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ABSTRACT

In this report we study vector quantization based on lattices. A lattice is an infinite set of

points in a regular structure. The regularity can be exploited in vector quantization to make

fast nearest-neighbor search possible, and to reduce the storage requirements. Aspects of

lattice vector quantization, such as scaling and truncation of the infinite lattice, are treated.

Theory for high rate lattice quantization is developed, and the performance of lattice

quantization of Gaussian variables is investigated. We also propose a method to exploit the

lattice regularity to design fast search algorithms for unconstrained vector quantization.

Experiments on Gaussian input data illustrate that the method performs well in comparison to

other fast search algorithms.
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1. INTRODUCTION

Vector quantization (VQ)1 has since about 1980 become a popular technique for source

coding of image and speech data. The popularity of VQ is motivated primarily by the the-

oretically optimal performance; no other source coding technique at equivalent delay can

achieve better performance than optimal VQ. However, direct use of VQ suffers from a

serious complexity barrier. Many authors have proposed constrained VQ structures to

overcome the complexity, for example multistage VQ [1], tree-structured VQ [2-5], vector-

sum VQ [6], gain-shape VQ [7], etc. Each of these solutions has disadvantages, in most

cases a reduced performance. Lattice VQ [8, 9] is another constrained VQ technique, where

the codevectors form a highly regular structure. The regular structure makes compact storage

and fast nearest-neighbor search (finding the closest codevector to an input vector)

possible, but also leads to performance loss.

Another line of research, also aimed to overcome the complexity barrier of VQ, is design

of fast search methods for unconstrained quantizers. Due to the presumed lack of structure in

such quantizers2, nearest-neighbor search for unconstrained VQ is considerably more

difficult than search of a constrained VQ. Algorithms for fast nearest-neighbor search of

unconstrained VQ include for example neighbor descent methods [10, 11], where the

complexity of a full search is avoided by precomputing an adjacency table, consisting of all

neighbors to all VQ points. Other methods are the anchor point algorithm [12], where

codevectors are excluded from the search by the triangle inequality, and the K-d tree

technique [13], where a prestored tree structure helps in avoiding unnecessary operations.

In this report, we discuss lattice-based quantization3 as a solution of the complexity

problem. Lattice-based quantization is a generalization of conventional lattice quantization,

by allowing modifications of the regular lattice structure while still maintaining a local lattice-

similarity. In the first part of the report, conventional lattice quantization is treated. After the

introduction and VQ preliminaries in chapter 1 and 2, we present high rate theory for lattice

1With VQ, we will sometimes mean vector quantization, and sometimes vector quantizer, with the
distinction left to the context.
2A pdf-optimized unconstrained VQ is generally far from unstructured, but the structure may be difficult to
find and exploit.
3Most of the conclusions in this report holds for tessellation quantizers as well. More about tessellations
can be found in [14].
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VQ for Gaussian variables in chapter 3. The high rate theory leads to design rules for lattice

VQ, and formulas for asymptotic performance. Further, the performance of lattice VQ for a

Gaussian input pdf is compared to the performance of pdf-optimized VQ. An important task

in lattice VQ design is the truncation of an infinite-size lattice, to include the desired number

of codevectors in the VQ. Other important aspects are for example the choice of lattice, and

scaling of the source, to get a good performance. These aspects are treated from a practical

perspective in chapter 3, and solutions are found, based on the lattice high rate theory. In

many previous reports, the focus has been on high-dimensional lattice quantization, due to

the asymptotic equipartition property (AEP); when the dimension grows to infinity, the d-

dimensional probability density of a memoryless input source becomes more and more

localized to a ”typical” region, inside which the density is approximately uniform [15]. Thus,

a lattice quantizer, with an inherent uniform distribution of codevectors, can be expected to

work well for high dimensions. We have instead focused on low-dimensional (2-5

dimensions) lattice VQ, since several interesting areas in speech and image coding employ

low-dimensional parameter vectors.

The density of the codevectors in a lattice quantizer is uniform, which may inflict on the

efficiency of lattice quantization for nonuniform sources. We propose a novel VQ design

concept in chapter 4, with the goal to combine some of the desirable properties of a lattice

VQ with the good performance of a pdf-optimized VQ. The VQ is initialized with a truncated

lattice, and an adjacency table for the lattice is computed. Then, during the training, the

quantizer is updated to keep the neighbors as given by the lattice adjacency table. By

example, we show that this lattice attraction can be imposed with almost no performance

loss at all for a Gaussian input pdf. A neighbor descent algorithm [11], modified to suit the

special requirements of the lattice-attracted quantizers, is presented in chapter 5. The

performance of the new neighbor descent method is reported in chapter 6, together with the

performance of direct lattice quantization of Gaussian variables. Finally, a summary is given

in chapter 7.



2. VECTOR QUANTIZATION

In this chapter, we present vector quantization theory. Necessary optimality conditions for a

VQ is given, and theory for high rate quantization is discussed.

2.1 Definitions

A VQ   Q  of size N and dimension d is a mapping from a vector in the d-dimensional

Euclidean space d  into a finite reproduction set   C = { }c c c1 2, ,..., N :

  Q C: d → . (2.1)

The set   C , denoted the codebook, contains N codevectors ck k N, , ,...,= 1 2 , each a vector

in d . The index k of the codevectors is denoted codeword. The rate R of the quantizer is

defined as log2 N d( )  [bits per sample]. The definition of   Q  in (2.1) partitions d  into N

disjoint regions, each with a corresponding codevector ck .

The vector quantizer can be decomposed in two components, the encoder and the de-

coder. The encoder   E  maps from d  to the index set   I = { }1 2, ,..., N

  E I: d → , (2.2)

and the decoder   D  maps the index set into the reproduction set   C , i.e.,

  D I: → d . (2.3)

With this notation, the quantization operation can be written as a cascade of the encoder and

decoder:

  Q D Ex x( ) = ( )( ) . (2.4)

In this report, we will measure the performance by the statistical mean of the squared

Euclidean distance measure,

  
D = − ( )[ ]E x xQ 2

. (2.5)

The mean squared error criterion is only one of many possible distortion measures, but it has

the advantage of being widely used and is mathematically simple.
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2.2 Optimality conditions

In VQ design, the aim is to find encoder and decoder rules to minimize the chosen distortion

measure. For the squared Euclidean distance measure (2.5) (with a decoder   D i i( ) = c ), it can

be readily shown [16] that for a fixed partition Ωk  of the input space, the codevectors

c c c1 2, ,..., N{ } should be chosen as the centroid of the vectors in the region,

c x xk k= ∈[ ]E Ω  (2.6)

to minimize the expected distortion. (2.6) is often called the centroid condition. If instead

the set of codevectors is fixed, the partition should be the nearest neighbor partition:

  
Ω Ωc x x c x ck k

d
k i i( ) = = ∈ − ≤ − ∈{ }:

2 2
 for all I (2.7)

with the corresponding encoder rule

  
E

I
x x c( ) = −

∈
argmin

i
i

2, (2.8)

together with rules to solve ties. The regions Ωk  are often referred to as Voronoi regions,

after the author of [17].

We see that both the encoder and the decoder are completely specified by the codebook

  C , so finding optimal encoder and decoder rules is equivalent to finding the optimum set of

codevectors c c c1 2, ,..., N{ }.

The centroid condition (2.6) and the nearest neighbor partition (2.7) are necessary but

not sufficient for a VQ to be optimal in the mean square sense. Sufficient conditions for a

globally optimal VQ have never been presented (except for some special cases), and a

quantizer fulfilling the necessary conditions may be far from optimal. This makes VQ design

a delicate problem.

Using the nearest neighbor condition, the Voronoi neighbors to a Voronoi region Ωk  in

a VQ can be defined as

  Ak i ki N= ∈[ ] ∩ ≠ ∅{ }1, : Ω Ω (2.9)

that is, the set of codevectors whose Voronoi regions share a face with Ωk . With this

definition, the nearest neighbor partition can be reformulated as

  
Ωk

d
k i ki= ∈ − ≤ − ∈{ }x x c x c: 2 2  for all A , (2.10)

which illustrates that the Voronoi region is defined by a subset of the inequalities in (2.7).

The new definition of the nearest neighbor partition shows that to find the optimum code-

vector to a given input vector x , it suffices to find a codevector whose Voronoi neighbors all

have greater distance to the input vector. This can be exploited in fast search algorithms, as

described in chapter 5.
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2.3 High rate theory

In [18] and [16], it is shown that for high resolution VQs, the optimal reconstruction point

density λ x( ) for quantization of a stochastic vector process x  with pdf fx x( ) is given by

λ x xx( ) = ⋅ ( )+a f d d( )2 (2.11)

where d is the dimension of the VQ, and a is a normalizing constant. For a quantizer with the

above optimal point density, we have for high rates [16]

D
d d

d
f

d
d d d d R≥

⋅ +( )
+( ) ⋅

( )( ) ⋅+ + −∫
Γ2

2 2 22 1

2
2

π x x ( ) ( )
, (2.12)

where R is the rate of the quantizer, in bits per dimension.

For an uncorrelated Gaussian pdf, the above expression can be simplified to the

Gaussian lower bound (GLB)

D f dR
GLB ≥ ⋅ ( ) ⋅−2 2 2σ x , (2.13)

where

f d
d

d

d
d

d
d( ) = +



 +( )

2 2
2 1

2
2Γ , (2.14)

and

σ x x x xx m x m x x2 2 2= −[ ] = − ( )∫E f d (2.15)

m x x x xx x= [ ] = ⋅ ( )∫E f d . (2.16)

Knagenhjelm [19] shows experimentally that the Gaussian lower bound is not only a lower

bound, but also a good approximation to the actual performance of a well-trained vector

quantizer, if the rate is high.



 



3. LATTICE QUANTIZATION

In this chapter, we will treat lattice quantization, both from a theoretical and a practical

perspective. High rate theory for lattice quantization of iid Gaussian variables is derived,

leading to formulas for lattice VQ design and performance. Practical issues in lattice VQ

design, such as truncation and scaling of the lattice, are also treated.

3.1 Definitions

A lattice is an infinite set of points, defined as

Λ = ⋅ ∈{ }B u uT d: (3.1)

where B is the generator matrix of the lattice. The rows of B constitute a set of d  linearly

independent basis vectors for the lattice,

  B b b b= [ ]1 2, , ,L d
T

(3.2)

Thus, the lattice Λ  consists of all linear combinations of the basis vectors, with integer

coefficients.

The theta function of the lattice gives the number of lattice points ci  at a specific

distance from the origin, i.e. points within a shell. The theta function for many standard

lattices can be found in [9].

The fundamental parallelotope of the lattice is defined as the parallelotope

z z zd d i1 1 0 1b b+ + ≤ <... ( ). (3.3)

Associated with each lattice point is a Voronoi region. Due to the regular structure of

lattices, all Voronoi regions in a lattice are simply translations of the Voronoi region Ω 0( )
around the zero lattice point. Ω 0( ) is referred to as the lattice Voronoi region Ω , with the

definition

Ω Λ= ∈ ≤ − ∈{ }x x x c cd : 2 2  for all (3.4)

The normalized second moment of a Voronoi region Ω ci( ) is defined to be
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G
d

di

d

i

i

= ( )( )[ ] −
− −

( )
∫

1 1 2 2
vol Ω

Ω

c x c x
c

/
, (3.5)

where vol Ω ci( )( )  is the volume of the Voronoi region around ci . Since Ω ci( ) is a trans-

lation of Ω , Ω Ωc ci i( ) = + , we can write

G
d

d
d= ( )[ ]− − ∫

1 1 2 2
vol Ω

Ω

/ x x , (3.6)

which illustrates that G is independent of i. The constant G  is from now on be referred to as

the quantization constant of the lattice, since it describes the mean squared error per

dimension for quantization of an infinite uniform distribution, if the volume of the Voronoi

region is normalized to one.

Lattice quantization is a special class of vector quantization, with the codebook having

a highly regular structure. Any codevector   ck ∈C  in a lattice quantizer can be written on the

form

c B uk
T

k= ⋅ (3.7)

where uk  is one of N  given integer vectors, and B is the generator matrix of the lattice.

Alternatively, a lattice VQ can be described as the intersection between a lattice Λ  and a

shape   S ,

  C S= ∩Λ (3.8)

where   S  is a d -dimensional bounded region in d . An example is shown in figure 3.1.

Figure 3.1. Illustration of lattice truncation. Left: a lattice Λ , Center: a shape   S , Right:

the resulting lattice quantizer   C .

The design of a lattice VQ can now be separated into finding a good lattice, specified

through its generator matrix B, and a good shape   S . In addition, a scale factor for the lattice

must be found, and an assignment of indices to the codevectors. These problems will be

treated in the following sections.

Applications of lattice vector quantization include, e.g., image coding [20, 21] and

speech coding [22, 23]. Moayeri et al. superimposed a fine lattice upon a source-optimized
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unstructured VQ to achieve a fast two-step search method [24, 25]. Kuhlmann and Bucklew

[26], Swaszek [27] and Eriksson [28] connects lattices with different scaling into one

“piecewise uniform” codebook, to approximate nonuniform source pdfs. In [14], an

overview of applications including lattice VQ is presented.

3.2 Theory for high rate lattice quantization

In this section, we derive expressions for the distortion of lattice quantization of iid Gaussian

vectors, when the rate R of the quantizer tends to infinity. Eyubogˇlu and Forney [29], and

Jeong and Gibson [30], have previously worked with high rate theory for lattice

quantization, but to the authors’ knowledge, simple analytical expressions for the optimal

truncation and performance of d-dimensional lattice quantizers has not been presented

before. A major difference between the high rate lattice theory presented here and the usual

high rate theory for optimal quantization (section 2.3), is that for lattice quantization, it is

necessary to explicitly consider overload distortion, while the usual high rate theory only

permits granular distortion.

We assume an iid Gaussian input pdf, with zero mean, unit variance samples. However,

in the end of this section we discuss a generalization of the results.

After some definitions, two theorems concerning the distortion of a lattice VQ as a

function of the rate and truncation are given. The optimal truncation radius, and the corre-

sponding distortion, are found by setting the derivative of the distortion to zero.

A d-sphere is a d-dimensional sphere, defined as

S a ad
d( ) = ∈ ≤{ }x x: . (3.9)

We assume a truncation shape in the form of a d-sphere with radius aT  (figure 3.2), so that

  C = −( ) ∩ ( )Λ v S ad T , (3.10)

where v is an arbitrary vector (see the discussion in section 3.4, and (3.33)).

We subdivide the d-dimensional space into two (nonspherical) subregions: a granular

region   G , which we define as the union of lattice Voronoi regions around all codevectors,

    
G

C
= +( )

∈
Ω c

c
i

i

U , (3.11)

and an overload region   G , which is the rest of the space, so that   G G∪ = d  and

  G G∩ = ∅. Figure 3.2 illustrates the granular and overload regions for a two-dimensional

lattice VQ, based on the well-known hexagonal lattice A2 .
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aaa

aT

Figure 3.2. Illustration of the granular region (the gray area) and the overload region

(everything but the gray area) of a 2-dimensional lattice quantizer.

The total distortion D  of the lattice quantizer can be separated into a granular component,

  DG , and an overload component,   DG ,

  
D f d f d f d D D

d

= − ( ) = − ( ) + − ( ) = +∫ ∫ ∫x c x x x c x x x c x x*
x

*
x

*
x

2 2 2

G G
G G , (3.12)

where c*  denotes the codevector in the codebook   C  that is closest to the input vector x . We

now give two theorems, leading to simple approximations of the granular and the overload

distortion of lattice quantization. In the first theorem, we write the overload distortion as the

distortion given a high codevector density close to the surface of the truncation sphere, plus

an error term. The second theorem is mainly based on the smoothness of the Gaussian pdf,

so that the pdf within the granular Voronoi regions is nearly uniform, if the Voronoi regions

are small. Both theorems are proved in appendix A.

Theorem I: The overload distortion is given by

  
D f d a ed a

G G G= ( ) ⋅ ⋅ ⋅ +( )− −
T

T4 22

1 ε (3.13)

where   f d dd
G ( ) = ⋅ ( )( )− −

2 22 2 1
Γ / . For asymptotically high rates R, and the truncation

radius aT  suitably chosen,   εG  tends to zero.

Theorem II: The granular distortion is given by

  D f d a R
G G G= ( ) ⋅ ⋅ ⋅ +( )−

T
2 22 1 ε (3.14)

where   f d G d d d
G ( ) = ⋅ ⋅ ⋅ +( )−π Γ / 2 1 2 . For asymptotically high rates R, and the

truncation radius aT  suitably chosen,   εG  tends to zero.

The total distortion, D, can be written

  
D D D f d a f d a eR d a= + = ( ) ⋅ ⋅ + ( ) ⋅ ⋅( ) ⋅ +( )− − −

G G G GT T
T2 2 4 22 1
2

ε , (3.15)

where the error term ε  tends to zero when R grows towards infinity. For the moment, we

exclude the error term, and seek the minimum of
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ˆ ˆ ˆD D D f d a f d a eR d a= + = ( ) ⋅ ⋅ + ( ) ⋅ ⋅− − −

G G G GT T
T2 2 4 22
2

. (3.16)

In appendix A.4, it is shown that the minimum value of D̂  is also the minimum value of

D. To find the value of the truncation radius aT  that minimizes the distortion, we dif-

ferentiate D̂  with respect to aT :

  

∂
∂

D̂

a
f d a f d d a e f d a eR d a d a

T
T T T

T T= ⋅ ( ) ⋅ ⋅ + ( ) ⋅ −( ) ⋅ ⋅ − ( ) ⋅ ⋅− − − − −2 2 42 5 2 3 22 2

G G G .(3.17)

Since D̂  is a convex and continuous function in the interesting region (see section A.4), we

get the condition for minimal distortion by setting the derivative to zero,

  

∂
∂

D̂

a
f d a e a d f dd a R

T
T,opt T,opt

T,opt= ⇔ ( ) ⋅ ⋅ ⋅ + −( ) = ⋅ ( ) ⋅− − −0 4 2 26 2 2 2
2

G G . (3.18)

where aT,opt  is the value of aT  that minimizes the distortion. We observe that by multiplying

both sides of (3.18) with aT
2 , we get

  
ˆ ˆD a d DG G⋅ + −( ) =T,opt

2 4 2 (3.19)

where   D̂G  and   D̂G  are given by (3.16). We get

  

ˆ

ˆ
D

D a d
G

G
=

+ −
2

42
T,opt

. (3.20)

In appendix A it is shown that aT,opt  tends to infinity when R approaches infinity. We

conclude that the total distortion is dominated by the granular distortion, when the rate tends

to infinity,

  

D

D
G

G
→ 0  when R → ∞ . (3.21)

Returning to (3.18), and taking the logarithm of both sides, we have

  
− + −( ) ⋅ ( ) + + −( ) = − ⋅ +

⋅ ( )
( )











a
d a a d R

f d

f d
T,opt

T,opt T,opt

2
2

2
6 4 2 2

2
ln ln ln ln G

G

, (3.22)

or, equivalently,

  
a d a

d

a
R

f d

f dT,opt T,opt
T,opt

2 2
24 2 1

4
4 2 2

2
− −( ) ⋅ ( ) − ⋅ + −





= ⋅ − ⋅

⋅ ( )
( )









ln ln ln ln G

G

. (3.23)

Since aT,opt  tends to infinity for rates approaching infinity, both sides are dominated by their

first terms, resulting in

a RT,opt
2 4 2≈ ⋅ ln   when R → ∞ . (3.24)
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that is, the optimal truncation radius aT,opt  is proportional to the square root of R for

asymptotically high rates.

The total distortion (3.15) can now be written

D g R d R= ( ) ⋅ −, 2 2 , (3.25)

where g R d,( )  is approximated using (3.21) and (3.24),

  g R d f d R, ln( ) ≈ ⋅ ⋅ ( ) ⋅4 2 G    when R → ∞ . (3.26)

It is easy to generalize the formulas to arbitrary variance, by making the substitution

y x y= ⋅ σ 2 d  (see (3.27)-(3.29)). If we compare the lattice VQ distortion with the dis-

tortion of a pdf-optimized quantizer (2.13), we see that the discrepancy increases with the

rate. This can be observed in figure 3.7, section 3.6, where optimal VQ and lattice VQ are

compared.

(3.25) is only proven for rates approaching infinity, but we have experimentally verified

that the formulas also hold for realistic rates. In figure 3.3, the experimental performance of

lattice quantization (see table 6.1) is compared to the high rate theory results, for quantization

of 2- and 5-dimensional Gaussian variables.

aa
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Figure 3.3. Experimental performance for lattice quantization of an iid Gaussian pdf (circles),

and performance predicted by lattice VQ high rate theory (line). Left: 2 dimensions. Right: 5

dimensions.

With this theoretical derivation of lattice VQ performance, we have two asymptotical

lattice VQ results: the asymptotic equipartition property predicts that a lattice VQ performs

better for high dimensions, while the high rate theory predicts that a lattice VQ performs

worse for high rates. These results are illustrated in figure 3.4, where each curve indicates a

specific performance loss compared to a pdf-optimized VQ. The curves in figure 3.4 were

computed by use of the high rate lattice theory (3.25) and the Gaussian high rate lower

bound in (2.13).
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Figure 3.4. Estimated performance loss for a lattice VQ compared with a pdf-optimized VQ.

The curves indicate rate and dimension for lattice quantizers with performance loss from 1 to 5

dB.

The formulas above were derived for iid Gaussian densities, with zero mean, unit

variance samples, but it is straightforward to generalize the theory to arbitrary variance and

mean. The conclusions should be similar also for correlated Gaussian data, but the theory is

more complicated for correlated variables. By simple modifications, the formulas can be

used for a generalized Gaussian pdf. Some of the results may also be possible to generalize

to other pdfs. For all unbounded pdfs, such as Gaussian, Laplace, Gamma, etc., the size of

the granular region must increase when the rate increases, for the overload distortion to be

zero for an infinite rate. Thus, the granular region includes parts of the space with lower and

lower pdf. Therefore, the larger the rate, the more the point density of an optimal quantizer,

given by (2.11), differ from the uniform point density of a lattice quantizer. Based on the

above reasoning, and on our experience of high rate theory for Gaussian pdfs, we believe

that the suboptimality of lattice quantizers for high rates holds under far more general

conditions than for iid Gaussian distributions.

Substituting as discussed above, to get formulas that are valid for arbitrary input signal

variance, we conclude the high rate lattice theory in the following three points:

• The optimal squared truncation radius is proportional to the rate for high rates,

a R
dT,opt

2 24 2≈ ⋅ ⋅ln σ y   when R → ∞ . (3.27)

• For high rates, the granular distortion dominates over the overload distortion,

  

D

D
G

G
→ 0 when R → ∞ . (3.28)

• For high rates, the performance of lattice quantizers, as given by the high rate formula

D R G dR d≈ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +( ) ⋅− −2 4 2 2 12 2 2ln /π σΓ y  when R → ∞ , (3.29)



14 LATTICE-BASED QUANTIZATION, PART II

is inferior to the performance of optimal vector quantizers, given by the Gaussian lower

bound (2.13).

3.3 Selection of lattice

The choice of lattice is of course of major importance for the performance of a lattice VQ.

Ideally, the lattice should be selected to suit both the actual pdf and the truncation. However,

for high rate quantization of smooth pdfs, the choice of lattice is fairly independent of input

pdf and truncation [16]. For these cases, the lattice can be chosen based on its quantization

performance for an infinite uniform pdf. This choice is motivated by high rate theory; for

high rates, the pdf in each Voronoi region can be expected to be approximately uniform, at

least for reasonably smooth pdfs (such as the Gaussian pdf). Further, the performance of

infinite uniform lattice quantization, given by the quantization constant G, is easily found in

the literature for many lattices.

Conway and Sloane [9] give values of the quantization constant G and lattice basis B for

several lattices. For example, the best known lattices for quantization of infinite uniform pdfs

in 2 and 5 dimensions are generated by, respectively,

B = 





s
2 0
1 3

(3.30)

and

B =





















s

2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
1 1 1 1 1

(3.31)

where s is a scale factor to be determined4. The first is the well-known hexagonal grid

(figure 3.2), also denoted the A2  lattice, and the second is the D5
*  lattice. The best known

lattices for quantization of infinite uniform pdfs in 2-5 dimensions are A2, D3
* , D4

*  and D5
* ,

respectively. These lattices are employed in our experiments in chapter 6. In [14], lattices for

quantization purposes are thoroughly studied.

3.4 Truncation and scaling

As described previously in this chapter, a lattice quantizer is the intersection between a lattice

Λ  and a shape   S . The procedure to reject lattice points outside the shape, called truncation

of the lattice, is of major importance for the performance of the resulting lattice quantizer.

Truncation for known distributions: Jeong and Gibson [30] argue that in a good lattice

VQ, the lattice should be truncated by a contour of constant probability density for the

4Lattices can of course also be rotated and translated, but for high rates and smooth pdfs, these operations
have little influence of the performance of a lattice VQ.
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considered source, and design lattice VQs for Gaussian and Laplacian data. For the

Laplacian pdf, this leads to truncation by a d -octahedron, which, mostly in combination

with the integer lattice d , has received much attention since Fischer introduced the structure

(Pyramid VQ) in the mid-80’s. A recent reference on this topic is [31]; see also Swazek [32].

For a Gaussian pdf, the iso-probability contours are ellipsoids, and a corresponding

truncating shape   S  is described by

  S = ∈ <−{ }x x C xx
d a: T 1 2 (3.32)

where Cx  is the covariance matrix of the Gaussian input distribution, and a  is a constant,

determining the size of the ellipsoid. To truncate a lattice to the correct number of VQ points,

the radius a  above must be determined. An approximate value of a  can be found by using

the volume of the lattice Voronoi region, and for certain rates, a  can be found by use of the

theta function of the lattice.

A problem that may occur when lattices are truncated to a desired number of points is

that a lattice normally has many points lying on the same distance from the origin (shell), and

the truncation procedure may be required choose a few among those. To prevent lattice

points to fall on the boundary, an arbitrary vector v ∈ d  can be added to the shape prior to

the truncation:

  C = ∩ +( )Λ S v   (or, equivalently,   C = −( ) ∩Λ v S ). (3.33)

After the truncation, the truncated lattice is moved to make the mean of all codevectors equal

to the mean of the source. The choice of v  can affect the performance of the resulting

quantizer. We have experimented with four different methods to select v :

I v  is set to zero.

II v  is selected as a very small (small compared to the basis vectors of the lattice)

stochastic vector.

III v  is selected as a stochastic vector with length in parity with the basis vectors of the

lattice.

IV v  is selected to minimize the energy of the resulting quantizer C ,

  
v u

u
= ∩ +( )

∈
argmin

d

Λ S 2
  where  

  
C 2 2

1

=
=

∑ ck
k

N

. (3.34)

Method I leads to truncations that are natural for the chosen lattice, truncations were the

outmost shell is full. This can of course only be achieved for certain values of the number of

VQ points. Method II, III and IV can give arbitrary VQ sizes. Method IV has been used by

Conway and Sloane [33] in a different application, and they also propose an iterative

algorithm to perform the energy minimization. The first and second method (I and II) have

proved best in the cases tested in this study. Since only a limited set of rates can be achieved
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with method I, method II is preferred in this paper, although some results with method I are

also reported.

After the truncation, the lattice VQ should be scaled to give the best possible perfor-

mance. The scale factor can be approximated by use of high rate theory (see section 3.2), but

to get better results an iterative procedure is often necessary, were the optimal scaling is

found for a training database. Several authors have previously studied lattice scaling by

iterative procedures, e.g., [8, 30, 34]. In [30], lattice VQ of iid Gaussian and Laplacian is

treated, and the scaling is done by numerical optimization.

Data-optimized truncation: In applications, the source pdf is generally not analytically

known, but described by an empirically collected database. In this case, we propose a data-

optimized truncation, where every vector in the database is classified to its closest point in

the full lattice, and the most probable lattice points are kept in the lattice quantizer. In contrast

to truncation for known distributions, there is no way to avoid storing the truncation

information for the data-optimized truncation. The algorithm is described in the following

steps:

Step 1: An approximate scaling of the chosen lattice must be found. For iid Gaussian pdfs,

and for pdfs that can be approximated as iid Gaussian, the high-rate scaling formulas

in section 3.2 can be used. For unknown pdfs, ad-hoc scaling may be necessary. We

have used a scaling rule that makes the granular distortion of the lattice equal to the

distortion of a pdf-optimized quantizer with the desired rate, according to the Gaussian

lower bound DGLB (2.13) in section 2.3:

s
D

G
= GLB , (3.35)

where G  is the quantization constant of the lattice. The estimated scale factor is only an

approximation of the optimum scale, but the truncation procedure is not very sensitive

to the scale, and mismatches are easily detected in step 3 of this algorithm. In all tested

cases, this method has proven sufficient.

Step 2: Classify each vector in the database to the nearest lattice vector, by use of a nearest-

neighbor algorithm for the chosen lattice [9]. The lattice points with the N highest

probabilities become codevectors in the lattice quantizer.

Step 3: An optimal scale factor s*  for the lattice quantizer is found, by some numerical

optimization method. If the scale factor is very different from the one found in step 1,

go to step 2 and repeat the procedure using the new scale factor s* .

Index-optimized truncation: In [33], Conway and Sloane introduce Voronoi codes,

where the truncation is chosen as an integer multiple of the Voronoi region of the lattice.

Forney subsequently generalizes the concept to other truncation shapes in [35]. With the
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Voronoi codes, the indexing of the lattice VQ is greatly simplified. However, the Voronoi

code truncation is generally not optimized for the pdf, and performance loss may result5.

3.5 Indexing

In addition to the choice of Λ  and   S , lattice VQ design involves one more issue; assignment

of indices to the codevectors. This enumeration can be made aiming at several, partly

conflicting, goals: (i) Memory saving. The indexing should have a mathematical formulation

that is more compact than a full table. (ii)  Fast encoding. The indexing should, in

combination with one of the search algorithms that have been developed for lattices [9], yield

a fast encoder   E . (iii)  Fast decoding. The codevector should be rapidly retrievable from the

index in the decoder   D . (iv) Symmetry. Characteristic for a lattice is that all points are alike

in relation to the surrounding points. The indexing should preserve this property. In chapter

5, where an adjacency table is needed, the symmetry solves the memory problem. (v)

Robustness. If the codebook is used for a noisy channel, bit errors should cause as little

distortion as possible.

There exists an elegant solution of the indexing problem for Voronoi codes [33] in such

a way that differences in indices reflect the relative position between codevectors. The

method, based on modular arithmetics, satisfies (i)–(iv) above. On the other hand, Voronoi

codes can only attain certain rates R , namely, those for which 2R  is an integer.

For a Gaussian probability density function, or other densities with rotational symmetry,

it is beneficial if the truncation shape is as spherical as possible. Unfortunately, the d -sphere

does not, in general, possess any of the appealing properties mentioned above. To combine a

shape that is suitable for the source (such as the d -sphere for Gaussian data) with one that

has a nice indexing (such as a Voronoi region), the former can be inscribed into the latter.

This approach amounts to designing a larger set that includes the codebook, enumerating this

larger set, and then disregarding the points that do not belong to the codebook. For this

method, (ii)-(iv)  above are satisfied. The larger set can for instance be chosen as a Voronoi

code [33]. An alternative larger set is B zT ⋅ , where z is a rectangular subset of the d-

dimensional cubic lattice. Figure 3.5 illustrates the latter method for a 2-dimensional

example, where a 19-point lattice VQ is enumerated by using a 25-point set, for which (ii)-

(iv) are satisfied.

5Eyuboǧlu and Forney shows in [29] that the performance loss is small for large dimensions.
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Figure 3.5. A 19-point lattice VQ, enumerated by using a 25-point set.

In the VQ design algorithm in chapter 4 and 5, we employ an indexing method in this cat-

egory.

3.6 Lattice VQ examples

In figure 3.6, a lattice VQ and a pdf-optimized VQ are depicted. The SNR values for the lat-

tice quantizer and the optimized quantizer are 14.6 dB and 15.3 dB, respectively.

    
Figure 3.6. Two 64-point quantizers for a Gaussian pdf. Left: a lattice VQ. Right: a well-

trained VQ.

In figure 3.7, the performance of lattice VQ is compared to pdf-optimized VQ for a 2- and a

5-dimensional iid Gaussian pdf.
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Figure 3.7. SNR as a function of rate for lattice VQ (  o) and pdf-optimized VQ (+). Left: 2-

dimensional VQ. Right: 5-dimensional VQ.

As predicted by the lattice high rate theory, the discrepancy between lattice VQ and pdf-opti-

mized VQ increases for higher rates. More results for lattice quantization of Gaussian

variables in 2 to 5 dimensions are reported on in section 6.2.

If the pdf-trained VQ in figure 3.6 is studied in detail, a feature of high rate quantizers

can be observed: the structure is well-ordered, and the environment of the VQ points is

locally similar to a lattice, at least for the points close to the center. This feature is exploited

in the next chapter, to design VQs for fast search.



 



4. LATTICE-ATTRACTED VQ DESIGN

In this chapter, we propose an extension to standard VQ design algorithms, a lattice-at-

tracted design algorithm, where the codebook is initialized with a truncated lattice, and the

codevectors are updated to maintain a local lattice similarity for each iteration. The goal with

this procedure is to make it possible to exploit the local lattice-similarity for fast nearest-

neighbor search.

A sketch of a lattice-attracted algorithm is described in the following steps:

I: Initialize the VQ with a truncated lattice. An adjacency table for the lattice is also re-

quired, denoted the lattice adjacency table. This table consists of all neighbors to

codevector 0 (vector zero), together with rules to compute the neighbors to an arbitrary

point in the lattice.

II: Train the VQ with a conventional design method, but add procedures to approximately

keep the initial set of neighbors, as defined by the lattice adjacency table.

The initialization procedure is described in section 4.1. In sections 4.2 and 4.3, we study

how to extend two standard design algorithms, the generalized Lloyd algorithm [36] and a

competitive learning algorithm [37], to approximately keep a predefined neighbor structure.

In chapter 5, a novel lattice-based nearest-neighbor search method is described, based on the

local lattice-similarity of the VQs trained with the proposed lattice-attracted algorithm. It is

even possible to apply the fast search method during the training, as described in section 5.2.

The algorithm introduced here can, together with the specialized fast nearest-neighbor

search method described in chapter 5, be viewed as a link between lattice quantization and

unconstrained quantization, with the goal to combine some of the advantages of both

methods.

4.1 Lattice initialization

Most iterative VQ design algorithms, such as the generalized Lloyd algorithm [36]6, or the

competitive learning algorithm [37], can easily be trapped in a local distortion minimum

when seeking the global minimum. A well-chosen initialization procedure can help the

6The generalized Lloyd algorithm is a direct generalization of a work by Lloyd, first presented in an
unpublished technical note, “Least squares quantization in PCM”, at Bell Labs 1957.
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algorithm to avoid local minima far from the global minimum. For example, the generalized

Lloyd algorithm is often initialized by a splitting procedure, proposed by Linde et al [3] (the

LBG algorithm). Another possibility is to initialize the VQ with a truncated lattice. Here, we

use the lattice as a good initialization for further training, but also to find a lattice adjacency

table for use in the fast search procedures described later.

The lattice initialization procedure starts with selection of a lattice with a good quanti-

zation constant G, as discussed in section 3.3. The lattice is truncated by any of the methods

described in section 3.4. If the pdf of the source process is given by a database, the data-

optimized truncation procedure can be used. For known pdfs, the lattice can be truncated by

an iso-probability contour.

Now an adjacency table must be found for the chosen lattice. Voronoi neighbors of some

standard lattices can be found in [9]. As discussed in section 3.1, the neighbors to a

codevector can be computed by translation of the neighbors to any other codevector, so only

neighbors to the zero codevector have to be stored. A simple enumeration technique is

discussed in section 3.5, where the lattice VQ is enumerated by using a larger set with

desirable properties. A possible larger set is given by B zT ⋅ , where z is a rectangular subset

of the cubic lattice. The technique is illustrated in figure 3.5, where we see that the neighbors

to an arbitrary point in the lattice VQ can be found by adding an offset of ±1, ±4 or ±5 to the

index of the point. This is not the most efficient method in terms of required storage, but it

works and it is simple. A more storage-efficient larger set is the Voronoi codes discussed in

section 3.5 and [33, 35], and these have been used in table 6.7. With the larger-set methods

above, the neighbors to the actual codevector are found by a simple procedure; the index of

the codevector is found, the offset to the wanted neighbor is added, and the codevector

corresponding to the neighbor index is found7. The first operation, finding the index of a

codevector, can be solved by storing a table of indices, with one integer index for each

codevector. Adding offset is trivial, and finding the codevector corresponding to the

neighbor index is either solved by looking in the index table, or in another table with index-

to-codevector translations (or by a compromise between those two alternatives). See section

6.4 for storage requirements of the translation tables, and overhead complexity of the

translation.

An alternative to ellipsoid truncation and larger-set indexing by table look-up, is direct

use of the Voronoi codes in [33], for which no translation tables are necessary. However, a

Voronoi-shaped truncation region is in general not optimal for the source pdf, and per-

formance loss results.

For a complete description of the lattice Voronoi region, the distances to the neighbors

are also stored. The set of neighbors to the zero codevector, together with the corresponding

distances, describes the Voronoi region of any point in the lattice.

7Some of the codewords will not have a full set of neighbors, due to the truncation of the lattice. Missing
neighbors are easily detected with the table look-up methods used here.
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The features of the lattice initialization procedure are here illustrated by examples of two-

dimensional vector quantizers. In figure 4.1, two 64-point VQs are plotted, directly after

being initialized with a truncated lattice. Each VQ point and its neighbors, according to the

lattice adjacency table, are connected by lines. The regular structure of the lattice initialization

is clearly visible.

Figure 4.1. Neighbor structure (lines) for two lattice VQs (dots). Left: A lattice VQ

optimized for uncorrelated Gaussian data. Right: A lattice VQ optimized for correlated Gaussian

data, ρ = 0 9. .

In the following sections, we will try to optimize the quantizers for the given source,

while still maintaining a locally lattice-similar structure. The neighbors according to the lattice

adjacency table, denoted the lattice neighbors, will deviate from the true Voronoi neighbors

of the quantizer, but large similarities will remain, if the optimization procedure is

successful.

4.2 Lattice attraction for the generalized Lloyd algorithm

The generalized Lloyd algorithm (GLA) is often used for unconstrained VQ design. In GLA,

the two necessary conditions, (2.6) and (2.7), are alternatingly iterated until the quantizer has

converged. GLA is a greedy algorithm, with the feature that the average distortion decreases

for each iteration. This means that GLA finds the nearest local minima, and stops the

iteration. To overcome this behavior, many methods have been proposed on how to add

randomness to GLA [38], in order to make it possible to evade local minima. A good

initialization is of prime importance for the success of GLA.

GLA is briefly described in table 4.1, step 1-3 and 5. To extend GLA to maintain the

neighborhood structure as given by the lattice adjacency table, we add an extra step (step 4 in

table 4.1), where all codevectors are moved a small step to increase the local lattice-

similarity. This extra step can be implemented in several ways, and we describe one such

way below. In advance, the codebook is initialized with a truncated lattice, and a lattice

adjacency table is found, as described in section 4.1. After the standard GLA iteration, each

codevector is moved a short step towards the centroid of its neighbors, according to the
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distance to the corresponding neighbors in the lattice we want to mimic. In this way, the

geometrical environment to each point in the VQ becomes more similar to the lattice, but each

point has still a high degree of freedom during the training. The algorithm, from now on

denoted lattice-attracted GLA or LA-GLA, is described in table 4.1, where step 4 is added

to a standard GLA. In this algorithm description, the function to compute the lattice

neighbors is denoted   N k i,( ), giving neighbor k of codeword i in the codebook. With lk , we

refer to the distance to neighbor k in the chosen lattice.

Table 4.1. The lattice-attracted GLA algorithm.

Step 1. Initialize the codebook   C1 1
1

2
1 1= { }c c c( ) ( ) ( ), ,..., N . Set m = 1.

Step 2. For the given codebook   C m , classify each vector x  in the training database   T
to a region Ψk

m( ) , using the nearest neighbor partition

  
Ψk

m
k
m

i
m i N( ) ( ) ( )= ∈ − ≤ − ∈( ){ }x x c x cT : ,

2
1

2
 for all 

If a tie occurs, that is, if x c x c− = −( ) ( )
k
m

i
m2 2

 for one or more i, assign x  to the

region Ψi
m( )  for which i is smallest.

Step 3. Compute a new codebook using the centroid condition

c xk
m

k
m i

i

k
m

( )
( )

=

=

( )

∑:
1

1Ψ

Ψ

where the sum is over all training vectors x  classified to Ψk
m( ) , and Ψk

m( )  is the

cardinality of the set Ψk
m( )  (the number of elements in Ψk

m( )). If Ψk
m( ) = 0  for some

k, use some other code vector assignment for that cell.

Step 4. Move all codevectors a small step εm  to increase the lattice similarity,

  

c c
c c

c ci
m

i
m

m

k i
m

i
m

kk

K i

k i
m

i
mw k i

l
i N( ) ( )
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
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


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1

1 1ε
N

N
N ,

where   N k i,( ) is the lattice adjacency function, K i( ) is the number of neighbors to

codeword i, and w j( )  is the average weighted distance between a codevector k and

its neighbors,

  
w j

K j
lk j

m
j
m

k
k

K j

( ) = ( ) ⋅ −( )
=

( )

∑1

1

c cN ,
( ) ( ) / .

The new set of vectors defines a new codebook,   C m
m m

N
m

+
+ + += { }1 1

1
2

1 1c c c( ) ( ) ( ), ,..., .

Step 5. Stop the iteration if some stopping criterion has been reached, for example if the

average distortion for   C m+1 has changed by a small enough amount compared to

the distortion of   C m . Otherwise, set m m:= + 1 and go to step 2.
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The step size parameter εm  can be chosen to be constant over the training phase, or it can

be a function of time. We have experimented with a linearly decreasing (to zero) step size,

ε εm
m

M
= ⋅ −



0 1 , (4.1)

where ε0  is the start step size and M is the total number of iterations of the algorithm. This

choice makes the lattice attraction weaker and weaker, and at the end there is no attraction at

all. We have experimented with different initial step sizes, and found that a value of ε0  in the

interval 0 05 0 1. .−  leads to good performance. The extra step is performed only once per

iteration of the full training database, and thus the extra complexity is small.

In figure 4.2, two 64-point quantizers are depicted after being trained for a jointly

Gaussian distribution with the LA-GLA algorithm, where the codebooks were initialized as

in figure 4.1. We see that most of the lattice neighbor structure is retained, but that the

quantizers are more optimized for the Gaussian pdf now.

Figure 4.2. Two VQs optimized for Gaussian data, trained with the LA-GLA algorithm.

Lattice neighbors are depicted as lines, and codevectors as dots. Left: uncorrelated data. Right:

correlated Gaussian data, ρ = 0 9. .

Results from simulations with the LA-GLA method are reported on in section 6.3.

4.3 Competitive learning with lattice attraction

Competitive learning (CL) [37] was first developed for training of artificial neural

networks, but can also be used for vector quantization training. In the CL algorithms, the

training vectors are presented one by one, and only one codevector (the closest one) is

adjusted for each input vector. The learning rule of CL can be derived from the two nec-

essary conditions in section 2.2 [39], which make CL and GLA essentially equivalent. The

main difference is that GLA works in a batch mode, were all training vectors are presented

before the codevectors are adapted, as opposed to the sample iterative technique used in CL



26 LATTICE-BASED QUANTIZATION, PART II

algorithms. Another important difference is that in contrast to GLA, the CL algorithm is not

greedy; the average distortion does not necessarily decrease at each iteration. This allows the

CL algorithm to evade some local minima.

In [37], Kohonen presents the self-organizing feature map, which extends CL by

modifying not only the winner at each iteration, but also neighbors to the winner according

to some topological map. The map is often a two-dimensional square lattice, where the

neighbors can be easily computed. A feature of Kohonen training is that the structure of the

map is imposed on the quantizer. Knagenhjelm [40] uses a Hamming map, in order to train

VQs where the Hamming distance between codewords and the Euclidean distance between

codevectors are closely related. This is shown to substantially robustify the VQ for

transmission over a noisy binary symmetric channel.

The self-organizing feature map is a straightforward way to attract the quantizer to the

lattice. The neighbors in the map are given by the lattice adjacency table, and the winning

candidate is modified together with all neighbors in the table for each presentation of input

data. The algorithm is described in table 4.2.

Table 4.2. The competitive learning algorithm with a lattice topology map.

Step 1. Initialize the codebook   C1 1 2= { }c c c, ,..., N . Set m = 1.

Step 2. A random vector xm  is drawn from the training database. For the input data

xm , find the winning candidate according to the quadratic error criterion,

  
c x c

c

* = −
∈

argmin
Cm

m
2
.

Step 3. Modify the winning codevector as

c c x c* * *:= + ⋅ −( )ηm m .

where the “temperature” ηm  is linearly decreasing from an initial temperature η0 :

η ηm

m

M
= −



0 1 .

Step 4. Modify the neighbors to the winning candidate a small step εm , according to

c c x ck k m m m k k K: , ,...,= + ⋅ ⋅ −( ) =η ε 1 .

where ck  is one of the totally K neighbors (found in the lattice adjacency table) to

c*.

Step 5. If m M= , then stop the iteration. Otherwise, set m m:= + 1 and go to step 2.

The neighbor step size εm  is, as in the LA-GLA, linearly decreasing,

ε εm

m

M
= −



0 1 . (4.2)
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The resulting CL algorithm is denoted the lattice-attracted competitive learning (LA-CL)

algorithm. Results of simulations with this algorithm are presented in chapter 6.



 



5. FAST SEARCH OF LATTICE-ATTRACTED VQ

In [11], an algorithm for fast search of arbitrary VQs is described. With this algorithm,

denoted the steepest neighbor descent (SND) algorithm, an adjacency table is precomputed,

consisting of all Voronoi neighbors to all codevectors in the VQ (how to find the adjacency

table is described in [11]). When the table is found and stored, the actual quantization can

begin. For each input vector x , one of the codevectors in the codebook is selected as a

starting hypothesis c( )0 . The distance between x  and c( )0  is computed, and then the

distances between x  and the neighbors to c( )0  (found in the adjacency table) are computed.

When all neighbor distances have been computed, the neighbor closest to x  becomes the

new hypothesis c( )1 .

This procedure is repeated until a hypothesis vector is found whose neighbors are all

worse. It can easily be shown that when a codevector with lower distance to the input vector

than all its neighbors is found, this vector is the optimal codevector (see (2.10)).

The main disadvantage of the SND algorithm is the storage requirements for the pre-

computed adjacency table, typically many times the required storage of the codebook. For

example, a 12 bit 6-dimensional VQ requires around 700 kbyte storage for the adjacency

table [11], and this is impractical for many applications.

Lattices have a feature that can be exploited to reduce the storage requirements for the

SND algorithm; all neighbors to an arbitrary point in a lattice can be found by translation of

the neighbors to the zero lattice point. To find the neighbors to an arbitrary point in a lattice

VQ, the neighbors to the zero point are translated, and the set of neighbors is truncated by

the global truncation rules. Thus, we can apply the SND algorithm to a lattice VQ, supported

only by the neighbors to a single region. However, this would not be a very competitive

algorithm, since fast specialized search algorithms have been developed for many important

lattices [33]. A better choice is to apply the low-storage SND algorithm to the well-

performing lattice-attracted quantizers from chapter 4. These quantizers are trained to

maintain a lattice neighbor structure, and are well suited for low-storage SND search.

In this chapter, we discuss how to apply the steepest neighbor descent method to the

quantizers trained by LA-GLA or LA-CL algorithm.
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5.1 An extended SND algorithm

Here, we will propose an SND algorithm to suit the lattice-attracted quantizers from chapter

4. The lattice neighbors of the lattice-attracted quantizers (c.f. figures 4.1 and 4.2) are not

always in perfect correspondence with the real Voronoi neighbors. False neighbors, i.e.,

codevectors listed as lattice neighbors without being Voronoi neighbors, constitute no

problem, but not listed Voronoi neighbors can lead to erroneous decisions, and must be

considered.

An important issue is the starting point of the algorithm, i.e., the choice of an initial

hypothesis codevector. For the tested Gaussian densities, the trained lattice-attracted

quantizers show a high degree of similarity with the lattice quantizer used for the initialization

of the LA-GLA and LA-CL algorithms; the codevectors stay in general fairly close to their

initial positions. Thus, a good starting hypothesis is the vector found by nearest-neighbor

search of the initial lattice quantizer. For many important lattices, nearest neighbor search can

be done with very low complexity [9]. No extra storage is required for this, just a search

algorithm for the chosen lattice.

We have extended the SND algorithm to handle the special problems with an incomplete

adjacency table, and also to exploit the lattice-similarity to find a good starting point. Three

extensions have been used:

I An initial hypothesis is found by nearest-neighbor search of the chosen lattice.

II If the current hypothesis codevector is closer to the input vector than all of its

neighbors, the neighbor descent search continues from the second best vector. This

procedure is repeated until no improvement is obtained.

III When the SND terminates and declares a winning codeword, an exception table is

consulted, including Voronoi neighbors not found in the lattice adjacency table. If the

winning codeword is found in the exception table, the listed extra neighbor(s) is also

tested.

The exception table should be constructed prior to the actual quantization. All the missing

Voronoi neighbors do not have to be included in the exception table, only those that lead to a

substantially higher distortion if not included. The exception table can be found by running a

full search in parallel with the SND search for a training database, and observing when the

answers from the two search procedures differ.

The first extension requires a lattice nearest-neighbor search prior to the VQ search. The

complexity of this extension varies with the effectiveness of the search algorithms for the

actual lattice, but for the lattices used here, the complexity corresponds to 0.5-2 extra

distance computations. No extra storage is needed. The second extension has experimentally

shown to lead to a few additional distance computations for each input vector, compared to

the standard SND algorithm, but no extra storage is required. The third extension, the
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exception table, requires some extra storage, but the extra search complexity is small, since

the exception table is seldom consulted.

Experiments show that if the performance loss compared to a full search is required to be

less than 0.01 dB, the exception table can be very small, typically a few entries for the 2-

dimensional VQs tested here, and 20-30 entries for the high rate 5-dimensional VQs. If no

performance loss at all is allowed, the 5-dimensional VQs may require an exception table that

includes up to 10-15% of the vectors in the codebook, to compensate for all missing

neighbors, even though these occur with a probability close to zero.

If the exception tables are excluded, some performance loss is inevitable. The 5-di-

mensional VQs require larger exception tables to reach 0.01 dB performance loss than the 2-

dimensional VQs, but on the other hand, if the exception tables are excluded, the per-

formance loss of the 5-dimensional VQs is small, for the tested VQs always less than 0.05

dB. In section 6.4, we report the performance, in terms of storage and search complexity,

for quantizers where the exception table is designed for “almost lossless” (less than 0.01 dB

loss) operation.

The extended SND algorithm (eSND) is described in table 5.1.

Table 5.1. The extended steepest neighbor descent (eSND) algorithm.

Step 1: Find an initial hypothesis codevector c* , by a lattice nearest-neighbor search.

Set the temporary codevector c to null.

Step 2: Find the lattice neighbors to c* , by look-up and translation of the lattice adja-

cency table.

Step 3: Compute the distortion of all untested neighbors. If a better codevector than c*

is found, this becomes the new hypothesis c* , and the execution continues at step

2. If no better neighbor can be found, continue to step 4.

Step 4: If the current hypothesis c*  is equal to the temporary codevector c, continue to

step 5. Otherwise, set the temporary codevector c to the second best codevector

found up to then, set c c* = , and go back to step 2.

Step 5: If the current best hypothesis is listed in the exception table, compute the distor-

tion of the extra neighbor(s) as given by the exception table.

Step 6: The best codevector found until now is returned.

The algorithm works well for Gaussian data. An interesting question is how well it

generalizes to other pdfs. The simple answer is that it generalizes to pdfs that can be well

quantized using a quantizer with locally lattice-similar structure. These include pdfs where

direct lattice quantization works well, and thus the VQ points typically move only a small

distance from the lattice initialization. It also generalizes to pdfs for which a multidimensional

compander in combination with a lattice quantizer works well (see, e.g., [41] for a treatment
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of this subject). However, the question if the algorithm works well for arbitrary pdfs is a

subject for further research.

In section 6.4 we report on the search complexity reduction that can be achieved with the

eSND algorithm. In section 5.2, we study how to apply the eSND algorithm already during

the design phase, with a design complexity reduction as result.

5.2 Fast search during the design phase

To speed up the design procedure by the LA-GLA and LA-CL algorithms, the fast search

procedure can be incorporated in the training. The introduction of the eSND search during

the design phase leads to a few problems. First, the exception table in the eSND algorithm

must be constructed ”on-line” during the design process. The exception table during design

may be far from complete; the training has experimentally shown to be fairly insensitive to a

few misclassifications. We have experimented with construction of an exception table after

the first iteration of the GLA algorithm, by doing a full search in parallel with the eSND. For

the following iterations only eSND search is performed. After some iterations, it might be

necessary to reconstruct the exception table.

Another problem we encountered in the development of the LA-CL method was a break-

down tendency (failure to improve the VQ) for high initial temperatures η0 . This is caused

by the random reordering of codevectors that occur for high temperatures, destroying the

well-ordered initial lattice structure. When the lattice structure is destroyed, the eSND search

fails more often to find the optimal codevector, and as a result the VQ is adapted to destroy

the lattice structure even more. However, the break-down temperature is distinct and well

above realistic start temperatures, so the problem is easily avoided. The LA-GLA algorithm

has not shown any tendencies to break down for the problems treated in this report.

5.3 Related work

In the literature, some other reports on fast search for unconstrained VQs can be found. As

discussed earlier, there are some methods based on the neighbor descent concept. These

algorithms show similar performance as the proposed eSND algorithm for lattice-attracted

VQs, but the storage requirement for the adjacency table is typically many times the required

storage of the codebook [10, 11]. In [42], only a fraction of the full adjacency table is

stored, with a suboptimal search procedure as a result.

Another method is the K-d tree technique, proposed in [43], and further developed in,

e.g., [13]. A binary tree, with hyperplane decision tests at each node, is precomputed and

stored. The decision tree leads to one of a set of terminal nodes, where small sets of still

eligible candidate vectors are listed.

In the projection technique [44], a rectangular partition of the space is precomputed and

stored. During the search, the rectangular cell containing the input vector is found, and the
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distances to a small number of eligible codevectors are computed. The number of distance

calculations with this method is typically very small, but the overhead complexity is

considerable.

Anchor point algorithms [12, 45] are algorithms where VQ points are excluded from the

search by use of the triangle inequality. The distances from a small set of anchor points to

each of the codevectors are precomputed and stored. The encoder then computes the distance

between the input vector and each anchor point, and a large number of codevectors can be

eliminated from the nearest neighbor search.

In [46], a Kohonen feature map is used as a basis for a fast search algorithm. However,

the search algorithm shows poor performance, with a high percentage of misclassifications,

due to the selection of a map that is not a good quantizer in itself.

For comparison, we have included measurements of an anchor point algorithm and the

projection technique, in section 6.4.



 



6. EXPERIMENTS

In many real-world applications employing vector quantization, the Gaussian distribution is

used as a model for the incoming data, and also as a model of the quantization error. This is

mainly because it is possible to theoretically compute important parameters for Gaussian

pdfs, but also because the Gaussian distribution is often a good approximation to the pdf of

the actual data. This makes the performance of quantization of Gaussian variables

interesting.

In this chapter, we present simulation results of lattice quantization and lattice-attracted

VQs, and study their performance for Gaussian pdfs. In section 6.1, we describe the

databases used in the experiments. In section 6.2, the performance for lattice VQ of

Gaussian data is given, and in section 6.3, the performance of the new lattice-attracted

method is tabulated. The achievable search complexity reductions and extra memory re-

quirements for the eSND method are given in section 6.4, where it is also compared to an

anchor point algorithm.

6.1 Databases

All Gaussian variables are generated by the Box-Müller method, using a well-tested random

number generator from [47]. Both correlated and uncorrelated databases are generated. The

correlated data are sequences of samples, drawn from a first order Markov process with

correlation coefficient ρ = 0 9. .

6.2 Results for Gaussian variables

In this section, we present the performance of lattice quantization of Gauss-Markov pro-

cesses. The lattices are truncated as described in section 3.4, with method II for known pdfs,

and the optimal scale factors are determined by an iterative procedure, using a database of

200 000 samples. For comparison, we also present SNR values for optimized Gaussian

vector quantization (20 million iterations of a CL algorithm are used to train the quantizers).

For the performance evaluation, an independent evaluation database with 1 million Gaussian

vectors is used, both for lattice VQs and pdf-optimized VQs.
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In table 6.1, we present signal-to-noise-ratios (SNR) for quantization of an iid Gaussian

pdf8.

Table 6.1. SNR (in dB) for lattice VQ and pdf-optimized VQ (inside parenthesis), for

quantization of uncorrelated Gaussian vectors.

Number of Dimension of VQ
codewords d= 2 d= 3 d= 4 d= 5

8  6.78 (6.96)  4.29 (4.48)  3.16 (3.34)  2.38 (2.53)
1 6  9.48 (9.68)  6.20 (6.29)  4.41 (4.67)  3.48 (3.66)
3 2 12.09 (12.44)  7.91 (8.10)  5.90 (5.99)  4.59 (4.77)
6 4 14.64 (15.29)  9.68 (9.95)  7.17 (7.36)  5.76 (5.84)

1 2 8 17.22 (18.18) 11.48 (11.83)  8.54 (8.75)  6.77 (6.93)
2 5 6 19.85 (21.10) 13.24 (13.74)  9.90 (10.15)  7.89 (8.05)
5 1 2 22.47 (24.04) 14.97 (15.66) 11.22 (11.57)  8.98 (9.17)

1 0 2 4 25.11 (27.03) 16.71 (17.62) 12.59 (13.00) 10.07 (10.31)
2 0 4 8 27.75 (29.88) 18.45 (19.62) 13.91 (14.49) 11.12 (11.47)

We see that lattice quantization can give competitive performance for low and medium rates,

but for higher rates, the pdf-optimized VQ is significantly better. As predicted by the high-

rate lattice theory in section 3.2, a lattice quantizer is inferior to a pdf-optimized quantizer

when the rate is high.

We also wanted to examine the importance of the truncation procedure. For this purpose,

we have applied truncations that are natural for the chosen lattice, i.e., truncations that

acknowledge the shell structure of the lattice, and keep the outmost shell fully populated

(method I in section 3.4). This can of course only be achieved for certain number of points.

For the D5
* lattice, the number of points in the shells9 is, from inside out, given by the theta

series {1, 10, 32, 40, 80, 160, 90, 112, 320,...}, and thus the number of points in a

quantizer with fully populated shells are {1, 11, 43, 83, 163, 323, 413, 525, 845, ...}. In

figure 6.1, we compare the performance of lattice VQs with fully populated shells with VQs

where the number of points is an integer power of 2.

8Note that the results for high-rate pdf-optimized quantizers show signs of undertraining; especially the SNR
values for 2 dimensions, 2048 codewords could be improved with longer training.
9Other theta series are possible if the lattice is translated.



6. EXPERIMENTS 37

aa

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
2

3

4

5

6

7

8

9

10

11

12

Rate

SNR

Outmost shell truncated
Outmost shell full

Figure 6.1. Performance for a truncated lattice VQ on a 5-dimensional iid Gaussian pdf. The

crosses (x) indicate performance for lattice VQ where the number of points is truncated to an

even power of two, and the circles (o) indicate the performance with a fully populated outmost

shell.

We see that for low rates, the truncation where the outmost shell is fully populated has a

performance advantage, but for higher rates the ”unstructured” truncation procedure gives

equivalent performance.

In table 6.2, we present signal-to-noise-ratios for lattice quantization of a first order

Gauss-Markov process with correlation coefficient 0.9.

Table 6.2. SNR (in dB) for lattice VQ and pdf-optimized VQ (inside parenthesis), for a first

order Gauss-Markov process, with correlation coefficient 0.9.

Number of Dimension of VQ
codevectors d= 2 d= 3 d= 4 d= 5

8 9.72 (10.83) 9.20 (9.37) 8.19 (8.48) 7.43 (8.09)
1 6 12.48 (13.55) 10.45 (11.41) 9.23 (10.20) 8.37 (9.39)
3 2 15.13 (16.25) 12.30 (13.21) 10.50 (11.66) 9.48 (10.69)
6 4 17.98 (19.05) 14.08 (15.01) 12.08 (13.03) 11.02 (11.85)

1 2 8 20.82 (21.87) 16.16 (16.85) 13.44 (14.40) 11.83 (12.96)
2 5 6 23.28 (24.81) 17.80 (18.71) 14.95 (15.77) 13.19 (14.05)
5 1 2 25.80 (27.72) 19.69 (20.60) 16.46 (17.16) 14.37 (15.14)

1 0 2 4 28.63 (30.67) 21.36 (22.51) 17.69 (18.56) 15.54 (16.23)
2 0 4 8 31.24 (32.82) 23.16 (24.39) 19.18 (19.97) 16.70 (17.35)

We see that for correlated Gaussian data, pdf-optimized vector quantizers have in most cases

a significant performance advantage over lattice quantizers.

6.3 Lattice-attracted VQ design performance

With the new lattice-attracted VQ design methods, an interesting question is if the lattice

attraction leads to loss of performance compared to unconstrained VQ training. To inves-
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tigate this, the performance for quantizers trained until convergence with the different

methods are compared in table 6.3. The SNR values are averaged over 20 simulations with

different training databases (different seeds for the random number generator). The

evaluation database consists of one million Gaussian vectors. Even though the GLA al-

gorithm is normally aborted when the distortion change is small enough, we have here

chosen to run all algorithms for a predetermined number of iterations (100 million iterations

are performed in all cases, where one iteration consists of finding the closest codevector to

an input vector). The chosen design time is large enough for all the methods reach

convergence, i.e., the results do not improve for longer training. The size of the training

database is limited (500 000 vectors) for the batch algorithms, LBG and LA-GLA, but for

the competitive learning methods, the database size is “unlimited”; a new Gaussian vector is

drawn for every iteration.

Table 6.3. SNR (dB) for quantizers trained until convergence with the different methods.

dim, size, corr CL LA-CL LBG LA-GLA
d=2, N=64, ρ =0 15.30 15.30 15.27 15.27

d=2, N=64, ρ =0.9 19.05 19.05 19.03 19.02
d=3, N=128, ρ=0 11.85 11.85 11.82 11.82

d=3, N=128, ρ =0.9 16.87 16.87 16.83 16.82
d=5, N=1024, ρ =0 10.32 10.32 10.25 10.26

d=5, N=1024, ρ =0.9 16.23 16.23 16.20 16.20

Note that the CL algorithms perform slightly better than LBG or LA-GLA. A reason for the

inferiority of the GLA-based algorithms is the limited training database, making the greedy

GLA-based algorithms more easily trapped in local minima. From the numbers in table 6.3,

we conclude that the lattice attraction does not decrease the performance of the fully trained

VQ, neither for GLA nor CL. For these extremely well-trained quantizers, the lattice-

constraint is mainly a question of indexing of the codevectors; for all methods, the resulting

structures of the quantizers are very similar. This indicates that an indexing procedure could

be applied after the training procedure to make the fast eSND search possible. However, it

would then be impossible to apply the eSND during the training.

In reality, it may be impractical with the tedious train-until-convergence used above, and

the database size is also often limited. A more realistic database can have a size that is only

100 times the number of codewords, and in some cases even less. In figure 6.2, we compare

the different design methods for limited design time and database size.
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Figure 6.2. SNR as a function of number of iterations for design of a 64-point 2-dimen-

sional VQ. For all methods, the training database contains 5000 vectors, drawn from an iid

Gaussian pdf. The LBG algorithm uses a split initialization technique, while the other algo-

rithms are initialized with a truncated lattice, giving an initial SNR of 14.6 dB.

We see that the lattice-attracted design methods reach a higher SNR for a limited database

size, due to the attraction to a well-ordered lattice structure, a structure that otherwise can be

hard to reach for limited training times and databases. No method reaches an SNR close to

the optimum 15.3 dB (table 6.3).

The results in this section seem to indicate that the CL-based algorithms should be

preferred for VQ design. However, the tuning of the starting temperature for the CL al-

gorithms can be tedious, and the empty-cluster-problem is simpler to handle in GLA-based

algorithms. Thus, LBG and LA-GLA may still be preferable in some applications.

6.4 eSND performance

In this section, we report on the performance of the eSND algorithm, in terms of search

complexity and storage requirements. For comparison, we have also included measurements

of an anchor point algorithm, using the same databases.

Search complexity: We have applied the eSND algorithm, described in chapter 5, to

quantizers trained with LA-GLA. The exception tables are designed for “almost lossless”

operation, with a performance loss compared to full search that is less than 0.01 dB. The

average and maximum number of distance computations are listed in table 6.4 for iid

Gaussian, and in table 6.5 for Gauss-Markov (ρ = 0 9. ). The number of distance compu-

tations of a full search is of course equal to the number of codewords in the quantizer.
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Table 6.4. Average and maximum (within parenthesis) number of distance computations for

the lattice-attracted quantizers. The database consists of uncorrelated Gaussian vectors.

Number of Dimension of VQ
codewords d= 2 d= 3 d= 4 d= 5

8 5.8 (8) 6.1 (8) 7.7 (8) 6.7 (8)
1 6 7.7 (12) 10.4 (16) 12.2 (16) 12.0 (16)
3 2 9.1 (12) 13.8 (25) 18.7 (32) 22.1 (32)
6 4 9.9 (12) 17.3 (28) 24.7 (51) 32.7 (63)

1 2 8 10.6 (13) 19.6 (28) 30.9 (63) 42.1 (89)
2 5 6 10.6 (15) 21.5 (31) 36.1 (69) 53.2 (124)
5 1 2 10.5 (16) 23.3 (36) 41.5 (79) 64.8 (145)

1 0 2 4 10.5 (16) 25.2 (40) 45.7 (91) 75.3 (167)
2 0 4 8 10.5 (16) 25.2 (44) 50.2 (96) 81.8 (179)

Table 6.5. Average and maximum (within parenthesis) number of distance computations for

the lattice-attracted quantizers. The database consists of correlated (ρ = 0 9. ) Gaussian vectors.

Number of Dimension of VQ
codewords d= 2 d= 3 d= 4 d= 5

8 4.3 (6) 3.8 (5) 3.8 (5) 3.9 (5)
1 6 6.5 (9) 6.9 (11) 7.2 (11) 7.1 (11)
3 2 7.9 (11) 9.8 (16) 12.4 (22) 12.7 (24)
6 4 9.1 (12) 13.4 (24) 15.8 (30) 16.1 (30)

1 2 8 9.9 (13) 15.7 (25) 22.5 (44) 27.1 (58)
2 5 6 10.5 (14) 19.0 (30) 28.2 (52) 33.9 (70)
5 1 2 10.7 (15 ) 20.8 (32) 33.1 (64) 45.8 (100)

1 0 2 4 10.8 (17) 23.2 (36) 39.8 (79) 56.0 (126)
2 0 4 8 10.9 (19) 24.3 (40) 44.0 (84) 66.6 (148)

We see that a significant reduction of the number of distance computations is achieved for the

eSND method, and also that the maximum is reasonable (measured for one million test

vectors).

Besides of the distance computations, some additional overhead for the eSND algorithm

is unavoidable. The initial hypothesis codevector is found by searching the closest vector in

the lattice associated with the lattice-attracted VQ. This procedure is not very complex due to

the regular structure of the lattice; for the lattices employed here, the procedure involves a

rescaling of the input vector, adding an offset vector and rounding all elements towards the

nearest integer. The total overhead complexity for finding the initial hypothesis is less than

two extra distance computations for the lattices used here. More about lattice nearest-

neighbor search algorithms can be found in [9]. There is also overhead for each distance

computation. When a new hypothesis codevector is found, the lattice index of the codevector

must be found, by table lookup as described in section 4.1. For each distance computation,

an integer is added to the lattice index, and the codevector corresponding to the sum is found

by table lookup10. The overhead depends on the efficiency of integer arithmetics of the given

10If a Voronoi code is used, the table lookups are unnecessary; the indices of the codewords are given by the
sorting of the codebook. But Voronoi codes may lead to performance loss.
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processor, but for the hardware used here (DEC Alpha), the overhead complexity is only a

fraction of the complexity of the distance computations.

It is interesting to compare the eSND method with other fast nearest-neighbor search

methods (see section 5.3). In comparison with other neighbor descent methods, eSND has a

slight advantage, because of the good initial hypothesis given by the lattice search, but the

overall performance should be similar due to the similar approaches. Among other methods,

anchor point algorithms are well-known. We have implemented an anchor-point algorithm,

IFAP-AESA [12]. IFAP-AESA substantially reduces the number of L2-norm distance

computations, at the cost of a number of L1-norm distance computations. A procedure

similar to the standard partial distance technique [44, 48] is employed for the L1-norm

computations to further reduce the complexity. We have also implemented the projection

method [44], briefly described in section 5.3. The rectangular partition is optimized for

”almost lossless” operation, with at most 0.01 dB performance loss compared to full search.

While the complexity of full search and eSND is essentially proportional to the number

of L2-norm distance computations, this is not true for IFAP-AESA and the projection

method. Therefore, we report the complexity in the average number of floating point

multiplications, additions, comparisons and integer operations (given as a proportionality

constant) per input vector. The additional overhead for eSND is described above, and for

IFAP-AESA the overhead consists of frequent absolute value computations and table look-

ups. The overhead complexity for the projection method is considerably higher than for the

other methods, with a large number of integer operations. Actually, the complexity of the

projection method is dominated by the integer operations for the cases tested here.

The nearest-neighbor algorithms are compared in table 6.6.

Table 6.6. Average number of multiplications, additions, comparisons and integer operations

for a full search, for an anchor point algorithm, IFAP-AESA, the projection method and for the

eSND algorithm. The database consists of uncorrelated Gaussian vectors.

Dimension d , Multiplications, Additions, Comparisons (Integer operations)
VQ size N Full search IFAP-AESA Projection eSND

d= 2 ,
N=64

128, 192, 63
( ∝ ⋅N d )

11, a=168, 117
( ∝ a )

3, 4, 15
( ∝ ⋅N d )

20, a=30, 20
( ∝ a )

d= 3 ,
N=128

384, 640, 127
( ∝ ⋅N d )

23, a=556, 386
( ∝ a )

6, 11, 26
( ∝ ⋅N d )

59, a=98, 39
( ∝ a )

d= 5 ,
N=1024

5120, 9216, 1023
( ∝ ⋅N d )

70, a=8286, 5983
( ∝ a )

26, 47, 60
( ∝ ⋅N d )

377, a=678, 150
( ∝ a )

The number of integer operations for the projection method and for full search is propor-

tional to the VQ size N times the dimension, while the number of integer operations for

eSND and IFAP-AESA is proportional to the number of distance computations (which is the

sum of L1-norm and L2-norm distance computations for IFAP-AESA). This means that the

number of integer operations for IFAP-AESA and eSND grows much slower than for full

search and the projection method.



42 LATTICE-BASED QUANTIZATION, PART II

We see that IFAP-AESA radically reduces the number of multiplications, but that the

number of additions and comparisons remains high. IFAP-AESA can only compete with the

other algorithms for hardware where the multiplication cost is dominating, but in terms of

FLOPS (floating-point operations per second), IFAP-AESA is inferior. On the other hand,

the projection algorithm outperforms the other algorithms in terms of FLOPS. However, as

discussed above, the overhead complexity for the projection method is considerably higher,

and which of the two methods that is the fastest in practice is dependent on the efficiency of

the hardware.

Storage requirements: To use the eSND fast search algorithm, we must precompute and

store an adjacency table, an exception table, and tables to aid translation from codebook

index to lattice index and vice versa. In table 6.7, the required storage of the tables and the

codebook is given for a few VQ examples.

Table 6.7. Relative and absolute storage requirements (in bytes) for examples of iid Gaussian

quantization. The codebooks are stored as 4-byte floating point numbers, and the tables consist

of one- or two-byte integer values. The total storage is given in percentage of codebook only

storage.

Storage requirements d=2, N = 6 4 d=3, N = 1 2 8 d=5, N =1024
Codebook 64 2 4× ×

= 512
128 3 4× ×

= 1536
1024 5 4× ×

= 20480
Adjacency table 6 14 62 2× = 124
Exception table 0 3 15 2× = 30

Translation tables 145 371 4149 2× = 8298
Total storage 129% 125% 141%

As seen in the table, the storage requirements are dominated by the codebook and the

translation tables. The larger extra storage of the 5-dimensional VQ depends on that 2 instead

of 1 byte is required to encode the 1024 codewords. Since we only consider unconstrained

VQs, the codebook size can not be reduced, unless the precision is somehow reduced. It is

possible to reduce the storage requirements for the translation tables, at the cost of extra

overhead time for the eSND search.

The anchor point algorithm requires storage of a floating point table with size d d+( )1 /

times the size of the codebook. For the 2-, 3- and 5-dimensional cases above, the total

storage, in percent of codebook only storage, are 250%, 233% and 220%, respectively.

For the projection method, a rectangular partition of the space, and a set of candidate

codewords for each rectangular cell, are precomputed and stored. The total storage, in

percent of codebook only storage, are 350%, 350% and 400% for the cases above.



7. SUMMARY

In this report, lattice-based quantization was studied, both from a theoretical and a practical

viewpoint. Lattice-based quantization is a generalization of conventional lattice quantization,

by allowing modifications of the regular lattice structure while still maintaining a local lattice-

similarity.

For conventional lattice quantization, high rate theory was developed. The high rate

theory leads to lattice VQ design rules, and to new insights in the performance of lattice

quantization. An important conclusion was that for high rates, lattice quantization is severely

inferior to optimal vector quantization. Practical solutions to problems in lattice quantization,

such as truncation and scaling, were discussed, and the performance of lattice quantization of

Gaussian variables was presented.

To overcome the inherent shortcomings of lattice quantization, we proposed a novel

lattice-based technique for VQ design, with the feature that the resulting VQs are locally

lattice-similar, but globally optimized to the input pdf. The design algorithm was com-

plemented with a new lattice-based fast search algorithm. Experiments on Gaussian data with

the proposed fast search algorithm illustrated that the performance is excellent, with only

moderate extra storage requirements.



 



APPENDIX A

In this appendix, theorem I (3.13) and theorem II (3.14) in section 3.2 are proved. In section

A.1, some definitions and preliminaries are presented. Section A.2 discusses the overload

distortion (theorem I), and section A.3 treats the granular distortion (theorem II). In section

A.4, the total distortion, which is the sum of overload and granular distortion, is treated, and

methods to find the global minimum is discussed.

A.1 Preliminaries

For the proofs in the appendix, we use the definition of a d-sphere (3.9), the truncation

radius aT  (3.10), and the granular region   G  (3.11), all defined in section 3.2. We also use

the VQ definitions in chapter 2, and the lattice definitions in section 3.1, together with some

new definitions in this section. As discussed in section 3.2, we assume zero mean, iid

Gaussian variables, with unit variance samples.

A granular Voronoi region   ΩG c( ) is defined as the lattice Voronoi region Ω , translated

to the codevector c,

  Ω Ω ΩG Gc c c( ) + = ( ) ∩= , (A.1)

where Ω c( ) is the Voronoi region around codevector c (see 2.7), Ω  is the lattice Voronoi

region (see 3.4), and   G  is the granular region (see 3.11).

For a given input vector x, we define p a( )  as the closest point to x in a sphere with

radius a,

p x y
x x

x
x

xy y
a

a

a aa
( ) = − =

≤

⋅ >






<

argmin
:

(A.2)

With this definition, the distance between x  and p a( )  is given by

x p x− ( ) = −( )a amax ,0 . (A.3)

We define the granular radius   aG  as the effective radius of the granular region   G ,
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a

Sd

d

G
G

= ( )
( )( )







vol

vol 1

1

, (A.4)

where Sd φ( )  is a sphere with radius φ , see (3.9). The volume of the sphere   S ad G( ) , called

the granular sphere, is with this definition equal to the volume of the granular region, i.e.

  
vol = volS ad G G( )( ) ( ). The granular radius   aG  and the truncation radius aT  are closely

related, and we show in (A.24) that they are equal for infinite rates.

We define a border region   B  in the form of a spherical shell (see figure A.1),

  B = ∈ < ≤{ }x xd a a: min max (A.5)

which overlaps both the granular and the overload region. The border shell is defined as the

thinnest shell having only granular region on the inside and only overload region on the

outside, that is, amin  is the radius of the inscribed sphere, and amax is the radius of the

circumscribed sphere of the granular region,

  
amin inf=

∈x
x

G
(A.6)

  
amax sup=

∈x
x

G
. (A.7)

The border region is a mix of granular and overload regions. Figure A.1 illustrates the

border region for a two-dimensional lattice VQ.

aaaa

amin

amax

aG

     

aa

G B

G B

G B

G B

Figure A.1. Left: Illustration of the border region (the gray area). Right: Combinations of

the granular and the border region.

With the definitions of overload and granular regions in (3.11), and the border region in

(A.5), we have

  G B G G B∩ ∈ >{ } ⊆ ⊆ ∈ >{ } = ∪= x x x xd da a: :max min (A.8)

  G B G G B∩ ∈ ≤{ } ⊆ ⊆ ∈ ≤{ } = ∪= x x x xd da a: :min max . (A.9)

From (A.9), we conclude that the radius of the granular sphere,   aG , is bounded between

amin  and amax, since
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vol vol vol volS a S a S a a a ad d dmin max min max( )( ) ≤ ( ) = ( )( ) ≤ ( )( ) ⇒ ≤ ≤G G G . (A.10)

We use the covering radius rmax , the packing radius rmin , and the effective radius rΩ  of

a granular Voronoi region   ΩG c( ), defined as

  
rmax sup sup= − =

∈ ( ) ∈x c x
x c x

Ω ΩG

(A.11)

  
rmin inf inf= − =

∉ ( ) ∉x c x
x c x

Ω ΩG

(A.12)
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vol1 1 1
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1 1
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G G
G . (A.13)

The three radii, rΩ , rmin  and rmax , are illustrated in figure A.2.

aaa

rmax

rΩ

rmin

Figure A.2. A Voronoi region.

The granular Voronoi regions are all bounded and congruent, and thus the ratios r rmax / Ω

and r rmin / Ω are bounded, nonzero and independent of the scaling of the region, so that

  
r

r

r
r

r

r
a R

max
max max= ⋅ = ⋅ ⋅ −

Ω
Ω

Ω
G 2 (A.14)

  
r

r

r
r

r

r
a R

min
min min= ⋅ = ⋅ ⋅ −

Ω
Ω

Ω
G 2 . (A.15)

amin  and amax can be bounded as (using the definition of Λ  in (3.1))

    

a
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inf inf inf inf inf inf
\
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x c c x
i i

i i a r
C CΩ Ω

T max . (A.17)

where the last inequality of (A.16) and (A.17) follows from the truncation of the lattice by a

hypersphere with radius aT , as in (3.10). Now, using (A.10), (A.16) and (A.17), we can

bound the truncation radius aT  as
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  a r a r a a r a rG G− ≤ − ≤ ≤ + ≤ +max max max min max maxT . (A.18)

The left- and right-most terms of (A.18) can both be written11   a r OG + ⋅ ( )max 1 , and using

(A.14), we get

  a a r O a OR
T = + ⋅ ( ) = ⋅ + ⋅ ( )( )−

G Gmax 1 1 2 1 . (A.19)

Using (A.19) to eliminate   aG  from (A.13)-(A.15), we get the useful equalities

r a OR
max = ⋅ ⋅ ( )−

T 2 1 (A.20)

r a OR
Ω = ⋅ ⋅ ( )−

T 2 1 (A.21)

r a OR
min = ⋅ ⋅ ( )−

T 2 1 , (A.22)

and by inserting (A.20) into (A.18), we get

a a OR
min = ⋅ + ⋅ ( )( )−

T 1 2 1 (A.23)

  a a OR
G = ⋅ + ⋅ ( )( )−

T 1 2 1 (A.24)

a a OR
max = ⋅ + ⋅ ( )( )−

T 1 2 1 , (A.25)

which illustrates that aT ,   aG , amin , and amax are all equal for infinite rates.

A.2 Theorem I: Overload distortion

In theorem I in section 3.2, we stated that the overload distortion is given by

  
D f d a ed a

G G G= ( ) ⋅ ⋅ ⋅ +( )− −
T

T4 22

1/ ε , (A.26)

where   f d dd
G ( ) = ⋅ ( )( )− −

2 22 2 1/ /Γ , and   εG  tends to zero for asymptotically high rates R. In

this section, we present a proof of this theorem. In the proof, we bound the overload

distortion by use of two spheres, one outside and one inside the border region. Then we

complete the proof by showing that the width of the border region tends to zero when the

rate approaches infinity.

We write the overload distortion

  
D f dG

G

= − ( )∫ x c x xx
* 2

, (A.27)

where c*  is the codevector in the codebook   C  that is closest to the input vector x , and

fx x( ) is the input pdf. The integrand is nonnegative, so we can lower- and upper-bound the

distortion by integrating over a smaller and larger region, respectively. Using (A.8), we get

  
x c x x x c x xx

x
x

x

− ( ) ≤ ≤ − ( )
> >
∫ ∫* *

max min

2 2
f d D f d

a a
G . (A.28)

11With g O⋅ ( )1  (big-oh), we will mean g C⋅ , where C is bounded in a neighborhood of g = 0 . Rules for
computation using big-oh can be found in most mathematical handbooks, e.g. [49].
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We now study the upper and lower bound in (A.28) separately. First, noting that all

codevectors lie inside a sphere with radius amax, we can lower-bound the integrand

  
x c x c x y x p

c y
− = − ≥ − = − ( )

∈ <

*
maxmin min

maxC a
a . (A.29)

Secondly, the integrand can be upper-bounded by use of the triangle inequality,

x c x p p c− ≤ − ( ) + ( ) −*
min min

*a a . (A.30)

With the definition of amin  in (A.6), p amin( )  belongs to a granular Voronoi region.

Therefore, we can bound the distance between p amin( )  and c*  by the covering radius of the

Voronoi region, rmax ,

p ca rmin
*

max( ) − ≤ (A.31)

(see (A.11) and figure A.2). Thus, we have

x c x x p x− ≤ − + = − −( ) >*
min max min max mina r a r aif , (A.32)

where we have also used (A.3). The distortion upper bound is

  
D a r f d a r f d

a a r
G ≤ − −( ) ( ) ≤ − −( ) ( )

> > −
∫ ∫x p x x x p x xx

x
x

x
min max min max

min min max

2 2
.(A.33)

Combining (A.28), (A.29) and (A.33), we get

  
x p x x x p x xx

x
x

x

− ( ) ( ) ≤ ≤ − −( ) ( )
> > −
∫ ∫a f d D a r f d
a a r

max min max

max min max

2 2
G , (A.34)

which bounds the overload distortion by use of two spheres with radii amax and a rmin max− .

From (A.20), (A.23) and (A.25), we see that both radii can be written on the same form,

a OR
T ⋅ + ⋅ ( )( )−1 2 1 . We define

â a OR= ⋅ + ⋅ ( )( )−
T 1 2 1 , (A.35)

and rewrite the overload distortion as

  
D a f d

a
G = − ( ) ( )

>
∫ x p x xx

x

ˆ
ˆ

2
(A.36)

= −( ) ( )
>
∫ x x xx

x

ˆ
ˆ

a f d
a

2
(A.37)

= + −( ) ( )
>
∫ x x x xx

x

2 2 2ˆ ˆ
ˆ

a a f d
a

. (A.38)

Now the d-dimensional integral has become one-dimensional; the integrand is a function of

x  only12. The stochastic variable ξ = x 2  has a χ 2 -distribution with d degrees of

freedom, f dξ ξ χ ξ( ) = ( )2 , , and we get

12Since the Gaussian pdf fx x( ) is spherically symmetrical, it is a function of x  only.
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In the sequel, we need the incomplete Gamma function,

Γ b z t e dtb t

z

,( ) = − −
∞

∫ 1 . (A.41)

Using Γ b z,( ) , we write the overload distortion as
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We approximate the incomplete Gamma function as an asymptotic series [50]:

Γ b z z e b z b b z z Ob z,( ) = + −( ) + −( ) −( ) + ( )[ ]− − − − −1 1 2 31 1 1 2 1 . (A.43)

With this approximation, the overload distortion can, after some work, be written
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Insertion of (A.35) yields, again omitting the details,
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which is equal to (A.26), and the proof is completed.

In section A.4, we will verify that the error term is equal to zero for asymptotically high

rates if the truncation radius is selected for minimum distortion.

A.3 Theorem II: Granular distortion

In theorem II, the granular distortion is given by

  D f d aR
G G G= ( ) ⋅ ⋅ ⋅ +( )−2 12 2

T ε (A.46)

where   f d G d d d
G ( ) = ⋅ ⋅ ⋅ +( )−π Γ / 2 1 2 , and   εG  tends to zero for asymptotically high rates

R. The proof of the theorem, which is given in this section, is based on writing the pdf

inside each Voronoi region as a uniform pdf plus an error term. The granular distortion for a

uniform pdf is easily computed, and the proof is completed by showing that the error term is

zero for infinite rates.

We write the granular distortion for the N-point lattice VQ as a sum of the Voronoi

region distortions
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For bounded and differentiable densities, we can expand the pdf in a Taylor series as

f f Ok kx xx c x c( ) = ( ) + − ⋅ ( )1 , (A.49)

and (A.48) can be rewritten as
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Now, since the granular Voronoi regions   ΩG ck( )  are congruent, the integrals in (A.51) are

independent of k, and we get

  
D d f d Ok
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= =

x x c x xx
2
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The first integral in (A.52) is recognized to be a scaled version of the lattice quantization

constant G (3.6). The second integral can be simplified by using (A.11), and writing

x = ⋅ ( )r Omax 1 . We get

  
D d G f r Od

k
k

N

G G= ⋅ ( ) ⋅ ⋅ ( ) + ⋅ ( ) ⋅ ( )
=

∑vol vol+Ω 1 2

1

3 1x c max (A.53)

= ⋅ ( ) ⋅ ⋅ ( ) + ⋅ ⋅ ( )
=

+ −∑d G f a Od
k

k

N
d Rvol +
TΩ 1 2

1

3 32 1x c , (A.54)

where (A.20) is used for the last equality.

The sum in (A.54) is considered next. For this reason, we study the granular probability

  Pr x ∈( )G . Using the same approach as in (A.47)-(A.54), we can write the granular

probability

  
Pr x x xx∈( ) = ( )∫G

G

f d (A.55)

= ( ) ⋅ ( ) + ⋅ ⋅ ( )
=

+ −∑vol TΩ f a Ok
k

N
d R

x c
1

1 2 1 . (A.56)

We can also write the granular probability using the overload probability, as

  
Pr Prx x∈( ) = − ∈( )G G1 . (A.57)
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Using (A.8), we can bound the overload probability as

  
Pr Pr minx x∈( ) ≤ >( )G a . (A.58)

(A.58) can be written using the χ 2 -distribution as in (A.39). We get
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2
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, (A.59)

which can be simplified using the first term in (A.43),

  
Pr min

minx ∈( ) = ⋅ ⋅ ( ) = ⋅ ⋅ ( )− − − −G a e O a e Od a d a2 2 2 22 2

1 1T
T (A.60)

(see (A.23)). Combining (A.56), (A.57) and (A.60), we get

vol T T
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. (A.61)

Using the number of codevectors in the quantizer, N R d= ⋅2 , the volume of the Voronoi

region, vol Ω( ) , can be written
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vol vol
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( )( )
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, (A.62)

where we have used the fact that the volume of the granular region,   vol G( ), is equal to the

volume of a d-sphere [50] with radius   aG , see (A.10). Inserting (A.24), the volume of the

lattice Voronoi region is expressed as a function of the truncation radius aT ,

vol TΩ
Γ

( ) = ⋅ ⋅
+( ) ⋅ + ⋅ ( )( )

−
−π d d Rd

Ra

d
O

2 2
2 1

1 2 1 . (A.63)

Inserting (A.61) and (A.63) into (A.54), we get
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/ / T T T
T , (A.64)

which equals (A.46). If the error terms in (A.64) are excluded, the equation describes the

distortion for quantization of a spherical uniform pdf (see [14], (1.10)).

In section A.4, we show that for an optimal choice of aT , the error terms tend to zero for

a rate approaching infinity.

A.4 Total distortion

The key issue in the high rate theory is to find the optimal value of the truncation radius aT .

We study three possible choices of aT :

I aT  does not grow towards infinity with the rate.

II aT  grows towards infinity with the rate, but slower than exponentially in R.
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III aT  grows towards infinity exponentially in R, or even faster, i.e. a R
T ≥ 2λ  for some

λ .

We show in the following that I and III lead to higher distortion than II. For this reason, we

use an arbitrary formula for aT  fulfilling II, and compute the resulting distortion. Then we

lower-bound the distortion in I and III by simple calculations. The proof is completed by

showing that the distortion for case II is lower than the lower bounds of distortion for case I

and III.

First we study the distortion for case II above. For this case, the error terms in  (A.26),

(A.45) and (A.46), (A.64) are zero for asymptotically high rates. The total distortion is the

sum of (A.26) and (A.46),

  
D f a f a eR d a= ⋅ ⋅ + ⋅ ⋅( ) +( )− − −

G GT T
T2 2 4 22 1
2 / ε . (A.65)

We select the truncation radius arbitrarily as a RT = , which fulfills II. Insertion of aT  in

(A.65) yields

  
D f R f R eR d R

II = ⋅ ⋅ + ⋅ ⋅( ) +( )− − −
G G

2 2 4 22 1
2

ε (A.66)

  
= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ( )( ) +( )− − −f R R e OR d R R

G
2 2 4 2 22 1 2 1 1

2

ε (A.67)

  
= ⋅ ⋅ ⋅ + ⋅ ⋅ ( )( ) +( )− − − + ⋅ ⋅f R R e OR d R R

G
2 2 4 2 2 22 1 1 1

2 ln ε . (A.68)

The error terms are zero for infinite rates. We write

D R OR
II = ⋅ ⋅ ( )−2 22 1 , (A.69)

and observe that the distortion tends to zero when the rate approaches infinity. Since we have

used an arbitrary truncation radius fulfilling II, the optimal truncation radius gives a

distortion lower than or equal to (A.69).

Now we study case I. In (A.34) a lower bound for the overload distortion is given.

Using (A.17) we get

  
D D a f d a f d

a a r
I

T

≥ ≥ − ( ) ( ) ≥ − ( ) ( )
> > +
∫ ∫G x p x x x p x xx

x
x

x
max max

max max

2 2
. (A.70)

We observe that, for finite aT  and rmax , the right-hand integral in (A.70) does not tend to

zero as the rate approaches infinity. Since aT  is finite in case I, and rmax  is finite for finite aT

(A.20), we conclude that DI  does not tend to zero as the rate approaches infinity. But

DII → 0 for R → ∞ , and we have shown that the optimal high-rate distortion in case I is

higher than the distortion in case II, i.e. D DI II> .

To lower-bound the distortion in case III, we first define a shape   S  in the form of a d-

sphere from which we cut out spherical holes around all codevectors c,
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S

C
= ( ) ⋅( ) +( )

∈
S S rd dβ α\ min c

c
U , (A.71)

where 0 1< <α , and the radius β  is an arbitrary constant, independent of R.   S  is illus-

trated in figure A.3.

aaa

α⋅rmin

β

Figure A.3. The hollow shape   S .

Since α  is less than 1, the definition of rmin  (A.12) ensures that the holes, with radius

α ⋅ rmin , are nonoverlapping. Further, since the truncation radius aT  (and amin , see (A.23))

grows towards infinity with the rate, there exists a constant R0 such that for all rates R R> 0 ,

amin > β , which makes   S  a subset of the granular region   G . We have

  
D D f d f d

S
III ≥ = − ( ) ≥ − ( )∫ ∫G

G

x c x x x c x xx x
* *2 2

   for R R> 0 . (A.72)

For vectors x in   S , the distance to the closest codeword c* is lower-bounded by α ⋅ rmin .

The pdf fx x( ) is lower-bounded by the pdf at an arbitrary point at the surface of   S , i.e.

f fx xx x( ) ≤ ( )β  where xβ β= . Thus, for R R> 0 , we have that (using (A.18))

D r f d
S

III ≥ ⋅( ) ( )∫ α βmin
2

x x x (A.73)

  
= ⋅( ) ⋅ ( ) ⋅ ( )α βr fmin

2
x x vol S (A.74)

  
= ( ) ⋅ ( ) ⋅ ⋅( ) ⋅ ⋅ −f r r a R

x xβ αvol S Gmin Ω
2 2 22 (A.75)

  
≥ ( ) ⋅ ( ) ⋅ ⋅( ) ⋅ −( ) ⋅ −f r r a r R

x xβ αvol TS min maxΩ
2 2 22 (A.76)

≥ ⋅ ⋅ −C a R
T
2 2 2 , (A.77)

where C is a positive constant, since r amax T  tends to zero (see (A.20)), and the volume of

  S , the pdf fx xβ( ) at the surface, and r rmin Ω  are all positive constants. Now, inserting aT

as in case III yields

D C DR R
III II for R≥ ⋅ ⋅ > → ∞−2 22 2λ , (A.78)

and we have shown that radius selection as in case II leads to lower distortion than case III.

We will now study the total distortion, D, and show that, for a selection of aT  with the

restrictions as in case II above, the distortion is convex and has a distinct global minimum.

As discussed above, the error term in (A.65) is zero for infinite rate. We define D̂  as D

excluding the error term,
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  D̂ f a f a eR d a= ⋅ ⋅ + ⋅ ⋅− − −
G GT T

T2 2 4 22
2

. (A.79)

To show that ̂D  is convex with respect to aT , we compute the second derivative of D̂  with

respect to aT :

  

∂
∂

2

2
2 2 2 2 2 42 2 1 7 2 9 20

2D̂

a
f f a e d a d d aR d a

T
T T T

T= ⋅ ⋅ + ⋅ ⋅ ⋅ + −( ) ⋅ + − +( ) ⋅[ ]− − − − −
G G .(A.80)

We see that the expression inside brackets is dominated by the first term when aT  tends to

infinity, and we write

  

∂
∂

2

2
2 2 2 22 2 1 1

2D̂

a
f f a e a OR d a

T
T T

T= ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ( )( )− − − −
G G . (A.81)

Clearly, this expression is positive for large enough values of aT . Thus, D̂  is a convex

function of aT  in the region defined in case II, and the first derivative can only be zero at the

global minimum of D̂ . D is the sum of ̂D  and error terms, but ̂D  dominates the distortion

for all aT  satisfying case II, so the global minimum of D̂  is the global minimum of D as

well.
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