scenario
setup. The main advantage is given in the comparison of using IMM (Ordinary
setup) and only using a CV model (Setup without the IMM ), which gives a slight
difference in the ability to detect a collision and thereafter avoiding it. The setup
without the IMM will nonetheless be able to mitigate the collision in such an extent
that the collision is nearly avoided.
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Figure 6.42: Illustration of how each part influences the overall subsystems behaviour
for the left turn across path by POV scenario, where (a) shows the probability of collision
and (b) the threat/brake assessment for the three different setups.
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(b) Setup without the BN
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(c) Setup without the IMM

Figure 6.43: A probability graph showing the detection rate of a probable collision for
the left turn across path by POV scenario, where (a) illustrates the ordinary setup, (b)
without the BN and (c) shows the affect of not using the IMM as well.
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B The BN’s affect on system performance

The information nodes which the BN is built up by demands correctly given data
to be able to make accurate long-term path predictions. However, if the data to
the BN would be wrongfully given (such as a turn signal giving the wrong direction
than the intended or wrong map information given) the system should be robust
enough to not be affected solely by this.

An evaluation of the BN’s affect on the whole systems performance is made
through the scenario left turn by the EGO across the POV’s path. A comparison
has been conducted in regard to the ordinary system setup, a wrongfully given map
information (stating an absence of a road to the left) and with a wrongfully given
turn signal (stating to go right instead of left) as well. The result is illustrated in
Figure 6.45 and 6.44.

A conclusion from the results can be made in regard to how crucial the nodes
are to correctly compute the long-term path prediction. The results on the other
hand also illustrates that even though the BN presents an inaccurate decision, the
outcome is not solely affected by this decision. This is explained by the IMM’s ability
to counteract a decision by the BN with the IMM’s computation of the near-term
path prediction. A collision could therefore, in this case, not be fully avoided with
the wrongfully given information to the nodes but nonetheless be mitigated. The
main conclusion is therefore that the outcome from the BN does not solely decide
how well the long-term path predictions of each vehicle will be.
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Figure 6.44: The figure illustrates the difference in collision detection and at last the
ability to brake in time for the ordinary system setup, with wrongfully given turn signal
and with wrongfully given map data.
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(a) BN for ordinary setup
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(b) IMM for ordinary setup
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(c) BN with faulty blinkers
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(d) IMM with faulty blinkers
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(e) BN with faulty map info
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(f) IMM with faulty map info

Figure 6.45: The plots illustrates the BN and IMM weights for a left turn by the EGO
across the POV’s path. Plot (a) and (b) shows the ordinary system setup, (c) and (d)
wrongfully given turn signal (depicted a right instead of left turn to be made) and (e) and
(f) demonstrates when having wrongfully given map data (denoting an absence of a road
to the left).
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C The IMM’s internal performance

The IMM’s ability to follow either a left or a straight going trajectory is for the
EGO shown in Figure 6.46 and 6.47 respectively.

Zoomed 
in area

EGO

POV

(a) Trajectory overview (b) Zoomed part of the trajectory

Figure 6.46: Illustration of how the models(left, straight and right) in the IMM is spread
along a left going trajectory, where the measurements and weighted choice from the three
models ability to reflect the measurement. An overview of the trajectory is shown in (a),
whereas (b) shows a zoomed part of the marked area on the trajectory

EGO

POV

Zoomed in 
area

(a) Trajectory overview (b) Zoomed part of the trajectory

Figure 6.47: Illustration of how the models (left, straight and right) in the IMM is spread
along a straight trajectory, where the measurements and weighted choice from the three
models ability to reflect the measurement. An overview of the trajectory is shown in (a),
whereas (b) shows a zoomed part of the marked area on the trajectory

Figure 6.46 demonstrates the IMM’s ability to change from a straight going path
to a left turn, where the scenario with the trajectory is illustrated in 6.46a. The
top of Figure 6.46b shows that the measurement as well as the weighted choice is
aligned near the model for straight path (green). Along the trajectory, both the
measurements as well as the weighted choice will move towards the model for left
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going path (and eventually changing the model for the prediction calculations from
straight to left model).

Figure 6.47 on the other hand illustrates the IMM’s ability to choose the straight
going model as the most appropriate model to represent the vehicles driving direc-
tion. Figure 6.47b demonstrates the weighted choice to more or less align with the
straight going models filtered output.

6.3.4 Collision detection
The main influence on the collision detection subsystem is the number of points used
for representation of each vehicle’s area. The number of points used in the collision
detection algorithm has a big influence on the computational complexity, hence an
evaluation was made to see how much the number of points can be decreased to still
give a reliable result.

Table 6.2 presents the results where 847 points are used as a reference meaning
that the points are spread out with approximately 10 cm in between them. As seen
in the table, there is not a big difference in probabilities with a higher number of
points. The lower limit can be seen to be at 3x5 points (3 on the width and 5 on
the length) points, thus 3x3 points will still not differ too much from the reference
values. The biggest difference can be seen when an even number of points is used,
i.e. when the centre of the vehicle’s width and/or length is not represented by a
point. It can be seen in the table (with the help of Appendix D), that the scenarios
giving the biggest difference in probability, are the configurations where the vehicles
overlap in any kind of way. The reason is that in those cases, the points with the
highest probability are the points inside the overlapping vehicle, hence results in a
lower probability if these points are not considered.
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Table 6.2: This table shows how the reliability of the collision detection subsystem is
decreasing with the number of points used for each vehicle. A reference with 847 points
was used, which should correspond to infinity (marked in grey). Width, length is the
number of points spread out evenly across the width and length of the vehicles; total no
points, is the total number of points spread out, i.e. equal width*length; distance points,
is the approximate distance between the points. All the probabilities are given in percent
where the differences below 0.01 percent is marked with "-", cells of differences above 5%
are marked in yellow and percentages above 10% are additionally marked with red text.
For each different number of points is the same variance used for each scenario, further
details about the scenarios are given in Appendix D.

Width, length 9, 23 21, 5 5, 13 5, 9 3, 9 3, 7 3, 5 2, 6 3, 3 2, 2 1
Total no. points 847 207 105 65 45 27 21 15 12 9 4 1
Distance points 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

Scenario Ref. Differences in probability
P1 2,67E-06 - - - - - - - - - - -
P2 0,04 - - - - - - - - - - 0,04
P3 0,08 - - - - - - - - - 0,02 0,06
P4 0,08 - - - - - - - - - 0,04 0,04

Apart

P5 0,08 - - - - - - - - - - -
P1 5,95E-06 - - - - - - - - - - -
P2 24,60 - - - - - - - - - - 24,18
P3 49,04 - - 0,02 - - 0,02 0,40 0,03 0,58 10,27 38,63
P4 49,04 - - - - - - - 0,28 - 24,45 24,45

Next to
eachother

P5 30,58 - - - - - - - - - - -
P1 38,51 - - - - - - - 13,91 - 13,91 13,91
P2 68,04 - - - - - - - 24,59 - 24,59 24,59
P3 76,34 - - - - - - - 27,59 - 27,59 27,59
P4 76,79 - 0,03 0,01 0,02 0,02 0,18 0,44 28,03 0,44 28,03 28,03
P5 76,79 0,01 - 0,04 0,09 0,09 0,04 0,09 28,03 2,61 33,33 33,33

Overlapping

P6 76,79 - - - - - - - 28,03 - 52,19 52,19
P1 49,04 - - - - - - - 1,70 - 1,70 1,70
P2 68,80 - - - - - - - 2,38 - 2,38 2,38
P3 76,79 - - - - - - - 2,66 - 2,66 2,66
P4 76,70 -0,01 0,61 0,16 0,40 0,40 2,45 2,45 10,08 2,45 10,28 10,28
P5 76,79 0,31 0,14 0,42 0,42 0,42 0,42 0,42 2,66 0,42 29,45 29,45

EGO into
POV

P6 76,78 -0,01 0,02 -0,01 -0,01 0,35 0,41 0,41 2,66 0,41 64,99 73,07
P1 76,79 0,31 0,14 0,42 0,42 0,42 0,42 0,42 2,66 0,42 29,45 74,92
P2 76,70 -0,01 0,61 0,16 0,40 0,40 2,45 2,45 10,08 2,45 10,28 75,67
P3 76,79 - - - - - - - 2,66 - 2,66 76,36
P4 68,80 - - - - - - - 2,38 - 2,38 68,67
P5 49,04 - - - - - - - 1,70 - 1,70 49,01

POV into
EGO

P6 0,81 - - - - - - - 0,03 - 0,03 0,81
P1 1,17E-08 - - - - - - - - - - -
P2 2,56 - - - - - - - - - - -
P3 76,70 - 0,60 1,18 1,26 1,26 1,26 1,26 1,26 1,26 1,26 14,93

EGO turn,
POV straight

P4 76,79 0,01 0,06 0,91 0,11 0,25 1,05 5,10 2,40 5,10 14,44 14,44
P1 4,29E-07 - - - - - - - - - - -
P2 34,75 - - - - - - - - - - 26,22
P3 76,77 0,03 -0,01 0,45 0,45 0,45 1,08 0,45 1,24 2,97 29,12 29,12
P4 2,36 - - - - - - - - - - -

EGO and
POV turn

P5 2,74E-12 - - - - - - - - - - -
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6.3.5 Collision avoidance
The Collision Avoidance subsystem was previously developed by [17] as a modular
block to be used in future research works. During the development of the presented
general and effective long-term path prediction as well as the collision detection
algorithm, the aim of the thesis work was to utilise the previously developed modular
Collision avoidance subsystem into the whole system. The modularity as well as
performance was therefore evaluated alongside the overall systems performance.

The result is a subsystem having predefined Attraction sets in regard to the
EGO’s performance parameters. These attraction sets were built up around the
EGO’s ability to avoid a collision by emergency braking (as stated before with a
maximum deceleration of 8.5 m/s2). The Point-of-No-Return (PNR) was thereafter
found through a membership test of the attraction sets using the vehicle’s current
velocity, DTC as well as reaction time of 0.2 seconds.

During the presentation of the overall system performance result in Chapter
6, an evaluation of the Collision avoidance subsystem was also conducted. The
main objective of this subsystem is to make the overall system maximally evasive
whilst being minimally restrictive. It will therefore need to evaluate each probability
of collision being above the given collision detection threshold. This is done for
the possibility to find the moment right before going into the PNR. The Collision
Avoidance (CA) system then had the ability to intervene at the latest time possible
hence being able to avoid or at least mitigate the oncoming collision. This has been
demonstrated alongside the presented results as the ability to disregard a signal of
danger only being present for a short period of time, and in most cases being able
to intervene at the latest time possible.
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The general objectives for the thesis work were stated in Section 1.3 as:

• Proposing a method to merge pertinent information of the surrounding envi-
ronment in order to accurately predict the behaviour of oncoming traffic.

• Developing a stochastic solution evaluating the risk of collision using the pre-
vious mentioned predictions.

• Defining a formal, robust decision making procedure for least-invasive braking
interventions.

• Evaluating the proposed Collision Avoidance (CA) system with both simula-
tions as well as with real-time implementation.

The aim of this chapter is to discuss the results presented in Chapter 6 and draw
conclusions of the system’s ability to cope with the formulated problems, stated in
Section 2.1.

This chapter provides a profound analysis of the performance, stability and
robustness of the proposed system through four sections. Firstly, Section 7.1 ad-
dresses the development of the three individual modular blocks. Secondly, Section
7.2 discusses how the evaluation of the whole system was made through different
application methods. Furthermore, suggestions of future work will be given in Sec-
tion 7.3. Finally, in Section 7.4 can a presentation of some concluding remarks be
seen.

7.1 System design
This section has been divided into the three parts Long-term path prediction in
Subsection 7.1.1, Collision detection Subsection 7.1.2 and Collision avoidance in
Subsection 7.1.3 as each of them reflect the first three general objectives in Sec-
tion 1.3. The performance of the full system relies on the individual performance of
each part of the overall system, hence the design of the three different parts will be
discussed separately.

7.1.1 Long-term path prediction
The long-term path prediction block can subsequently be divided into two system
operators, namely a long-term and a near-term prediction. The ability of predicting
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along a far horizon lies within the properties of the Bayesian Network (BN) whereas
the near future is better predicted by the Interacting Multiple Model (IMM) fil-
ter. Hence by fusing the two sub blocks’ predictions, the possibility to identify the
driver’s intent is given.

For improvement of the results, both the BN and IMM rely on specific fac-
tors for each calculated outcome. The BN is dependent on the observations it can
make, or more specifically on how many unique information nodes it can use in the
long-term prediction and the accuracy of the information given by these. The per-
formance and robustness of this part are improved by the number of observations,
i.e. the number of information nodes that can be used. If only one observation is
available, such as for example a turn signal, this will have the full power of decision
for the BN. The system’s performance could therefore be vulnerable to this sole
observation. If instead several different observations are used, a false observation
from one node could be counteracted by the other nodes’ observations. The perfor-
mance can then be concluded to be better with an increasing number of accurately
observable nodes, but this would also generate a higher computational heaviness.

In the scenarios used for evaluation, the road geometry was given in advance,
often stating a four-way intersection where a left, right and/or straight driving direc-
tion was possible. To already have information of the road geometry was considered
as a valid assumption by the authors due to the extent of the development made
within digital maps. The other observations were constrained by the performance
of the considered on-vehicle sensors such as the Inertial Measurement Unit (IMU)
sensor, wheel speed sensors and the radar. The quality of the long-term predictions
for the POV is therefore consequently constrained by these sensors’ capability of
detecting the vehicle at an early stage. With the available sensors for the scenario
setup, the predictions instead acted more as a near-term observer than a long-term.
If instead additional sensors could be added on the EGO, for example giving infor-
mation of the POV’s lane alignment or activated turn signal, a better performed
long-term prediction could be computed.

The IMM on the other hand, is built up by a number of motion models representing
possible manoeuvres to be made by a driver. A model could thus describe a turning
motion either to the right or left as well as with different turning angles. A model
could also describe a braking (deceleration) or acceleration motion. However, with
an increasing number of models, the more computational heavy the overall system
will become. This since the models are run in parallel. In the presented solution,
the IMM has a restrained possibility to only choose between a left, right or straight
model to best represent the driver intent, which has been noted to not always give
the correct prediction. This was evident in the scenario where the POV was initi-
ating a turn, but stopping to let the EGO pass i.e. the Abandoned turn scenario.
Here, before the POV would get to a full stop, the chosen motion model was either a
right or left turning model due to both an initiated turn and deceleration. This did
in some cases infer that the driver was still turning, when instead the vehicle was
braking to a full stop hence inevitably ended up in a danger of collision. Including
one motion model describing constant acceleration and one describing a constant
deceleration might yield a better perception of the reality. On the contrary, in com-
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parison to a motion model describing only a single motion such as the Constant
Velocity (CV) model, the IMM approach is more reliable as shown in the analysis
from Section 3. This is primarily due to the IMM’s possibility to match the driver
intent from a set of pre-defined motion models instead of only being able to account
for one models ability to follow the probable pathway.

A common key factor for both the BN and IMM is the sensors reliability. In both
simulations using PreScan and by the use of the data collected from real-tests, the
input data was very accurate (position variance up to maximally 10 cm), hence was
considered to give sufficiently reliable data. As the data for the POV was considered
to be collected using a radar, this data was regarded to be more inaccurate.

Since the IMM considers both the input data and estimated affecting noise to
be of equal importance, it is crucial that the noise is correctly estimated. If the noise
were to be estimated wrongly, being either too large or too low than the reality, this
could consequently have negative affects on the filtering performance. The IMM
itself requires some noise on the input (as it most often has) for the ability to dif-
ferentiate between the different models set up by the designer. Moreover is also the
sampling frequency a key factor in the ability to differentiate between the models,
as described in Section A. For instance with a too high sampling frequency (higher
than 10 hertz), the models will be updated too often hence the predictions from the
filter seem to be at the same point as the previous time step, for each model. A
lower sampling frequency will thus generate more noticeable changes between each
consecutive update, hence the IMM becomes more reliable.

The fused predictions from both the BN and IMM result in a motion model giving
a good representation of the driver intent, which in the last part of the long-term
path prediction will be used to compute the predicted path some time steps into
the horizon. This is, as described in Section 3.4, accomplished with the use of the
prediction part of the Unscented Kalman Filter (UKF).

Even if the process is easily computed, there are however three main factors
affecting the final outcome which are the noise covariance matrix, the weight coef-
ficients and lastly the number of prediction time steps. Both the noise covariance
and the weight coefficients are in the presented solution chosen to be least restric-
tive, described in Section 3.4, hence could not be optimised to any further extent.
The third factor, the number of prediction time steps, is instead the main affecting
parameter for the ability to perform accurate perception of future time steps. At
a velocity of around 50 km/h, as studied in this thesis, a full stop using an Au-
tonomous Emergency Braking (AEB) system could be obtained within around 1.1
seconds [42]. The number of prediction time steps would therefore need to cover
at least 1 second into the future. However, the prediction time could not be set
to cover a too large horizon due to the fact that with a longer prediction horizon,
it will consequently give a higher sensitivity to have a wrongfully chosen model.
This design challenge is illustrated in Figure 7.1. The prediction horizon of 15 time
steps, equal of covering a future time span of 1.5 seconds, is chosen for the ability to
asses and intervene an oncoming collision whilst still having low probability of false
interventions.
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Figure 7.1: Illustration of a too long prediction horizon giving an unwanted result. The
green predictions represents the meant path whereas the red represents the wrongfully
predicted path.

7.1.2 Collision detection

The collision detection subsystem has been seen to be able to detect a vast variety
of collision configurations. Since the system relies on the quality of the predictions,
consequently the reliability of the system is decreased as the uncertainties increase.
As the variance defines the uncertainty, the variances will also increase along the
prediction horizon. Too large variances will thus lead to lack of interventions since
the probabilities of collision never reach the threshold. The threshold could moreover
be lowered, but would then most likely result in a higer number of false interventions
as illustrated by the ROC-curve described in Section 6.3.

Since the collision detection algorithm is dependent on knowledge of the vehi-
cle’s size, some kind of classification algorithm determining a vehicle’s area will be
crucial in future developments. This knowledge is needed to be able to evaluate the
risk of collision as well as calculating the collision time interval correctly. A classi-
fication algorithm like this could moreover lead the collision detection algorithm to
be useful with road participants other than cars.

The biggest drawback of the collision detection subsystem is the computational
complexity. For the evaluation made in real-time, problems occurred due to the
computation time of each subsystem, in particular because of the collision detection
subsystem’s influence. A decrease in the number of points denoting a vehicle’s area,
will decrease the complexity but also the reliability of the system as described in
Chapter 6.3.4. Research on how to find a numerically lighter approximation of
the integral (computing the probability of collision) is therefore recommended by
the authors. Another improvement could be to span a vehicle’s area in a different
way, e.g. place the points in some other configuration. Additionally, can future
investigations of a two step method for the collision detection be made, similar to
[31]. The first step is thus to generate a rough estimation of the collision risk.
Secondly, if a threat is detected, a more accurate evaluation would be performed.
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7.1.3 Collision avoidance
The CA system described in Chapter 5 was designed with the aim to be least
restrictive whilst being maximally evasive, i.e. avoiding or mitigating a collision with
few false interventions. This is done by keeping the EGO from travelling beyond the
Point-Of-No-Return (PNR) with the aid of the emergency braking system (EBS).

The research and design towards the long-term prediction and collision detec-
tion subsystems as part of the presented CA system, was able to benefit from the
tools developed by [17]. The modularity as well as effectiveness of the CA system
has been evaluated through simulations to be fully executable within the urban
intersection environment, as presented in Chapter 6.

The presented results is confirming the CA systems ability to disregard the
collision risk given by the Collision detection subsystem having a time interval of
maximally 1 time step. It also demonstrates the systems ability to evaluate an
accurate PNR, before triggering a braking intervention. A crucial part of the system
is hence to be able to evaluate a detected danger to be an inevitable collision and
at the same time only intervene when the collision is considered to be unavoidable
by the driver.

7.2 System application
The system has been tested and evaluated through simulations mostly in MAT-
LAB/Simulink but later also using PreScan. Each block of the CA system has been
evaluated independently of the others, hence keeping the modularity of the system.
The aim of the thesis work has always been on real-time implementations and the
preparations for this, using AutoBox [43] as a tool, was conducted during the last
3-4 weeks of the thesis. The ability to finalise the tests were unfortunately not pos-
sible, where the problem could either lie in the code generation from the Simulink
to AutoBox model or by the computational performance of the in-vehicle computer.

Regarding the system’s performance, there are some system properties generating
worse or better results. The underlying properties of bad results could be:

• For the BN, there were too few observations mostly for the POV, but also for
the EGO.

• Not enough manoeuvres to represent the probable directions.

• The choice of Extended Kalman Filter (EKF) as the filtering technique.

The first point could be explained by the fact that if more information about the
POV is observable such as turn signal and lateral alignment, an earlier recognition
of probable direction could be gained. More possible manoeuvres to choose from
would be beneficial both for the BN as well as the IMM, since this could describe the
probable direction with a higher accuracy. The extended set of different manoeuvres
could include one model for acceleration and one for deceleration. The third point
regards the choice of using EKF as filtering technique. An UKF could give higher
precision, but will however consequently result in higher computational complexity.
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Another dimension to the filtering would be to include a smoothing technique similar
[30], which could help in the ability to differentiate between a turning and a straight
going motion.

On the contrary, the factors that could generate better results than expected are
given by:

• ”Perfect data” simulations

• Faulty trajectory predictions still detecting a threat in the vicinity of the driver
intended trajectory

In both the simulations and in-vehicle tests, the given measurement data has been
almost perfect in the aspect of only low noise added. The ability to perform tests
with radar has been done through PreScan, but not in the in-vehicle tests. If radar
is to be used to detect other objects along the path, the proposed solution will need
to be evaluated through in-vehicle tests. This is due to PreScan operating in a too
”perfect environment”, hence giving measurements not representing possible sensor
imperfections. A demonstration of the systems critical noise limits was presented
in Section 6.3.2, which also gave information of the manageable sensor imperfection
limits.

The second factor is given by the Long-term path prediction subsystems limits
in accurate prediction performance. In scenarios similar to the illustration in Figure
7.2, a faulty predicted trajectory could still lead to a correct threat assessment as
well as braking intervention. The braking intervention will thus be actuated earlier
than it supposedly should as seen to the driver intended trajectory, hence could
lead to an unacceptable intervention in the eyes of the consumer. This is therefore
something that need more attendance in future work.

Figure 7.2: Illustration of a factor giving a well-performed system even with faulty
predicted trajectory. The green predictions represents the meant path where as the red
represents the wrongfully predicted path.
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7.3 Future work
As a result of this thesis work, the presented CA system is designed to able to, in
a robust and efficient way, detect and avoid or mitigate an oncoming collision. But
even though the developed system manages to solve the stated problems, it still has
room for improvements.
The major improvements recommended for future work in the aim of getting a
commercially available system is to:

• Incorporate more statistical information into the BN-nodes. These nodes could
thereafter be an underlying basis for a look-up library applicable for different
types of sensors. This is because the presented BN is developed to comprehend
information given by a sensor regardless of which sensors used. An inclusion
of V2V or V2I is therefore a possible incorporable solution.

• Include more motion models into the IMM describing accelerating and decel-
erating trajectories.

• Obtain the road curvature for each specific road, to be used for both the IMM
and UKF. As of now, the subsystems are given a constant curvature radius
acting as a generally good estimate. The system would however improve the
computed predictions with an accurate curvature.

• Constrain the trajectories of each vehicle according to the path restrictions
given by a digital map. These restrictions could be limited to the drivable
pathway along the roads.

• Include other possible intervention methods such as turning or acceleration,
giving the possibility to at most times avoid a collision instead of only mitigat-
ing it. This could be solved using a Model Predictive Control (MPC) structure
which gives an ”optimal trajectory follower”.

As a minor upgrade to the system design, with the prediction horizon of 1.5 seconds,
there is a possibility to provide graphical and/or audio information of an oncoming
collision to the driver. This information could be as a warning to enforce an inter-
vention earlier than the human would predict it would need to do. An upgrade like
this could hence give a more commercially acceptable solution.

The stated improvements would enhance and solve the major short comings
of the system design. The developed system would thus foremost need to be further
evaluated through real-vehicle tests. The system was developed for and implemented
in real-vehicle tests, but due to unknown computational problems within the Auto-
Box environment, no successful results were obtained. Any extended development
of the proposed system is therefore recommended to be put on studies on getting
real-vehicle tests fully functioning.
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7.4 Concluding remarks
The results and analysis in Chapter 6 show the systems robustness and ability to
perform in the systems intended environment such as urban intersections. Even
though the discussion in Section 7.1 and 7.2 highlights some discovered problems,
the authors opinion is that the proposed system design fulfils the intended objective
stated in the first paragraph of Chapter 7.

The first objective is handled by the long-term path prediction block, the sec-
ond by the collision detection block and lastly the third objective is obtained through
the collision avoidance part of the system. The fourth objective was partially ful-
filled as the real-vehicle implementations was obstructed by software issues. To be a
commercially acceptable product, some improvements are proposed as described in
Section 7.3, but the authors recommend to first make sure that the system is imple-
mentable within a vehicle’s computation system such as for example an AutoBox.
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A
System parameters

The system parameters used throughout the proposed approach is in this chapter
defined and presented.

A.1 Time parameters

There are four parameters connected to time in the proposed algorithm. One de-
noted as the time step ∆T describing the overall collision avoidance system’s sample
time, which was set to 0.1 seconds. The sample time were chosen to be fast enough
to account for possible important changes, but was however restricted by the IMM’s
sample frequency preferences. If the sample time would have been set as fast as
the sensors allowed it to be, the IMM would struggle to differentiate between each
consecutive time step’s state information. A too fast sample time would hence lead
the IMM to the belief that the vehicles were standing still from one time step to
another.

A prediction horizon Tpredictions of 1.5 seconds, equal to 15 predictions (npredictions
= 15), were chosen. A longer prediction horizon is not needed since at a velocity of
around 50 km/h, as studied in this thesis, a full stop using an Autonomous Emer-
gency Braking (AEB) system could be obtained within around 1.1 seconds according
to [42]. A longer prediction horizon will also be more sensitive to false predictions,
hence consequently could lead to more false interventions. Depending on how un-
certain the measurements would be, a longer prediction time would not necessarily
generate any additional information.

In the decision process of knowing when to brake, a reaction time, treaction,
need to be defined. The reaction time will thus also include the time it takes for
the braking system to be prepared for emergency braking. This time parameter was
set to have a duration of two time steps i.e. 0.2 seconds. This was based on the
evaluation of [17] since the same type of vehicles were used. Through this evaluation,
the authors found that the ramp-up time were varying between 0.2 and 0.3 seconds.

In summary, the time parameters used throughout the CA system were set as:

∆T = 0.1s
npredictions = 15
Tpredictions = ∆T · npredictions = 1.5s
treaction = 2∆T = 0.2s
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A. System parameters

A.2 Thresholds
There are two thresholds in the system, one for the collision detection subsystem,
TCD, and one for the collision avoidance subsystem, TCA. The thresholds can be
changed to regulate the behaviour of the system, where an increase of the thresholds
would lead to a system having fewer false interventions, but with a threshold set too
high could lead to a non-intervening system. If the thresholds instead would be set
too low, an excessive degree of interventions would occur hence giving more false
interventions.

A threshold of 50 percent was set for the collision detection since this would
be the probability of collision if two vehicles were to be next to each other, with
the variance being low. The threshold for the collision avoidance was also set to 50
percent since if a threat was determined by the collision detection subsystem, it is
equally likely of being an imminent collision. The parameters were therefore set as:

TCD = 50%
TCA = 50%

As explained later in this chapter, the collision detection threshold has been seen to
have a bigger influence on the behaviour of the system than the collision avoidance
threshold.

A.3 Vehicle parameters
The vehicles’ maximum velocity, vmax, was according to the made restrictions set to
13.9 m/s (equal to 50 km/h) where as the maximum deceleration, −amax, was set
as -8.5m/s2 due to the vehicle properties based on [17].

The required time it takes for the vehicle to get to a full stop tbrake is defined
as, tbrake = (vend − v(t))/(−amax), where vend will be equal to zero at the end of the
brake and v(t) is the velocity in the first prediction in each time step. The vehicle’s
stopping time, tstop is thereafter calculated as the sum of tbrake and treaction.

The knowledge of the width and length of each vehicle is important for the collision
detection subsystem since the algorithm is dependent on the areas of both vehicles.
The total number of η points describing each vehicle area were chosen as 27 (3x9
= width x length), since this was identified in the evaluation as sufficient to give
an accurate result. The evaluation of number points to describe a vehicle’s area is
later presented in Section 6.3.4.

A.4 Uncertainty- and disturbance parameters
To allow the IMM-filter to be able to account for all possible initial paths of each
vehicle, the initial measurement noise covariance matrices need to capture a range
of driving configurations that could possibly be executed, as illustrated in Figure
A.1.
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Figure A.1: Illustration of how the initial measurement noise covariance matrices cap-
tures a range of driving configurations that could possibly be executed. The covariance
matrix covers not only manoeuvre configurations, but also sensor measurement uncertain-
ties hence covering a larger area.

The initial measurement noise covariance matrices for the IMM-filter in Section 3.3
were therefore initialised as:

P init
CV = diag([10, 10, 10, 10, 50π

180 ]) (A.1)

P init
CT = diag([1, 1, 1, 1, 5π

180]) (A.2)

P init
CV P = diag([10, 10, 90π

180 , 10, 90π
180 ]) (A.3)

P init
CTP = diag(1, 1, 5π

180 , 1,
5π
180]) (A.4)

where Constant Velocity Polar (CVP) and Constant Turn rate Polar (CTP) in-
terprets as the polar state space representation, and Constant Velocity (CV) and
Constant Turn rate (CT) is interpreted as belonging to the spherical state space
representation. Thus could, as previously described in Equation (2.1), the covari-
ance matrices first two indexes denote the x- and y-cartesian coordinates, where as
the fifth index denotes the angular velocity. The disparity between the two state
representations is the third and fourth indexes, where it represents the heading (θ)
and speed (v) for the spherical and velocity in x-direction (Vx) and y-direction (Vy)
in the polar representation.
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The values in the measurement noise covariance matrix for the straight going models
have higher variance for the ability to tune in the initial predictions faster. The
IMM-filter will therefore have the ability to avoid a long initial transient at an early
stage of the vehicle’s movement. The overall position, heading and velocity variance
values are moreover kept high to be able to capture every initial configuration.

In comparison to the dynamic measurement noise covariance matrix, which will be
updated every time step, the process noise covariance matrix will instead be set as
static throughout the IMM computations. The process noise covariance matrix will
therefore need to quickly capture divergent driver manoeuvres hence was initiated
as:

QCV/CT = diag([0, 0, 2, 2, 0]) (A.5)
QCV P/CTP = diag([0, 0, 0, 2, 0]) (A.6)

This means that the process noise is only applied to the velocities included in the
different motion models, hence being able to rapidly regulate on prompt velocity
changes.

The process noise covariance matrices for the UKF however will not be set to capture
as widely divergent changes, due to the predictions being calculated on already
filtered states. These covariance matrices were therefore initiated as:

Qpred,CV = diag([0, 0, 0.35, 0.35, 0.5π
180 ]) (A.7)

Qpred,CT = diag([0, 0, 0.35, 0.35, 30π
180 ]) (A.8)

Qpred,CV P = diag([0, 0, 0.5π
180 , 0.35, 0.5π

180 ]) (A.9)

Qpred,CTP = diag([0, 0, 10π
180 , 0.35, 10π

180 ]) (A.10)

where the values are kept low on the velocities for the straight going models to keep
the regulations on the calculated predictions to a minimum. The regulations for the
heading and yaw rate for the turn models on the other hand are desired to have
rapid regulation properties, hence being kept higher.
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B
System performance

Further scenarios for both non-evasive and evasive manoeuvres are presented in this
chapter.

B.1 Non-evasive manoeuvres

B.1.1 Avoidance manoeuvre:
Test scenario: Both the EGO and POV are travelling on a straight path, where the
POV evades an obstacle in its own lane by making a turning manoeuvre into the
EGO’s lane, later on returning to the straight path in its own lane. An illustration
can be seen in Figure B.1.

Figure B.1: Illustration of the used scenario for evaluation. Blue represents the EGO’s
trajectory whereas red represents the POV’s, black represents the end positions for both
vehicles in the scenario.

In Figure B.2 is the BN and IMM for both the EGO and POV illustrated, where the
path with the highest probability for the EGO can be seen to be straight, Figure B.2a
and B.2b, which corresponds to reality. Furthermore, in Figure B.2c and B.2d is
the highest probability in the BN and IMM for the POV also representative of the
reality since the POV can be seen to be turning.
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(a) BN for the EGO.
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(b) IMM for the EGO.
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(c) BN for the POV.
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(d) IMM for the POV.

Figure B.2: The BN probabilities as well as the IMM weights for each of the three
models are here shown for both the EGO and the POV. The three different models are
represented by red for left turn, black for right turn and blue for going straight.

Note that the highest probability in the BN for the EGO, Figure B.2a, changes
around 1.7 seconds but is corrected by the IMM filter, Figure B.2b. This change is
due to the information gained by the lane marker sensor, which in the centre of the
intersection cannot detect any lane markers. In the BN for the POV, Figure B.2c,
is the highest probability instead changing from straight to left model because of
the performed avoidance manoeuvre, but similarly in this case it is thus corrected
by the IMM filter as seen in Figure B.2d.

Figure B.3 shows that there is never an imminent risk of collision since the
probability of collision is always below the threshold, hence neither a Danger nor a
Brake signal is set.
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Figure B.3: Probability of collision according to the collision detection subsystem, where
Figure B.3a also illustrates the threshold that triggers the Danger signal.

B.1.2 Abandoned turn with 10 predictions
If the number of prediction steps would be decreased to 10 instead of 15 for the
abandoned turn scenario, the first peak seen in Figure 6.6 and 6.7 is gone, as seen in
Figure B.4 and B.5 this since the predictions are getting to far ahead in the future
which leads to false collision detection in the system. But since no intervention
occurred, it is still possible to use 15 prediction steps.
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Figure B.4: Probability of collision according to the collision detection subsystem, where
Figure B.4a also illustrates the threshold that triggers the Danger signal.

VII



B. System performance

0 1 2 3 4 5 6 7

0

0.5

1

0 1 2 3 4 5 6 7

0

0.5

1

0 1 2 3 4 5 6 7

0

0.5

1

Time [s]

0 1 2 3 4 5 6 7

0

0.5

1

Figure B.5: Illustration of the intervention timing from when a threat is detected to when
an braking intervention is performed. From top to bottom, threat detected in collision
detection subsystem (red), intervention performed in collision avoidance subsystem (blue),
brakes initiated after reaction time (black) and optimal braking profile (magenta, dotted).

B.2 Evasive manoeuvres

B.2.1 Stationary obstacle:
Test scenario: This scenario has two slightly different versions. In the in-vehicle test
the EGO was travelling on a straight path where an obstacle (the POV) obstructed
the EGO’s path, an illustration can be seen in Figure B.6.

Figure B.6: Illustration of the used scenario for evaluation. Blue represents the EGO’s
trajectory whereas black represents the end positions for both vehicles in the scenario.
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(b) IMM for the EGO.
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(c) BN for the POV.
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(d) IMM for the POV.

Figure B.7: The BN probabilities as well as the IMM weights for each of the three
models in the simulation are here shown for both the EGO and the POV. The three
different models are represented by red for left turn, black for right turn and blue for
going straight. Additionally is the influence of the braking included for the EGO (black,
dotted).

In the simulation in PreScan the POV instead travels straight, turns left and even-
tually stops in the middle of the EGO’s lane, blocking the path for the EGO.

In Figure B.7a and B.7b are the probabilities of the BN and the IMM illustrated
for the EGO’s three different models (left, right and straight) for the simulations.
As desired, the straight model has the highest probability in both the BN and the
IMM. In the BN is the probability of turning increasing at around 6 seconds which is
explained by looking at Figure B.9, since it is at this time instance the EGO makes
a braking intervention. The IMM however corrects this by setting the models to be
equally likely.

The probabilities for the POV’s three different models according to the BN
and IMM, are represented in Figure B.7c and B.7d. The traffic scenario was in this
case assumed to be a T-intersection, hence the road network and legal turns were
altered as opposed to the default setup. The BN for the POV was influenced by this
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data as can be seen in Figure B.7c, where the right model has been given a lower
probability in the BN. The model with the highest probability in the BN can be
seen to change from straight to left when the POV starts to turn. When the POV
is standing still on the other hand, the probabilities for the three different models
are set equal. The probabilities in the IMM are changing in a similar fashion.
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Figure B.8: Probability of collision according to the collision detection subsystem, where
Figure B.8a and B.8c also illustrates the threshold that triggers the Danger signal.

In Figure B.8 is the probability of collision depicted for both the simulation and
in-vehicle test. Since the POV stops at around 5 seconds in the simulation, the
probability rises above the threshold and theDanger signal is triggered at 5.1 seconds
as shown in the top graph of Figure B.9a. According to the second graph in the
same figure, the brake pressure is built up in preparation for emergency braking
at 5.5 seconds and finally initiates the braking procedure at 5.7 seconds as seen in
the third graph. The forth graph illustrates that the optimal braking should be
triggered at 5.9 seconds.
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(b) Intervention timing, result from in-
vehicle test.

Figure B.9: Illustration of the intervention timing from when a threat is detected to
when a braking intervention is performed. From top to bottom, threat detected in collision
detection subsystem (red), intervention performed in collision avoidance subsystem (blue),
brakes initiated after reaction time (black) and optimal braking profile (magenta, dotted).

All of the graph’s values are set equal to zero at 7.1 seconds since the brakes have
been released and the threat has passed.

Figure B.8c, B.8d and B.9b instead illustrates the behaviour with data given
from in-vehicle test. It can here be noted that the in-vehicle test was not actually
triggering a braking intervention. The main purpose of the figures is therefore to
merely demonstrate the systems ability to detect a danger and demanding a braking
intervention, hence the danger as well as braking signal’s length is not reflecting the
reality. Moreover should the optimal braking seen in the fourth graph in Figure
B.9b, also be considered to not fully reflect the reality.

Figure B.10 shows the DTC and TTC as well as when the braking is initiated
and released for the simulations, which can be compared to the third graph (black)
in Figure B.9a. Compared to the DTC for the colliding trajectory (where no braking
is performed), is the evasive trajectory’s DTC decreasing after the brakes have been
applied and finally ends up really close to collision, but in a later time step. By
instead looking at the TTC it is shown that the difference is bigger between the TTC
for the colliding and the actual trajectory. Since the EGO’s velocity is decreasing
can the collision still be avoided, even though the DTC is close to and the TTC only
is slightly above zero.
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Figure B.10: Here are the DTC and TTC over time seen for the simulation. Blue repre-
sents the estimated DTC/TTC in each time step when the EGO executes an intervention.
The red circles represent when the brakes are triggered and later released. Magenta rep-
resents the estimated DTC/TTC for a vehicle without a CA system. Figure B.10a also
illustrates the distance uncertainty with vertical bars. The idea is that the vehicle should
never end up in a DTC or TTC equal to 0, since this is when a collision occurs.

B.2.2 Left turn by the POV across the EGO’s path
There is an additional turning scenario made by the POV, where the POV makes
an aggressive left turn across the EGO’s path, an illustration can be seen in Figure
B.11.

Figure B.11: Illustration of the used scenario for evaluation. Blue represents the EGO’s
trajectory whereas red represents the POV’s, black represents the end positions for both
vehicles in the scenario.
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(a) BN for the EGO.
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(b) IMM for the EGO.
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(c) BN for the POV.
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(d) IMM for the POV.

Figure B.12: The BN probabilities as well as the IMM weights for each of the three
models in the simulation are here shown for both the EGO and the POV. The three
different models are represented by red for left turn, black for right turn and blue for
going straight. Additionally is the influence of the braking included for the EGO (black,
dotted).

In Figure B.12a and B.12b is the BN and IMM depicted for the EGO. Similar to
before the BN is decreasing its probability for the straight model when it brakes,
which can be seen to be the reason by looking at Figure B.14. As before is the IMM
correcting this.

Since the BN has no evidences which can distinguish between right or left
turn for the POV, the BN is only hinting on a change of highest probability between
straight and turn model as seen in Figure B.12c. The IMM probabilities for the POV,
seen in Figure B.12d, can be seen to handle the change better and can distinguish
between right and left.

The probability of collision, Figure B.13, has two peaks above the threshold
which triggers the Danger signal as seen in Figure B.14. In this case an increase
of the threshold would be desirable to prevent from unnecessary interventions. The
system is not triggered to brake though until the second peak.
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Figure B.13: Probability of collision according to the collision detection subsystem,
where Figure B.13a also illustrates the threshold that triggers the Danger signal.
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Figure B.14: Illustration of the intervention timing from when a threat is detected to
when an braking intervention is performed. From top to bottom, threat detected in col-
lision detection subsystem (red), intervention performed in collision avoidance subsystem
(blue), brakes initiated after reaction time (black) and optimal braking profile (magenta,
dotted).

As seen in Figure B.15 is the braking performed until the DTC is at a safe distance
and with a TTC of around 0.5 seconds.
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Figure B.15: Here are the DTC and TTC over time seen for the simulation. Blue repre-
sents the estimated DTC/TTC in each time step when the EGO executes an intervention.
The red circles represent when the brakes are triggered and later released. Magenta rep-
resents the estimated DTC/TTC for a vehicle without a CA system. Figure B.15a also
illustrates the distance uncertainty with vertical bars. The idea is that the vehicle should
never end up in a DTC or TTC equal to 0, since this is when a collision occurs.
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B.2.3 Real tests of left turn across path by either EGO or
POV

Real test data of both the EGO and POV performing a left turn across the other
vehicles path is illustrated in Figure B.16, B.17 and B.18. As illustrated in Figure
B.16, there are several similarities in the result from both the BN and IMM. Here,
the result for the EGO, Figure B.16a and B.16b, is more distinct in comparison to
the POV result, Figure B.16c and B.16d, but both are nonetheless giving a similar
result.

This is also reflected in both the collision probability, Figure B.17 as well as
the intervention timing, Figure B.18, where both the collision detection and threat
assessment is more narrow when POV performs the turn. Note that the optimal
braking profile illustrated in Figure B.18a and B.18b is only accurate for the initiated
braking phase.
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Time [s]

0 2 4 6 8 10 12 14 16 18 20

P
ro

b
a

b
ili

ty
 [

%
]

0

10

20

30

40

50

60

70

80

90

100

Left

Right

Straight

Braking started/stopped

(b) IMM for EGO
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(c) BN for POV
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(d) IMM for POV

Figure B.16: In the left figure the BN probabilities is depicted, in the right the IMM
weights, both for the EGO’s three different models. Here red represents left turn, black
represents right turn and blue represents going straight. The top plot demonstrates the
result from BN and IMM for the EGO making a left turn across path, where as the bottom
plot demonstrates the same scenario for the POV.
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in-vehicle test for the LTAP performed by
the EGO.
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in-vehicle test for the LTAP performed by
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Figure B.17: Probability of collision according to the collision detection subsystem,
where Figure B.17a and B.17c also illustrate the threshold that triggers the Danger signal.
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Figure B.18: Illustration of the intervention timing from when a threat is detected to
when an braking intervention is performed. From top to bottom, threat detected in col-
lision detection subsystem (red), intervention performed in collision avoidance subsystem
(blue), brakes initiated after reaction time (black) and optimal braking profile (magenta,
dotted).
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B.2.4 Attempted turn into the same lane:
Test scenario: The POV makes a left turn across the EGO’s lane, while the EGO
initiates a right turn into the POV’s intended path. The EGO will here have a
right blinker signal turned on close to the intersection, whereas the POV has the
road restrictions and legal turns set as left and straight, i.e. a T-intersection. An
illustration can be seen in Figure B.19.

Figure B.19: Illustration of the used scenario for evaluation. Blue represents the EGO’s
trajectory whereas red represents the POV’s, black represents the end positions for both
vehicles in the scenario.

In Figure B.20a and B.20b is the BN and IMM illustrated for the EGO, where the
model having the highest probability can be seen to change from straight to right
model for both the BN and IMM, similar to what happens in the scenario. The
BN and IMM for the POV can be seen in Figure B.20c and B.20d, where also here
the BN and IMM are demonstrating the expected behaviour. In Figure B.23 is the
braking phase illustrated and the related DTC and TTC. The TTC in the time step
just before the brakes are released is really close to zero, but the TTC in the same
time step is safe, whereas a collision never occurs but is very close.

As seen in Figure B.21, the probability of collision is growing more certain with
time and the danger and braking signal are initiated at the same time instance, seen
in Figure B.22.

There are two additional results showing the behaviour when a turn into the
same lane is performed, EGO turn, POV straight and POV turn, EGO straight. In
EGO turn, POV straight is the EGO making a right turn into the same lane as the
POV is travelling on. Here the EGO’s right turn signal is activated close to the
intersection, an illustration can be seen in Figure B.24.

XIX



B. System performance

Time [s]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

P
ro

b
a
b

ili
ty

 [
%

]

0

10

20

30

40

50

60

70

80

90

100

Left

Right

Straight

Braking started/stopped

(a) BN for the EGO.
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(b) IMM for the EGO.
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(c) BN for the POV.
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(d) IMM for the POV.

Figure B.20: The BN probabilities as well as the IMM weights for each of the three
models are here shown for both the EGO and the POV. The three different models are
represented by red for left turn, black for right turn and blue for going straight. Addition-
ally is the influence of the braking included for the EGO (black, dotted).

The BN and IMM for the EGO is depicted in Figure B.25a and B.25b, which behaves
as expected where the model with the highest probability changes from straight to
right. In Figure B.25c and B.25d can the BN and IMM for the POV be seen.
The model of highest probability for the BN is same throughout the whole scenario
whereas the IMM has some difficulties in the beginning due to the transient phase
of the filter.

The probability of collision can be seen in Figure B.26 and has a long time
interval when the Danger signal is set high, as seen in Figure B.27. The DTC and
TTC as a function of time is illustrated in Figure B.28 where both the TTC and
DTC can be seen to get really close to zero. This means that the collision is not
fully avoided in this case, but mitigated to a big extent.
In the scenario POV right, EGO straight is the POV instead making a right turn
into the EGO’s straight path, an illustration can be seen in Figure B.29.
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Figure B.21: Probability of collision according to the collision detection subsystem,
where Figure B.21a also illustrates the threshold that triggers the Danger signal.
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Figure B.22: Illustration of the intervention timing from when a threat is detected to
when a braking intervention is performed. From top to bottom, threat detected in collision
detection subsystem (red), intervention performed in collision avoidance subsystem (blue),
brakes initiated after reaction time (black) and optimal braking profile (magenta, dotted).

In Figure B.30a and B.30b can the BN and IMM for the EGO be seen, as before
is the probability of straight model going down due to the braking in the BN but
corrected by the IMM filter. For the POV the BN cannot distinguish between right
or left turn since it does not have enough of evidence. The IMM also has some
difficulties in the beginning of the change but is certain about the right model after
some time steps. The BN and IMM for the POV can be seen in Figure B.30c and
B.30d.
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Figure B.23: Here are the DTC and TTC over time seen for the simulation. Blue repre-
sents the estimated DTC/TTC in each time step when the EGO executes an intervention.
The red circles represent when the brakes are triggered and later released. Magenta rep-
resents the estimated DTC/TTC for a vehicle without a CA system. Figure B.23a also
illustrates the distance uncertainty with vertical bars. The idea is that the vehicle should
never end up in a DTC or TTC equal to 0, since this is when a collision occurs.

Figure B.24: Illustration of the used scenario for evaluation. Blue represents the EGO’s
trajectory whereas red represents the POV’s, black represents the end positions for both
vehicles in the scenario.

Since there are difficulties for the IMM to decide which model to choose between
around 3 and 3.5 second, also the collision detection has some problems which results
in a drop of the probability in this time interval, seen in Figure B.31. In Figure B.32
can the resulting effect be seen, where the braking is performed in two intervals. The
TTC and DTC as a function of time, seen in Figure B.33, shows that a collision is
close, but a collision never occurs in reality.
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(a) BN for the EGO.
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(b) IMM for the EGO.
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(c) BN for the POV.
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(d) IMM for the POV.

Figure B.25: The BN probabilities as well as the IMM weights for each of the three
models in the simulation are here shown for both the EGO and the POV. The three
different models are represented by red for left turn, black for right turn and blue for
going straight. Additionally is the influence of the braking included for the EGO (black,
dotted).

XXIII



B. System performance

Time [s]

0 0.5 1 1.5 2 2.5 3 3.5 4

P
ro

b
a
b
ili

ty
 [
%

]

0

10

20

30

40

50

60

70

80

90

100

Maximum Collision Probability

Threshold

Braking started/stopped
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Result from simulation in PreScan.
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Figure B.26: Probability of collision according to the collision detection subsystem,
where Figure B.26a also illustrates the threshold that triggers the Danger signal.
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Figure B.27: Illustration of the intervention timing from when a threat is detected to
when an braking intervention is performed. From top to bottom, threat detected in col-
lision detection subsystem (red), intervention performed in collision avoidance subsystem
(blue), brakes initiated after reaction time (black) and optimal braking profile (magenta,
dotted).
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Figure B.28: Here are the DTC and TTC over time seen for the simulation. Blue repre-
sents the estimated DTC/TTC in each time step when the EGO executes an intervention.
The red circles represent when the brakes are triggered and later released. Magenta rep-
resents the estimated DTC/TTC for a vehicle without a CA system. Figure B.28a also
illustrates the distance uncertainty with vertical bars. The idea is that the vehicle should
never end up in a DTC or TTC equal to 0, since this is when a collision occurs.

Figure B.29: Illustration of the used scenario for evaluation. Blue represents the EGO’s
trajectory whereas red represents the POV’s, black represents the end positions for both
vehicles in the scenario.
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B. System performance
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(a) BN for the EGO.
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(b) IMM for the EGO.
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(c) BN for the POV.
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(d) IMM for the POV.

Figure B.30: The BN probabilities as well as the IMM weights for each of the three
models in the simulation are here shown for both the EGO and the POV. The three
different models are represented by red for left turn, black for right turn and blue for
going straight. Additionally is the influence of the braking included for the EGO (black,
dotted).
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(a) Maximum probability of collision of
the prediction horizon, for each time step.
Result from simulation in PreScan.
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step for every time step. Result from simula-
tion in PreScan.

Figure B.31: Probability of collision according to the collision detection subsystem,
where Figure B.31a also illustrates the threshold that triggers the Danger signal.
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Figure B.32: Illustration of the intervention timing from when a threat is detected to
when an braking intervention is performed. From top to bottom, threat detected in col-
lision detection subsystem (red), intervention performed in collision avoidance subsystem
(blue), brakes initiated after reaction time (black) and optimal braking profile (magenta,
dotted).
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Figure B.33: Here are the DTC and TTC over time seen for the simulation. Blue repre-
sents the estimated DTC/TTC in each time step when the EGO executes an intervention.
The red circles represent when the brakes are triggered and later released. Magenta rep-
resents the estimated DTC/TTC for a vehicle without a CA system. Figure B.33a also
illustrates the distance uncertainty with vertical bars. The idea is that the vehicle should
never end up in a DTC or TTC equal to 0, since this is when a collision occurs.
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B. System performance

B.2.5 Road merging scenario:
Test scenario: As a part of cooperative driving evaluation, this test aims at evaluat-
ing the behaviour of the EGO when it is travelling on a road merging into another
road. One example is when the POV is travelling on a straight path and the EGO
travels on the entrance lane to this path, for example an entrance lane to the high-
way. An illustration of the intended scenario can be seen in Figure B.34.

Figure B.34: Illustration of the used scenario for evaluation. Blue represents the EGO’s
trajectory whereas red represents the POV’s, black represents the end positions for both
vehicles in the scenario.
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(a) BN for the EGO.
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(b) IMM for the EGO.

Figure B.35: The BN probabilities as well as the IMM weights for each of the three
models are here shown for the EGO. The three different models are represented by red for
left turn, black for right turn and blue for going straight. Additionally is the influence of
the braking included for the EGO (black, dotted).

The EGO is in this scenario going straight, turning right and thereafter left to merge
into the POV’s lane to continue on a straight path. This is illustrated by the BN
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B. System performance

and IMM in Figure B.35. The IMM is bringing down the probability of going right,
which is reasonable since the turn is just a soft transfer into a new lane.

The BN and IMM for the POV is behaving as expected, similar to what was
seen in the bottom plots of Figure 6.9.
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step for every time step.

Figure B.36: Probability of collision according to the collision detection subsystem,
where Figure B.36a also illustrates the threshold that triggers the Danger signal.

Since the EGO is approaching the POV’s lane from the right side but then turns
right, the probability of collision goes above the threshold at an early time instance.
When the EGO thereafter performs the actual turn into the lane, a braking sequence
is yet again initiated as can be seen in Figure B.36 and B.37. This phenomena occurs
due to the connection of the roads, where in Figure B.38 the TTC and DTC can be
seen to change values drastically at these time instances.
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Figure B.37: Illustration of the intervention timing from when a threat is detected to
when a braking intervention is performed. From top to bottom, threat detected in collision
detection subsystem (red), intervention performed in collision avoidance subsystem (blue),
brakes initiated after reaction time (black) and optimal braking profile (magenta, dotted).
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Figure B.38: Here are the DTC and TTC over time seen for the simulation. Blue repre-
sents the estimated DTC/TTC in each time step when the EGO executes an intervention.
The red circles represent when the brakes are triggered and later released. Magenta rep-
resents the estimated DTC/TTC for a vehicle without a CA system. Figure B.38a also
illustrates the distance uncertainty with vertical bars. The idea is that the vehicle should
never end up in a DTC or TTC equal to 0, since this is when a collision occurs.
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C
System robustness

C.1 Performance comparison for the crossing in-
tersection scenario

Figure C.1 and C.2 illustrates the comparison of using the ordinary system setup
with having the BN turned off as well as both the BN and IMM turned off.
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(a) Collision probability
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Figure C.1: Illustration of how each part influences the overall subsystems behaviour
for the crossing intersection scenario, where (a) shows the probability of collision and (b)
the threat/brake assessment for the three different setups.

The evaluation of the crossing intersection scenario resulted in the system being
equally good at detecting and evade a collision irrespective of if either the BN or
IMM was active. This is explained by that the intended manoeuvre in the crossing
intersection scenario is a straight path hence even without both BN and IMM, the
system is being able to evaluate this scenario to be an imminent risk of collision.
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(b) Setup without the BN
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and IMM

Figure C.2: A probability graph showing the detection rate of a probable collision for
the left turn across path by EGO scenario, where (a) illustrates the ordinary setup, (b)
without the BN and (c) shows the affect of not using the IMM as well.

XXXIII



D
Test cases for evaluation of the
collision detection algorithm

D.1 Apart
In this scenario both the vehicles are driving against each other on a straight path.
The different steps of the scenario can be seen in Figure D.1.
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Figure D.1: The figures are depicting the scenarios used for the evaluation of the collision
detection subsystem. From top left to bottom right: The whole scenario, P1, P2, P3, P4
and P5. Here blue represent the EGO and red the POV.
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D. Test cases for evaluation of the collision detection algorithm

D.2 Next to eachother
In this scenario, similar to the previous scenario, is the vehicles travelling on a
straight path. The difference is that they are hear approaching eachother at a closer
distance sideways. The details of the scenario can be seen in Figure D.2.
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Figure D.2: The figures are depicting the scenarios used for the evaluation of the collision
detection subsystem. From top left to bottom right: The whole scenario, P1, P2, P3, P4
and P5. Here blue represent the EGO and red the POV.
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D. Test cases for evaluation of the collision detection algorithm

D.3 Overlapping
In the third scenario is the EGO driving into the POV more and more, which gives
a growing overlapping area, this can be seen in Figure D.3. In the last picture of
the Figure is the vehicles overlapping 100%.
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Figure D.3: The figures are depicting the scenarios used for the evaluation of the collision
detection subsystem. From top left to bottom right: The whole scenario, P1, P2, P3, P4,
P5 and P6. Here blue represent the EGO and red the POV.
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D. Test cases for evaluation of the collision detection algorithm

D.4 EGO into POV
In this scenario the EGO is driving into and through the long side of the POV, seen
in Figure D.4.
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Figure D.4: The figures are depicting the scenarios used for the evaluation of the collision
detection subsystem. From top left to bottom right: The whole scenario, P1, P2, P3, P4,
P5 and P6. Here blue represent the EGO and red the POV.
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D. Test cases for evaluation of the collision detection algorithm

D.5 POV into EGO
Similar to the previous scenario, but here is the POV driving through the EGO seen
in Figure D.5.
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Figure D.5: The figures are depicting the scenarios used for the evaluation of the collision
detection subsystem. From top left to bottom right: The whole scenario, P1, P2, P3, P4,
P5 and P6. Here blue represent the EGO and red the POV.
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D. Test cases for evaluation of the collision detection algorithm

D.6 EGO turn, POV straight
Here is the EGO turning at the same time as the POV is going straight, which
results in some interesting configurations of the vehicles seen in Figure D.6.
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Figure D.6: The figures are depicting the scenarios used for the evaluation of the collision
detection subsystem. From top left to bottom right: The whole scenario, P1, P2, P3 and
P4. Here blue represent the EGO and red the POV.
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D. Test cases for evaluation of the collision detection algorithm

D.7 EGO and POV turn
In the last scenario is both of the vehicles turning, leading to interesting results.
The configuration of the scenario can be seen in Figure D.7
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Figure D.7: The figures are depicting the scenarios used for the evaluation of the collision
detection subsystem. From top left to bottom right: The whole scenario, P1, P2, P3, P4
and P5. Here blue represent the EGO and red the POV.
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