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Abstract: The extraction efficiency of hexavalent chromium, Cr(VI), from water has been
investigated using a vegetable oil based emulsion liquid membrane (ELM) technique.
The main purpose of this study was to create a novel ELM formulation by choosing a more
environmentally friendly and non-toxic diluent such as palm oil. The membrane phase so
formulated includes the mobile carrier tri-n-octylmethylammonium chloride (TOMAC),
to facilitate the metal transport, and the hydrophilic surfactant Tween 80 to facilitate the
dispersion of the ELM phase in the aqueous solution. Span 80 is used as surfactant and
butanol as co-surfactant. Our results demonstrate that this novel ELM formulation, using the
vegetable palm oil as diluent, is useful for the removal of hexavalent chromium with an
efficiency of over 99% and is thus competitive with the already existing, yet less
environmentally friendly, ELM formulations. This result was achieved with an optimal
concentration of 0.1 M NaOH as stripping agent and an external phase pH of 0.5. Different
water qualities have also been investigated showing that the type of water (deionized,
distilled, or tap water) does not significantly influence the extraction rate.
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1. Introduction

The removal and recovery of heavy metals from wastewater and industrial effluents is
environmentally and economically driven as much as it is a health issue. In large parts of the world,
such as Southeast Asia, the contamination of groundwater and water resources is a major concern
wherefore efficient, economic, and sustainable methods for purification of water are required.
An example of a metal that can be found is chromium, which exists in both its trivalent, Cr(III), and
hexavalent, Cr(VI), form. Hexavalent chromium is highly poisonous, an oral dose of 2—5 g Cr(VI) can
be fatal to an adult human [1]. The World Health Organization (WHO) has a provisional guideline value
0f 0.05 ppm for the total chromium concentration in drinking water [2]. It is therefore important to purify
wastewater before it reaches the environment. The extraction capability of liquid membranes has been
used successfully in many areas, such as metal ion extraction, separation of inorganic species, and
biochemical and biomedical applications [3]. Although the first patent on liquid membranes was
published in 1968 [4], the field of liquid membranes as a separation technique is still expanding in
research and in its application as an industrial separation process. Liquid membranes consist of three
distinct phases: the feed phase, the membrane phase, and the stripping phase, as schematically shown in
Figure 1. Among the different kinds of liquid membranes, e.g., bulk liquid membrane (BLM), supported
liquid membrane (SLM), and emulsion liquid membrane (ELM), the double emulsion in ELM results in
the highest mass transfer area in addition to a high selectivity and a high metal transfer flux, due to the
possibilities of incorporating chemical components that enhance the metal transport [5,6]. Also, ELM
combines the stripping and extraction processes in a single step [7,8] and is an elaborated form of solvent
extraction. Another benefit of using ELM from an environmental viewpoint is the low energy demand
compared to pressure-driven membrane processes [9]. In addition, the ELM can be prepared using
relatively simple materials and equipment.

External phase
(Feed Phase/ Wastewater)

Internal phase

(Stripping Phase)

Membrane phase

(Organic P ase)

Figure 1. The phases in a water-in-oil-in-water emulsion (w/o/w). O = Oil (Yellow) and
W = Water (Gray for external phase and blue for interal phase).
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The diluent in the ELM process has an important function, since it is the major constituent of the
membrane phase and is crucial for its stability and for an effective metal transport. A viscous oil
generally increases the stability [10] but has the drawback of decreasing the mass transport. A high
density difference between the external phase and the ELM phase would be beneficial for a better phase
separation after the extraction, while a low solubility in water is needed to avoid interaction with water
that results in emulsion breakage [11]. As a result, the most commonly used diluents in ELM systems
are volatile and organic solvents, such as kerosene that has proven to work particularly well for the
removal of chromium [5,12,13]. It is of great interest, and a big challenge, to replace such volatile and
fossil fuel based diluents with non-toxic vegetable oils. To the best of our knowledge there are very few,
if any, reported works exploring the use of a vegetable oil as an alternative to petroleum based solvents
in the ELM process. However, vegetable oils including soybean, palm, rapeseed and sunflower oils,
have been explored in other types of liquid membranes: i.e., for the removal of phenol [14,15], for Cu(II)
extraction [16], for removal and recovery of rhodamine B [17], and textile dye [18]. These studies
indicate a great potential for using vegetable oils in chemical processes of environmental relevance.

In this study we explore the possibility to replace the fossil-fuel based diluent kerosene in the ELM
with a non-volatile and renewable vegetable oil, namely food-grade palm oil. The chosen model system
consists of an acidic external solution of hexavalent chromium, an alkaline internal solution with NaOH
acting as stripping agent, and a membrane phase with palm oil, Span 80, and Tween 80 acting as
emulsifiers, and the ionic liquid tri-n-octylmethylammonium chloride (TOMAC) acting as carrier. It is
important to note that the separation of the organic and the wastewater phase is crucial for a functioning
system, however in this study the density difference between the phases is enough to achieve the
separation. By studying the extraction of hexavalent chromium, we demonstrate that palm oil can work
well as a diluent for ELM systems.

2. Experimental
2.1. Materials

Palm oil was purchased from the market of brand Buruh, which is cooking oil; a fraction of refined
bleached deodorized palm oil called olein consisting of mostly unsaturated fatty acids [19]. Pure Tween
80 was purchased from R&M Chemicals (Petaling Jaya, Malaysia). Span 80, TOMAC, and butanol were
obtained from MERCK (Petaling Jaya, Malaysia). K2Cr207 (Potassium dichromate) was purchased in
powder form from R&M Chemicals. All chemicals were used without further purification. The molecular
structure of these components is shown in Figure 2.
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Figure 2. The structural formula of A: Span 80 (sorbitan monooleate); B: Tween 80
(ethoxylated sorbitan monooleate); and C: TOMAC (tri-n-octylmethylammonium chloride);
D: Schematic representation of the geometrical packing of the surfactants at the oil-water
interface in dispersed oil droplets.

2.2. Analytical Measurements

The concentration of chromium in the samples was determined using inductively coupled plasma
optical emission spectroscopy (ICP-OES) with an Optima 7000 DV ICP-OES from PerkinElmer
(Waltham, MA, USA) at the wavelength of 267.7 nm. The device has a dual-view design and a detection
limit in the range of parts per billions. The pH of the solutions was measured with a Mettler Toledo Delta
320 pH meter.

2.3. Preparation and Evaluation of the ELM System

The external phase was prepared through dissolving the chromium salt in distilled, deionized or tap-water,
and the pH was adjusted with hydrochloric acid (point 2a, Figure 3). The internal phase containing
the desired concentration of the stripping agent was prepared with the same type of water as the external
phase. The diluent was mixed with emulsifier, co-surfactant, and carrier, while the emulsification of the
internal and the membrane phase was conducted using a high speed homogenizer (IKA T25 Digital
ULTRA-TURRAX) with an agitation of 3200-3400 rpm (point 2b, Figure 3). The external phase and
the ELM phase were contacted using an agitator stirred by twisted impellors, with varying agitation
speed (point 3, Figure 3). Samples were taken periodically during each run using syringes left undisturbed
for the short time required for the ELM and external phase to separate, and the concentration of
chromium in the feed phase was detected (point 4, Figure 3). The concentration of chromium left in the
external phase was determined using ICP-OES (point 5, Figure 3).
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Figure 3. Schematic representation of the procedure of the metal extraction experiments.

The removal efficiency (E) of chromium was calculated according to Equation (1).

Co— C
E(%) =%x 100 (1)

where Co and C: (mg L7') are the concentration of chromium initially and at the time of
measurement, respectively.

Chemistry of chromium (VI) and TOMAC. The species of chromium present in an aqueous
solution depend to a large extent on the pH of the solution and the ionic strength. This dependence is
graphically shown in Figure 4 for solutions in water. TOMAC was chosen for carrier to achieve an
efficient removal since this ionic liquid possesses appropriate properties such as high solubility in the
organic phase and low solubility in the aqueous phase, and in addition has previously shown to efficiently
extract Cr(VI) [5].
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Figure 4. The graph shows the abundance of Cr(VI) ions in water with varying pH. For
slightly acidic or basic pH, CrO4>" is the dominating form, a further decrease in pH leads to
the formation of HCrO4*~ and H2CrOa. Data reproduced from [20].
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The target complex of chromium is based on the basic properties of TOMAC, thus a low pH in the
external phase is required. Due to the presence of the stripping agent NaOH, the carrier exists in two
forms: TOMAC (NR4+"Cl") and TOMAOH (NR4"'OH").

Transport and reaction mechanism. The reactions involved in the chromium extraction by ELM
include the carrier reacting with the stripping agent and the carrier reacting with one of the anionic metal
complexes, through an anionic displacement, shown in Equations (2)—(4) below. This transport
mechanism is Type 2 facilitation, since the carrier is incorporated in the membrane phase, and in this
case it occurs at acidic conditions (pH ~0.5).

NaOH + NR}Cl~ & CI~ + Na* + NR}OH™ )
HCrO; + NRiCI~ & ClI~ + NR,HCrO, 3)
HCrO; + NR{OH™ & OH™ + NR,HCrO, (4)

The formed carrier-metal complex diffuses across the membrane phase to the internal-membrane
interface, where the metal ion is released in the internal-membrane interface and the carrier is
regenerated and returned across the membrane as shown in Equation (5). The purpose of using a stripping
agent in the internal phase is to trap the metal ion in the internal phase droplets by converting the metal
ion into a membrane insoluble compound, i.e., Na"HCrO4s~. However, dissociated HCrO4~ ions in the
internal phase will remain in equilibrium after reaction with the hydroxide ions as shown in
Equation (6).

NR,(HCr0,) + NaOH & NaHCrO, + NR,*OH~ (5)
HCrO,” + OH™ o CrO%™ + H,0 (6)

As the stripping reaction proceeds and hydroxide ions are released in the external phase, the pH
increases due to exchange of the hydroxide ions with the metal complex. As the pH changes in the
external phase, an increased amount of CrO4>~ ions will be present which consequently react slowly with
TOMAC and TOMAOH, see Equation (7). Each CrO4* species requires two extracting species for the
reaction with the carrier to occur, resulting in a decreased reaction rate with time.

Cr02- + 2NR{OH™ & 20H- + (NR,),CrO0, (7)

The ion flux through the membrane is created by a difference in chemical potential, which is due to
the different pH between the two aqueous phases. It turns out that the factors influencing the performance
of the ELM process need to be investigated, wherefore the concentration of the stripping agent, the pH
of the external phase, and the concentration of carrier were varied in the initial experiments, in order to
evaluate the performance of the ELM system with palm oil as diluent compared to the well-established
system based on the use of kerosene.

Optimization of the ELM system. A challenge with the ELM process is the instability of the
emulsion globules, which is mainly influenced by osmotic swelling and globule breakage. A suitable
o/w emulsion formulation of the novel system with palm oil as diluent was required and was formulated
through a rough screening, varying the emulsifier concentration and the organic to aqueous phase ratio
(O/I) as defined in Equation (8). The treat ratio, the feed phase (F) to ELM phase ratio, defined in
Equation (9), was also explored as it defines the effectiveness and cost of the ELM process. In addition,
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the effect of water pretreatment was investigated in order to analyze the influence of other ionic species
possibly present in the water phases.

moilphase
0/l =
Minternal phase (8)
F/ELM — Vexternal phase (9)

VELM phase

3. Results and Discussion
3.1. Chromium Extraction Using the Novel ELM System

The extraction of Cr(VI) using the novel ELM formulation based on palm oil resulted in 97%-99%
removal efficiency after less than 10 min, as seen in Figure 5. This is both high and fast, and is
comparable to other studies. Results of Cr(VI) removal efficiency (E, %) as a function of time are shown
in Figure 5, with the ELM formulations containing 3 wt% Span 80, 1 wt% Tween 80, and 0.35 wt%
TOMAC prepared in distilled water (DW), de-ionized water (DI) and tap-water (Tap), respectively. The
internal phase contained an optimal stripping agent concentration of 0.1 M NaOH. The observed
performance is comparable to that reported in other studies, for instance the study of Goyal et al. who
observed an optimum removal of 97.5% within the same time range [9], Garcia et al. who have reported
a removal of 94% Cr(III) within 5 min [6], and Kumbasar et al. who could extract 99% Cr(VI) within
6 min [13]. These authors, however, all used kerosene based ELM systems.
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Figure 5. Extraction of chromium as a function of time. Data are plotted for two replicates
of emulsion liquid membrane (ELM) formulations containing 2.5 wt% Span 80, 1 wt%
Tween 80 and 0.35 wt% TOMAC prepared in de-ionized water (DI; o,e), distilled water
(DW; o,m), and tap-water (Tap A,A), respectively. The initial concentration of chromium
was 114 ppm (DI), 95 ppm (DW) and 104 ppm (Tap).
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Figure 5 also shows that the type of water has a negligible effect on the final removal of Cr(VI), and
hence does not influence the ELM formulation, a noteworthy result that points to the robustness of this
system. The role of water quality becomes an important factor for the potential use of ELM in a larger
commercial and industrial scale, for which it is desirable that the method works for wastewater and is
unaffected by the presence of other ions. This was also a reason for choosing a non-ionic surfactant such
as Span 80, since the performance of non-ionic surfactants is unaffected by the presence of other ions,
as opposed to, e.g., ionic surfactants [21,22].

Optimization of the novel ELM system. We find that, as for kerosene, an external phase pH of 0.5
was most beneficial also for the system with palm oil as diluent [5]. However, the treat ratio (F/ELM)
was found to be most favorable when kept at 2 for the palm oil system. When creating the w/o emulsion,
the homogenization was kept at 3400 rpm, since a homogenization speed above 3500 rpm (for a solution
contained in a 100 mL beaker) resulted in the formation of air bubbles and a highly viscous emulsion
unsuitable for extraction. Concerning the stability of the emulsion, a membrane phase with an emulsifier
concentration of 2.5-3 wt% and an O/I = 3 was found to be most efficient.

The effect of Tween 80. As a novel approach, the hydrophilic surfactant Tween 80 was included in
the emulsion phase. Tween 80 reduces the viscosity of the emulsion and in addition facilitates the
creation of a double emulsion during the extraction process. We believe that Tween 80 stabilizes the
multiple emulsion, resulting in a more homogeneous solution when contacting the emulsion phase and
the external phase, giving a positive effect on the overall chromium removal efficiency, as can be
deduced from Figure 6. The use of butanol as a co-surfactant was also applied in some cases since it
increased the stability of the emulsion, however it had no significant effect on the extraction rate.
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Figure 6. Extraction of chromium as a function of time. Data are plotted for ELM
formulations containing 3 wt% Span 80, 1 wt% butanol and 0.35 wt% TOMAC, without
Tween 80 (hollow symbols) and with 1 wt% Tween 80 (filled symbols) prepared in distilled
water (DW; m) and tap-water (Tap; A). The initial concentration of chromium was 95 ppm
(DW) and 104 ppm (Tap).
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Contacting the phases. We observed that when contacting the external with the ELM phase a higher
agitation speed (>600 rpm) compared to the kerosene-based ELM (<400 rpm) [9] was needed in order
for the solutions to thoroughly mix, and we also visually observed that the use of Tween 80 as a
co-surfactant in the membrane phase facilitated the mixing remarkably. Tween 80 is a highly hydrophilic
surfactant and should therefore not be soluble in the oil phase of the system. As it is incorporated during
the emulsification of the ELM phase, and therefore present at the membrane-internal interface, we
speculate that some Tween 80 molecules are transported by microscopically small water droplets to the
membrane-external interface, which lowers the interfacial tension and facilitates the second
emulsification. In all experiments reported here the treat ratio was kept constant at F/ELM = 2. The
drawback of using Tween 80 is a possible contamination of the feed phase, wherefore a slightly less
hydrophilic surfactant may be of interest for future applications.

The effect of TOMAC as carrier. To verify the influence and the function of TOMAC as a carrier
in the palm oil based ELM, experiments were carried out with and without TOMAC in the membrane
phase. Figure 7 clearly shows that the presence of TOMAC is crucial to achieve a high removal efficiency:
the extraction rate observed for systems without TOMAC is decreased by a factor of five to ten compared
to systems having the carrier incorporated. These results are comparable to kerosene based systems [5].

50 T T T T T T T

—=a— No TOMAC (Initial Cr(VI) conc 100ppm)
40 —=— No TOMAC (Initial Cr(VI) conc 50ppm) |

E (%)

0 2 4 6 8 10 12 14 16
time (min)

Figure 7. Chromium removal efficiency without TOMAC as carrier. Filled square (m)
contains 3 wt% Span 80, 1 wt% Tween 80, 1 wt% butanol and 0.35 wt% TOMAC. Open
square (O0) contains 2.5 wt% Span 80, 1 wt% Tween 80, 0.35 wt% TOMAC.

Role of the stripping agent. A suitable concentration of the stripping agent in the internal phase is
one of the important factors in an ELM formulation. In Figure 8 the extraction of Cr(VI) after 7 min is
shown as a function of NaOH concentration, demonstrating that the removal significantly depends on
the presence of the stripping agent, which in turn should be present at an optimal concentration. This
result is consistent with the results of Goyal et al. for a kerosene based ELM [5]. The highest Cr(VI)
removal is achieved at a NaOH concentration of 0.1 M, while a further increase in the NaOH
concentration results in worse performance. At higher concentrations a stronger pH gradient is created,
increasing the difference in osmotic pressure and consequently risk of swelling of the internal droplets.
The consequent rupture will cause a reduction of NaOH in the internal phase, which reduces the amount
of NaOH available for the stripping reaction with the metal complex.
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Figure 8. The effect of stripping agent concentration after 7 min. Both membranes contain
2.5 wt% Span 80, 1 wt% Tween 80, 0.35 wt% TOMAC, while membrane A also contains
1 wt% butanol.

Finally, an optimization study was performed, in which the agitation speed and the concentrations of
Span 80 and butanol were varied, while the concentrations of Tween 80 and TOMAC were held constant
at 1 wt% and 0.35 wt%, respectively.

To summarize, the optimal parameters for Cr(VI) removal are 2.58 wt% Span 80, 0.515 wt% butanol,
and an agitation speed of 522.6 rpm. The latter is an important factor for the overall chromium extraction
process; in fact for higher speeds a more stable emulsion is required. This is achieved by a higher content
of surfactant and co-surfactant in the ELM formulation, which on the other hand increases the viscosity
of the membrane, in turn requiring a higher agitation speed. The optimization study performed revealed
a significant correlation between the agitation speed during the contacting of the phases and the
concentration of surfactant, in agreement with the discussion above; at lower surfactant concentrations

the viscosity is decreased and lower agitation speeds are sufficient.
4. Conclusions

This study demonstrates that the petro-chemically based diluent kerosene can be successfully exchanged
for a vegetable oil, namely palm oil, in emulsion liquid membranes. The novel ELM formulation based
on palm oil showed a Cr(VI) removal efficiency of 97%—-99% within less than 10 min. Even though the
treat ratio used in this work may be considered low, together with a somewhat high O/I ratio for industrial
implementations, this work has nicely demonstrated the concept of using a vegetable oil. For real
applications further optimizations of the system may be required. When creating the w/o emulsion, a
homogenization speed higher than 3500 rpm resulted in an emulsion too viscous to be suitable for
extraction. The use of Tween 80 facilitates the mixing and decreases the viscosity of the emulsion thus
enhancing mass transport. Despite the high viscosity of palm oil, which might increase the mass transport
resistance, we do not observe a less efficient extraction rate. On the contrary, the results show that most
of the chromium was extracted within a few minutes. This suggests that mass transport resistance may
not be the main rate limiting step and opens up for the possibility of using other vegetable oils with
higher viscosities. The stripping agent concentration is important with respect to the emulsion stability,
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as concentrations higher than 0.1 M NaOH results in decreased removal efficiency. We also observe that
the quality of the water (i.e., distilled, de-ionized, or tap water) had no effect on the removal efficiency.
This is relevant for the potential of larger-scale or industrial implementations.
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