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ABSTRACT

In this report we study vector quantization based on lattices. A lattice is an infinite set
points in a regular structure. The regularity can be exploited in vector quantization to ma
fast nearest-neighbor search possible, and to reduce the storage requirements. Aspec
lattice vector quantization, such as scaling and truncation of the infinite lattice, are treat:
Theory for high rate lattice quantization is developed, and the performance of lattic
guantization of Gaussian variables is investigated. We also propose a method to exploit
lattice regularity to design fast search algorithms for unconstrained vector quantizatic
Experiments on Gaussian input data illustrate that the method performs well in comparisor
other fast search algorithms.
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1. INTRODUCTION

Vector quantizationVQ)?! has since about 1980 become a popular technique for sourc
coding of image and speech data. The popularity of VQ is motivated primarily by the th
oretically optimal performance; no other source coding technique at equivalent delay c
achieve better performance than optimal VQ. However, direct use of VQ suffers from
serious complexity barrier. Many authors have proposed constrained VQ structures
overcome the complexity, for examptaultistage V1], tree-structured VQ2-5], vector-
sum VQI6], gain-shape VQ7], etc. Each of these solutions has disadvantages, in mos
cases a reduced performanicattice VQI[8, 9] is another constrained VQ technique, where
the codevectors form a highly regular structure. The regular structure makes compact stot
and fastnearest-neighbor searcffinding the closest codevector to an input vector)
possible, but also leads to performance loss.

Another line of research, also aimed to overcome the complexity barrier of VQ, is desi
of fast search methods for unconstrained quantizers. Due to the presumed lack of structul
such guantizePs nearest-neighbor search for unconstrained VQ is considerably mor
difficult than search of a constrained VQ. Algorithms for fast nearest-neighbor search
unconstrained VQ include for exampheighbor descenmethods [10, 11], where the
complexity of a full search is avoided by precomputin@@jacency tableconsisting of all
neighbors to all VQ points. Other methods aredhehor pointalgorithm [12], where
codevectors are excluded from the search by the triangle inequality, aKddthece
technique [13], where a prestored tree structure helps in avoiding unnecessary operations

In this report, we discudattice-based quantizati@nas a solution of the complexity
problem. Lattice-based quantization is a generalization of conventional lattice quantizatic
by allowing modifications of the regular lattice structure while still maintaining a local lattice
similarity. In the first part of the report, conventional lattice quantization is treated. After th
introduction and VQ preliminaries in chapter 1 and 2, we present high rate theory for latti

lwith VQ, we will sometimes meamector quantizationand sometimesector quantizerwith the
distinction left to the context.

2A pdf-optimized unconstrained VQ is generally far from unstructured, but the structure may be difficult t
find and exploit.

3Most of the conclusions in this report holds fessellation quantizeras well. More about tessellations
can be found in [14].
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VQ for Gaussian variables in chapter 3. The high rate theory leads to design rules for lattice
VQ, and formulas for asymptotic performance. Further, the performance of lattice VQ for a
Gaussian input pdf is compared to the performance of pdf-optimized VQ. An important task
in lattice VQ design is theuncationof an infinite-size lattice, to include the desired number

of codevectors in the VQ. Other important aspects are for example the choice of lattice, and
scaling of the source, to get a good performance. These aspects are treated from a practical
perspective in chapter 3, and solutions are found, based on the lattice high rate theory. In
many previous reports, the focus has been on high-dimensional lattice quantization, due to
theasymptotic equipartition properfAEP); when the dimension grows to infinity, ttte
dimensional probability density of a memoryless input source becomes more and more
localized to a "typical” region, inside which the density is approximately uniform [15]. Thus,

a lattice quantizer, with an inherent uniform distribution of codevectors, can be expected to
work well for high dimensions. We have instead focused on low-dimensional (2-5
dimensions) lattice VQ, since several interesting areas in speech and image coding employ
low-dimensional parameter vectors.

The density of the codevectors in a lattice quantizer is uniform, which may inflict on the
efficiency of lattice quantization for nonuniform sources. We propose a novel VQ design
concept in chapter 4, with the goal to combine some of the desirable properties of a lattice
VQ with the good performance of a pdf-optimized VQ. The VQ is initialized with a truncated
lattice, and an adjacency table for the lattice is computed. Then, during the training, the
guantizer is updated to keep the neighbors as given by the lattice adjacency table. By
example, we show that thigttice attractioncan be imposed with almost no performance
loss at all for a Gaussian input pdf. A neighbor descent algorithm [11], modified to suit the
special requirements of the lattice-attracted quantizers, is presented in chapter 5. The
performance of the new neighbor descent method is reported in chapter 6, together with the
performance of direct lattice quantization of Gaussian variables. Finally, a summary is given
in chapter 7.



2. VECTORQUANTIZATION

In this chapter, we present vector quantization theory. Necessary optimality conditions fo
VQ is given, and theory for high rate quantization is discussed.

2.1 Definitions
A VQ Q of sizeN and dimensiord is a mapping from a vector in tltedimensional
Euclidean spac&? into a finite reproduction sef = {cl,cz,...,cN} ;

QR C. (2.1)
The setC, denoted theodebook containsN codevectors,, k=1,2,...,N, each a vector
in RY. The indexk of the codevectors is denoteddeword The rateR of the quantizer is
defined adog,(N)/d [bits per sample]. The definition @ in (2.1) partitionsR? into N
disjoint regions, each with a corresponding codevegtor

The vector quantizer can be decomposed in two components, the encoder and the
coder. The encodeE maps fromR* to the index sef ={1,2,...,N}

:RY LT, (2.2)
and the decodeP maps the index set into the reproduction(eti.e.,
D1 - R (2.3)

With this notation, the quantization operation can be written as a cascade of the encoder
decoder:

Q(x) =D(Z(x)). (2.4)
In this report, we will measure the performance by the statistical mean of the squar
Euclidean distance measure,

D= Ellx- Q0[] (2.5)

The mean squared error criterion is only one of many possible distortion measures, but it
the advantage of being widely used and is mathematically simple.
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2.2 Optimality conditions

In VQ design, the aim is to find encoder and decoder rules to minimize the chosen distortion
measure. For the squared Euclidean distance measure (2.5) (with a defipder, ), it can

be readily shown [16] that for a fixed partitide, of the input space, the codevectors
{c1.¢,.....cy} should be chosen as the centroid of the vectors in the region,

¢ = E[xIx 0Q, ] (2.6)

to minimize the expected distortion. (2.6) is often callexlcentroid conditionlf instead
the set of codevectors is fixed, the partition should bad¢heest neighbor partitian

0(c,) =0, ={x IR :|x— ¢ <[x g foralli 0} 2.7)
with the corresponding encoder rule
E(x) = argmin||x - ¢; ||2 (2.8)
i

together with rules to solve ties. The regidpg are often referred to a&ronoi regions
after the author of [17].

We see that both the encoder and the decoder are completely specified by the codebook
C, so finding optimal encoder and decoder rules is equivalent to finding the optimum set of
codevector{cy, Cy,...,Cy} -

The centroid condition (2.6) and the nearest neighbor partition (2.7) are necessary but
not sufficient for a VQ to be optimal in the mean square sense. Sufficient conditions for a
globally optimal VQ have never been presented (except for some special cases), and a
qguantizer fulfilling the necessary conditions may be far from optimal. This makes VQ design
a delicate problem.

Using the nearest neighbor condition, Wegonoi neighbordo a Voronoi regiorQ?, in
a VQ can be defined as

4 ={iOLN]: Q n Q2 0} (2.9)

that is, the set of codevectors whose Voronoi regions share a fac&ywitiith this
definition, the nearest neighbor partition can be reformulated as

o, :{x IR x - ¢, 2 < x — o2 for al m,qk} , (2.10)

which illustrates that the Voronoi region is defined by a subset of the inequalities in (2.7).
The new definition of the nearest neighbor partition shows that to find the optimum code-
vector to a given input vectoy, it suffices to find a codevector whose Voronoi neighbors all
have greater distance to the input vector. This can be exploited in fast search algorithms, as
described in chapter 5.
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2.3 High rate theory
In [18] and [16], it is shown that for high resolution VQs, the optimal reconstruction poin
density A(x) for quantization of a stochastic vector processith pdf f,(x) is given by

A(x) = a@*d(x) (2.11)

whered is the dimension of the VQ, aads a normalizing constant. For a quantizer with the
above optimal point density, we have for high rates [16]

dmr?9(di2+1) d(d+2)\(@+D/d ___
D> f (x)2+2) 2R, 2.12
@y U H0?) (2.12)
whereR is the rate of the quantizer, in bits per dimension.

For an uncorrelated Gaussian pdf, the above expression can be simplified to i
Gaussian lower bound (GLB)

Dg g = 272R [ (d) (02, (2.13)
where
_2md+2rf? 2/d
and
o = glfx ~m,J| = fllx = m,f f(x)ax (2.15)
m, = E[x] =[x [f, (x)dx. (2.16)

Knagenhjelm [19] shows experimentally that the Gaussian lower bound is not only a low
bound, but also a good approximation to the actual performance of a well-trained vec
quantizer, if the rate is high.






3. LATTICE QUANTIZATION

In this chapter, we will treat lattice quantization, both from a theoretical and a practic
perspective. High rate theory for lattice quantization of iid Gaussian variables is derive
leading to formulas for lattice VQ design and performance. Practical issues in lattice Vv
design, such as truncation and scaling of the lattice, are also treated.

3.1 Definitions

A lattice is an infinite set of points, defined as
/\:{BTm: uDZd} (3.1)

where B is thegenerator matrixof the lattice. The rows dB constitute a set ofl linearly
independenbasis vectorgor the lattice,

T

B =[by,by, .1y (3.2)

Thus, the latticeN consists of all linear combinations of the basis vectors, with intege
coefficients.

The theta functionof the lattice gives the number of lattice poimfsat a specific
distance from the origin, i.e. points withirshell The theta function for many standard
lattices can be found in [9].

Thefundamental parallelotopef the lattice is defined as the parallelotope

zb, +..+zb, (0=<z<1). (3.3)
Associated with each lattice point is a Voronoi region. Due to the regular structure
lattices, all Voronoi regions in a lattice are simply translations of the Voronoi r€yion
around the zero lattice poir®(0) is referred to as thiattice Voronoi regionQ, with the
definition
Q ={x OR?: |x|* <[}x - ¢|f* for all ¢ A} (3.4)

Thenormalized second momesfta VVoronoi regionQ(ci) is defined to be
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G= %[vol(Q(ci )/ - ([||x ~¢[fox, (3.5)
Q(c;
where vol(Q(c,)) is the volume of the Voronoi region around Since Q(c;) is a trans-
lation of Q, Q(c,) =Q +c;, we can write

G= %[VO|(Q)]_1_2/d

[, (3.6)
Q
which illustrates tha® is independent af The constanG is from now on be referred to as
the quantization constanof the lattice, since it describes the mean squared error per
dimension for quantization of an infinite uniform distribution, if the volume of the Voronoi
region is normalized to one.

Lattice quantizations a special class of vector quantization, with the codebook having
a highly regular structure. Any codevectgrlJC in a lattice quantizer can be written on the
form

¢, =BT [, (3.7)

whereu, is one of N given integer vectors, anl is the generator matrix of the lattice.
Alternatively, a lattice VQ can be described as the intersection betwatita A and a
shape.S,

C=Ans (3.8)

where S is ad-dimensional bounded region . An example is shown in figure 3.1.

Figure 3.1. lllustration of lattice truncation. Left: a latticA, Center: a shape, Right:
the resulting lattice quantizey .

The design of a lattice VQ can now be separated into finding a good lattice, specified
through its generator matri2, and a good shap€. In addition, a scale factor for the lattice
must be found, and an assignment of indices to the codevectors. These problems will be
treated in the following sections.

Applications of lattice vector quantization include, e.g., image coding [20, 21] and
speech coding [22, 23]. Moayeri et al. superimposed a fine lattice upon a source-optimized
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unstructured VQ to achieve a fast two-step search method [24, 25]. Kuhimann and Buckl
[26], Swaszek [27] and Eriksson [28] connects lattices with different scaling into on
“piecewise uniform” codebook, to approximate nonuniform source pdfs. In [14], al
overview of applications including lattice VQ is presented.

3.2 Theory for high rate lattice quantization

In this section, we derive expressions for the distortion of lattice quantization of iid Gaussi
vectors, when the rat of the quantizer tends to infinity. Eyutdagand Forney [29], and
Jeong and Gibson [30], have previously worked with high rate theory for lattici
quantization, but to the authors’ knowledge, simple analytical expressions for the optin
truncation and performance dfdimensional lattice quantizers has not been presentec
before. A major difference between the high rate lattice theory presented here and the u:
high rate theory for optimal quantization (section 2.3), is that for lattice quantization, it i
necessary to explicitly consider overload distortion, while the usual high rate theory on
permits granular distortion.

We assume an iid Gaussian input pdf, with zero mean, unit variance samples. Howe\
in the end of this section we discuss a generalization of the results.

After some definitions, two theorems concerning the distortion of a lattice VQ as
function of the rate and truncation are given. The optimal truncation radius, and the cor
sponding distortion, are found by setting the derivative of the distortion to zero.

A d-sphereis ad-dimensional sphere, defined as

si(@) ={x OR":[x| < 4} (3.9)
We assume a truncation shape in the formd$phere with radius; (figure 3.2), so that
C=(N-v)n S(ar), (3.10)
wherev is an arbitrary vector (see the discussion in section 3.4, and (3.33)).

We subdivide th&-dimensional space into two (nonspherical) subregiogsaaular
region G, which we define as the union of lattice Voronoi regions around all codevectors,

G=U@Q+c) (3.11)
¢ e

and anoverloadregion G, which is the rest of the space, so tlatl G =R and
GnN é =[]. Figure 3.2 illustrates the granular and overload regions for a two-dimension
lattice VQ, based on the well-known hexagonal latédge
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Figure 3.2. lllustration of the granular region (the gray area) and the overload region
(everything but the gray area) of a 2-dimensional lattice quantizer.

The total distortionD of the lattice quantizer can be separated into a granular component,
D;, and an overload componelﬁlg,

D= J’HX -c Hz fX(X)dX :IHX -c HZ fX(X)dX +J’Hx _c HZ fX(X)dX = Dg + DE’ (3.12)
R G G

wherec” denotes the codevector in the codebgothat is closest to the input vector We

now give two theorems, leading to simple approximations of the granular and the overload
distortion of lattice quantization. In the first theorem, we write the overload distortion as the
distortion given a high codevector density close to the surface of the truncation sphere, plus
an error term. The second theorem is mainly based on the smoothness of the Gaussian pdf,
so that the pdf within the granular Voronoi regions is nearly uniform, if the Voronoi regions
are small. Both theorems are proved in appendix A.

Theorem I: The overload distortion is given by

Dy = f(d) @S & 2 1+ 2, ) (3.13)

where f_(d) = (zd/2‘2 T (d/ 2))_1. For asymptotically high raté® and the truncation
radiusa; suitably choseng; tends to zero.

Theorem I1: The granular distortion is given by

D, = f;(d) @2 2R {1+ ¢, (3.14)

where fg(d):GmDTD]'(d/2+1)_2/d. For asymptotically high rateR, and the
truncation radiusa; suitably choseng,; tends to zero.

The total distortionD, can be written
D=D,; +D; = (fg(d) faf 272R + f(d) tay Ee‘aT/Z) M1+ ¢), (3.15)

where the error terng tends to zero wheR grows towards infinity. For the moment, we
exclude the error term, and seek the minimum of
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A _ A ~ _ _ _ a2 2
D =D, + D = f,(d) @2 2R+ f(d) @ ™2, (3.16)
In appendix A.4, it is shown that the minimum valueDofs also the minimum value of

D. To find the value of the truncation radias that minimizes the distortion, we dif-
ferentiateD with respect toag:

~

oD _ e g2 a2
. 208, () By [272% + £ (d) (d - 4) (2 ° [/ - £ (d) (¢ (277 %.(3.17)
Since D is a convex and continuous function in the interesting region (see section A.4), v

get the condition for minimal distortion by setting the derivative to zero,

A

dD

_ d-6 5= afop/2 42 . 2R
w70 - g P tfa o +4-d) =200, (d) 2R, (3.18)

wherear o is the value ofa; that minimizes the distortion. We observe that by multiplying
both sides of (3.18) witla2, we get

D; [{a? o +4 - d) = 2D, (3.19)

where Dg and D, are given by (3.16). We get

D 2
B, i d (320
G T,opt

In appendix A it is shown thad; . tends to infinity wherR approaches infinity. We
conclude that the total distortion is dominated by the granular distortion, when the rate tel
to infinity,

D-
—9 L, 0whenR - o, (3.21)
Ds

Returning to (3.18), and taking the logarithm of both sides, we have

2
o [2F, (d)C
-—% +(d-6) D]n(aT,opt) * In(a%opt +4_d) =-RiZIn2+ In#[, (3.22)
> 0 f(d) £

or, equivalently,

0 4-d0 (2F.(d)C
a7 opt —(d - 4) Eﬂn(a%opt) -2 EﬁnE1+ 2 0 4In2[R- mn%’%@%‘ (3.23)
T,opt G

Sincear o tends to infinity for rates approaching infinity, both sides are dominated by the
first terms, resulting in

af oot = REAN2 whenR - «. (3.24)
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that is, the optimal truncation radiw . is proportional to the square root Bffor
asymptotically high rates.
The total distortion (3.15) can now be written

D =g(Rd)2%F, (3.25)
whereg(R d) is approximated using (3.21) and (3.24),

g(Rd)=40n2[f,(d)(R whenR - o, (3.26)

It is easy to generalize the formulas to arbitrary variance, by making the substitution
y= xq,% (see (3.27)-(3.29)). If we compare the lattice VQ distortion with the dis-
tortion of a pdf-optimized quantizer (2.13), we see that the discrepancy increases with the
rate. This can be observed in figure 3.7, section 3.6, where optimal VQ and lattice VQ are
compared.

(3.25) is only proven for rates approaching infinity, but we have experimentally verified
that the formulas also hold for realistic rates. In figure 3.3, the experimental performance of
lattice quantization (see table 6.1) is compared to the high rate theory results, for quantization
of 2- and 5-dimensional Gaussian variables.

SNR SNR

30 - - - - - 30

25+ 25t

20+ 20+

15¢ 15t

10+ 10t

5t 5t

0 : : : : : 0 : : : : :

0 1 2 3 4 5 Rate 0 1 2 3 4 5 Rate

Figure 3.3. Experimental performance for lattice quantization of an iid Gaussian pdf (circles),
and performance predicted by lattice VQ high rate theory (line). Left: 2 dimensions. Right: 5
dimensions.

With this theoretical derivation of lattice VQ performance, we have two asymptotical
lattice VQ results: the asymptotic equipartition property predicts that a lattice VQ performs
better for high dimensions, while the high rate theory predicts that a lattice VQ performs
worse for high rates. These results are illustrated in figure 3.4, where each curve indicates a
specific performance loss compared to a pdf-optimized VQ. The curves in figure 3.4 were
computed by use of the high rate lattice theory (3.25) and the Gaussian high rate lower
bound in (2.13).
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Dimension
25 T T T T

20

-1dB
15k 2dB
3dB
107 4 dB

O 1 1 1 1
0 5 10 15 20 25 Rate

Figure 3.4. Estimated performance loss for a lattice VQ compared with a pdf-optimized VQ.
The curves indicate rate and dimension for lattice quantizers with performance loss from 1to 5
dB.

The formulas above were derived for iid Gaussian densities, with zero mean, ul
variance samples, but it is straightforward to generalize the theory to arbitrary variance ¢
mean. The conclusions should be similar also for correlated Gaussian data, but the theo
more complicated for correlated variables. By simple modifications, the formulas can |
used for a generalized Gaussian pdf. Some of the results may also be possible to gener
to other pdfs. For all unbounded pdfs, such as Gaussian, Laplace, Gamma, etc., the siz
the granular region must increase when the rate increases, for the overload distortion tc
zero for an infinite rate. Thus, the granular region includes parts of the space with lower &
lower pdf. Therefore, the larger the rate, the more the point density of an optimal quantiz
given by (2.11), differ from the uniform point density of a lattice quantizer. Based on th
above reasoning, and on our experience of high rate theory for Gaussian pdfs, we beli
that the suboptimality of lattice quantizers for high rates holds under far more genel
conditions than for iid Gaussian distributions.

Substituting as discussed above, to get formulas that are valid for arbitrary input sigt
variance, we conclude the high rate lattice theory in the following three points:

» The optimal squared truncation radius is proportional to the rate for high rates,

af opt = Rmé”diz 7 whenR - o, (3.27)

* For high rates, the granular distortion dominates over the overload distortion,

—9 _, OwhenR - o. (3.28)
DG

« For high rates, the performance of lattice quantizers, as given by the high rate formula

D=RR2 7RG @AOn2m(T (d/2+1) % w7 whenR - o, (3.29)
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Is inferior to the performance of optimal vector quantizers, given by the Gaussian lower
bound (2.13).

3.3 Selection of lattice

The choice of lattice is of course of major importance for the performance of a lattice VQ.
Ideally, the lattice should be selected to suit both the actual pdf and the truncation. However,
for high rate quantization of smooth pdfs, the choice of lattice is fairly independent of input
pdf and truncation [16]. For these cases, the lattice can be chosen based on its quantization
performance for an infinite uniform pdf. This choice is motivated by high rate theory; for
high rates, the pdf in each Voronoi region can be expected to be approximately uniform, at
least for reasonably smooth pdfs (such as the Gaussian pdf). Further, the performance of
infinite uniform lattice quantization, given by the quantization constarg easily found in
the literature for many lattices.

Conway and Sloane [9] give values of the quantization corStantl lattice basiB for
several lattices. For example, the best known lattices for quantization of infinite uniform pdfs
in 2 and 5 dimensions are generated by, respectively,

_.2 0
B_sB 3 (3.30)
and
@ 0 0 0 O
[ 2 0 0 oC
B=s® 0 2 0 0 (3.31)
I: .
M 0 0 2 OC
H 11 1 1F

wheres is a scale factor to be determidedhe first is the well-known hexagonal grid
(figure 3.2), also denoted th&, lattice, and the second is tlﬁg lattice. The best known
lattices for quantization of infinite uniform pdfs in 2-5 dimensionsAre D;, D, and D;,
respectively. These lattices are employed in our experiments in chapter 6. In [14], lattices for
guantization purposes are thoroughly studied.

3.4 Truncation and scaling

As described previously in this chapter, a lattice quantizer is the intersection between a lattice

N\ and a shapeg . The procedure to reject lattice points outside the shape, taifeztion

of the lattice, is of major importance for the performance of the resulting lattice quantizer.
Truncation for known distributiongteong and Gibson [30] argue that in a good lattice

VQ, the lattice should be truncated by a contour of constant probability density for the

4Lattices can of course also be rotated and translated, but for high rates and smooth pdfs, these operations
have little influence of the performance of a lattice VQ.
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considered source, and design lattice VQs for Gaussian and Laplacian data. For
Laplacian pdf, this leads to truncation bydaoctahedron, which, mostly in combination
with the integer lattic&?, has received much attention since Fischer introduced the structul
(Pyramid VQ) in the mid-80’s. A recent reference on this topic is [31]; see also Swazek [3.
For a Gaussian pdf, the iso-probability contours are ellipsoids, and a correspondi
truncating shape& is described by

S ={x OR?:x"C'x < a2} (3.32)

where C, is the covariance matrix of the Gaussian input distribution,sareda constant,
determining the size of the ellipsoid. To truncate a lattice to the correct number of VQ poin
the radiusa above must be determined. An approximate valug c&dn be found by using
the volume of the lattice Voronoi region, and for certain ratesan be found by use of the
theta function of the lattice.

A problem that may occur when lattices are truncated to a desired number of points
that a lattice normally has many points lying on the same distance from the origin (shell), €
the truncation procedure may be required choose a few among those. To prevent lat
points to fall on the boundary, an arbitrary veatégiR® can be added to the shape prior to
the truncation:

C=An(S+v) (or, equivalentlyC=(A-Vv)n S). (3.33)

After the truncation, the truncated lattice is moved to make the mean of all codevectors ec
to the mean of the source. The choicevotan affect the performance of the resulting
guantizer. We have experimented with four different methods to select

| v issetto zero.

Il v is selected as a very small (small compared to the basis vectors of the lattic
stochastic vector.

Il v is selected as a stochastic vector with length in parity with the basis vectors of t
lattice.

IV v is selected to minimize the energy of the resulting quan@zer

vV =argmin
umR?

N
An (S+u) where |c| = Z”CKHZ . (3.34)

Method | leads to truncations that are natural for the chosen lattice, truncations were
outmost shell is full. This can of course only be achieved for certain values of the number
VQ points. Method I, Ill and IV can give arbitrary VQ sizes. Method IV has been used b
Conway and Sloane [33] in a different application, and they also propose an iterati
algorithm to perform the energy minimization. The first and second method (I and Il) hay
proved best in the cases tested in this study. Since only a limited set of rates can be achi



16 LATTICE-BASED QUANTIZATION, PART Il

with method I, method Il is preferred in this paper, although some results with method | are
also reported.

After the truncation, the lattice VQ should be scaled to give the best possible perfor-
mance. The scale factor can be approximated by use of high rate theory (see section 3.2), but
to get better results an iterative procedure is often necessary, were the optimal scaling is
found for a training database. Several authors have previously studied lattice scaling by
iterative procedures, e.g., [8, 30, 34]. In [30], lattice VQ of iid Gaussian and Laplacian is
treated, and the scaling is done by numerical optimization.

Data-optimized truncatiorin applications, the source pdf is generally not analytically
known, but described by an empirically collected database. In this case, we propose a data-
optimized truncation, where every vector in the database is classified to its closest point in
the full lattice, and the most probable lattice points are kept in the lattice quantizer. In contrast
to truncation for known distributions, there is no way to avoid storing the truncation
information for the data-optimized truncation. The algorithm is described in the following
steps:

Step 1: An approximate scaling of the chosen lattice must be found. For iid Gaussian pdfs,
and for pdfs that can be approximated as iid Gaussian, the high-rate scaling formulas
in section 3.2 can be used. For unknown pdfs, ad-hoc scaling may be necessary. We
have used a scaling rule that makes the granular distortion of the lattice equal to the
distortion of a pdf-optimized quantizer with the desired rate, according to the Gaussian
lower boundDg ; (2.13) in section 2.3:

s:\/%, (3.35)

where G is the quantization constant of the lattice. The estimated scale factor is only an
approximation of the optimum scale, but the truncation procedure is not very sensitive
to the scale, and mismatches are easily detected in step 3 of this algorithm. In all tested
cases, this method has proven sufficient.

Step 2: Classify each vector in the database to the nearest lattice vector, by use of a nearest-
neighbor algorithm for the chosen lattice [9]. The lattice points with\tlmeghest
probabilities become codevectors in the lattice quantizer.

Step 3: An optimal scale facta® for the lattice quantizer is found, by some numerical
optimization method. If the scale factor is very different from the one found in step 1,
go to step 2 and repeat the procedure using the new scalesfactor

Index-optimized truncationin [33], Conway and Sloane introdu¥®ronoi codes
where the truncation is chosen as an integer multiple of the Voronoi region of the lattice.
Forney subsequently generalizes the concept to other truncation shapes in [35]. With the
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Voronoi codes, the indexing of the lattice VQ is greatly simplified. However, the Vorono
code truncation is generally not optimized for the pdf, and performance loss may result

3.5 Indexing

In addition to the choice oA and S, lattice VQ design involves one more issue; assignment
of indices to the codevectors. This enumeration can be made aiming at several, pa
conflicting, goals(i) Memory saving. The indexing should have a mathematical formulatior
that is more compact than a full tabl@) Fast encoding. The indexing should, in
combination with one of the search algorithms that have been developed for lattices [9], yi
a fast encodef. (iii) Fast decoding. The codevector should be rapidly retrievable from th
index in the decodeP . (iv) Symmetry. Characteristic for a lattice is that all points are alike
in relation to the surrounding points. The indexing should preserve this property. In chap
5, where an adjacency table is needed, the symmetry solves the memory pfeblem.
Robustness. If the codebook is used for a noisy channel, bit errors should cause as |
distortion as possible.

There exists an elegant solution of the indexing problem for Voronoi codes [33] in sut
a way that differences in indices reflect the relative position between codevectors. T
method, based on modular arithmetics, satigf)egiv) above. On the other hand, Voronoi
codes can only attain certain raf@snamely, those for whicBR is an integer.

For a Gaussian probability density function, or other densities with rotational symmetr
it is beneficial if the truncation shape is as spherical as possible. Unfortunatelysgiere
does not, in general, possess any of the appealing properties mentioned above. To comb
shape that is suitable for the source (such asltsphere for Gaussian data) with one that
has a nice indexing (such as a Voronoi region), the former can be inscribed into the lat
This approach amounts to designing a larger set that includes the codebook, enumerating
larger set, and then disregarding the points that do not belong to the codebook. For -
method,(ii)-(iv) above are satisfied. The larger set can for instance be chosen as a Voro
code [33]. An alternative larger set® [z, wherez is a rectangular subset of tde
dimensional cubic lattice. Figure 3.5 illustrates the latter method for a 2-dimension
example, where a 19-point lattice VQ is enumerated by using a 25-point set, folWhich
(iv) are satisfied.

SEyubotu and Forney shows in [29] that the performance loss is small for large dimensions.
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Figure 3.5. A 19-point lattice VQ, enumerated by using a 25-point set.

In the VQ design algorithm in chapter 4 and 5, we employ an indexing method in this cat-
egory.

3.6 Lattice VQ examples

In figure 3.6, a lattice VQ and a pdf-optimized VQ are depicted. The SNR values for the lat-
tice quantizer and the optimized quantizer are 14.6 dB and 15.3 dB, respectively.

Figure 3.6. Two 64-point quantizers for a Gaussian pdf. Left: a lattice VQ. Right: a well-
trained VQ.

In figure 3.7, the performance of lattice VQ is compared to pdf-optimized VQ for a 2- and a
5-dimensional iid Gaussian pdf.
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Figure 3.7. SNR as a function of rate for lattice V@)(and pdf-optimized VQ (+). Left: 2-
dimensional VQ. Right: 5-dimensional VQ.

As predicted by the lattice high rate theory, the discrepancy between lattice VQ and pdf-oj
mized VQ increases for higher rates. More results for lattice quantization of Gaussi
variables in 2 to 5 dimensions are reported on in section 6.2.

If the pdf-trained VQ in figure 3.6 is studied in detail, a feature of high rate quantizet
can be observed: the structure is well-ordered, and the environment of the VQ points
locally similar to a lattice, at least for the points close to the center. This feature is exploit
in the next chapter, to design VQs for fast search.






4. LATTICE-ATTRACTED VQ DESIGN

In this chapter, we propose an extension to standard VQ design algorittatig;eaat-
tracteddesign algorithm, where the codebook is initialized with a truncated lattice, and tt
codevectors are updated to maintain a local lattice similarity for each iteration. The goal w
this procedure is to make it possible to exploit the local lattice-similarity for fast neares
neighbor search.

A sketch of a lattice-attracted algorithm is described in the following steps:

I: Initialize the VQ with a truncated lattice. An adjacency table for the lattice is also re
quired, denoted thiattice adjacency tableThis table consists of all neighbors to
codevectof (vector zero), together with rules to compute the neighbors to an arbitrar
point in the lattice.

II:  Train the VQ with a conventional design method, but add procedures to approximate
keep the initial set of neighbors, as defined by the lattice adjacency table.

The initialization procedure is described in section 4.1. In sections 4.2 and 4.3, we stL
how to extend two standard design algorithms, the generalized Lloyd algorithm [36] anc
competitive learning algorithm [37], to approximately keep a predefined neighbor structur
In chapter 5, a novel lattice-based nearest-neighbor search method is described, based c
local lattice-similarity of the VQs trained with the proposed lattice-attracted algorithm. It i
even possible to apply the fast search method during the training, as described in section

The algorithm introduced here can, together with the specialized fast nearest-neighl
search method described in chapter 5, be viewed as a link between lattice quantization
unconstrained quantization, with the goal to combine some of the advantages of b
methods.

4.1 Lattice initialization

Most iterative VQ design algorithms, such as the generalized Lloyd algorithfn ¢8@he
competitive learning algorithm [37], can easily be trapped in a local distortion minimur
when seeking the global minimum. A well-chosen initialization procedure can help th

6The generalized Lloyd algorithm is a direct generalization of a work by Lloyd, first presented in a
unpublished technical note, “Least squares quantization in PCM”, at Bell Labs 1957.
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algorithm to avoid local minima far from the global minimum. For example, the generalized
Lloyd algorithm is often initialized by a splitting procedure, proposed by Linde et al [3] (the
LBG algorithm). Another possibility is to initialize the VQ with a truncated lattice. Here, we
use the lattice as a good initialization for further training, but also to find a lattice adjacency
table for use in the fast search procedures described later.

The lattice initialization procedure starts with selection of a lattice with a good quanti-
zation constan®, as discussed in section 3.3. The lattice is truncated by any of the methods
described in section 3.4. If the pdf of the source process is given by a database, the data-
optimized truncation procedure can be used. For known pdfs, the lattice can be truncated by
an iso-probability contour.

Now an adjacency table must be found for the chosen lattice. Voronoi neighbors of some
standard lattices can be found in [9]. As discussed in section 3.1, the neighbors to a
codevector can be computed by translation of the neighbors to any other codevector, so only
neighbors to the zero codevector have to be stored. A simple enumeration technique is
discussed in section 3.5, where the lattice VQ is enumerated by using a larger set with
desirable properties. A possible larger set is giveBbiz, wherez is a rectangular subset
of the cubic lattice. The technique is illustrated in figure 3.5, where we see that the neighbors
to an arbitrary point in the lattice VQ can be found by adding an offsdt, @é# or+5 to the
index of the point. This is not the most efficient method in terms of required storage, but it
works and it is simple. A more storage-efficient larger set is the Voronoi codes discussed in
section 3.5 and [33, 35], and these have been used in table 6.7. With the larger-set methods
above, the neighbors to the actual codevector are found by a simple procedure; the index of
the codevector is found, the offset to the wanted neighbor is added, and the codevector
corresponding to the neighbor index is founBhe first operation, finding the index of a
codevector, can be solved by storing a table of indices, with one integer index for each
codevector. Adding offset is trivial, and finding the codevector corresponding to the
neighbor index is either solved by looking in the index table, or in another table with index-
to-codevector translations (or by a compromise between those two alternatives). See section
6.4 for storage requirements of the translation tables, and overhead complexity of the
translation.

An alternative to ellipsoid truncation and larger-set indexing by table look-up, is direct
use of the Voronoi codes in [33], for which no translation tables are necessary. However, a
Voronoi-shaped truncation region is in general not optimal for the source pdf, and per-
formance loss results.

For a complete description of the lattice Voronoi region, the distances to the neighbors
are also stored. The set of neighbors to the zero codevector, together with the corresponding
distances, describes the Voronoi region of any point in the lattice.

’Some of the codewords will not have a full set of neighbors, due to the truncation of the lattice. Missing
neighbors are easily detected with the table look-up methods used here.
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The features of the lattice initialization procedure are here illustrated by examples of tw
dimensional vector quantizers. In figure 4.1, two 64-point VQs are plotted, directly afte
being initialized with a truncated lattice. Each VQ point and its neighbors, according to tl
lattice adjacency table, are connected by lines. The regular structure of the lattice initializat
Is clearly visible.
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Figure 4.1. Neighbor structure (lines) for two lattice VQs (dots). Left: A lattice VQ
optimized for uncorrelated Gaussian data. Right: A lattice VQ optimized for correlated Gaussian
data,p =0.9.

In the following sections, we will try to optimize the quantizers for the given source
while still maintaining a locally lattice-similar structure. The neighbors according to the lattic
adjacency table, denoted tlagtice neighborswill deviate from the true Voronoi neighbors
of the quantizer, but large similarities will remain, if the optimization procedure is
successful.

4.2 Lattice attraction for the generalized Lloyd algorithm

The generalized Lloyd algorithm (GLA) is often used for unconstrained VQ design. In GLA
the two necessary conditions, (2.6) and (2.7), are alternatingly iterated until the quantizer
converged. GLA is a greedy algorithm, with the feature that the average distortion decrea
for each iteration. This means that GLA finds the nearest local minima, and stops t
iteration. To overcome this behavior, many methods have been proposed on how to
randomness to GLA [38], in order to make it possible to evade local minima. A goa
initialization is of prime importance for the success of GLA.

GLA is briefly described in table 4.1, step 1-3 and 5. To extend GLA to maintain th
neighborhood structure as given by the lattice adjacency table, we add an extra step (step
table 4.1), where all codevectors are moved a small step to increase the local latti
similarity. This extra step can be implemented in several ways, and we describe one s
way below. In advance, the codebook is initialized with a truncated lattice, and a latti
adjacency table is found, as described in section 4.1. After the standard GLA iteration, e:
codevector is moved a short step towards the centroid of its neighbors, according to
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distance to the corresponding neighbors in the lattice we want to mimic. In this way, the
geometrical environment to each point in the VQ becomes more similar to the lattice, but each
point has still a high degree of freedom during the training. The algorithm, from now on
denotedattice-attracted GLAor LA-GLA, is described in table 4.1, where step 4 is added

to a standard GLA. In this algorithm description, the function to compute the lattice

neighbors is denoted((k,i), giving neighbok of codeword in the codebook. Witf,,
refer to the distance to neighboin the chosen lattice.

Table 4.1. The lattice-attracted GLA algorithm.

we

Step 1. Initialize the codebook’, ={c{”,c?,....c{}. Setm=1.

Step 2. For the given codebook,,,, classify each vectax in the training databasg
toa regionLIJ,Em), using the nearest neighbor partition

Y = { x0T :|x - C(k'“)HZ <[x- ci(m)Hz for all i O(1, N)}
If a tie occurs that is, iﬁx cim H2 = Hx —ci("‘)Hz for one or more, assignx to the
region lP ) for whichi is smallest

Step 3. Compute a new codebook using the centroid condition

)

‘W;Em)‘ =1 &

1
o™=

where the sum is over all training vectorslassified toW(™, and |W(™| is thel
cardinality of the set)™ (the number of elements #™). If |¥("|=0 for somg
k, use some other code vector assignment for that cell.

Step 4. Move all codevectors a small step to increase the lattice similarity,

(1) — (m) (m) (m) -
C ™ +¢_ EZ (m) (m) [@: i) ~C i=1..,N,
HC ) H“

where A((k,i) is the lattice adjacency functioKy(i) is the number of neighbors

codewordi, and W(j) is the average weighted distance between a codekeatolf

its neighbors,

K(j)
=D fey e

The new set of vectors defines a new codebagls, ={c™?,ci™?,....c{"?}.

Step 5. Stop the iteration if some stopping criterion has been reached, for exampl
average distortion fo€,,,; has changed by a small enough amount compai

to

e if the
ed to

the distortion ofC,,. Otherwise, sein:= m+1 and go to step 2.
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The step size parametey, can be chosen to be constant over the training phase, or it ce
be a function of time. We have experimented with a linearly decreasing (to zero) step size,

mC
ML
where g, is the start step size aMlis the total number of iterations of the algorithm. This
choice makes the lattice attraction weaker and weaker, and at the end there is no attractic
all. We have experimented with different initial step sizes, and found that a vayénahe
interval 0.05- 0.1 leads to good performance. The extra step is performed only once p
iteration of the full training database, and thus the extra complexity is small.

In figure 4.2, two 64-point quantizers are depicted after being trained for a jointl
Gaussian distribution with the LA-GLA algorithm, where the codebooks were initialized a
in figure 4.1. We see that most of the lattice neighbor structure is retained, but that 1
quantizers are more optimized for the Gaussian pdf now.

Em =& - (4.1)
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Figure 4.2. Two VQs optimized for Gaussian data, trained with the LA-GLA algorithm.
Lattice neighbors are depicted as lines, and codevectors as dots. Left: uncorrelated data. Right:
correlated Gaussian dafa= 0.9.

Results from simulations with the LA-GLA method are reported on in section 6.3.

4.3 Competitive learning with lattice attraction

Competitive learning(CL) [37] was first developed for training of artificial neural

networks, but can also be used for vector quantization training. In the CL algorithms, t
training vectors are presented one by one, and only one codevector (the closest one¢
adjusted for each input vector. The learning rule of CL can be derived from the two ne
essary conditions in section 2.2 [39], which make CL and GLA essentially equivalent. Tl
main difference is that GLA works in a batch mode, were all training vectors are present
before the codevectors are adapted, as opposed to the sample iterative technique used |
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algorithms. Another important difference is that in contrast to GLA, the CL algorithm is not
greedy; the average distortion does not necessarily decrease at each iteration. This allows the
CL algorithm to evade some local minima.

In [37], Kohonen presents theelf-organizing feature mapmvhich extends CL by
modifying not only the winner at each iteration, but also neighbors to the winner according
to some topological map. The map is often a two-dimensional square lattice, where the
neighbors can be easily computed. A feature of Kohonen training is that the structure of the
map is imposed on the quantizer. Knagenhjelm [40] usémaming mapin order to train
VQs where the Hamming distance between codewords and the Euclidean distance between
codevectors are closely related. This is shown to substantially robustify the VQ for
transmission over a noisy binary symmetric channel.

The self-organizing feature map is a straightforward way to attract the quantizer to the
lattice. The neighbors in the map are given by the lattice adjacency table, and the winning
candidate is modified together with all neighbors in the table for each presentation of input
data. The algorithm is described in table 4.2.

Table 4.2. The competitive learning algorithm with a lattice topology map.

Step 1. Initialize the codeboolC; ={c,,C,,....cy} . Setm=1.
Step 2. A random vectorx,, is drawn from the training database. For the input[data
Xm, find the winning candidate according to the quadratic error criterion,

¢’ = argmin|x,, - d’.
c m

Step 3. Modify the winning codevector as

c=cC +n, [@xm —c*).

where the “temperature],, is linearly decreasing from an initial temperatgge

Nm = nog_%g-

Step 4. Modify the neighbors to the winning candidate a small s{gpaccording to
C =G+ Ny B, X, - ) L k=1...K.

wherec, is one of the totall)X neighbors (found in the lattice adjacency tablg) to
c.

Step 5. If m= M, then stop the iteration. Otherwise, set=m+1 and go to step 2.

The neighbor step sizg,, is, as in the LA-GLA, linearly decreasing,

mC
€, = So%‘ﬁ[- (4.2)
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The resulting CL algorithm is denoted tlagtice-attracted competitive learnindgA-CL)
algorithm. Results of simulations with this algorithm are presented in chapter 6.






5. FAST SEARCH OFLATTICE-ATTRACTED VQ

In [11], an algorithm for fast search of arbitrary VQs is described. With this algorithm
denoted thesteepest neighbor desc€BND) algorithm an adjacency table is precomputed,
consisting of all Voronoi neighbors to all codevectors in the VQ (how to find the adjacenc
table is described in [11]). When the table is found and stored, the actual quantization «
begin. For each input vectot, one of the codevectors in the codebook is selected as
starting hypothesig®. The distance betweern and ¢ is computed, and then the
distances betweex and the neighbors td? (found in the adjacency table) are computed.
When all neighbor distances have been computed, the neighbor clogesetomes the
new hypothesig®.

This procedure is repeated until a hypothesis vector is found whose neighbors are
worse. It can easily be shown that when a codevector with lower distance to the input vec
than all its neighbors is found, this vector is the optimal codevector (see (2.10)).

The main disadvantage of the SND algorithm is the storage requirements for the p
computed adjacency table, typically many times the required storage of the codebook.
example, a 12 bit 6-dimensional VQ requires around 700 kbyte storage for the adjacel
table [11], and this is impractical for many applications.

Lattices have a feature that can be exploited to reduce the storage requirements for
SND algorithm; all neighbors to an arbitrary point in a lattice can be found by translation
the neighbors to the zero lattice point. To find the neighbors to an arbitrary point in a latti
VQ, the neighbors to the zero point are translated, and the set of neighbors is truncatec
the global truncation rules. Thus, we can apply the SND algorithm to a lattice VQ, support
only by the neighbors to a single region. However, this would not be a very competiti
algorithm, since fast specialized search algorithms have been developed for many impor
lattices [33]. A better choice is to apply the low-storage SND algorithm to the well
performing lattice-attracted quantizers from chapter 4. These quantizers are trained
maintain a lattice neighbor structure, and are well suited for low-storage SND search.

In this chapter, we discuss how to apply the steepest neighbor descent method to
guantizers trained by LA-GLA or LA-CL algorithm.
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5.1 An extended SND algorithm

Here, we will propose an SND algorithm to suit the lattice-attracted quantizers from chapter
4. The lattice neighbors of the lattice-attracted quantizers (c.f. figures 4.1 and 4.2) are not
always in perfect correspondence with the real Voronoi neighbors. False neighbors, i.e.,
codevectors listed as lattice neighbors without being Voronoi neighbors, constitute no
problem, but not listed Voronoi neighbors can lead to erroneous decisions, and must be
considered.

An important issue is the starting point of the algorithm, i.e., the choice of an initial
hypothesis codevector. For the tested Gaussian densities, the trained lattice-attracted
guantizers show a high degree of similarity with the lattice quantizer used for the initialization
of the LA-GLA and LA-CL algorithms; the codevectors stay in general fairly close to their
initial positions. Thus, a good starting hypothesis is the vector found by nearest-neighbor
search of the initial lattice quantizer. For many important lattices, nearest neighbor search can
be done with very low complexity [9]. No extra storage is required for this, just a search
algorithm for the chosen lattice.

We have extended the SND algorithm to handle the special problems with an incomplete
adjacency table, and also to exploit the lattice-similarity to find a good starting point. Three
extensions have been used:

I An initial hypothesis is found by nearest-neighbor search of the chosen lattice.

Il If the current hypothesis codevector is closer to the input vector than all of its
neighbors, the neighbor descent search continues from the second best vector. This
procedure is repeated until no improvement is obtained.

[l When the SND terminates and declares a winning codeworelxaaption tables
consulted, including Voronoi neighbors not found in the lattice adjacency table. If the
winning codeword is found in the exception table, the listed extra neighbor(s) is also
tested.

The exception table should be constructed prior to the actual quantization. All the missing
Voronoi neighbors do not have to be included in the exception table, only those that lead to a
substantially higher distortion if not included. The exception table can be found by running a
full search in parallel with the SND search for a training database, and observing when the
answers from the two search procedures differ.

The first extension requires a lattice nearest-neighbor search prior to the VQ search. The
complexity of this extension varies with the effectiveness of the search algorithms for the
actual lattice, but for the lattices used here, the complexity corresponds to 0.5-2 extra
distance computations. No extra storage is needed. The second extension has experimentally
shown to lead to a few additional distance computations for each input vector, compared to
the standard SND algorithm, but no extra storage is required. The third extension, the
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exception table, requires some extra storage, but the extra search complexity is small, s
the exception table is seldom consulted.

Experiments show that if the performance loss compared to a full search is required to
less than 0.01 dB, the exception table can be very small, typically a few entries for the
dimensional VQs tested here, and 20-30 entries for the high rate 5-dimensional VQs. If
performance loss at all is allowed, the 5-dimensional VQs may require an exception table 1
includes up to 10-15% of the vectors in the codebook, to compensate for all missi
neighbors, even though these occur with a probability close to zero.

If the exception tables are excluded, some performance loss is inevitable. The 5-
mensional VQs require larger exception tables to reach 0.01 dB performance loss than th
dimensional VQs, but on the other hand, if the exception tables are excluded, the p
formance loss of the 5-dimensional VQs is small, for the tested VQs always less than 0
dB. In section 6.4, we report the performance, in terms of storage and search complex
for quantizers where the exception table is designed for “almost lossless” (less than 0.01
loss) operation.

The extended SND algorithm (eSND) is described in table 5.1.

Table 5.1. The extended steepest neighbor descent (eSND) algorithm.

Step 1: Find an initial hypothesis codevector, by a lattice nearest-neighbor seafch.
Set the temporary codevectoito null.

Step 2: Find the lattice neighbors t, by look-up and translation of the lattice adja-
cency table.

Step 3: Compute the distortion of all untested neighbors. If a better codevectar thin
is found, this becomes the new hypothesisand the execution continues at st¢p
2. If no better neighbor can be found, continue to step 4.

Step 4: If the current hypothesis’ is equal to the temporary codeveotorcontinue to
step 5. Otherwise, set the temporary codevectorthe second best codevector
found up to then, sat =c, and go back to step 2.

Step 5: If the current best hypothesis is listed in the exception table, compute the distor-
tion of the extra neighbor(s) as given by the exception table.

Step 6: The best codevector found until now is returned.

The algorithm works well for Gaussian data. An interesting question is how well i
generalizes to other pdfs. The simple answer is that it generalizes to pdfs that can be \
quantized using a quantizer with locally lattice-similar structure. These include pdfs whe
direct lattice quantization works well, and thus the VQ points typically move only a sma
distance from the lattice initialization. It also generalizes to pdfs for which a multidimension
compander in combination with a lattice quantizer works well (see, e.g., [41] for a treatme
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of this subject). However, the question if the algorithm works well for arbitrary pdfs is a
subject for further research.

In section 6.4 we report on the search complexity reduction that can be achieved with the
eSND algorithm. In section 5.2, we study how to apply the eSND algorithm already during
the design phase, with a design complexity reduction as result.

5.2 Fast search during the design phase

To speed up the design procedure by the LA-GLA and LA-CL algorithms, the fast search
procedure can be incorporated in the training. The introduction of the eSND search during
the design phase leads to a few problems. First, the exception table in the eSND algorithm
must be constructed "on-line” during the design process. The exception table during design
may be far from complete; the training has experimentally shown to be fairly insensitive to a
few misclassifications. We have experimented with construction of an exception table after
the first iteration of the GLA algorithm, by doing a full search in parallel with the eSND. For
the following iterations only eSND search is performed. After some iterations, it might be
necessary to reconstruct the exception table.

Another problem we encountered in the development of the LA-CL method was a break-
down tendency (failure to improve the VQ) for high initial temperatugesThis is caused
by the random reordering of codevectors that occur for high temperatures, destroying the
well-ordered initial lattice structure. When the lattice structure is destroyed, the eSND search
fails more often to find the optimal codevector, and as a result the VQ is adapted to destroy
the lattice structure even more. However, the break-down temperature is distinct and well
above realistic start temperatures, so the problem is easily avoided. The LA-GLA algorithm
has not shown any tendencies to break down for the problems treated in this report.

5.3 Related work

In the literature, some other reports on fast search for unconstrained VQs can be found. As
discussed earlier, there are some methods based on the neighbor descent concept. These
algorithms show similar performance as the proposed eSND algorithm for lattice-attracted
VQ@s, but the storage requirement for the adjacency table is typically many times the required
storage of the codebook [10, 11]. In [42], only a fraction of the full adjacency table is
stored, with a suboptimal search procedure as a result.

Another method is thK-d treetechnique, proposed in [43], and further developed in,
e.g., [13]. A binary tree, with hyperplane decision tests at each node, is precomputed and
stored. The decision tree leads to one of a set of terminal nodes, where small sets of still
eligible candidate vectors are listed.

In theprojectiontechnique [44], a rectangular partition of the space is precomputed and
stored. During the search, the rectangular cell containing the input vector is found, and the
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distances to a small number of eligible codevectors are computed. The number of dista
calculations with this method is typically very small, but the overhead complexity i
considerable.

Anchor pointalgorithms [12, 45] are algorithms where VQ points are excluded from the
search by use of the triangle inequality. The distances from a small set of anchor point:
each of the codevectors are precomputed and stored. The encoder then computes the dis
between the input vector and each anchor point, and a large number of codevectors ca
eliminated from the nearest neighbor search.

In [46], a Kohonen feature map is used as a basis for a fast search algorithm. Howe?
the search algorithm shows poor performance, with a high percentage of misclassificatic
due to the selection of a map that is not a good quantizer in itself.

For comparison, we have included measurements of an anchor point algorithm and
projection technique, in section 6.4.






6. EXPERIMENTS

In many real-world applications employing vector quantization, the Gaussian distribution
used as a model for the incoming data, and also as a model of the quantization error. Th
mainly because it is possible to theoretically compute important parameters for Gauss
pdfs, but also because the Gaussian distribution is often a good approximation to the pd
the actual data. This makes the performance of quantization of Gaussian variab
interesting.

In this chapter, we present simulation results of lattice quantization and lattice-attract
VQ@s, and study their performance for Gaussian pdfs. In section 6.1, we describe i
databases used in the experiments. In section 6.2, the performance for lattice VQ
Gaussian data is given, and in section 6.3, the performance of the new lattice-attrac
method is tabulated. The achievable search complexity reductions and extra memory
guirements for the eSND method are given in section 6.4, where it is also compared to
anchor point algorithm.

6.1 Databases

All Gaussian variables are generated by the Box-Muller method, using a well-tested rand
number generator from [47]. Both correlated and uncorrelated databases are generated.
correlated data are sequences of samples, drawn from a first order Markov process \
correlation coefficienp = 0.9.

6.2 Results for Gaussian variables

In this section, we present the performance of lattice quantization of Gauss-Markov pi
cesses. The lattices are truncated as described in section 3.4, with method Il for known p
and the optimal scale factors are determined by an iterative procedure, using a databas
200 000 samples. For comparison, we also present SNR values for optimized Gaus:
vector quantization (20 million iterations of a CL algorithm are used to train the quantizers
For the performance evaluation, an independent evaluation database with 1 million Gaus:
vectors is used, both for lattice VQs and pdf-optimized VQs.
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In table 6.1, we present signal-to-noise-ratios (SNR) for quantization of an iid Gaussian

pdfs.

Table 6.1. SNR (in dB) for lattice VQ and pdf-optimized VQ (inside parenthesis), for

guantization of uncorrelated Gaussian vectors.

Number of Dimension of VQ
codewords d=2 d=3 d=4 d=5
8 6.78 (6.96) 4.29 (4.48) 3.16 (3.34) 2.38 (2.53)
16 9.48(9.68) 6.20 (6.29) 4.41 (4.67) 3.48 (3.66)
32 12.09 (12.44) 7.91 (8.10) 5.90 (5.99) 4.59 (4.77)
64 14.64 (15.29) 9.68(9.95) 7.17 (7.36) 5.76 (5.84)
128 17.22 (18.18) 11.48 (11.83) 8.54 (8.75) 6.77 (6.93)
256 19.85 (21.10) 13.24 (13.74) 9.90(10.15) 7.89 (8.05)
512 22.47 (24.04) 14.97 (15.66) 11.22 (11.57) 8.98 (9.17)
1024 25.11 (27.03) 16.71 (17.62) 12.59 (13.00) 10.07(10.31)
2048 27.75 (29.88) 18.45 (19.62) 13.91 (14.49) 11.12 (11.47)

We see that lattice quantization can give competitive performance for low and medium rates,
but for higher rates, the pdf-optimized VQ is significantly better. As predicted by the high-
rate lattice theory in section 3.2, a lattice quantizer is inferior to a pdf-optimized quantizer
when the rate is high.

We also wanted to examine the importance of the truncation procedure. For this purpose,
we have applied truncations that are natural for the chosen lattice, i.e., truncations that
acknowledge the shell structure of the lattice, and keep the outmost shell fully populated
(method | in section 3.4). This can of course only be achieved for certain number of points.
For the D; lattice, the number of points in the shelks from inside out, given by the theta
series {1, 10, 32, 40, 80, 160, 90, 112, 320,...}, and thus the number of points in a
guantizer with fully populated shells are {1, 11, 43, 83, 163, 323, 413, 525, 845, ...}. In
figure 6.1, we compare the performance of lattice VQs with fully populated shells with VQs
where the number of points is an integer power of 2.

8Note that the results for high-rate pdf-optimized quantizers show signs of undertraining; especially the SNR
values for 2 dimensions, 2048 codewords could be improved with longer training.
90ther theta series are possible if the lattice is translated.
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Figure 6.1. Performance for a truncated lattice VQ on a 5-dimensional iid Gaussian pdf. The
crosses (x) indicate performance for lattice VQ where the number of points is truncated to an
even power of two, and the circles (o) indicate the performance with a fully populated outmost
shell.

We see that for low rates, the truncation where the outmost shell is fully populated ha
performance advantage, but for higher rates the "unstructured” truncation procedure gi
equivalent performance.

In table 6.2, we present signal-to-noise-ratios for lattice quantization of a first orde
Gauss-Markov process with correlation coefficient 0.9.

Table 6.2. SNR (in dB) for lattice VQ and pdf-optimized VQ (inside parenthesis), for a first
order Gauss-Markov process, with correlation coefficient 0.9.

Number of Dimension of VQ
codevectors d=2 d=3 d=4 d=5
8 9.72 (10.83) 9.20 (9.37) 8.19 (8.48) 7.43 (8.09)
16 12.48 (13.55) 10.45 (11.41) 9.23 (10.20) 8.37 (9.39)
32 15.13 (16.25) 12.30 (13.21) 10.50 (11.66) 9.48 (10.69)
64 17.98 (19.05) 14.08 (15.01) 12.08 (13.03) 11.02 (11.85)
128 20.82 (21.87) 16.16 (16.85) 13.44 (14.40) 11.83 (12.96)
256 23.28 (24.81) 17.80 (18.71) 14.95 (15.77) 13.19 (14.05)
512 25.80 (27.72) 19.69 (20.60) 16.46 (17.16) 14.37 (15.14)
1024 28.63 (30.67) 21.36 (22.51) 17.69 (18.56) 15.54 (16.23)
2048 31.24 (32.82) 23.16 (24.39) 19.18 (19.97) 16.70 (17.35)

We see that for correlated Gaussian data, pdf-optimized vector quantizers have in most ¢
a significant performance advantage over lattice quantizers.

6.3 Lattice-attracted VQ design performance

With the new lattice-attracted VQ design methods, an interesting question is if the latti
attraction leads to loss of performance compared to unconstrained VQ training. To inv
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tigate this, the performance for quantizers trained until convergence with the different
methods are compared in table 6.3. The SNR values are averaged over 20 simulations with
different training databases (different seeds for the random number generator). The
evaluation database consists of one million Gaussian vectors. Even though the GLA al-
gorithm is normally aborted when the distortion change is small enough, we have here
chosen to run all algorithms for a predetermined number of iterations (100 million iterations
are performed in all cases, where one iteration consists of finding the closest codevector to
an input vector). The chosen design time is large enough for all the methods reach
convergence, i.e., the results do not improve for longer training. The size of the training
database is limited (500 000 vectors) for the batch algorithms, LBG and LA-GLA, but for
the competitive learning methods, the database size is “unlimited”; a new Gaussian vector is
drawn for every iteration.

Table 6.3. SNR (dB) for quantizers trained until convergence with the different methods.

dim, size, corr CL LA-CL LBG LA-GLA
d=2,N=64, p=0 15.30 15.30 15.27 15.27
d=2,N=64, p=0.9 19.05 19.05 19.03 19.02
d=3,N=128, p=0 11.85 11.85 11.82 11.82
d=3,N=128, p=0.9 16.87 16.87 16.83 16.82
d=5,N=1024, p=0 10.32 10.32 10.25 10.26
d=5,N=1024, p=0.9 16.23 16.23 16.20 16.20

Note that the CL algorithms perform slightly better than LBG or LA-GLA. A reason for the
inferiority of the GLA-based algorithms is the limited training database, making the greedy
GLA-based algorithms more easily trapped in local minima. From the numbers in table 6.3,
we conclude that the lattice attraction does not decrease the performance of the fully trained
VQ, neither for GLA nor CL. For these extremely well-trained quantizers, the lattice-
constraint is mainly a question of indexing of the codevectors; for all methods, the resulting
structures of the quantizers are very similar. This indicates that an indexing procedure could
be applied after the training procedure to make the fast eSND search possible. However, it
would then be impossible to apply the eSND during the training.

In reality, it may be impractical with the tedious train-until-convergence used above, and
the database size is also often limited. A more realistic database can have a size that is only
100 times the number of codewords, and in some cases even less. In figure 6.2, we compare
the different design methods for limited design time and database size.
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Figure 6.2. SNR as a function of number of iterations for design of a 64-point 2-dimen-
sional VQ. For all methods, the training database contains 5000 vectors, drawn from an iid
Gaussian pdf. The LBG algorithm uses a split initialization technique, while the other algo-
rithms are initialized with a truncated lattice, giving an initial SNR of 14.6 dB.

We see that the lattice-attracted design methods reach a higher SNR for a limited datal
size, due to the attraction to a well-ordered lattice structure, a structure that otherwise car
hard to reach for limited training times and databases. No method reaches an SNR clos
the optimum 15.3 dB (table 6.3).

The results in this section seem to indicate that the CL-based algorithms should
preferred for VQ design. However, the tuning of the starting temperature for the CL &
gorithms can be tedious, and the empty-cluster-problem is simpler to handle in GLA-bas
algorithms. Thus, LBG and LA-GLA may still be preferable in some applications.

6.4 eSND performance

In this section, we report on the performance of the eSND algorithm, in terms of sear
complexity and storage requirements. For comparison, we have also included measurem
of an anchor point algorithm, using the same databases.

Search complexityWe have applied the eSND algorithm, described in chapter 5, t
guantizers trained with LA-GLA. The exception tables are designed for “almost lossles
operation, with a performance loss compared to full search that is less than 0.01 dB. -
average and maximum number of distance computations are listed in table 6.4 for
Gaussian, and in table 6.5 for Gauss-Markpw=(0.9). The number of distance compu-
tations of a full search is of course equal to the number of codewords in the quantizer.
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Table 6.4. Average and maximum (within parenthesis) number of distance computations for
the lattice-attracted quantizers. The database consists of uncorrelated Gaussian vectors.

Number of Dimension of VQ
codewords d=2 d=3 d=4 d=5
8 5.8 (8) 6.1 (8) 7.7 (8) 6.7 (8)
16 7.7 (12) 10.4 (16) 12.2 (16) 12.0 (16)
32 9.1 (12) 13.8 (25) 18.7 (32) 22.1 (32)
64 9.9 (12) 17.3 (28) 24.7 (51) 32.7 (63)
128 10.6 (13) 19.6 (28) 30.9 (63) 42.1 (89)
256 10.6 (15) 21.5(31) 36.1 (69) 53.2 (124)
512 10.5 (16) 23.3 (36) 41.5 (79) 64.8 (145)
1024 10.5 (16) 25.2 (40) 45.7 (91) 75.3 (167)
2048 10.5 (16) 25.2 (44) 50.2 (96) 81.8 (179)

Table 6.5. Average and maximum (within parenthesis) number of distance computations for
the lattice-attracted quantizers. The database consists of corrgdatdllq) Gaussian vectors.

Number of Dimension of VQ
codewords d=2 d=3 d=4 d=5
8 4.3 (6) 3.8 (5) 3.8 (5) 3.9 (5
16 6.5 (9) 6.9 (11) 7.2 (11) 7.1 (11)
32 7.9 (11) 9.8 (16) 12.4 (22) 12.7 (24)
64 9.1 (12) 13.4 (24) 15.8 (30) 16.1 (30)
128 9.9 (13) 15.7 (25) 22.5 (44) 27.1 (58)
256 10.5 (14) 19.0 (30) 28.2 (52) 33.9 (70)
512 10.7 (15) 20.8 (32) 33.1 (64) 45.8 (100)
1024 10.8 (17) 23.2 (36) 39.8 (79) 56.0 (126)
2048 10.9 (19) 24.3 (40) 44.0 (84) 66.6 (148)

We see that a significant reduction of the number of distance computations is achieved for the
eSND method, and also that the maximum is reasonable (measured for one million test
vectors).

Besides of the distance computations, some additional overhead for the eSND algorithm
Is unavoidable. The initial hypothesis codevector is found by searching the closest vector in
the lattice associated with the lattice-attracted VQ. This procedure is not very complex due to
the regular structure of the lattice; for the lattices employed here, the procedure involves a
rescaling of the input vector, adding an offset vector and rounding all elements towards the
nearest integer. The total overhead complexity for finding the initial hypothesis is less than
two extra distance computations for the lattices used here. More about lattice nearest-
neighbor search algorithms can be found in [9]. There is also overhead for each distance
computation. When a new hypothesis codevector is found, the lattice index of the codevector
must be found, by table lookup as described in section 4.1. For each distance computation,
an integer is added to the lattice index, and the codevector corresponding to the sum is found
by table lookugP. The overhead depends on the efficiency of integer arithmetics of the given

10f a Voronoi code is used, the table lookups are unnecessary; the indices of the codewords are given by the
sorting of the codebook. But Voronoi codes may lead to performance loss.
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processor, but for the hardware used here (DEC Alpha), the overhead complexity is onl
fraction of the complexity of the distance computations.

It is interesting to compare the eSND method with other fast nearest-neighbor seal
methods (see section 5.3). In comparison with other neighbor descent methods, eSND h
slight advantage, because of the good initial hypothesis given by the lattice search, but
overall performance should be similar due to the similar approaches. Among other methc
anchor point algorithms are well-known. We have implemented an anchor-point algoritht
IFAP-AESA [12]. IFAP-AESA substantially reduces the number of L2-norm distance
computations, at the cost of a number of L1-norm distance computations. A procedt
similar to the standargartial distancetechnique [44, 48] is employed for the L1-norm
computations to further reduce the complexity. We have also implemented the projecti
method [44], briefly described in section 5.3. The rectangular partition is optimized fc
"almost lossless” operation, with at most 0.01 dB performance loss compared to full searc

While the complexity of full search and eSND is essentially proportional to the numbe
of L2-norm distance computations, this is not true for IFAP-AESA and the projectiol
method. Therefore, we report the complexity in the average number of floating poi
multiplications, additions, comparisons and integer operations (given as a proportional
constant) per input vector. The additional overhead for eSND is described above, and
IFAP-AESA the overhead consists of frequent absolute value computations and table lo
ups. The overhead complexity for the projection method is considerably higher than for t
other methods, with a large number of integer operations. Actually, the complexity of tf
projection method is dominated by the integer operations for the cases tested here.

The nearest-neighbor algorithms are compared in table 6.6.

Table 6.6. Average number of multiplications, additions, comparisons and integer operations
for a full search, for an anchor point algorithm, IFAP-AESA, the projection method and for the
eSND algorithm. The database consists of uncorrelated Gaussian vectors.

Dimension d,| Multiplications, Additions, Comparisons (Integer operations)
VQ size N Full search IFAP-AESA Projection eSND
d=2, 128, 192, 63 | 11,a=168, 117 3,4,15 20,a=30, 20
N=64 (ONM) (La) (ONM) (La)
d=3, 384, 640, 127 | 23,a=556, 386 6, 11, 26 59,a=98, 39
N=128 (ONM) (La) (ONM) (La)
d=5, 5120, 9216, 102370,a=8286, 5983 26, 47, 60 | 377,a=678, 150
N=1024 (ON) (La) (ON) (La)

The number of integer operations for the projection method and for full search is propc
tional to the VQ sizéN times the dimension, while the number of integer operations for
eSND and IFAP-AESA is proportional to the number of distance computations (which is tt
sum of L1-norm and L2-norm distance computations for IFAP-AESA). This means that tf
number of integer operations for IFAP-AESA and eSND grows much slower than for fu
search and the projection method.
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We see that IFAP-AESA radically reduces the number of multiplications, but that the
number of additions and comparisons remains high. IFAP-AESA can only compete with the
other algorithms for hardware where the multiplication cost is dominating, but in terms of
FLOPS (floating-point operations per second), IFAP-AESA is inferior. On the other hand,
the projection algorithm outperforms the other algorithms in terms of FLOPS. However, as
discussed above, the overhead complexity for the projection method is considerably higher,
and which of the two methods that is the fastest in practice is dependent on the efficiency of
the hardware.

Storage requirement$o use the eSND fast search algorithm, we must precompute and
store an adjacency table, an exception table, and tables to aid translation from codebook
index to lattice index and vice versa. In table 6.7, the required storage of the tables and the
codebook is given for a few VQ examples.

Table 6.7. Relative and absolute storage requirements (in bytes) for examples of iid Gaussian
guantization. The codebooks are stored as 4-byte floating point numbers, and the tables consist
of one- or two-byte integer values. The total storage is given in percentage of codebook only

storage.

Storage requirements| d=2, N=64 | d=3, N=128 | d=5, N=1024

Codebook 64x2x%x4 128x3x%x 4 1024 x5x% 4

=512 = 1536 = 20480

Adjacency table 6 14 62x2=124

Exception table 0 3 15x2=30
Translation tables 145 371 4149 x 2= 8298

Total storage 129% 125% 141%

As seen in the table, the storage requirements are dominated by the codebook and the
translation tables. The larger extra storage of the 5-dimensional VQ depends on that 2 instead
of 1 byte is required to encode the 1024 codewords. Since we only consider unconstrained
VQs, the codebook size can not be reduced, unless the precision is somehow reduced. It is
possible to reduce the storage requirements for the translation tables, at the cost of extra
overhead time for the eSND search.

The anchor point algorithm requires storage of a floating point table witlidsiz&) / d
times the size of the codebook. For the 2-, 3- and 5-dimensional cases above, the total
storage, in percent of codebook only storage, are 250%, 233% and 220%, respectively.

For the projection method, a rectangular partition of the space, and a set of candidate
codewords for each rectangular cell, are precomputed and stored. The total storage, in
percent of codebook only storage, are 350%, 350% and 400% for the cases above.



{. SIMMARY

In this report, lattice-based quantization was studied, both from a theoretical and a practi
viewpoint. Lattice-based quantization is a generalization of conventional lattice quantizatic
by allowing modifications of the regular lattice structure while still maintaining a local lattice
similarity.

For conventional lattice quantization, high rate theory was developed. The high re
theory leads to lattice VQ design rules, and to new insights in the performance of latti
guantization. An important conclusion was that for high rates, lattice quantization is severt
inferior to optimal vector quantization. Practical solutions to problems in lattice quantizatiol
such as truncation and scaling, were discussed, and the performance of lattice quantizatic
Gaussian variables was presented.

To overcome the inherent shortcomings of lattice quantization, we proposed a no\
lattice-based technique for VQ design, with the feature that the resulting VQs are loca
lattice-similar, but globally optimized to the input pdf. The design algorithm was com
plemented with a new lattice-based fast search algorithm. Experiments on Gaussian data
the proposed fast search algorithm illustrated that the performance is excellent, with ol
moderate extra storage requirements.






APPENDIXA

In this appendix, theorem | (3.13) and theorem Il (3.14) in section 3.2 are proved. In secti
A.1, some definitions and preliminaries are presented. Section A.2 discusses the overl
distortion (theorem 1), and section A.3 treats the granular distortion (theorem II). In sectic
A.4, the total distortion, which is the sum of overload and granular distortion, is treated, a
methods to find the global minimum is discussed.

A.1 Preliminaries

For the proofs in the appendix, we use the definition dfsphere (3.9), the truncation
radiusa; (3.10), and the granular regigp (3.11), all defined in section 3.2. We also use
the VQ definitions in chapter 2, and the lattice definitions in section 3.1, together with son
new definitions in this section. As discussed in section 3.2, we assume zero mean,
Gaussian variables, with unit variance samples.

A granular Voronoi regiorQ (c) is defined as the lattice Voronoi regiéh, translated
to the codevecta,

Q,(c)=Q+c=Q(c)n G, (A.1)

where Q(c) is the Voronoi region around codevectdisee 2.7),Q is the lattice Voronoi
region (see 3.4), an@ is the granular region (see 3.11).

For a given input vectax, we definep(a) as the closest point toin a sphere with
radiusa,

[x[<a
p(a) =argmin|x —y| = (A.2)
(a) y:y<a” |= %%\7 Ix|>a
With this definition, the distance betwegrand p(a) is given by

|x =p(@) | = max(0, x| - a). (A.3)

We define thgranular radiusa, as the effective radius of the granular regipn
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WhereSd(qo) is a sphere with radiug, see (3.9). The volume of the sphale(%), called
thegranular sphereis with this definition equal to the volume of the granular region, i.e.
voI(Sj(ag)):vol(g). The granular radiug,; and the truncation radiua; are closely
related, and we show in (A.24) that they are equal for infinite rates.

We define @order regionB in the form of a spherical shell (see figure A.1),

B ={X OR" : @y <X S Ayyac) (A.5)
which overlaps both the granular and the overload region. The border shell is defined as the
thinnest shell having only granular region on the inside and only overload region on the

outside, that isa,,, is the radius of the inscribed sphere, ang, is the radius of the
circumscribed sphere of the granular region,

Frun = inf (A6)
B = SUPIX] (A7)
xClg

The border region is a mix of granular and overload regions. Figure A.1 illustrates the
border region for a two-dimensional lattice VQ.

Figure A.l. Left: lllustration of the border region (the gray area). Right: Combinations of
the granular and the border region.

With the definitions of overload and granular regions in (3.11), and the border region in
(A.5), we have

G 0B ={xOR":|X|> e} 0G O{x OR*:|x|>a,} =G OB (AS8)

GnB ={xOR*:|X| < 8y} DG O{xOR: || ane} =GOB.  (A9)

From (A.9), we conclude that the radius of the granular splagreis bounded between

amin and a,,,, since
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vol(Sy(amn)) < vol(G) = voI(Sd(ag)) < VOl(Sy(@a)) O 8nin < &; < 8- (A.10)

We use the covering radiug,, , the packing radius,;,, and the effective radiug, of
a granular Voronoi regio . (c), defined as

fmax = SUP_[Ix = ¢ = sup|| (A.11)
X (c) xQ
o = ik =l = inf (A.12)

Dvo d/d 0 vollG d/d DVOISﬂag d/d -R
(l( ))H EWE))E Wﬁ =g, 2R (A.13)

The three radiifg, I, andr,., are illustrated in figure A.2.

Figure A.2. A Voronoi region.

The granular Voronoi regions are all bounded and congruent, and thus the, tatios
andr,;,/rq are bounded, nonzero and independent of the scaling of the region, so that

Fmax = T2 [, = 102 [y (2R (A.14)
o o

Fin = 10 (R, = 2 0y (2R, (A.15)
o) o

amin anda,,, can be bounded as (using the definitiom\ofn (3.1))

o ==, 0 o il
GiOA\C
2 inf in (o] ~) = inf i -suplx| 2 ar = nay (A.16)
B = SUPJX] = ||><|| sup sup x| = sup supfx - ¢ <
X x0 U(Q+c ¢ O xOQ+¢;) ¢ O x0Q
< sup sup([x| + |ci[]) = sup|c; ||+ suplX]| < &y + . (A.17)
¢, c xQ ¢ c x[Q

where the last inequality of (A.16) and (A.17) follows from the truncation of the lattice by .
hypersphere with radiua;, as in (3.10). Now, using (A.10), (A.16) and (A.17), we can
bound the truncation radies: as
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A ~Tmax < Amax ~ Mmex S 81 S Amin FMnax S 85+ M- (A.18)

The left- and right-most terms of (A.18) can both be Wriﬁei?; + e (0(1), and using
(A.14), we get

= &, + Ty (O(1) = 3, [{1+ 2R 1O(1)). (A.19)
Using (A.19) to eliminates,; from (A.13)-(A.15), we get the useful equalities

Fax = &7 (277 [O(1) (A.20)

o =ar 27RO (A.21)

foin = a7 (277 [O(1), (A.22)

and by inserting (A.20) into (A.18), we get

8in = ar [{1+27R 10(1)) (A.23)
a, =ar[{1+27"0Q) (A.24)
Amax = & E@1+ 2R BD(l)), (A.25)

which illustrates thagy, a;, am,, andan, are all equal for infinite rates.

A.2 Theorem |: Overload distortion

In theorem | in section 3.2, we stated that the overload distortion is given by
— d-4 4-a/2
Dy = f(d) B¢ & 2 fu+ ), (A.26)

where f(d) = (20”2'2 [I]'(d/2))_1, and ez tends to zero for asymptotically high rafedn
this section, we present a proof of this theorem. In the proof, we bound the overload
distortion by use of two spheres, one outside and one inside the border region. Then we
complete the proof by showing that the width of the border region tends to zero when the
rate approaches infinity.

We write the overload distortion

D; =]
g

wherec is the codevector in the codebogkthat is closest to the input vectgr and
f.(x) is the input pdf. The integrand is nonnegative, so we can lower- and upper-bound the
distortion by integrating over a smaller and larger region, respectively. Using (A.8), we get

* |12
X

x)dx, (A.27)

IHX c H f (X)dx < D qu c H f( (A.28)
IXI> B \X\>am.n

11with gO(1) (big-oh), we will meang[C, whereC is bounded in a neighborhood gf= 0. Rules for
computation using big-oh can be found in most mathematical handbooks, e.g. [49].
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We now study the upper and lower bound in (A.28) separately. First, noting that &
codevectors lie inside a sphere with radis,, we can lower-bound the integrand

Hx—c*H—mln”x c[= min ||x—y||:Hx—p(amax)H. (A.29)

[yli<am

Secondly, the integrand can be upper-bounded by use of the triangle inequality,

HX_C* HSHX‘p(amm)H’fH p(amin) = ¢ H (A.30)

With the definition ofa,,, in (A.6), p(amin) belongs to a granular Voronoi region.
Therefore, we can bound the distance betvMap,in) andc” by the covering radius of the
Voronoi region,f.,,

<r

| p(amin) =€ || < e (A.31)

(see (A.11) and figure A.2). Thus, we have

HX _C* H S ”X” ~ @nin + max = HX - p(amin - rmax)” if ”X” > Bmin» (A-32)

where we have also used (A.3). The distortion upper bound is

IHX - p(amin - rmax)”2 fx(X)dX < J’HX p 8min ~ M'max H f dX (A.33)

HXH>amin HXH>am|n max

Combining (A.28), (A.29) and (A.33), we get
2
IHX p(amaX)H f (x)dx < D J'HX = P(@min = )| f(X)dx,  (A.34)
[X>8ma HXH>amm—rmax
which bounds the overload distortion by use of two spheres withaggiiand a.,, — 'max
From (A.20), (A.23) and (A.25), we see that both radii can be written on the same fon
ar [@1+ 2R @(1)). We define
a=ar [1+27°0(1)), (A.35)

and rewrite the overload distortion as

| Tr”X p(a || f( (A.36)
(11 - &)” £, (x)ebx (A-37)

x>a

= f{IxIP +&* - 28] [} 1, (x)ax. (A.38)

[x[>a

Now thed-dimensional integral has become one-dimensional; the integrand is a function
[X| onlyl2. The stochastic variablé =||x|* has a y2-distribution withd degrees of
freedom, f;(&) = x*(d,¢), and we get

125ince the Gaussian pdf,(x) is spherically symmetrical, it is a function | only.
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D; = | (g+:;12 23, 5) 2(d, &)de (A.39)
TR o\ & pE2
- éfz(& 42 -2a, E)W(d/z)df' (A.40)

In the sequel, we need the incomplete Gamma function,

M(b,2) = }tb’le'tdt. (A.41)

z

Using ' (b, z), we write the overload distortion as

1 d+2 &°0 Dd+1aD

_ _ 52
D?'r(dlz)ugﬂr%_ S 2RRIg - ur% %(AQ)

We approximate the incomplete Gamma function as an asymptotic series [50]:

M(b2)=2"e[1+(b-1)z" +(b-1)(b-2)z % +7°0(1)]. (A.43)
With this approximation, the overload distortion can, after some work, be written
~d-4

ai %@ Ap
Dy = sarzz ¢ (d/2 [Ql (1)) (A.44)

Insertion of (A.35) yields, again omitting the details,

a$'4 @—a$/2
D. =
5 29272[1(d/?2)

(. +a? 2R (0(1) + a7 O(1)], (A.45)

which is equal to (A.26), and the proof is completed.
In section A.4, we will verify that the error term is equal to zero for asymptotically high
rates if the truncation radius is selected for minimum distortion.

A.3 Theorem Il: Granular distortion

In theorem II, the granular distortion is given by
D, = f;(d) 22" @ [f1+ ¢, (A.46)

where f.(d)=Gd Gt (d/2 +1)724 and g, tends to zero for asymptotically high rates
R. The proof of the theorem, which is given in this section, is based on writing the pdf
inside each Voronoi region as a uniform pdf plus an error term. The granular distortion for a
uniform pdf is easily computed, and the proof is completed by showing that the error term is
zero for infinite rates.

We write the granular distortion for tié-point lattice VQ as a sum of the Voronoi
region distortions
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0, = ffx=c [ (A1)
% J( X = ¢y | £ (X (A.48)

For bounded and differentiable densities, we can expand the pdf in a Taylor series as
f(x) = f(cy) +[x — ¢ (D), (A.49)

and (A.48) can be rewritten as

N O C
D, = kzlg I(||x —ck||2(f (c) +[x - ¢ O )dx% (A.50)
=IO, (e
N [ 0 ~n0O C
= f.(C X = C | dx[J+ X = ¢, [ dx [O(L (A.51)
> ()0 : jﬂk I’ - ZQQ I!:'k I’ )E

Now, since the granular Voronoi regioﬁ@(ck) are congruent, the integrals in (A.51) are
independent ok, and we get

N N
D, = J'||x||2dx ™ fe(c)+ z I||x|| dx [O(1) (A.52)
Q k=10

The first integral in (A.52) is recognized to be a scaled version of the lattice quantizatic
constantG (3.6). The second integral can be simplified by using (A.11), and writing
X = i CO(1). We get

D, = dvol(Q)"*?° G D% f(Ci ) + r3s Vol (G) CO(1) (A.53)
k=1
= d ol (Q)*? G E% fo(c ) +al 23R (), (A.54)

where (A.20) is used for the last equality.

The sum in (A.54) is considered next. For this reason, we study the granular probabil
Pr(x Dg). Using the same approach as in (A.47)-(A.54), we can write the granule
probability

Pr(x 0G) = [ f.(x)dx (A.55)
G
=vol(Q) D% f(c ) +af 2 R o). (A.56)
k=1

We can also write the granular probability using the overload probability, as

Pr(x 0G) =1-Pr(x 0G ). (A.57)
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Using (A.8), we can bound the overload probability as

Pr(x 0G ) < Pr(|x| > ). (A.58)
(A.58) can be written using the?-distribution as in (A.39). We get
—\ [(d/2,a2,/2
Pr(x Dg) < G ) (A.59)
r(d/2)
which can be simplified using the first term in (A.43),
Pr(x 0G ) = a2 (&7 /2 [0(1) = a2 (&7 /2 [0(1) (A.60)
(see (A.23)). Combining (A.56), (A.57) and (A.60), we get
N 2
vol(Q) ) f,(c,) =1+ad™ 2 R0() +ad 2 & 2 [0(3). (A.61)

k=1
Using the number of codevectors in the quantizér 289, the volume of the Voronoi
region, vol(Q), can be written

_ vol(G) _ vol(sj(ag)) _ 92 ¢ [
N N r(d/2+1)

vol(Q) : (A.62)

where we have used the fact that the volume of the granular re{gi(ég) is equal to the
volume of ad-sphere [50] with radius,;, see (A.10). Inserting (A.24), the volume of the
lattice Voronoi region is expressed as a function of the truncation ragius

m? &l

vol(Q) = Tz i+ 2R o). (A.63)

Inserting (A.61) and (A.63) into (A.54), we get

Gl Ot

— 2 2R d+1 -p-R d-2 -a2/2
G |—2/d—(d/2+1)mT[2 l+ar 27O +ar “[& BD(l)], (A.64)

which equals (A.46). If the error terms in (A.64) are excluded, the equation describes the
distortion for quantization of a spherical uniform pdf (see [14], (1.10)).

In section A.4, we show that for an optimal choicexpf the error terms tend to zero for
a rate approaching infinity.

A.4 Total distortion

The key issue in the high rate theory is to find the optimal value of the truncation aadius
We study three possible choicesagf.
I a; does not grow towards infinity with the rate.

I a; grows towards infinity with the rate, but slower than exponentialR: in
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[l a; grows towards infinity exponentially iR, or even faster, i.ea; = 2'R for some
A.

We show in the following that | and IIl lead to higher distortion than II. For this reason, w
use an arbitrary formula faa; fulfilling 11, and compute the resulting distortion. Then we
lower-bound the distortion in | and Il by simple calculations. The proof is completed b
showing that the distortion for case Il is lower than the lower bounds of distortion for case
and Il

First we study the distortion for case Il above. For this case, the error terms in (A.2¢
(A.45) and (A.46), (A.64) are zero for asymptotically high rates. The total distortion is th
sum of (A.26) and (A.46),

D= (fg faf 2R+ 1t 3Rk 2)(1+ £). (A.65)

We select the truncation radius arbitrarilyags= R, which fulfills II. Insertion of a; in
(A.65) yields

D, = (fg R 2R+ £ (R E(b'RZ/Z)(1+ ) (A.66)
= f, R 2R [Ql+ RI* &R /2 2R @(1))(1+ €) (A.67)
=, RN E€1+ R-4 [p-R/2+R2in2 [@(1))(1+ £). (A.68)

The error terms are zero for infinite rates. We write

D, = R 272R [0(1), (A.69)
and observe that the distortion tends to zero when the rate approaches infinity. Since we t
used an arbitrary truncation radius fulfilling 1l, the optimal truncation radius gives ¢
distortion lower than or equal to (A.69).
Now we study case I. In (A.34) a lower bound for the overload distortion is given
Using (A.17) we get

D, 2D; > IH X = (&) H2 f (x)dx = IH X = P(8max) Hz f (x)dx. (A.70)

[X]1> 8 IX[>ar + e

We observe that, for finite; andr, ., the right-hand integral in (A.70) does not tend to
zero as the rate approaches infinity. Siagas finite in case |, and,,, is finite for finite a;
(A.20), we conclude thaD, does not tend to zero as the rate approaches infinity. Bu
D, - 0 for R - o, and we have shown that the optimal high-rate distortion in case | i
higher than the distortion in case Il, iB.> D,, .

To lower-bound the distortion in case lll, we first define a shsipe the form of ad-
sphere from which we cut out spherical holes around all codevegtors
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S=%(B)\ U (Si(a Bn) + ), (A.71)

clic

where0O<a <1, and the radiug is an arbitrary constant, independentRofS is illus-
trated in figure A.3.

Figure A.3. The hollow shapesS.

Sincea is less than 1, the definition af;,, (A.12) ensures that the holes, with radius
a [t .., are nonoverlapping. Further, since the truncation raaju@nd a,,,,, see (A.23))

grows towards infinity with the rate, there exists a cong®grduch that for all rateR> R,
amin > B, which makesS a subset of the granular regigh We have

Dy = D, =IHX -c HZ f, (x)dx ZIHX -c HZ f(x)dx for R>R,.  (A.72)
5 s

For vectorsx in $, the distance to the closest codewords lower-bounded byr &,
The pdf f,(x) is lower-bounded by the pdf at an arbitrary point at the surfacg, dfe.
f (x) < fx(xﬁ) where”xﬁu = . Thus, forR> R,, we have that (using (A.18))

Din 2 [ (& i) X5 (A.73)
S

= (0 D) %5 ) V0l () (A.74)

= 1, (x5) oI(S) o Dy 70)” 122 2727 (A.75)

> , (%) WOI(S) ffar i /70)” My = e )” 2727 (A.76)

>Ca 2R, (A.77)

whereC is a positive constant, sineg,, /a; tends to zero (see (A.20)), and the volume of
S, the pdf fx(xB) at the surface, andg,,/ro are all positive constants. Now, insertiag
as in case lll yields

D, 2C2*R@2R>D, forR - w, (A.78)

and we have shown that radius selection as in case Il leads to lower distortion than case lll.

We will now study the total distortiom, and show that, for a selection &f with the
restrictions as in case Il above, the distortion is convex and has a distinct global minimum.
As discussed above, the error term in (A.65) is zero for infinite rate. We defiagD
excluding the error term,
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D=f, B2+ f @ ™2 (A.79)

To show thatD is convex with respect te;, we compute the second derivativeDfwith
respect toa;:

0°D _ 2R d-2 5-a2/2 2, (42 -4

G T2 e e [p1+(7—2o|)taT +(d? - od + 20) ].(A.so)

We see that the expression inside brackets is dominated by the first ternawtesmas to
infinity, and we write
7°D
da
Clearly, this expression is positive for large enough values; ofThus, D is a convex
function of a; in the region defined in case II, and the first derivative can only be zero at tr
global minimum ofD. D is the sum ofD and error terms, bub dominates the distortion

for all a; satisfying case Il, so the global minimum fis the global minimum ob as
well.

= 200, 2R+ 1, @82 @2 [f1+ ar? [0(1)). (A.81)
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