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Abstract

The scope of this thesis has been on developing a Collision Avoidance (CA) system
being able to cope with the accident-prone urban intersections. These types of
complex sections within the road network will have the need to account for both the
different road-users but also the topology. This thesis will however constrain the
problem to only consider the EGO vehicle and one Perceived Other Vehicle (POV),
hence limiting the scope.

The proposed CA-system is divided into three modular blocks for the ability of
individual future developments. The first block captures the states and predicts the
future paths of the accounted vehicles with the aid of the observed road geometry.
Each vehicle’s state is computed using an Interacting Multiple Model (IMM) filter
that matches a motion model to the probable manoeuvre, whereas the topology is ob-
served and accounted for by a Bayesian Network (BN). The information given from
both the IMM and BN are combined for the ability to accurately predict, through
an Unscented Kalman Filter (UKF), the future behaviour of each vehicle. At each
prediction step, a probability of an imminent collision will, by the second block, be
calculated using the joint cumulative distribution. If this probability reaches above a
certain threshold, the final and third block will be invoked to evaluate the detected
threat for the need of a collision avoidance intervention. The evaluation will be
made through a formal threat assessment method based on reachability tools, with
the aim of finding the Point-of-No-Return stating which point in time the vehicle
inevitable ends up in a collision. The only considered intervention method is by the
use of emergency braking (AEB) to be able to keep the driver in the loop as the
decision maker as long as possible.

The developed CA-system was evaluated through several different scenarios in
an urban intersection spanning the possible configurations that could occur. The
unfolded result revealed a robust system being able to sufficiently predict the future
paths of both accounted vehicles for the ability to detect a probable collision. When
the detected collision was evaluated to be unavoidable by the driver, the collision
avoidance system triggered an emergency brake intervention being able to prevent
or at least mitigate the collision.

Keywords: Threat Assessment, Decision-making, Collision Avoidance, Active Safety,
Bayesian Network, Interactive Multiple Model Filtering, Unscented Kalman Filter,
Driver Intention, Urban Intersections.
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1

Introduction

Development within the automotive industry has in recent years had significant
progress in the area of active safety for passenger cars. Yet one challenging problem
still needing attention is collision avoidance at intersections. For new intelligent
safety systems focus on collision avoidance at intersections is therefore of impor-
tance, since road intersections are among the most accident-prone and complex sec-
tions within the road network. This compels Advanced Driver Assistance Systems
(ADAS) the need to cope with highly complex road scenarios, such as urban inter-
sections, where the hard-to-predict road-users and surrounding environment need to
be accounted for. This thesis will propose a collision avoidance (CA) system with
the ability to deal with these accident-prone urban intersections.

1.1 Background

The automotive industry is an area that is in constant development, where Intelligent
Transport Systems (ITS) is a key factor to increase safety and to tackle congestion
and growing emission. With the use of I'TS, transport can get safer, more efficient
and more sustainable [1].

Today, there are several research projects within the automotive industry with
focus on developing fully automated vehicles to be put on the roads in a near fu-
ture. Extensive research has been conducted within Vehicle-to-Vehicle (V2V) [2][3]
and Vehicle-to-Infrastructure (V2I) [4][5] communication, but as it will take several
decades before the traffic network is fully utilised by automated vehicles, the need
for a standalone automatisation solution is necessary. Even though substantial re-
search has been conducted for standalone automatisation such as lane keeping [6],
adaptive cruise control [7] and self-driving cars [8] as illustrated in Figure 1.1, coping
with all parts of the complex road network has not yet been fully addressed.

An especially accident-prone part of the complex traffic network is urban inter-
sections as there are several different road-users co-existing in the same road section,
all having multiple choices of direction. Road safety statistics for Europe [9][10][11]
discloses that around 20% of the fatalities and around 43% of the overall accidents
are at intersections, which in fact has been the trend for over a decade.

The first problem encountered in intersection scenarios, both for humans as
well as machines, is to determine the paths of the other road users. The path
prediction is needed to evaluate if and where the paths of the vehicles will intersect.
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s

S

(a) Lane keeping system (b) Rear breaking system by (c) City safety system from
from Toshiba [12] Subaru [13] Volvo Cars [14]

Figure 1.1: Research within active safety functions for the three different manufacturers
Toshiba, Subaru and Volvo Cars.

If the paths are evaluated to intersect at the same time step, then consequently a
collision will occur. In theory this seems to be trivial, but in reality is the time span
from a collision is detected to when the collision actually occurs often very short.
A human is affected by both reaction and decision latency as well as distractions,
which also adds a time delay when evaluating the collision risk. A machine on the
other hand cannot get distracted, but can nevertheless have uncertainties in the
sensor measurements.

The safest approach would be to stop the vehicle as soon as there is a risk
of collision, but for a machine to gain acceptance among drivers as a tool to avoid
collisions, the system will need to give very few false interventions. If and when to
initiate a braking intervention is therefore of importance.

1.2 Purpose

In this thesis, the goal is to develop and demonstrate formal decision-making and
threat-assessment algorithms with a particular attention to complex traffic intersec-
tion scenarios. Given an unknown complex intersection, the objective is to provide
a decision-making protocol preventing/mitigating a potential collision. Moreover
should formal analysis methods, verifying safety requirements, be provided for novel
intelligent control strategies.

This Master thesis project will, in collaboration between DENSO Sales Sweden AB
and Chalmers University of Technology, develop a Collision Avoidance (CA) system.
The purpose is to develop a system dealing with a long-term path prediction for the
included vehicles, a collision risk detection and finally a collision avoidance strategy
as later illustrated in Figure 1.2. The proposed system shall be kept modular for
the possibility to improve individual parts of the system in the future.
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1.3 General objectives

In accordance with the background and purpose described in the previous sections,
the general objectives for this thesis are stated as:

» Proposing a method to merge pertinent information of the surrounding envi-
ronment in order to accurately predict the behaviour of oncoming traffic.

« Developing a stochastic solution evaluating the risk of collision using the pre-
vious mentioned predictions.

o Defining a formal, robust decision making procedure for least-invasive braking
interventions.

 Evaluating the proposed Collision Avoidance (CA) system with both simula-
tions as well as with real-time implementation.

1.4 Contributions

The contributions of this thesis are:

« A combination of a Bayesian Network (BN) and an Interacting Multiple Model
(IMM) filter together with an Unscented Kalman filter (UKF) to be able to
compute long-term path predictions of vehicles.

e A novel way of defining a collision, resulting in the ability to detect a big
variety of possible collision configurations. The method is probabilistic, i.e.
calculates the probability of collision.

o A CA system being able to predict and avoid/mitigate several different colli-
sion configurations in intersection scenarios.

The content of this thesis also serves as a basis for a technical article which will be
submitted in the nearby future.

1.5 System overview of the proposed solution

A graphical overview of the approach of the presented system is illustrated in Figure
1.2. Here, a Long-term path prediction is executed first which henceforth progresses
into a Collision detection assessment, and finally continues into a Collision avoidance
procedure. A flow chart of the information distributed through the system is shown
in Figure 1.3. The figure illustrates how map and sensor data serves as inputs to
the Bayesian Network (BN), where the result from the BN is transferred, together
with the sensor data, to the IMM. The combined result from the BN and IMM
then provides a decision of probable vehicle motion to the Unscented Kalman Filter
(UKF), which finally provides a trajectory propagation along the whole prediction
horizon. All of these cooperative functions are referred to as the long-term path
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prediction block. The predictions are thereafter sent to the collision detection block
for evaluation of probable collision and finally sent to the collision avoidance block
for an intervention decision. The respective blocks are described in Chapter 3, 4
and 5.

Long-term path prediction Collision detection Collision avoidance

B}

Figure 1.2: Block scheme showing a graphical overview of the total system with the
three different objectives
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Figure 1.3: Block scheme showing a flow of information throughout the total system
with the three different objectives.
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1.6 Thesis organisation

Chapter 2 provides the objectives, assumptions, defined models and other prereq-
uisites necessary for the reader to get an underlying understanding of the system
design. The focus of Chapter 3 lies at explaining the theory and design of how to
track and predict the states of both the Perceived Other Vehicle (POV) as well as
the EGO vehicle. Chapter 4 defines the risk of collision, evaluated based on the
probabilistic predictions from Chapter 3. Chapter 5 are thereafter outlining the
threat assessment, based on the probability of collision obtained in Chapter 4.

In Chapter 6 are the results from the long-term path prediction, Chapter 3,
collision detection, Chapter 4, and collision avoidance, Chapter 5, subsystems evalu-
ated both separately, as well as combined into the complete CA system. A discussion
of the obtained results and concluding remarks with possible future developments
is presented in Chapter 7.
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Preliminaries

This chapter describes the prerequisites, defined problems and preliminary work
prior to the research conducted in regard to the first three objectives presented in
Section 1.3. Section 2.1 provides a problem description, further explaining the gen-
eral objectives from Section 1.3, whereas the made assumptions will be outlined in
Section 2.2. This chapter is also giving the vehicle and environment representa-
tions, in Section 2.3 and 2.4 respectively. Finally is the intended evaluation setup
described in Section 2.5.

2.1 Problem description

As described in the general objectives, the overall problem to be solved is the detec-
tion and avoidance (or at least the mitigation) of a collision. Moreover, the intention
is to keep the number of false interventions few enough!. The stated problems are
divided into three main areas, which as stated before are; Long-term path prediction,
Collision detection and Collision avoidance.

The problems to be addressed for the Long-term path prediction are:

o How to fuse the information from map and sensor data to make long-term
predictions for both the ego vehicle (EGO) and the Perceived Other Vehicle
(POV)?

o How to incorporate sensor imperfections?

The Collision detection should consider:

o How to detect a collision?
o How to determine and define the probability of a collision?

« How to define the characteristics of a collision (time to collision, duration of
collision, distance to collision)?
The Collision avoidance should finally answer:
o How to decide whether an intervention is needed?

« How to make an avoidance intervention (by performing an emergency braking)
as late as possible and with very few false interventions?

115026262 requires less than one false Autonomous Emergency Braking (AEB) intervention
during 10 years or within 100 000 km of driving. This is though out of the scope of the thesis since
extensive test hours will be needed to evaluate the system fully.

6
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2.2 Assumptions

When solving the problems stated in Section 2.1, some assumptions should be re-
garded to simplify and delimit the scope of the thesis. The following assumptions
are therefore considered throughout the entire thesis report:

o Only two vehicles are considered in each scenario, the EGO and one POV.
The EGO is the vehicle with the Collision Avoidance (CA) system.

o Perfect weather and road conditions, i.e. little or no slip is considered.

o The vehicles are moving with a maximum velocity according to the speed limit
in urban areas of 50 km/h.

o Reliable digital map data is assumed to be given as input, i.e. no investigation
of how map data is created will be concerned.

e Only one lane in each driving direction will be considered, i.e. no lane iden-
tification will be needed and collision with vehicles in the own driving lane is
not considered.

e The POV and EGO are assumed to be cars (no other road-users will be con-
sidered).

o No communication with surrounding objects (moving or stationary), as for
example Vehicle-to-Vehicle (V2V) or Vehicle-to-Infrastructure (V2I) commu-
nication, is considered in this work.

e The sensors used for the EGO are assumed to give global state information.
The positions in longitude and latitude as well as global heading. Velocity and
angular velocity is assumed to be measured by the vehicles internal measure-
ment unit (IMU) and wheel speed sensors.

e The sensors used to observe the POV are assumed to give measurements rel-
ative the EGO. This could be achieved for example by the use of a radar or a
camera.

2.3 Vehicle model

The mathematical representation of the EGO and the POV play a crucial role in the
robustness and precision of the developed system. The state information of the EGO
is easily obtained by on-board sensors such as GPS, IMU and wheel speed sensors.
The POV on the contrary, will be observed by sensors mounted on the EGO such
as, for example, camera or radar. The state information of the POV will thus never
be completely accurate, due to imperfections introduced by the sensors such as for
example measurement speed, measurement accuracy or reflection misinterpretation.

7
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With the sensorial information at hand, the representation of the EGO and POV
will be made with polar and spherical state space representation, respectively. The
state vector configuration will therefore be:

x x
Y Y
Xpco = | 0| and xpoy = | v, (2.1)
v vy
w w

where x and y are the global cartesian positions and w represents the angular veloc-
ity, being the same notations for both the EGO and POV. The disparity between
the two representations is that the EGO’s heading is denoted as 6 and the speed as
v, whereas the POV’s velocities, measured in x- and y-direction, will be denoted as
v, and v, respectively.

The spherical representation is used due to the intention of considering a radar
as on-board sensor, which can only accurately measure positions and the radial com-
ponents of the velocity, i.e the instantaneous change in range between the radar and
the target. Heading and angular velocity can therefore not be observed for the POV.
The angular velocity will not be measured, but is nevertheless in the state vector
for the ability to include a constant turn rate to be used in a turn model.

To model a vehicle in the most accurate way possible is a well known problem, for
example is a review of the most common motion models described by [15]. Here the
authors define models describing a constant motion such as with the Constant Veloc-
ity /Acceleration (CV/CAcc) or the Constant Turn-rate (CT) model. More compre-
hensive models are also presented, where some include several motions in the same
model such as the Constant Turn Rate and Velocity/Acceleration (CTRV/CTRA)
model or with the inclusion of topology knowledge through the Constant Curvature
and Acceleration (CCA) model.

These models all have pros and cons with respect to their ability to accurately
model a vehicle, but where none really manages to be as exact as the other in their
respective "motion of expertise”. The conclusion is that each model describing a
single motion (CV, CT or CAcc), is the best suited model to use in their respective
motion. The problem thus occurs when trying to represent a vehicle that transitions
between different motions.

One solution is an Interacting Multiple Model (IMM), which uses a specific
model when it is suited. This methodology will be described in Chapter 3, where
the CV- and CT-models for both the EGO and POV denoted according to (2.1) is
given as:

b x v-cos(0) - AT
y y v-sin(f) - AT
CVP: 7 = 6| + 0 (2.2)
v v 0
w 0 0
x(t+AT)  x(t) x(AT)
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x x v-cos(0) - AT
y Y v-sin(f) - AT
CTP: 0 = 0|+ w- AT (2.3)
v v 0
W | 0 v/R
x(t+ AT)  x(t) x(AT)
X | x vy - AT
y Y vy - AT
CV: 2 = |vg| + |—vy - w- AT (2.4)
vy Uy Uy w - AT
W | 0 0
x(t+ AT)  x(t) x(AT)
X T Y sin(w - AT) — 2 - (1 — cos(w - AT))
y Y Y. (1 —cos(w- AT)) + 2% - sin(w - AT)
CT: A = 0] + vy - cos(w - AT) — vy, - sin(w - AT) (2.5)
vy 0 vy - sin(w - AT) 4+ v, - cos(w - AT)
w 0 v/R
x(t+ AT)  x(t) x(AT)

where AT denotes the time step between samples. CVP (Constant Velocity Polar)
and CTP (Constant Turn-rate Polar) describes the EGO’s motion, where CVP will
be the used model for straight path and CTP for turning. The CV model, used
for straight path, and CT model, used for turning manoeuvre, describe the POV’s
intended motion.

2.4 Environmental representation

Since the representation of the EGO and POV should be made as accurately as
possible, the environment representation plays a key part in the Collision Avoidance
(CA) system’s ability to work as intended.

Hence, since sensors collect data from different point-of-views, all the data need
to be brought to the same reference frame. For example, a GPS gives information
of longitudinal and lateral position at the earths surface (Geodetic frame) whereas
mounted sensors such as a radar or a camera generates data relative the object its
mounted on (Local frame).

Since the observations of the EGO will be captured in the geodetic frame
and the POV in the local frame, these will need to be transformed into a common
coordinate frame. To also be able to benefit from map-based constraints and traffic
rules, the states of the accounted vehicles will need to be mapped up to the global
cartesian coordinate frame.
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ﬁ DGPSIGPS + Digital Map

Geodetic
(Longitude
- Latitude)

2

ECEF/Global

f
Earth-Gontered, Map-matching through DGPS/GPS,
Earth-Fixed) digital map and sensor fusion of

on-board sensors

Mapping of oncoming
road-users/obstacles

Local
frame

‘Q On-board sensors

Figure 2.1: Block scheme showing how the different objectives will be regarded as seen

to different coordinate systems

This conversion process is illustrated in Figure 2.1, where the use of the three dif-

ferent coordinate systems are described as:

o Geodetic; which is a global coordinate system seen to the earths surface, e.g.

positions in longitude and latitude.

o FEarth-Centered, Farth-Fized (ECEF); which is a global cartesian coordinate

system.

o Local; is a local cartesian coordinate system, with origin on the EGO vehicle.

The chosen strategy is to transform all the state information to the middle layer,
ECEF, thus being able to combine all the data, with the additional possibility of

locating the vehicles on a digital map.

10
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2.5 Evaluation setup

The proposed algorithms should be integrated in simulation environments such as
MATLAB/Simulink and PreScan [16]. Furthermore, experimental validation tests
should be driven, in collaboration with DENSO’s technical staff, using fully equipped
Volvo S60 demo vehicles.

Verification of the system functionality is conducted through a variety of test scenar-
ios, and is evaluated in both four-way intersections as well as T-intersections. The
scenarios are including both non-evasive and evasive manoeuvres and are further
explained in Chapter 6. For full evaluation of the system, different restrictions on
the vehicles’ possible paths are set offline e.g. the possible driving directions in an
intersection, which in reality would have been given by a digital map.

11
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Long-term path prediction

In a traffic situation where an imminent threat has been observed, the time before
colliding is often very short. Hence within an occurrence of a collision, it is not suf-
ficient to start braking when the observed threat has entered your designated path,
instead the brakes need to be applied before it has entered. Being able to accurately
predict the road participants future behaviour, to gain invaluable extra time to act,
will increase a Collision Avoidance (CA) system’s performance immensely.

The focus of this chapter is therefore to present a solution being able to evaluate
information of the ego vehicle’s (EGO’s) surrounding environment to accurately
predict future occurrences. The information comprises of road network and road
user knowledge along the intended path, which could be collected by a variety of
sensors and tools such as GPS, Inertial Measurement Unit (IMU), radar and digital
map. This chapter thus contains a description of how support from map and sensor
data can improve the ability to recognise a drivers intended manoeuvre, illustrated
in Figure 3.1.

The intended design of the long-term path prediction as a part of the full
system is depicted in Figure 3.2. Here the propagated trajectories are calculated in
parallel for both the EGO and the Perceived Other Vehicle (POV) at each time step.
The subsystem contains three in series coupled parts taking care of data collection
and validation, filtering and finally prediction.

This chapter is divided into five sections. First, an introduction of the related
work will be given in Section 3.1. Secondly, the method for incorporation of driver
behaviour and map data to predict a future manoeuvre is explained in Section
3.2. Section 3.3 describes the implemented motion models with associated filtering
method to represent a vehicle’s state. Thereafter is the method to perform long-
term path predictions explained in Section 3.4. Finally, the combination of the three
blocks leading to the complete long-term path prediction, is described in Section 3.5

3.1 Related work

In the literature, several approaches are used for the purpose of positioning the EGO
and POV as well as predicting their probable paths. The most common method used
to estimate the current position and predicting the future position, is by the use of
a Kalman filter, or its extensions such as the Extended Kalman Filter (EKF) or
the Unscented Kalman Filter (UKF) as has been done in [17]. With the use of a
Kalman filter comes the ability of adding state constraints, which as for example

12
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has been made in [18]. Here, the authors use map data providing information of
road restrictions to be used as constraints. With the use of such constraints, some
approaches resulted in methods able to detect in which lane a vehicle is travelling. As
for example in [19], where a Bayesian Network is used to identify the most probable
driving lane by fusing map and sensor data.

Map data Sensor data

Bayesian Network

Block 1:
Long-term path prediction

Figure 3.1: Overview of the Long-term path prediction subsystem as a part of the whole
system, where the Bayesian Network (BN) is covered in Section 3.2, Interacting Multiple
Models (IMM) in Section 3.3 and Unscented Kalman Filter(UKF) described in Section
3.4. The left part of the figure illustrates the intended procedure with predictions (shown
as ellipses) for both vehicles included in the scenario.

The approach of pinpointing a vehicles position on a map is denoted as map-
matching, which has been extensively studied within the literature. Since the devel-
opments in this area are so extensive, the map data could either be assumed to be
fully reliable as in [19] or with a small uncertainty as in [20]. In [21] the positioning
is achieved with an UKF assuming "perfect” map knowledge, where the POV’s lo-
cation on the map is made through Vehicle-to-Vehicle (V2V) communication. This
is also the underlying assumption for the propossed design, hence will only consider
reliable map data to be given as input, i.e. no investigation of how map data is
created will be concerned.

With the position of a vehicle considered to be reliably defined, focus could instead
lie on looking at how to predict the future trajectory of the vehicle. An approach
presented by [22], combines information from traffic rules, digital map and sensor
data to result in a predicted trajectory for the considered vehicle.

13
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Figure 3.2: Overview of the connection between BN, IMM and UKF, which is running
in parallel for the EGO and POV. Their respective probable paths are then compared
and analysed with aim at predicting and preventing an imminent collision through the
Collision Detection and Collision Avoidance blocks.

This approach uses an EKF for vehicle positioning in accordance with the provided
observations. Additionally an Object Oriented Bayesian Network (OOBN) is used
to define probabilistic relations between the different information parameters for the
ability to predict a probable future trajectory.

In [23] the authors use a Bayesian Network (BN) to combine driver behaviour
(i.e. turn signal) and the layout of a specific intersection in order to estimate drivers’
probable manoeuvres. A similar solution using Dempster Shafer’s theory is pre-
sented in [24], where instead the different probabilities are set as hypotheses (stop
before the intersection or taking a right, left or straight path) dependent on velocity
changes. The hypotheses could thereafter be given altered probabilities depending
on road network constraints. The profiles for the hypotheses were in this approach
statistically created using real data.

The filtering technique, such as in Kalman filters, usually requires a model to rep-
resent the moving objects probable motion. A common approach incorporating a
vehicles movement is by the use of a singular motion model such as the Constant
Velocity (CV), Constant Turn rate (CT) or Constant Acceleration (CAcc) models.
Tracking driver intentions is however complicated since vehicles do not exhibit
one type of motion but rather tend to switch between a set of typical motions. An
alternative way of including several motion models simultaneously (such as CT for
turning and CV or CAcc for straight driving) and switching to the most suitable

14
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model, could be done with the use of Interacting Multiple Model (IMM) theory as
in [25][26][27].

The proposed solution presented in this chapter is inspired by [26], where they use
a combination of BN hypothesis and an IMM-filtering technique for the possibility
to estimate the EGO and POV’s probable path. This thesis’s proposed design will
thus use both a BN and an IMM for validation of sensor and map data. The BN will
observe the acquired data and compare these to predefined thresholds. If above these
thresholds, an answer could be given of probable driver manoeuvre. The IMM will
however use the data to tune the motion models representing the different probable
behaviours. The BN and IMM will then collaborate to gain a robust decision of
which motion model best describing the future probable manoeuvre. The decided
model will thereafter be used in an UKF to make predictions some time steps into
the future.

Note that the CA system will only be implemented in the EGO, hence all
calculations will be made in respect to the own driven vehicle.

3.2 Bayesian Network

A Bayesian Network (BN) is a structured graphical representation of probabilistic
relationships between different independent variables. A general description of BNs,
with theory according to [28], is presented in the sequel, where as the BN applied
in the proposed solution is presented in Section 3.2.2.

3.2.1 General description

For the sake of clearness, the main ideas behind the BN will be explained throughout
an example. Consider Figure 3.3, where the BN is composed of nodes (A to E) and
interconnected with arrows to demonstrate the nodes respective dependencies. A
node in a BN represents a random independent variable in the sense that they may
be observable quantities, latent variables, unknown parameters or hypotheses. The
arrows represent probabilistic links, also called edges, being conditional dependencies
between two nodes.

A description of the intermediate dependencies between all nodes in a network
can be defined in a Conditional Probability Table (CPT). Nodes not being connected
represent variables that are conditionally independent of each other. A parent is
defined as the predecessor of a node, e.g. node A is the parent of node C in Figure
3.3. Each node is thus associated with a probability distribution, taking different
values depending on the observations made by the considered node and connected
nodes (child and parent nodes).

The key components of a BN are therefore how the structure of the network
as well as how the CPT are built up. For example, since the random variable F/|
in Figure 3.3, has parents B,C, D a CPT needs to be defined as P(E|B,C, D). If
instead F would have had no parents (predecessor nodes), an Unconditional Proba-
bility Table P(F) should be defined.
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a0
oD Ce D Ce >

E

Figure 3.3: Example of DAG (Directed Acyclic Graph) for a BN. A to E are called
nodes and the arrows are called edges. The graph shows for example that A, B and D are
independent and that A is a parent to C.

Furthermore, to combine observations for different nodes, a well known equation in
probability theory is used. The equation is called Bayes’ rule, defined in [28], which
calculates a posterior probability distribution of a parameter V' given an observation
y. This is given as: WIVIPW)
P(y|lV)P(V
PV = 50 (31)
This rule can thus be used to update our beliefs regarding V', given the obtained
information of the observation y. P(V) denotes the prior probability distribution
of V and P(y|V) is the likelihood of y given the information of V. If V' can take a
number of m different values (V' = [V, V4, ..., Vi,,]), the normalisation constant P(y)
can be calculated as:

ip (y|V;) P (3.2)

On the contrary, if there exist multiple observations y, ..., y, being conditionally in-
dependent, the joint likelihood distribution of all the observations will be the product
of each individual observation. This results in a posterior probability distribution
based on Bayes’ rule, called Naive Bayes, which is defined as:

PVIgt, o) = € POV) T P0IV) (3.3)

where o 18 a normalisation constant given as ¢orm = 1/P(y1, ..., Yn), and calcu-
lated with the use of (3.2) according to:

L= PO T PV (3.4)

P(yb ayn j=1 i=1

3.2.2 Application

A BN can be used as a tool to process and evaluate information gained from a
digital map accompanied with sensor data. The fusion of sensor and map data
can infer a drivers behaviour, hence the BN’s purpose in the proposed design is to
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evaluate surrounding information in the same manner as a human driver. Similar to
if you would drive a vehicle, you would regard information such as lane alignment
of oncoming vehicles, if they decrease in speed or have the turn signal activated.
Additional information could be how you interpret the road network to be connected.
Each of these perceptions could infer a probable behaviour of the oncoming vehicle.
The BN could in the same fashion evaluate this information to predict an EGO’s
probable behaviour. The desired result is to verify if the driver’s intended trajectory
leads to a collision, meanwhile performing the avoidance intervention if concluded
to be necessary.

Figure 3.4 shows a graphical representation of the proposed BN as a Directed Acyclic
Graph (DAG). The BN is built up by a number of nodes, as seen in the figure,
namely Road restrictions, Angular velocity, Turn signal, Acceleration changes, Road
markings/Traffic rules, Lateral alignment and Probable manoeuvre. Static profiles
for acceleration, angular velocity and lane alignment have been created by the use
of real data, to continuously compare with acquired observations such as map and
sensor data. The profiles are built up by statistical information and will thus work
in a similar fashion as a lookup-table.

The node Probable manoeuvre will finally gather the parent nodes’ resulting
probabilities and compose these into the probability of left Pr.s, right Prign: and
straight Psypqign: driving direction for each vehicle separately.

Road restrictions Road Markings/ ) (acceleration changes )(” Lateral alignment Angular velocity
Traffic rules

Colour coding:
[J Basic road rules

[] Driver affected

[] Predicted manoeuvre

Probable manoeuvre

[P ]

Left ’ PRight U PStrai

Figure 3.4: Directed Acyclic Graph (DAG) for the BN depicting the different nodes.
When new observations are made for each node a new posterior probability will be cal-
culated in node Probable manoeuvre, which is the output of the BN. The Probable ma-
noeuvre will give the probability of left Prs;, right Ppign: and straight Psiraignt

The network’s different nodes and associated profiles are described in Section A
to F, where the last Section G describes the final node Probable manoeuvre giving
the probability of left, right and straight manoeuvre respectively. The statistical
profiles for the nodes Acceleration changes, Lateral alignment and Angular velocity,
in Section C, D and F, were created from driving data in an intersection at Backebol,
Gothenburg seen in Figure 3.5 and 3.6. The statistical profiles were thus created
from the behaviour at intersections when performing either a straight, left or right
driving manoeuvre.
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Figure 3.5: Global driving paths for the
vehicle when data was collected for creation
of the profiles. The distances are measured
in meters, with the origin placed in the cen-
ter of the intersection. North is up and
south is down in the figure. The intersec-
tion was driven from north to south in the
sense that the driven vehicle went from the
upper to lower part of the figure.
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Figure 3.6: Global driving paths for the
vehicle when data was collected for creation
of the profiles. The distances are measured
in meters, with the origin placed in the cen-
ter of the intersection. North is up and
south is down in the figure. The intersec-
tion was driven from south to north in the
sense that the driven vehicle went from the
lower to upper part of the figure.

A Road restrictions

The node Road restrictions describes how the roads, in for example an intersection,
are linked together. Based on the possible connections for the road the vehicle is
travelling on, probabilities of possible manoeuvres will be given. Observe that this
node is to be distinguished from Road markings/traffic rules since it only depends
on the interconnection between the roads, without any consideration of traffic rules.
The information for the road restrictions is collected from a digital map. In this work,
it will give the probability of a left, right and straight path in an intersection, and
can be described by the likelihood of the Road restrictions RR given the manoeuvre
M as:

P(RR|M) = froadrestrict(roadL(k), roadR(k), roadS(k)) (3.5)

where froadrestrict 18 @ look-up table dependent on the three boolean variables in
time step k roadL,roadR and roadS which are set true if there exists a road to the
left, right and straight respectively.

B Road markings/traffic rules

The difference between Road restrictions and Road markings/traffic rules is, that
this node evaluates information about possible legal driving directions. The infor-
mation for the Road markings/traffic rules can similar to the observation of road
restrictions be collected from a digital map, or by observation of markings in the
road, such as painted arrows. With respect to the predefined traffic rules for the
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interconnected roads, the probability of going left, right and straight will be given
as the likelihood of the Road markings, RM, given the manoeuvre M, according to:

P(RM|M) = firayictutes(LinkL(k), LinkR(k), LinkS(k)) (3.6)

where LinkL, LinkR and LinkS are boolean variables in time step k set to true if a
legal manoeuvre can be made in the direction of left, right and straight respectively.
These variables serves as inputs for the function fi.qfficrues, Where the function
works as a look-up table.

C Acceleration changes

The node regarding the acceleration changes has a dependency on stop lines. If
there is a stop line, a vehicle is restricted to be stopping in either case, hence
the acceleration behaviour cannot be included in the overall evaluation. If braking
occurs and there is a stop line, consequently left, right and straight manoeuvre will
be set with equal probability.

If there is no stop line and the vehicle is at a certain distance to the intersection,
the acceleration is collected and compared to the predefined profile seen in Figure 3.7
to determine the probability of a left, right and straight driving direction. The
profile was created from collected data for normal driving where turning or straight
driving manoeuvres were performed. As seen in Figure 3.7, the profile has three
different level curves; -0.3, -0.5 and -0.7 [m/s?], to be used in the absence of stop
line. Furthermore, the reason for setting the first level at -0.3 [m/s?] can also be
observed in the figure. The data for the straight manoeuvre can be seen to always
be above the -0.3 [m/s?] limit, hence this is the limit which distinguishes a turn
from a straight manoeuvre. The other limits are used to increase the certainty that
a turning manoeuvre will be performed, i.e. the higher deceleration, the higher the
probability will be of a future turn to be made.

The likelihood of the Acceleration Changes, AC, given the manoeuvre M can
be described by:

P(AC|M) = faccChange (stopline(k), acc(k)) (3.7)

where focccnange Serves as a the look-up table with the boolean input stopline, which
is true if a stopline exists, and the input describing the acceleration acc, both in time
step k.

D Lateral alignment

This node evaluates information of vehicles’ alignment in the lane to estimate the
probabilities of a straight, left and right manoeuvre. If the vehicle is located more
on the left side of the lane, an indication of a probable turning manoeuvre to the left
can be given. Likewise, if the vehicle is located more on the right side, a probable
turning manoeuvre to the right can be indicated. If instead the vehicle aligns itself
with the centerline, this provides information of a probable straight manoeuvre.

The node’s resulting probabilities will never be set high for any of the manoeuvres
since this evidence is considered to be uncertain. For instance, drivers handle their
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Figure 3.7: Collected real data used for creation of the acceleration profile for the accel-
eration evidence in the Bayesian Network. The profile levels can be seen as the black lines
and are placed on -0.3, -0.5 and -0.7 [m/s?]. Blue colour represents the driving behaviour
when turning left, green when going straight and red representing right turn.

vehicles differently, because of for example how drivers have been taught to drive
or depending on vehicle properties. Some drivers align their vehicles to make a big
turn hence acts in the opposite way of what was described previously. The node can
therefore be used to detect if a turn will be made, but not in which direction it will
be.

The node will thus monitor how much the vehicle addresses either side of
the road, by looking at the ratio between the distances from the vehicle to each
side of the lane. The data used to create the profile, for the ability of defining
the probabilities of each manoeuvre, can be seen in Figure 3.8. The different test
scenarios, used when collecting the data, can be compared and seen in Figure 3.5
and 3.6. The result from the collected data shows that if the vehicle is detected
to lean more than 50 [cm] towards either side of the own lane, a high probability
will be given to the two turning manoeuvres. Otherwise a higher probability will be
given to the straight manoeuvre. These probabilities are described by the function
fiateralAtign, Which is used to compute the likelihood of the lateral alignment LA,
given the manoeuvre M:

P(LAIM) = fiateraiatign(LeftDelim(k), Right Delim(k)) (3.8)

where LeftDelim and RightDelim are the distances to the lane markers on the left
and the right side of the vehicle respectively, in time step k.

E Turn signal

The node regarding the turn signal is observing if, and in which direction, the turn
signal is activated. If a turn signal is activated the probability of a turn is set high.
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Figure 3.8: Profile for the lateral alignment node in the Bayesian Network.

If a left turn signal is activated, then it is highly probable that a turn to the left will
be made and vice versa for a right turn signal. If no turn signal is activated, the
probability for a straight manoeuvre is higher, but not equally high as for left /right
when a turn signal is on, since the driver could have forgotten to activate the turn
signal. Likewise for the left/right turn, the indicator could have been set on by
mistake or been set in the opposite direction from the intended, hence could not be
fully reliable. Either way, as there in most countries ! exist laws for the use of turn
signals, this is considered to be a strong evidence. The likelihood for Turn signal,
TS, given the manoeuvres M, can be calculated as:

P<TS|M) = fturnSignal(turns'ignal(k)) (39)

where frrnsigna referres to the look-up table used for the input turnsignal(k), set
to the activated turn signal (left, right, none), in time step k.

F  Angular velocity

Since the Lateral alignment node has uncertainty in the alignment, the Angular ve-
locity node observes the turn rate as a complement to give a more certain indication
of which direction the vehicle will travel. By analysing collected data, seen in Figure
3.9, two thresholds were found and set to £10 [deg/s]. If the observed data is above
the threshold of 10 [deg/s| the probability of right turn will be high. Likewise, if
the data is below -10 [deg/s], the probability of left turn will be high. Otherwise a
high probability is set for the straight path. The likelihood of the Angular velocity
AV given the manoeuvre M is given by:

P(AV|M) = fyaw(yawRate(k)) (3.10)

In Sweden regulated in "Trafikforordning (1998:1276)”
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where fyq., is a look-up table, with the angular velocity, yaw Rate, in time step k as
input.
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Figure 3.9: Profile for the angular velocity node in the Bayesian Network.

G Probable manoeuvre

The Probable manoeuvre node gives the final probability for each manoeuvre based
on the probabilities given from the parent nodes, previously described. The resulting
probability distribution can be described as:

P(Mlex,...,e6) = CaormP(M) [T P(e;| M) (3.11)

=1

similar to (3.3), where ¢y, is @ normalisation constant given as ¢,orm = 1/P(eq, ..., €6)
and calculated according to (3.4) as:

1 6 n
Pler,nes) > P(M;) I Pes|M;) (3.12)

j=1 i=1

Here, M represents the probability distribution of the driving manoeuvres [L, R, S],
where L is left, R is Right and S is Straight. The different observations e; are
given by e = {RR, AC, RM, AV, LA, TS}, which corresponds to the parent nodes
RR (Road Restrictions), AC (Acceleration Change), RM (Road Markings/Traffic
rules), AV (Angular velocity), LA (Lateral alignment) and T'S (Turn signal). The
probabilities are thereafter calculated separately as:

Pyoji = P(L|RR, AC, RM, AV, LA, TS) (3.13)
Prigw = P(R|RR, AC, RM, AV, LA, TS) (3.14)
PStraight = P(S|RR7 AC, RM, AV, LA, TS) (315)
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where Prest, Pright and Psyqaigne are the probabilities for left, right and straight
manoeuvre respectively. Observe that the prior probability P(M), stated in (3.11),
is set equal for all three directions, i.e. 1/3 on each of them. Recall that the
likelihoods (P(e;|M)) were described in (3.5) to (3.10).

The result of the Probable manoeuvre node will act as complementary weights, via a
Transition matriz, to the filtering part of the Long-term path prediction subsystem.
This matrix is used in the Interacting Multiple Model (IMM) filter to provide the
probabilities of transitioning from one model to another. The Transition matriz is
therefore formed, based on (3.13), (3.14) and (3.15), as

Hrepirest HRight|Left Istraignt| Left Prert  Prignt  Pstraight

IT = HLeft|Right HRight|Right HStraighﬂRight = PLeft PRight PStTaight

HLeft\Straight HRight\Straight HStraight\Straight PLeft PRight PStTaight
(3.16)

where each row corresponds to the currently used model (Left, Right, Straight) as
well as the probability of either staying or transitioning to another model in the next
time step. For example, if the current model is left, the matrix gives the probability
of either transitioning to the straight or right model or of staying in the left model.

3.2.3 Proposed Bayesian Network algorithm

The input to the BN is the acquired digital map data as well as the state information
of the EGO and a possible POV, collected via sensor data. The output from the
subsystem is the transition matrix, II, giving the probability associated with left,
right and straight driving direction. The BN for both the EGO and POV will be
executed in parallel, resulting in one transition matrix for the EGO and one for the

POV.

Algorithm 1 Bayesian Network

Input: Map data, Sensor data
Output: II

Each of the functions are called with associated observations as input
Collect P(RR|M) according to (3.5)

Collect P(RM|M) according to (3.6)
Collect P(AC|M) according to (3.7)
Collect P(LA|M) according to (3.8)
Collect P(T'S|M) according to (3.9)
Collect P(AV'|M) according to (3.10)

Compute P according to (3.13) with use of (3.11)
Compute Pg;gne according to (3.14) with use of (3.11)
Compute Pgypqignt according to (3.15) with use of (3.11)

return II > Formed using Equation 3.16
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3.3 Interacting Multiple Model (IMM) filter

As Chapter 1.2 and 2.1 mentioned, one of the stated problems is how to model the
EGO and POV as accurate as possible. As previously explained, tracking driver
intentions is however complicated by the fact that vehicles do not exhibit one type
of motion but rather tend to transition between a set of typical motions. A way
of including several motion models simultaneously and switching to the model best
describing the intended driver behaviour, can be done with the use of an Interacting
Multiple Model (IMM) filter.

The purpose of using an IMM is the possibility to include two or more filters,
each associated with different motion models for target tracking. Filtering can be
done with any desired filter, such as for example an Extended Kalman Filter (EKF)
or Unscented Kalman Filter (UKF). The IMM will moreover form a weighted sum
of each filter’s output, hence being able to rapidly adjust to the observed vehicles
probable manoeuvre. Computational complexity can become a problem since there
will be as many filters running in parallel as incorporated motion models. The EKF
is therefore chosen in the proposed design due to being an admitted and computa-
tional light filtering technique.

In an IMM approach, the system state is described by a certain motion model de-
noted as mo. The estimated true model is thereafter determined from a finite and
predefined set of alternative models. If a change of manoeuvre has been made by
the observed driver, a transition to another model best describing the new vehicle
dynamics is required. The motion model that best matches the observed behaviour,
is therefore said to be changeable between each consecutive time step k.

To be able to accurately predict which motion model best representing the
probable next manoeuvre, each model and associated filter will need to be contin-
uously updated. The state and measurement estimate is therefore computed for
each of the N number of models. The mathematical formulations in this section
have notations according to [29], with the linear state x(k) and measurement 2(k)
representation given as:

x(k) = fmo(k — 1,x(k —1),q(k — 1))
(k) = holk — 1,x(k), £(k)) (3.17)

where f,,, and h,,, are dependent on the corresponding model. Here, ¢(k-1) and
(k) represent the process and measurement noise respectively. The reason why
the state and measurement representation should be on the same form, is due to
the IMM-algorithms requirement of being computed the same way irrespectively of
motion model. These requirements are reflected in the state space representation of
(3.17) as:

x(k) = Apox(k — 1) + Bog(k — 1)
z2(k) = Crox(k) + Dyoe(k) (3.18)

where A0, Bimo, Cmo and D,,,, are defined matrices in accordance with the associ-
ated motion model, as defined in Section 2.3. These matrices are restricted by the
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requirement that they need to be of the same size irrespectively of which model in
use.

A summary of the IMM approach is thus that the main purpose is to estimate the
true model from a finite and predefined set of motion models. This true model
is assumed to change in time, hence both previous state information and future
probability need to be considered in the evaluation.

A cycle of an IMM-algorithm can be computed in four steps, illustrated in
Figure 3.10, which comprises of:

1. Calculation of Mizing probability update and Mizing, which integrates the pre-
vious state with the probable future behaviour given by both the Bayesian
Network (BN) and the result from the previous iteration time step, hence
mixing the provided information. This is described in Section 3.3.1.

2. Filtering, delivering the current state for each motion model, further described
in Section 3.3.2.

3. Calculation of Model probability update, hence delivers the updated belief of
probable manoeuvre. This is described more thoroughly in Section 3.3.3.

4. Output estimate calculation, giving the weighted output of the different models
with probability of next manoeuvre incorporated into the resulting state and
covariance. The final step is given in Section 3.3.4.

Section 3.3.5 describes the intended application of the IMM with the associated
pseudo-code given in Section 3.3.6.

u(k —1) Colour coding:
[] Step1
1 [ step2
[ step3
Mixing Step 4
[T probability 7(k) 0 step
update
Zi(k—1lk - 1) l @1(k—1|k—1) :izl(kz\k) Y
Pk —1]k—1) Pk — 1]k —1) Py (k|k)
- 7| Fiern |7 Model ji(k)
: — | probability | ————
~ update
Mixing l
| ' #(H]R)
zn(k—1k—1) an(k =1k —1)s| in(k|k) ‘ gl P(k|k)
—»PN(k — l‘k — 1) —PN(k _ 1|k _ 1) > Filter N PN(’“V") calculation

Figure 3.10: Overview of a cycle in the IMM-filter comprised of four computation steps.
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3.3.1 Mixing probability update and mixing

The mixing step of the IMM-filter has the purpose of integrating/mixing knowledge
of state and covariance from previous iteration, accompanied with the probability
of future driver manoeuvre. The mixing probability update fi(k — 1) is defined in
regard to the probable future manoeuvre predicted by both the Bayesian Network,
through the Transition matriz 1I(k) given in (3.16), and model probability given
from previous iteration fi(k — 1).

The output from the mixing step will be an update of the previously estimated
state and covariance, working as an input to the filtering step.

The updated mixing probability for each model fi,,,(k — 1) can be calculated as:

1,0 - ﬂ(k B 1)

Amok_l = —
fimol ) quﬂ\leﬂr'ﬂ(k_w

,formo=1,...,. N (3.19)

where 11, (and similarly II, in the summation) denotes each model’s probability
for left, right and straight in the matrix described in (3.16).

The mixed initial state estimate for each model, denoted as X,,,(k — 1|k — 1), can
thereafter be updated with the combined knowledge of each model’s previous state
Xmo(k — 1|k — 1) and mixing probability fi,,.(k — 1) as:

N
Ximo(k — 1k — 1) => x,(k — 1|k = 1) - fimo(k — 1), for mo=1,..,N  (3.20)

r=1

and correspondingly can the initial estimated covariance for each model ﬁmo(k:— 1|k—
1) be updated, using each model’s previous covariance P,,,(k — 1|k — 1) together
with the difference between previous and updated state estimate, as:

pmo<k - 1‘k - 1) = %ﬂmo(k - 1) ' {Pmo(k - 1’k - 1) + [}_{r(k - 1|k - 1) - >A(mo(]€ - Hk - 1)]

[ (k= 1|k = 1) = Ro(k — 1|k — D))"}, for mo =1,..., N
(3.21)

3.3.2 Filtering

The initial state estimate x(k — 1|k — 1) and corresponding initial covariance

ﬁ’(k‘ — 1|k — 1), acquired from Section 3.3.1, are thereafter used for a prediction
through the predefined filters, described in Subsection A, for each model. The state
is thereafter compared with an observed measurement z(k) in Subsection B, for the
ability to make an accurate prediction and update. The result will be an update of
the initial state estimate, denoted as X, (k|k) and covariance P, (k|k) working as
inputs in both the Model probability update and Output estimate calculation, as well

as being used in the next iteration step of the IMM-filter.
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A Prediction update

The predicted state X,no(k|k — 1) and covariance P,,,(k|k—1) are calculated for each
model according to:

Kmo(k|k —1) = Ao - Zpmo(k — 1|k — 1) (3.22)
Pro(klk —1) = Apo - Pro(k =11k —1)- AT+ Bio - Qo - BE. (3.23)

where (),,, is the process noise covariance matrix and A,,, together with B,,, are
the defined matrices acquired from Section 2.3, for each motion model.

B Measurement update

The state Xno(k|k) and covariance P,,,(k|k) are computed using the observed mea-
surement z(k), predicted state X,,,(k|k — 1) and covariance P,,,(k|k — 1). This is
calculated as:

Zmo(k) = Cino - Kmo(k|k — 1) 3.24
Spmo(k) = Crmo - Pmo(klk —1)-CY + Dy - R- DY 3.25
Komo(k) = P

|

where Z,,,(k) denotes the predicted measurement, S,,,(k) the innovation covari-
ance matrix and K,,,(k) the Kalman gain for each motion model. C,,, and D,,,
are defined matrices according to Section 2.3. Notice that the measurement noise
covariance matrix R is defined irrespectively of which motion model in use.

3.3.3 Model probability update

After the filtering has been conducted, the probability of using each motion model
needs to be updated in accordance with the newly estimated covariance P, (k|k)
and innovation covariance S,,,(k) matrix. The updated model probability fi,,.(k),
also denoted as the weights, will thereafter be passed to the Qutput estimate calcu-
lation step as well as being used in the next iteration step of the IMM-filter.

With the state and covariance as well as the observed measurement z(k) and pre-
dicted measurement Z,,,(k), the likelihood of probable future motion model can be
expressed as:

Amo(k) = Al exp (—0.5 (2(k) = Zno(k)" (Smo(k)) ™ (2(k) = Zno(R)))
|27 Fno (K| K|

(3.29)
The model probabilities fi,,(k) will thereafter be updated to be used in the next
iteration, using the likelihood A,,,(k), according to:

Amo k) - 7mo
(k) - c —, formo=1,....N (3.30)

B iy Ar(K) - ¢

flmo(K)
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where the normalisation constant ¢,,, is calculated, in accordance with (3.19), as

N
Cmo = 3 1L+ fumo(k — 1), for mo=1, .., N (3.31)

3.3.4 Output estimate calculation

The resulting output estimated state x(k|k) and covariance P(k|k) are finally com-
puted using the weighted sum which incorporates the updated model probability
11:(k) as well as state Zmo(k|k) and covariance P,,,(k|k) for each of the correspond-
ing models. This is given as:

P(k|k) = Z R) - (Pr(kIR) + (o (kIR) = X(kIR)) - (R (k|F) = %(K[k))")  (3.33)

the variables used for the next iteration is finally assigned as:

Tmolk) = X(k)
Pro(k) = P(k)
fi(k) = ju(k)

3.3.5 Application

As presented in Section 2.3, three different motion models are incorporated in the
proposed solution describing left, right and straight manoeuvre. The estimated
state and covariance will thus be updated at every time step for each motion model
separately using the IMM-filter. These estimates are thereafter combined to result
in a weighted sum to be used in the output state and covariance computation.

Instead of only relying on the manoeuvre probability computed by the Bayesian
Network (via the Transition matriz), the manoeuvre probability from the IMM cal-
culated at the current time step will also be accounted for. This choice is motivated
by the fact that the two subsystems give results with respect to different time as-
pects, where the IMM delivers near-term predictions while the BN makes long-term
predictions. The intended application therefore uses a combined manoeuvre prob-
ability in the decision process of which motion model best representing the future
manoeuvre.

Since the mixing step considers the IMM’s manoeuvre probability at the previous
iteration step, this needs to be initially defined as:

(0)=1[005 005 09 (3.34)

where 11(0) is represented by the probabilities for left, right and straight model.
The manoeuvre for straight path is initially set to have the highest likelihood (90%
certainty), due to that for analysis of data it is assumed that a vehicle’s initial
pathway has a straight direction.
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3.3.6 Proposed IMM algorithm

The proposed IMM-algorithm will continuously compute the filtered state and co-
variance for the EGO as long as a detected movement has been monitored. If a
detection of a POV occurs, simultaneous filtering computations will be conducted
using the same IMM-algorithm. To be noted is that the initial covariance matrix
P(1) is a predefined matrix with values given in Appendix A.4.

The filtered estimates of each accounted vehicle will thereafter be sent to the
final part of the long-term path prediction block, the prediction part by the use of
UKF.

Algorithm 2 Interacting Multiple Models filter

Input: II(k), Sensor data z(k), Model specifications fo, Qmo
Output: x(k), P(k)

Initialise: X,,,(0) = 2(1), Po(0) = P(1)
for mo=1: N do
Perform integration of previous estimations using (3.19) to (3.21)

Ko (k — 1), Pro(k — 1)] = Mixing(Xmo(k — 1), Po(k — 1), T1(k), fi(k — 1))

Perform filtering using the defined model f,,, according to (3.23)

to (3.28)
Ko (), Prol(k)] = Filtering(Xmo(k — 1), Pro(k — 1), 2(), fno, Qmo, R)
end for

Update the model probability using (3.30)
[f1(k)] = ModelProbabilityUpdate( P(k), z(k), u(k — 1))

Compute the output estimates using (3.33)
[%(k), P(k)] = OutputEstimate (Xm0 (k), Po(k), fi(k))

Assign the next iteratign variables
Tmo(k) = X(k), Pno(k) = P(k), i(k) = fu(k)

return x(k), P(k)
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3.4 Trajectory prediction using UKF

The Unscented Kalman Filter (UKF)-algorithm is comprised of two parts. The
first part computes a prediction of the states with corresponding covariances for
the chosen motion model, where in the second part these predictions are updated
through comparison with received measurements. Thus if the aim is to predict a
future trajectory, only the first part of the UKF will be used.

The main advantage with an UKF is the possibility of incorporating the fil-
tering technique irrespectively of the system functions linearity. Another purpose of
using an UKF for trajectory prediction is the possibility of having Gaussian distri-
butions to represent driver uncertainty.

The UKF is using a sampling technique called the Unscented Transform which
selects a minimal set of sample points, denoted as sigma points, around the state
mean. The sigma points y, are thereafter propagated through the linear or nonlinear
function to accurately capture the mean and covariance of the estimates at each time
step. The result is a filter that subsequently can be used to calculate a new estimated
mean and covariance.
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For a state model with added noise, as described in (3.17), the prediction part of the
UKF forms the Gaussian approximation (with the underlying equations from [30])
according to step 1 and 2 below. This is computed for the whole prediction horizon

L = 17"'7npredictions-

1. A set of 2n+1 sigma points are derived for the augmented state mean x and
covariance P, with n being the state dimension, as:

XO
Xc

c+n
X

b

(i)
%(i) +Vn 4+ X -/ Pe(i)

%(i) — vVn + \-\/Pe(i) for ¢ = 1,..,n (3.35)

where ¢ denotes the column of a matrix. The scaling parameter A is given as:

A=a*(n+kK)—n (3.36)

where x and P is given from the previous iterations predicted state and covari-
ance, which at the first prediction step will be initiated with the IMM-filter
output (& and 15) The constants o and x determines the spread of the sigma
points around the mean (how large uncertainty you have).

the function:

2n ~
)NC(Z + 1) = Z .fmo(XS) ’ st
s=0

2n

P(i+1) = 3 (fuo(x") = X)) (o (") = X(8)" - WF + Quno(0)

s=0

. Compute the predicted moments by propagation of the sigma points through

(3.37)

(3.38)

where f,,, is the function and Q,,, is the process noise covariance matrix for the
chosen motion model described in Section 2.3. The weights W, are calculated

as:

A
Y (3.39)
1 —a? A4
n+/\+( a’+f) (3.40)
5 1
=Wr=—"_ forT’=1,...2 41
WF 2(n_'_)\)7or yeeey 210 (3 )

with § as a parameter to use for incorporating prior information of the input

state’s distribution.
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3.4.1 Application

The proposed long-term prediction design follows the conventional filtering algo-
rithm of the UKF, hence resulting in an estimated state and covariance at each
propagated time step. The propagation will be made along a predefined prediction
horizon using the chosen model that describes the most probable vehicle trajectory.

An optional part is added to the subsystem being able to monitor the distance
to intersection if this is given as input data. The long-term path predictions could
thus benefit from the result given by the Bayesian Network. For instance, it could
rely on which motion model to use for the predictions once being in the intersection,
making for example better predictions of a turn even before the vehicle enters the
curve. If the distance to intersection can not be acquired, the chosen prediction
model will solely be the result from the IMM.

3.4.2 Proposed trajectory prediction algorithm

The proposed trajectory prediction algorithm follows the mathematical formulations
stated in (3.35) to (3.41). The resulting output from the prediction algorithm will
be a state vector and covariance matrix describing the whole prediction horizon for
each considered vehicle. The calculated state and covariance will be subject to the
motion model chosen for the predictions and will be denoted gco and Pggo for
the EGO as well as &poy and Ppoy for the POV.

Algorithm 3 Trajectory prediction using UKF

Input: k(k‘),?(k‘),fmo
Output: =z, P

Initialise: Z(0) = #(k), P(0) = P(k)

fori=1: Npredictions do
Derive a set of 2n+1 sigma points by the use of (3.35) and (3.36)
X = FormSigmaPoints(i:(i —1),P(i —1),n, 0, R)

Compute state and covariance prediction using (3.37) to (3.41)
[Z(7), P(i)] = ComputePredictions(X, fmo, 2(i — 1), P(i — 1), Qmo)
end for
return & = [Z(0), ..., Z(Npredictions )] pP= [15(0), e P(nmedictiom)]

3.5 Long-Term Path Prediction Procedure

As the introduction in this chapter described, the Long-term path prediction sub-
system comprises of the three parts Bayesian Network (BN), Interacting Multiple
Model (IMM) filter and Unscented Kalman Filter (UKF). These have been defined
in Section 3.2, 3.3 and 3.2 respectively, and will in this last section be tied together
to describe the overall procedure of the first subsystem, as illustrated in Figure 3.11.

32



3. Long-term path prediction
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Figure 3.11: Overview of the Long-term path prediction subsystem’s flow of input and
output signals from the different parts.

As illustrated in figure 3.11, the BN sends the Transition matriz 11 to the IMM. Both
the BN and IMM is thereafter sending the state and covariance for the chosen motion
model giving the highest probability as output, denoted as fyopn and foo v
respectively. The IMM’s choice of motion model is however partially affected by the
input Transition matriz. Note that both the BN as well as the IMM will have the
measurement data as input.

Both the BN’s and IMM’s output will therafter be sent to an evaluation algo-
rithm determining which motion model being best suited for the prediction horizon.
If a distance to the intersection is known, the decided motion model to use in the
UKF part will vary along the prediction horizon. Namely, the model given by the
IMM will be used for the predictions up to the intersection and the BN’s chosen
model will be used for the prediction horizon in and through the intersection. How-
ever, if the distance to intersection is unobtainable, then only the IMM’s computed
best fit motion model will be used. This evaluation algorithm is in the presented
solution integrated into the UKF algorithm, but for the sake of clarity it is described
as a stand-alone algorithm.

As the last part of the subsystem, will the UKF use the input motion model
properties to propagate the state and covariance along the predefined prediction
horizon. The state and covariance for both observed vehicles will thereafter be sent
to the Collision detection subsystem for evaluation of a probable collision.
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3. Long-term path prediction

3.5.1 Long-term Path Prediction Algorithm

The algorithm described in this section is comprised of the algorithms stated in Sec-
tion 3.2.3, 3.3.6 and 3.4.2. As mentioned before, the evaluation algorithm have been
integrated into the UKF, hence will not be a separate procedure as was illustrated
in Figure 3.11.

Algorithm 4 Long-term path prediction algorithm

Input: Map data, Sensor data
Output: z, P

Make a long-term prediction using the BN:
[II(k), fmosn (k)] = BN(Map data, Sensor data)

Make a near-term prediction using the IMM:
[x(k),P(k)] = IMM(II(k), Sensor data z(k))

Propagate the state and covariance using the chosen motion model
along the predefined pre(!iction horizon:
(@, P] = UKF(fno.5n,Xx(k), P(k))

= [p(())? ceey P(npredictions)]

~

return x = [f(0)7 ceey j(”predictions)])
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Collision detection

This Chapter describes how to detect a collision, based on the predictions provided
by the Unscented Kalman Filter (UKF) from Chapter 3, as well as how to charac-
terise a collision. Figure 4.1 provides an overview of the collision detection block as
a part of the full system, marked in blue. Furthermore, the connections with the
other subsystems are also illustrated, where primarily a direct link from the UKF
and another link to the Collision Avoidance (CA) subsystem can be seen.

This chapter is organised as follows. First an introduction to collision detec-
tion is given with related work described in Section 4.1. Section 4.2 explains how
a collision is considered and defined in the scope of this work. Section 4.3 and 4.4
describes a deterministic and probabilistic collision detection algorithm respectively.
Finally, the connection and inter-dependencies between the collision detection sub-
system and the overall system is outlined in Section 4.5.

Block 2:
Collision detection

Collision Detection

Collision Avoidance

Figure 4.1: Overview of the full system with the collision detection subsystem’s position
marked in blue.
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4. Collision detection

4.1 Related Work

There are several different methods in the literature to define a collision. One
method presented in [31], is based on the intersection of two vehicles’ respective
areas. Firstly, the authors establish a pessimistic approximation of possible inter-
sections between the ego vehicle (EGO) and the Perceived Other Vehicles (POVs)
using circular areas to define the vehicles. If the areas intersect, a more accu-
rately analysis is made using tighter and more representative areas of the vehicles
to evaluate if a collision indeed is imminent. This approach is used to reduce the
computational burden as well as analysing oncoming threats at an earlier stage. It
is worth mentioning that this approach however is fully deterministic.

In [17], a collision detection is performed by defining appropriate collision and col-
lision free domains/areas. The collision areas are defined with respect to the center
of both vehicles’ front bumper whereas the collision free area is defined according
to the center of the POV’s rear bumper and the center of the EGO’s front. These
areas are dependent on the length and the width of both vehicles and are later used
to evaluate the eminency of a collision. The evaluation is conducted by computing
the probability density over the area of interest with the use of the joint cumulative
distribution. Note that their collision detection algorithm only can be applied in a
specific traffic situation, namely a left turn by the POV across the EGO’s path.

Instead of defining the collision area around the EGO, some research has been con-
ducted on defining one or more collision areas on a map [2][3][22]. This means that,
by making assumptions that each vehicle follows a specific path in a lane, the area
where a collision can occur is the intersection of two (or more) lanes. Within each
specific traffic intersection, the collision area would therefore be defined dependent
on the possible intersecting paths of the vehicles.

The objective of this work is to provide a collision detection algorithm suitable for all
traffic situations, even if no map/road topology information is available. Since the
positions of the vehicles are estimations, the idea is to use a probabilistic approach
for evaluation of an imminent collision where [17] has worked as an inspiration.

4.2 Collision Definition

There are a number of different ways to define a collision, as well as the area occupied
by a vehicle. The chosen representation of a vehicle area is here based on sets.
Simply speaking, when two vehicles are considered, the area of one of the vehicles is
represented as a set bounded by the size of the vehicle, whereas the other vehicle is
represented by a set, bounded by the size of the vehicle but also rotated according
to both vehicles heading.

To explain further, the first step is to define the sets representing the areas of
both vehicles. The sets of the EGO and the POV, Agpgo and Apoy respectively, are
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4. Collision detection

bounded by their length and width relative their center point as:

Appco: —t < Awpco < %
A = 2 — - 2 4.1
BGo {AyEGO -5 < Aypgo < % (4.1)
Azpov : L < 4 pov < L
Apoy = 45 2 = Awpov = 42
rov {AyPOV =5 < Aypov < 7 (4.2)

where [ is the length and w is the width of the EGO whereas [ and w are the
length and width of the POV, respectively. Furthermore, A,gco and A.poy are
the restrictions in the x-axis, whereas A,pco and Aypoy are the restrictions in the
y-axis. An illustration is presented in Figure 4.2.

A
\/
A
\/

Acco w Acov w

Figure 4.2: Illustration of sets representing the vehicle areas. Here [ is the length and w
is the width of the EGO, resulting in the EGO set Agpgo, whereas [ and w are the length
and width of the POV representing the set, Apoy .

To be able to evaluate the collision risk, the next step is to define the vehicle areas
as global sets of points. Since the measurements, and therefore also the predictions,
of the positions are assumed to be the center point of the vehicle, the vehicle areas
are defined around this point, e.g. (zEGO(i),yEGO(i)) the center point of the
EGO in prediction step 7. An illustration of the global sets, defined around each
vehicle’s global cartesian position, can be seen in Figure 4.3. For each prediction
step ¢ = 1,2, ..., Npredictions (Where Nypredictions 1S the number of predictions) the sets
are then globally defined as:

AQZObal(i): Ango(i)Z .CCEGO(Z)—% < Ango<i) < $EGO(Z)+% (43)
beo Aypco(i) - yEGO(i) —§ < Aymool(i) < yEGOG)+5[
ystotal () _ {Axpov(z'): zPOV(i) =5 < Awpov(i) < xPOV(z‘)+;} (4.4)
rov Aypov(i) : yPOV(i) =5 < Ayppov(i) < yPOV(i)+ 5

where tEGO(i), yEGO(i) and POV (i), yPOV (i) are the cartesian coordinates of
the predicted position in prediction step i for the EGO and POV respectively. Fur-
thermore, A,pco(i) and A,poy (i) are the restrictions in the global x-axis, whereas
Aypco(i) and Aypoy (i) are the restrictions in the y-axis.

37



4. Collision detection

A

yglobal

°
(xPOV,yPOV)

(XxEGO,yEGO)

—>

xglobal

Figure 4.3: Illustration of definition of occupied areas by the vehicles, represented as
sets. The sets, here for a specific ¢, are defined in global coordinates xEGO, yEGO and
xPOV, yPOV, without any consideration of heading.

The next step is to rotate the global sets (4.3) and (4.4) according to heading with
the use of a rotation matrix. More specifically, first the sets are rotated according
to the own vehicle’s heading (0pco or Opoy) and secondly, rotated according to
the other vehicle’s heading (0poy or Opco). An illustration can be seen in Figure
4.4, where an example of a scenario is depicted in the leftmost figure. The next
two figures show how the scenario is interpreted, where the green colour depicts
the vehicles in neutral position (zero heading) according to (4.3) and (4.4) and red
demonstrates the sets rotated according to heading. In the middle figure is the
EGO in neutral position, whereas in the rightmost the POV is. These last two
figures show two distinct representations of the global situation, each centered on
the perspective of one of the vehicles.

yglobal“ ’17 eo\/ yglobal“ yglobal“
YPOV.| ..o :
At
a0 | YoV I
yEGO.|. ; yEGO. __ '

> >

XEGO xPOV X lobal XEGO Xiobal xPOV X iobal

Figure 4.4: Illustration of the interpretation of a traffic scenario, where the scenario can
be seen in the leftmost figure. The next two figures shows how the scenario is interpreted,
where the green colour depicts the vehicles in neutral position (zero heading) according
to (4.3) and (4.4) and red, the global sets rotated according to heading. In the middle
figure is the EGO in neutral position, whereas in the rightmost the POV is. These last
two figures show two distinct representations of the global situation, each centered on the
perspective of one of the vehicles.

With the two representations of the vehicle areas explained above, a collision can
be defined. Intuitively, a collision occurs when some part of each vehicle overlap or
touches the other. For the defined global sets this can be translated into: if at least
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4. Collision detection

one point of a set belongs to the other area, a collision is present.

Note that for simplicity and computational reasons, the global sets defined according
to (4.3) and (4.4) are chosen to be represented by a fixed number of points 7 evenly
spread over the vehicle. Moreover, these n rotated points in each prediction step
i will be denoted by Ep’(i) and Op’(i) for the EGO and POV respectively, where
j=1,2,...,m. Ep/(i) is used for the points when the interpretation is made as in
the rightmost figure of Figure 4.4, whereas Op’(i) is used when the interpretation
is made as in the middle figure. The two interpretations are needed to be able
to find the correct probability of collision, since in some configurations one of the
representations can give a higher probability of collision than the other. Observe
that it is also possible to distribute the points in other patterns rather than uniformly
distributed, since discrete points are used.

4.3 Deterministic Collision Detection

The n rotated points distributed over the EGO in each prediction step i is defined
by Ep’(i), where j = 1,2, ...,n is denoting each point. Additionally, the predicted
middle point of the POV in the ith prediction step, 2 POV (i), yPOV (i), is used as
a reference point for the POV’s vehicle area, referred to as O(i). For each point
on the EGO, Ep/(i), a translation is made by considering O(i) as the origin of the
frame space according to:

OEp' (i) = [Ep(i) — O4(i), Epl(i) — Oy(i)] for j =1,2,...n (4.5)

Here OEp’(i) denotes the position of Ep’(i) after the translation, where (.), and
(.)y are the cartesian coordinates of each point. Similarly for the POV, 7 rotated
points Op’ (i) are distributed in each prediction step ¢ for each point j = 1,2,...,7.
For the EGO the predicted middle point in prediction step i, tEGO(i), yEGO(i),
is denoted by F(i). The translation of Op/(i), by placing the origin in E(i), is
thereafter obtained by:

EOp (i) = [Opl(i) — Ey(i), Opl(i) — Ey(i)] for j=1,2,....n (4.6)

Similarly, here FOp’(i) denotes the position of Op’(i) after the translation where,
as stated before, (.), and (.), are denoting the cartesian coordinates of each point.
The existence of a collision, in each prediction time step ¢, is then calculated

by:
1 if 35: O0FEp’(i) € Apov
Pcollision@) =41 if El] : EOPJ(Z) € AEGO for ] = 1, 2, ey (47)
0 otherwise

where Apco and Apoy are defined according to (4.1) and (4.2). For the deterministic
case, where both vehicle’s exact position is known, a collision is then present in
prediction step ¢ when (4.7) equals 1. Observe that the reason why there are two
equations leading to collision (equals 1) is that a discrete number of points are picked
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4. Collision detection

out from the sets. This can thus, in some configurations, lead to one of the equations
being set to 1 and the other one not, if only one of the points is inside the other
vehicle.

Note that since the trajectories of the vehicles are represented in a stochastic
way, a probabilistic collision detection is needed.

4.4 Probabilistic Collision Detection

In this section, a probabilistic collision detection method is described. Firstly, a bi-
variate normal distribution will be described, and secondly will the joint cumulative
distribution be presented for the calculation of the probability of collision.

4.4.1 Bivariate Normal Distribution

A bivariate normal distribution (BND) is a multivariate normal distribution of di-
mension two. For example, a random cartesian point’s position 7 = (x,y) can be
described as a BND according to:

m . b}
m ~ N ( [m] [ o p%;y] ) (4.8)
Y my| |po.oy O,

where m, and m, are the mean of x and y respectively. Furthermore, o, > 0 and
o, > 0 denote the variance of the position in the x and y axis respectively, whereas
|p| < 1 is the correlation between the two variables. For the previously mentioned
point, the joint density function ¢(r) can then be calculated as:

1 —Dms(r)/2

where |X| denotes the determinant of the covariance matrix. The squared Maha-
lanobis distance between the random point r and the mean m, denoted D,,s(7), can
be calculated according to:

Dps(r) = (r —m)"E7 (r — m) (4.10)

Next, the goal is to find the probabilistic equivalent to the deterministic transla-
tion between two BNDs. In accordance with (4.5) and (4.6) this results in linear
combinations of the distributions. As an example, for a bivariate distribution with
two independent random variables, X; ~ N (mq,3;) and X5 ~ N (ma, X5), with
mean m, and mq as well as covariances Y7 and Yo, the linear combination of the
distributions is generally formulated as:

CL1X1 -+ a2X2 ~ N(a1m1 + asMa, 0321 + agEz -+ 2a1a2212) (411)

where ay, as are arbitrary constants and 315 represents the cross-correlation between
X1 and Xz.
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In a similar way, the estimated positions of the EGO and POV in prediction step ¢
can be seen as the bivariate normally distributed variables E(i) ~ N (mg(i), Xg(i))
and O(i) ~ N(mo(i), Xo(i)), respectively. Similarly, the n points, distributed over
each vehicle area and rotated according to heading, can be seen as bivariate normal
distributed variables, Ep/ (i) ~ N (mgpi (i), Xg(i)) and Op? (i) ~ N (meopi (i), Xo(i)).
Here, mpg,i (i) and mg,i (i) are the mean of point j for the EGO and POV respec-
tively, whereas the variances are the same as for the estimated position. Equation
(4.5) and (4.11) are thereafter used to define the distribution DJ(i), for the new
representation of the points Ep’(i) with the reference frame located in O(3), as:

D{(i) ~ N(mpgy (i) — mo(i), g(i) + Bo(i))  for j=1,2,..,1 (4.12)

Similarly are (4.6) and (4.11) used to define a second distribution D}(i), for the new
representation of Opj(i) with the reference frame located in E(i), as:

Di(i) ~ N(mopi (i) — mg(i),So(i) + Tg(i))  for j=1,2,...,n (4.13)

Note that the covariance Xpg(i) = 0, given that the positions of the vehicles are
uncorrelated.

4.4.2 Joint Cumulative Distribution

To be able to compute the probability of a collision, the joint cumulative distribution
function (JCDF) of two variables is used. To get to a probabilistic version of Equa-
tion (4.7), first the probability of collision for each point j needs to be calculated
according to:

b d
Pﬁ(z’)://Dﬁ(i)dxdy://Dﬁ(i)dxdy forj=1,2,...,nand r = 1,2
A a ¢

(4.14)
where A denotes the set Apoy when r = 1 or Aggo when r = 2 and j is the 1 points
distributed over the EGO or POV. With the use of the sets, the limits are defined
according to (4.1) and (4.2) where a and b are the lower and upper limits in x-axis
whereas ¢ and d are the in lower and upper limits in y-axis. The integral can then
be solved according to [32].

This results in a vector containing all the collision probabilities for each point
j=1,2,...,m on both vehicles as:
Pia(i) = [PL() P2G) -~ PPG) PYGi) P3G) --- Pyi)] (4.15)

The probability of collision in prediction step ¢ will thereafter be defined as the
maximum probability found in the vector according to:

Pcollision (Z) = maw(PLg(i)) (416)
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4.5 Collision Detection Procedure

The following section describes the connection between the collision detection block
and the rest of the system. First, the acquired inputs given by the UKF will be pre-
sented, secondly, the characteristics of a collision required by the collision avoidance
subsystem will be defined. Lastly, the collision detection algorithm in pseudo-code
will be given.

4.5.1 Predicted states

The predicted state vectors and the corresponding covariance matrices for both the
EGO and POV are given from the UKF as output from the long-term path prediction
subsystem. The given states are denoted Zggo, £pov and the covariances ISEGO,
Ppov, as seen in Section 3.4.2. The states, whose structure follows the definition in
(2.1), and the covariances are given as inputs to the collision detection subsystem
as:

[z(1)] [ zEGO(i) ]
0| — | "oty
Fpcoli) = |00)| = | Oscoli) | 417
GO( ) U(Z) Upredictions(i) ( )
20w @ e
Prcoli) = Ty (1) 05(2') _ O ymeo (0) Uﬁmo(i) (4.18)
_ x(z) _ [2 POV (4)] _
y((?)) yPOV((,i))
CEP 1) = Uz (2 = | Vzpoyv ! s 4.19
VO | T et )
(020) 0@ 1| [0 ) Gee )]
PPOV(i) — Ur,y(i) JS@) — O-x’yPOV<Z.) Uggpo\/(i) (420)
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where the estimated positions with their respective part in the covariance matrix
are collected and thereafter defined for the EGO and POV as:

i)~ rEGO(i) 02 o) Ucho(i)]
E (i) N( [yEGO(i)]’ Lw,ymo(i) 02 (i) ) (4.21)

mo (i) o (i)

oa-sfronti) [l wel) e

Since the global sets are rotated according to predicted heading, as stated in Section
4.2, both vehicles heading must be known. As seen in (4.17) and (4.19), the EGO’s
heading can be collected directly whereas the POV’s heading needs to be calculated
with respect to its values of v,,,, and vy,, -

The EGO’s velocity, Upredictions, for all prediction steps is also collected from
(4.17) since the velocity is needed for the Collision Avoidance subsystem.

4.5.2 Characteristics of a collision

A vector defining the probability of collision in each prediction step i is given by
(4.16) for nyredictions predictions as:

Pcollision = [Pcollision(1> Pcollision(Q) T Pcollision(npredictions)] (423)

Pcol lision

*

I S e

<>
Prediction Horizon

ATTC

collision

TTC

=h
=
D ---
(O]

Figure 4.5: Illustration of the definition of Time To Collision (TTC) and collision time
interval (ATTC), where the y-axis denotes the probability of collision, Peoision, Over the
predicted time horizon. TTC is calculated from the current time step and up to the
probability to be above a threshold 7', whereas ATTC is calculated as the first time the
probability is above the threshold until is it below the same mentioned threshold.

This vector will result in a curve, an example depicted in Figure 4.5. The vector can
be used to define the characteristics of a collision (i.e. Time To Collision (TTC),
collision time interval (ATTC) and Distance To Collision (DTC)) needed as inputs
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to the collision avoidance subsystem. As illustrated in Figure 4.5, a collision is
detected when P.yyision is above the threshold 1. Moreover, the TTC is calculated
as the first time step when the probability crosses the threshold, whereas the ATTC
is the time difference between TTC and the time when P, jison goes below the
previously mentioned threshold. This can mathematically be described as:

Peottision (icottision) > T

Pootision(ifree) <T A ifree > leoltision
te = tcoltision * AT

Ate = (ifree — Geollision) - AT

where i.oision denotes the first time step when the probability of collision is above
the threshold T" and 74,.. the first time step where the probability of collision again
reaches values lower than T'. Furthermore, AT is the time interval between each
prediction, t¢ and Ate denote the TTC and the ATTC, respectively.

Additionally, the velocity of the EGO in each prediction step, Vpredictions, and
the DTC, d¢, as well as the corresponding variance, aflc, are needed to characterise
a collision. As mentioned in Section 4.5.1, the velocity is collected directly from the
predictions, but the DTC needs to be computed appropriately.

The DTC is defined as the distance the EGO will travel before it reaches the
collision point and is calculated as the euclidean distance between two consecutive
points. The DTC from the EGO’s current position until it reaches prediction time
step ¢ can then be calculated by:

de(0) =0 (4.28)

do(i) = de(i — 1) + \/ATEGO? + AYyEGO?  for i = 1,2, ., Npreaictions (4.29)
with:

AxEGO = zEGO(i) — xEGO(i — 1) (4.30)

AyEGO = yEGO(i) — yEGO(i — 1) (4.31)

where zEGO and yEGO are the cartesian coordinates for the EGO.

To transform a two-dimensional variance of xEGO and yEGO into a combined
variance in the one-dimensional space for the DTC, the Jacobian G(i) of d¢ (i), and
the variance Py, (i) need to be defined as:

. AzEGO AyEGO —AzEGO —AyEGO
G(i) = [ h(z,y) hy(%y) h(z,y) h(liay) } (4.32)
where:
h(z,y) = VArEGO? + Az EGO? (4.33)
and:
- [9g6) 0
Pvar(z) - [ 0 EE<Z _ 1)] (434)
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where (i) and Xg(i — 1) are the variances in = and y position for prediction step
i and i — 1 respectively, according to (4.21). The resulting variance for the DTC can
then finally be calculated according to:

040 (1) = G(i) - Poar(i) - G(i)" (4.35)

which will serve as an input to the collision avoidance subsystem.

4.5.3 Collision Detection Algorithm

The presented collision detection algorithm will have inputs as defined in Sec-
tion 4.5.1, as well as the length and width of both vehicles. An additional input
is the time interval between each prediction, AT. Outputs will be the variables
described in Section 4.5.2, as well as an additional boolean variable Danger being
set to true if a risk of collision is detected.

Note that when a collision risk has been detected, the predictions will maybe
not include a time step where the probability of collision is below the predefined
threshold 7. The index s, is then consequently not defined, which is required
in the presented solution as was seen in (4.27). This index will therefore, in these
situations, be set to the time step after the prediction horizon (nyredictions + 1)-
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Algorithm 5 Collision detection

Input: &gpco, Prco,l, w, Epov, Prov,l,w, AT
OUtpLIt: Danger, tCa AtC’a dC7 UCQlCa Upredictions

Define the sets Aggo and Apoy according to (4.1) and (4.2)
Collect E and O according to (4.21) and (4.22)
Collect 0o from 6 and Opoy from v, and v, in (4.17) and (4.19)

Initialise: dc(0) =0
fori=1: Npredictions do
Define global sets according to (4.3) and (4.4)
Rotate sets according to 0o and Opoy, choose ) points i.e. create Ep and
Op
for j=1:ndo
Create the distributions according to (4.12) and (4.13)
Create the vector P by the use of (4.14)
end for
Calculate P.oision according to (4.16)
Calculate d¢ and o7, according to (4.29) to (4.35)
end for

if a'ny(Pcollision) > T then
icollision = find(/])collision > T7 1)

Z-free = find(Pcollision < T)
t@mpindex = find(ifree > Z.collision)

If no collision free index is found along the predictions
if isempty(tempindex) then
ifree = Nypredictions +1
else
Z.free = ifree<tempindex(1))
end if
tc = leollision * AT
AtC’ = (ifree - icollision) AT
Collect vy edictions from (4.17)
Danger = true

dC - dC(icollision)
0-30 - O-sc (icollision)
else

Danger = false
end if

2
return Danger, tc, AtC; dC7 Odc» Upredictions
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Collision avoidance

A Collision Avoidance (CA) system consists of two major parts, detection of an
oncoming threat and an avoidance decision in concern to that threat. Since the
detection of a probable threat is described in Chapter 4, this chapter focuses on the
assessment and decision made in regard to this threat.

The assessment should aim at finding the point in time where the driver is
unable to avoid a collision. Within the automotive industry, a false intervention is
looked on with disapproval, hence the biggest difficulty when assessing a threat is to
find a good level of conservativeness. This level is found when having a balance of
preventing a too high level of false interventions meanwhile having a fully functional
system. The system will therefore need to cope with these requirements! i.e., keeping
the false interventions to a minimum.

A decision should thereafter culminate into an intervention aiming at avoiding
or mitigating the collision, where an intervention could be comprised of different
motions such as braking, steering or acceleration. Since this Thesis only concern
Autonomous Emergency Braking (AEB) interventions, no further research will be
conducted within the area of incorporating a choice for different intervention meth-
ods.

Figure 5.1 gives an overview of the collision avoidance part, blue encirclement, in
the whole system. The figure also illustrates the intended intervention method in
accordance with the formal threat assessment, as shown in the graphical represen-
tation. The chapter comprises of the related work within this area given in Section
5.1, the proposed collision avoidance strategy in Section 5.2 and applied collision
avoidance procedure in Section 5.3.

5.1 Related work

CA systems have been extensively researched within the field of fully autonomous
vehicles such as for cooperative collision avoidance solutions. Here, a scenario can
involve several vehicles in motion, where the assessment and decision will aim to
cooperatively calculate each vehicle’s trajectory under tight time constraints for the
ability to avoid a collision. Solutions based on this approach can be viewed in
[31][33][34].

Since the intended system aims at supporting the driver and the Decision

11S026262 requires verification tests to give less than one false AEB intervention during 10
years or within 100 000 km of driving.
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5. Collision avoidance

Making (DM) algorithm is restricted to emergency braking (AEB) as intervention
method, the Threat Assessment (TA) algorithm gains a greater purpose in the pro-
posed solution. The aim of the TA algorithm is to trigger an intervention at the
latest possible time instance, hence keeping the driver as the decision making con-
stituent as long as possible.

Map data Sensor data

i i
i i
i i
i i
i i
i i
Block 3: : L :
Collision avoidance : IMM :
i i
; y ;
i i
I > UKF i
i i

1
! Collision Detection :
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Figure 5.1: Overview of the collision avoidance subsystem as part of the whole system
with graphical view of the intended outcome.

A well-known concept within active safety applications is the Point-Of-No-Return
(PNR) which corresponds to the time instance where the accounted vehicle in-
evitably ends up in a collision. It is consequently this point in time that will need to
be avoided to evade or, if this point is reached, mitigate a collision. The aim of the
CA system should therefore be to identify the PNR and consequently intervene just
before, with the use of a pre-calculated control input, with as few false interventions
as possible.

In literature there are several approaches based on the same avoidance strategy
as the above mentioned, presented in [35][36][37]

A way of calculating the PNR, is by the use of reachability analysis. Reachability
tools can be used to evaluate if the current state belongs to a set that over a specific
prediction horizon evolves into a given target set for all feasible external inputs. In
the adaption of identifying the PNR, the reachability analysis has the purpose of, by
back propagation, finding the time instance where the vehicle inevitable ends up in
a collision. The collision instant will here act as the target set and the reachability
tools will define the back propagated sets. The propagated sets will thereafter
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describe the state in each time instance which consequently could be used to identify
the PNR.

This approach has mainly, within the automotive industry, been applied to
research regarding fully automated vehicles, as for example within cooperative driv-
ing as presented in [38] and [39]. As a result, instead of making a collision avoiding
intervention, they use a decision parameter for cooperative crossing of an intersec-
tion. The approach presented in [17] reformulated the solution of [38] by defining
the back propagated sets as the relation of maximum velocity at a certain distance
to collision. Essentially, a comparison were performed between the cu