
Lattice-Based Quantization
Part I

by

Erik Agrell and Thomas Eriksson

Lattice-Based Quantization, Part I

by

Erik Agrell and Thomas Eriksson
Department of Information Theory
Chalmers University of Technology

Göteborg, Sweden

Technical report no. 17
Department of Information Theory
Chalmers University of Technology

Göteborg, Sweden
Oct., 1996

ISSN 0283–1260

ABSTRACT

A training algorithm for the design of lattices for vector quantization is presented. The

algorithm uses a steepest descent method to adjust a generator matrix, in the search for a

lattice whose Voronoi regions have minimal normalized second moment. Experiments

show that the algorithm is stable, in the sense that many independent runs reach

equivalent lattices. The obtained lattices reach as low second moments as the best

previously reported lattices, or even lower. Specifically, we report lattices in 9 and 10

dimensions with normalized second moments of 0.0716 and 0.0708, respectively, and

nonlattice tessellations in 7 and 9 dimensions with 0.0727 and 0.0711, which improves

on previously known values. The new 9- and 10-dimensional lattices suggest that

Conway and Sloane’s conjecture on the duality between the optimal lattices for packing

and quantization might be false. A discussion of the application of lattices in vector

quantizer design for various sources, uniform and nonuniform, is included.

CONTENTS

I. Introduction: Vector Quantization and Lattices.... 1
1.1 Vector Quantization... 1
1.2 Quantizer Design for Uniform Sources.... 3
1.3 Lattices..... 5
1.4 Quantizer Design for Nonuniform Sources.................... 8

II. Numerical Optimization of Lattices.... 11
2.1 The Optimization Problem..... 11
2.2 The Lattice Training Algorithm..... 13
2.3 Identification of Lattices.... 16

III. Experiments..... 19
3.1 The Best Lattices Found..... 20
3.2 The Best Tessellations Found..... 26

IV. Summary and Conclusions..... 29
Appendix: The Classical Lattices.... 31
References... 33

1

I. INTRODUCTION: VECTOR QUANTIZATION AND LATTICES

Lattices are widely recognized as an important tool in the design of vector quantizers, not

only for uniform sources. The design can be thought of as two independent problems: the

choice of a suitable lattice and the creation of a codebook based on a subset of the lattice.

The present report considers the first of these problems, and the second is studied in a

companion report, [1].

To select a good lattice, one can of course rely on written sources, such as [2], where

many lattices and their properties are tabulated. However, there is reason to believe that

the best d -dimensional lattice has not yet been found for every d (see, e.g., figure 3.1).

Perhaps there is some knowledge to be gained through an approach completely different

from the algebraic methods that have been dominating lattice design? This was the

question that triggered the present work, and the answer we found was affirmative.

We propose an algorithm for lattice design that can be used with a minimum of insight

into algebra and lattice theory. The algorithm employs a numerical algorithm to iteratively

improve a given lattice, in a manner that parallels traditional training methods for the

design of unconstrained vector quantizers.

This chapter introduces the background and preliminaries for the work. Section 1.1 is

a brief review of the fundamentals of vector quantization and its terminology. In section

1.2, we then apply vector quantization to uniform sources, and explain why a lattice is a

commonly employed structure of uniform quantizers. After a summary of some lattice

theory in section 1.3, we return to the problem of vector quantizer design in section 1.4.

This section, which is essentially a literature survey, presents various strategies to design

lattice-based vector quantizers for nonuniform sources, which is not as straightforward as

in the uniform case.

The lattice training algorithm is presented in chapter II. In chapter III, experiments

with the algorithm are reported, which lead to improvements on previously known results

in dimensions 7, 9, and 10. Chapter IV is a summary.

1 . 1 Vector Quantization

A vector quantizer is a general utility for digital representation of multidimensional data.

Its input is a real-valued vector x and its output is one of a finite number of codevectors

 c c1, ,L N(), which is selected to approximate x as well as possible, according to some

2

criterion. The codevector ci can, through its integer index i , be represented using 2 log N

bits. The rate R is the number of bits used to quantize one scalar, that is, R N d= 2 log ,

where d is the dimension of the quantizer, in other words, the number of components in

x and ci .

The quantization is governed by a function Q d: →
�

, where
�

= { }c c1, ,L N is

the codebook. This function should be chosen to optimize some quality measure for a

given source. The standard quality measure is the minimum mean square error, or

distortion, per vector,

D Q f d
d

= − () ()∫ x x x xx
2 (1.1)

where fx x() is the probability density function of the source vectors x . If the codebook

is given, the optimal quantization function is to simply choose the closest codevector in

the Euclidean sense,

Q x x c
c

() = −
∈

argmin� 2 (1.2)

This rule reduces the problem of vector quantizer design to finding a point constellation

for use as a codebook.

Many input vectors x yield the same output vector ci . The set of all input vectors that

are encoded as the same codevector is called a Voronoi region,

Ωk
d

kQ= ∈ () ={ }x x c: (1.3)

Hence, the function Q ⋅() partitions d -dimensional source space into N Voronoi regions,

without neither gaps nor overlaps. In terms of Voronoi regions, the distortion (1.1) can

be separated into the contributions by each codevector:

D f di
i

N

i

= − ()∫∑
=

x c x xx
2

1 Ω

(1.4)

In the next section, this expression will be specialized to the case of uniform sources.

The most common way to design a vector quantizer is to generate a large set of source

samples, a training database, and iteratively adjust (“train”) an initial codebook, in order

to decrease an estimate of the distortion, based on the training database. Among the large

number of training algorithms that have been proposed, we mention [3],1 [4], [5, chs. 5

and 7], and [6].

In this report, an alternative approach for vector quantizer design is studied: lattice-

based design. The general idea is to find a lattice with attractive properties and

1 Lloyds original manuscript, which although unpublished has become famous, is dated 1957.

3

subsequently shape a subset thereof to the source. The focus of this report is on the lattice

itself; truncation and modifications of lattices to suit various sources are discussed in

section 1.4, and in the second part of this work [1].

1 . 2 Quantizer Design for Uniform Sources

This section summarizes the application of vector quantization to uniform sources.

Suppose that the source probability density function is uniform within a region ∆ ,

fx x
x

x
() = ()

∈

∉

1

0

vol
if

if

∆
∆

∆
(1.5)

where vol Ψ() denotes the d -dimensional volume of a region Ψ ⊂ d . Then the

distortion (1.4) becomes

D di
i

N

i

=
()

−
∩=
∫∑1 2

1vol ∆ Ω ∆

x c x (1.6)

Now we concentrate on what happens when the rate R is high, for a constant dimension

d . The region ∆ then becomes partitioned into a large number, N , of Voronoi regions,

each one contributing a small amount to the overall distortion D . According to a well-

known conjecture in quantization theory, first posed by Gersho [7], almost all the

Voronoi regions will be similar to each other in the optimal vector quantizer. In other

words, there exists a typical body that, through proper scaling, rotation, reflection, and

translation, will approximate most of the Voronoi regions.

We will now, supported by Gersho’s conjecture, make the approximation that all

Voronoi regions are congruent to a typical body Ωt . Moreover, since the source under

consideration is uniform, we assume that all regions have the same size, αΩt ,2 where α

is a rate-dependent scaling parameter to be determined below. This approximation

contains two errors, for any finite rate. Firstly, the regions in (1.6) deviate a little from

αΩt ; secondly, a few of the regions, notably those close to the boundary of ∆ , deviate a

lot. How these errors are handled implicitly selects one of two concepts for vector

quantizer design for uniform sources. The errors can be neglected, which is the basic

assumption behind lattice quantization, or they can be considered, which leads into

unconstrained quantizer design. In this report, we follow the former approach.

If all Voronoi regions are congruent, the sum in (1.6) is not needed anymore:

2 We will allow the following operation on a set Ψ of vectors: Elementwise multiplication by a scalar
a , denoted aΨ , and elementwise addition of a vector a , denoted Ψ + a .

4

D N d

N dd

≈
()

−

=
()

−

∫

∫

1

1

2

2

vol

vol

t

t

t

t

∆

∆

Ω

Ω

x c x

y c y

α

α α α

α

(1.7)

The value of α as a function of N can be deduced by considering the total volume that

the regions cover. The volume is

vol vol volt t∆ Ω Ω() = () = ()N N dα α (1.8)

from which follows that

α = ()
()

vol
vol t

∆
ΩN

d1

(1.9)

This value inserted into (1.7) yields

D
N

d

d G

d d

d R

≈ ()

 ()

−

= ()

+

−

∫
vol

vol

vol

t
t

t

∆
Ω

∆

Ω

2 1 2
2

2 2

1

2

y c y

(1.10)

where

G
d

dd=
()

−+ ∫
1

1 2
2

vol t
t

t
Ω Ω

y c y (1.11)

is the normalized second moment of the typical body Ωt . This measure is independent

of the rate and the source shape. It is also dimensionless and thus insensitive to scaling.

Hence, congruent bodies have the same G . The normalization with respect to d is to

make easier the comparison between quantizers of different dimensions. This report is

devoted to the search for structures with a low value of G .

The distortion expression (1.10) can be used to estimate the performance of a well-

optimized high-rate vector quantizer for a uniform source. Conversely, it can also be used

as a tool in the design of such quantizers. The method is to find a d -dimensional body

Ωt with a low G . Every body is not admissible; only bodies that can form a

tessellation. A tessellation is a partition of d into regions, such that any pair of regions

can be transformed into each other through rotation, reflection, and translation.3 When a

tessellation is found that consists of bodies with a low G , the codebook is formed as the

intersection of the centroids and ∆ . The desired rate determines the scaling of the

tessellation. The structure is called a tessellating quantizer [8]. In previous studies of

3 The body with the lowest G is the d -dimensional sphere, but it is not admissible as Ω t , because it
cannot form a tessellation (for d ≥ 2).

5

tessellating quantizers, most attention has been devoted to lattice quantizers, which

constitute an important subset of all tessellation quantizers. Lattices are defined in the next

section.

1 . 3 Lattices

A popular special case of a structure, whose Voronoi regions form a tessellation,4 is a

lattice. The following brief summary of lattice theory is intended to be a sufficient

background for the quantization problem investigated in this report. For a more extensive

treatment, the interested reader is referred to the book by Conway and Sloane [2], which

has more or less become the standard textbook on lattice theory.

A lattice is an infinite set of vectors, defined through d linearly independent basis

vectors b b b1 2, ,L d . The lattice consists of all linear combinations of the basis vectors,

with integer coefficients. The matrix whose rows are the basis vectors is called the

generator matrix of the lattice,

 B b b b= []1 2, , ,L d
T

(1.12)

Formally, we can write the lattice Λ as

Λ = ∈ () ∈{ }−x B xd T d: 1 (1.13)

Hence, any lattice point5 can be uniquely written as B uT , where u ∈ d .

Figure 1.1 is an example of a lattice. It is the well-known hexagonal lattice, also

called A2, and can be defined through, e.g., the generator matrix

2 0
1 3

(1.14)

A2 is the 2-dimensional case of the lattice Ad , which is defined, along with some other

common lattices, in the appendix.

In the design and analysis of lattices, it is often convenient to employ d basis vectors

having more than d coordinates. However, throughout this report, B denotes a square

generator matrix. This notation does not restrict generality, since d vectors cannot span

more than d dimensions. Hence, for every nonsquare generator matrix ′B , there exists a

square matrix B describing an equivalent lattice. (More on equivalent lattices below.)

Practically, such a B can be found through, e.g., QR factorization of ′()B T or Cholesky

decomposition of ′ ′()B B T . Some of the following theory draws advantage of B being

4 When there is no risk of confusion, we will also use “tessellation” to denote an infinite point set whose
Voronoi regions form a tessellation. Thus, a lattice is a tessellation.

5 We use “lattice point” and “lattice vector” interchangeably.

6

Figure 1.1. Two possible bases for the hexagonal lattice.
Some of the Voronoi regions are shown.

square, thus simplifying the notation. For example, both the inverse and the determinant

of B have important interpretations.

Lattice points are evenly distributed in space—there is not a region where the lattice is

denser than somewhere else. It is because of this uniformity that lattices are suitable for

the quantization of uniform sources. Gersho pointed out, “if you sit on one lattice point

and view the surrounding set of lattice points, you will see the identical environment

regardless of which point you are sitting on” [9]. Consequently, the Voronoi regions

form a tessellation, as mentioned above in section 1.2. Indeed, the Voronoi regions are

pure translations of each other, without needing any rotation or reflection. (See figure 1.1

for an example.) This is a chief characteristic of all lattices.

The all-zero vector 0 belongs to all lattices. This follows trivially from the definition

(1.13). The Voronoi region around 0 ,

Ω Λ= ∈ ≤ − ∈{ }x x x c cd : 2 2 for all (1.15)

is commonly called the Voronoi region of the lattice Λ . It is the standard choice of a

typical body (see section 1.2) in the computation of lattice parameters. The volume of Ω
is V = () =vol Ω det B .6 The normalized second moment (1.11) is

G
dV

dd= + ∫
1
1 2

2x x
Ω

(1.16)

A complication in the analysis of lattices is that equivalent lattices can be specified

through seemingly different generator matrices. Two lattices are considered equivalent if

6 The volume is more commonly given in the form (det())BBT 1 2 , which allows for nonsquare generator
matrices.

7

their Voronoi regions (1.15) are congruent. In this case, the two lattices have the same

G , and most other lattice parameters agree, too. For example, the generator matrices

−

+ −
− +

−
− + + −

2 0
3 1 3

3 1 3 1
3 1 3 1

2 2 2
1 1 3 6 1 1 3 2

 , , and π
π π

all specify the A2 lattice, so these lattices are equivalent to the one given by (1.14).

A lattice can be transformed by scaling, rotation, and reflection, without changing the

shape of the Voronoi region.7 In addition, basis vectors can be selected in many ways

within the point set Λ , as illustrated in figure 1.1. It can be shown that the lattices

generated by B1 and B2 are equivalent if and only if there exist matrices W and Q such

that

B WB Q2
2

1

1

1=

V

V

d

(1.17)

where all elements of W are integers, W has determinant ±1, and Q is orthonormal.

The coefficient V V d
2 1

1() takes care of scaling, W of basis change, and Q of rotation

and/or reflection. Unfortunately, there has, to our best knowledge, not been published

any general algorithm to determine whether two given generator matrices specify

equivalent lattices. Of course, if either W or Q is known, the other one is obtained by

matrix inversion, but to determine both of them simultaneously is still an open problem. It

has been suggested to employ a canonical form for lattices to solve the problem: if B1

and B2 have the same canonical form, they are equivalent; otherwise not. Unfortunately,

the algorithms that have been proposed to transform a generator matrix into a canonical

form (see, e.g., [10, pp. 65–67] and [11, pp. 184–201]) consider basis changes only,

not rotation. If B1 and B2 are rotated versions of the same lattice, the canonical forms

obtained by such an algorithm will differ. Hence, the problem of identifying equivalent

lattices remains.

Finally, for every lattice there is a dual. The dual of Λ is another lattice, whose

generator matrix is B−()1 T
. The dual is denoted Λ*. It has the same degree of symmetry

as Λ , but the lattice parameters, such as the normalized second moment G , are normally

different.

7 Translation also preserves the Voronoi region, but a translated lattice is normally not a lattice (1.3). It
is still, of course, a tessellation.

8

1 . 4 Quantizer Design for Nonuniform Sources

We now return to vector quantization. So far, the discussion has been focused upon

uniform sources, where lattices are immediately applicable as quantizer structures. While

under some circumstances, for example, image data can be modeled as a uniform source

[12, p. 33], most applications display different probability density functions. However,

lattices have found their use in vector quantization for nonuniform sources, too.8 In this

section, we will review some approaches that have been proposed in the past.

One possibility is, of course, to approximate the probability density function of the

source with a uniform function, and design a lattice quantizer (section 1.2) accordingly.

Much attention has been devoted to the problem of optimizing the size and shape of the

uniform function for a given source density; in other words, the problem of scaling and

truncation of the lattice. This problem is discussed in [1] and several of its references. The

gain in memory and encoding time, compared with a source-optimized codebook, is

significant. The price paid is a performance degradation, the severity of which depends on

the rate, the dimension, and the probability density of the source. The general trend is that

the degradation increases with higher rate and lower dimension, as illustrated for a

Gaussian source in figure 3.4 of [1].

For high-dimensional sources, a low-rate lattice quantizer is known to have close to

optimal performance. This is because of the asymptotical equipartition property,

according to which a large class of high-dimensional probability density functions can be

well approximated with uniform densities [13, pp. 73, 285], [14]. For example, data

drawn from an uncorrelated Gaussian density tend to be uniformly distributed in a thin

spherical shell, if the dimension is high [15], whereas the multidimensional Laplacian

density can be approximated by a uniform density on the surface of a “pyramid”

(hyperoctahedron) [16]. The tendency towards uniform distributions has been

successfully employed in several applications. Competitive lattice quantizers have been

designed for use in CELP [17] and transform coded [18] speech coding systems. In

image coding, Jeong and Gibson have achieved good performance through lattice

quantized DCT coefficients [19]. For high rates and low dimensions, on the other hand,

the performance degradation of lattice quantizers compared with source-optimized vector

quantizers can be quite severe [20, 1].

8 In fact, all applications of lattices that are mentioned in this section are directly generalizable to other
types of tessellations as well. We retain the lattice terminology because it is the framework in which
most of the research was originally published.

9

To avoid performance degradation due to nonuniform sources, the quantizer should

be matched to the specific source density, but still there exist promising alternatives to the

training of an unconstrained codebook. The basic idea is to maintain the local lattice-

similarity while making the global structure matched to the source.

One quantizer structure with this aim is the piecewise uniform quantizer introduced

by Kuhlmann and Bucklew [21, 20]. It is a generalization of the lattice quantizer, where a

given (nonuniform) probability density function is approximated with a staircase function.

In each region where the density approximation is constant, the codebook is populated by

a suitably scaled lattice. Similar structures are obtained by designing two-stage quantizers

where the second stage is a lattice [22, 23, 24].

A more general method to improve the performance of a lattice quantizer for

nonuniform source densities is to apply a nonlinear transform function to each input

vector before quantization, and the inverse function to quantized data. This approach is

called companding and it is used in many scalar applications. It was suggested for use in

vector quantization by Gersho [7], and Bucklew characterized its high-rate performance

[25, 26]. Antonini et al. applied companding and lattice vector quantization to wavelet

coefficients for image data [27]. The piecewise uniform quantizer is a special case of a

companding lattice quantizer, where the transform function is piecewise linear.

An alternative method to modify a lattice quantizer to match a nonuniform source is

presented in the sequel of this report, [1], where the advantages of a lattice structure are

incorporated into a design algorithm for source-optimized vector quantizers.

In section 1.1 it was assumed that each codevector was encoded with exactly log2 N

bits. If the codevectors have unequal a priori probabilities, the average rate can be

reduced by applying an entropy code to the quantizer output. It has been shown that if an

entropy code is employed, the optimal high-rate vector quantizer should have a

uniform distribution of codevectors [7] [28, p. 131] [29, p. 471]. Hence, if Gersho’s

conjecture (see section 1.2) is true, then a tessellating quantizer is asymptotically optimal

when the rate tends to infinity. The optimality does not require the source density to be

uniform or even smooth, only that the differential entropy is finite, as proved by Linder

and Zeger [8]. It is worth mentioning that a tessellating quantizer with entropy coding

performs closer to the rate-distortion bound than the optimal fixed-rate vector quantizer.

The argument behind this statement is the following: The optimal fixed-rate vector

quantizer is inferior to (has higher average rate than) the same quantizer with an entropy

code. And a codebook with nonuniform point density is inferior to a uniform codebook,

10

as long as entropy coding is being applied. Applications of entropy coded lattice

quantization are presented in, e.g., [14, 30, 31].

For high rates, the performance of an entropy-coded tessellating quantizer is

proportional to the normalized second moment G of the tessellation. This was shown in

[8], through the high-rate approximation

D d G h H d≈ −()22 (1.18)

in which h f f d= () ()∫ x xx x xlog2 is the differential entropy of the source and H is the

output entropy of the quantizer, H p pi i= −∑ log2 , where pi is the probability of the

event Q ix c() = . The approximation is asymptotically exact, in the sense that the relative

error tends to zero as H approaches infinity. The factor G in (1.18) shows the

importance of tessellations with a low G ; the gain obtained by improving a tessellation

can be expected to propagate directly into the distortion of an entropy-coded quantizer

built upon the tessellation. A distortion proportional to G is also a feature of, e.g., high-

rate uniform quantizers (1.10) and lattice quantization of Gaussian sources [1, sec. 3.2].

Hence, we turn our attention towards the minimization of G .

11

II. NUMERICAL OPTIMIZATION OF LATTICES

The history of lattice design is closely interlinked with group theory and error-correcting

codes. Almost all lattice design methods that have been proposed arise from the algebraic

approach. We now study an alternative method. The basic idea, which was first

suggested in [32], is to use an iterative algorithm to adjust a given lattice.9 We have

developed an algorithm that minimizes the normalized second moment by a gradient

search procedure. The algorithm is related to algorithms for vector quantizer training, but

it operates on a generator matrix instead of individual codevectors. In section 2.1, we

regard lattice design for quantization as an optimization problem and adopt a suitable set

of variables. The new algorithm is presented in detail in section 2.2, together with the

theoretical background. Section 2.3 discusses in general terms what kind of results is

expected from the algorithm, and how these results can be interpreted.

2 . 1 The Optimization Problem

The problem of finding a good lattice for high-rate uniform quantization can be stated as a

multivariate minimization problem

min
B∈ ×d d

G (2.1)

where G is the normalized second moment (1.16)

G
dV

dd= + ∫
1
1 2

2e e
Ω

(2.2)

The problem contains d2 unknowns, or degrees of freedom, namely, the d2 elements of

the generator matrix, which specify the lattice through the construction (1.13).

To simplify the problem, we recall the concept of equivalent lattices, see section 1.3,

especially (1.17). There are many ways to change a generator matrix into one that spans

an equivalent lattice, and such changes do not affect the normalized second moment G at

all. On the contrary, an iterative optimization algorithm should concentrate on changes that

has a potential of improving the lattice. Why attempt a 100-variate optimization problem

when 50 variables suffice? If we fix the rotation of the lattice, and the scaling, almost half

of the d2 variables in the generator matrix can be removed from the minimization.

9 The suggestion in [32] is to use “random walk”: Make a random change to one random element of the
generator matrix, then encode a training database to evaluate the change. This method is slower than ours
by at least a factor M , the database size.

12

Specifically, the rotation is in (1.17) controlled by an orthonormal d d× matrix, and the

set of all such matrices spans a parameter space of d d −()1 2 dimensions. This number

of variables disappear from the minimization problem when the rotation is fixed; one more

variable disappears when the scale factor is fixed.10 Hence, of the d2 degrees of freedom

that a general generator matrix B possesses, d d −() +1 2 1 are irrelevant in the

optimization of G , whereas d d d d d2 1 2 1 2 1 2− −() − = +() −() are important. The

irrelevant degrees of freedom can be removed from the generator matrix in several ways;

we employ the following straightforward method.

With bi j, denoting row i and column j of B, we impose the constraints

b i j

V

i j,

det

= <

=

0 if

B
(2.3)

where V is a constant, upon generator matrices for use with the training algorithm. The

volume V can be arbitrarily chosen; we use a volume of 1. Geometrically, these rules

lock the first basis vector, b1, along the first axis of the coordinate system, b2 in the

plane spanned by the first two axes, etc. In addition, the volume of Voronoi regions, V ,

is locked to unity. These rules are maintained through the vector

 f = ()+() −()f f d d
T

1 2 1 2, ,L (2.4)

where

 f b j d i j di i j i j−() + = = − =1 2 1 1, , , ,for and L L (2.5)

are the d d+() −()2 1 2 “free” variables in the optimization. The vector f determines the

generator matrix

B =

− − − −

−
−

=

−

∏

b
b b

b b b

b b b b

d d d d

d d d d k k
k

d

1 1

2 1 2 2

1 1 1 2 1 1

1 2 1
1

1

1

0 0 0
0 0

0

,

, ,

, , ,

, , , ,

L
L

M M M M
L

L

(2.6)

We emphasize that any lattice can be presented on this form.11

The constraint thus imposed on the form of the generator matrix B actually serves

two purposes in the simplification of the numerical optimization problem (2.1). The

10 The change of basis vectors, as denoted by the matrix W in (1.17), does not contribute any degrees of
freedom in the sense discussed here, since the elements of W are subject to an integer constraint.

11 Formally, for any given lattice, there exists an equivalent lattice with a generator matrix (2.6).

13

number of variables are reduced, as discussed above, and it is also worth observing that

the objective function itself (2.2) gets a simpler form, namely,

G
d

d= ∫
1 2e e

Ω

(2.7)

because of the volume normalization. This expression contains no determinant, which

will lead to a very simple form for the gradient derived in the next section.

2 . 2 The Lattice Training Algorithm

The training of a lattice basis is in many ways similar to training of an unstructured VQ

for a uniform probability density function, but there are also important differences. For

instance, the centroid condition for local optimality of a VQ [1, sec. 2.2] is of no help,

since the codevectors of any lattice are the centroids of their Voronoi regions. This means

that we cannot use the generalized Lloyd algorithm in its common form, or, for that

matter, no other algorithm that relies on the centroid condition, for the training. Instead,

we propose a stochastic gradient algorithm.

The algorithm takes advantage of the problem formulation in the previous section.

The strategy is to iterate the vector f (2.4) in order to decrease G (2.7). Random training

vectors are generated with a uniform distribution inside the Voronoi region Ω . For each

training vector, the squared distance to the origin is computed, and also the gradient of the

squared distance with respect to f . Then f , and thus the generator matrix, is adjusted a

small step in the direction of the negative gradient. The adjustment can be made for each

individual training vector or for blocks of vectors.

The first question is how to generate the training vectors. Conway and Sloane give an

elegant method to generate uniform data within a Voronoi region [33]. First, d

independent random numbers are obtained, uniformly distributed between 0 and 1. They

constitute a random vector within the d -dimensional unit cube. Calling this vector z,

another vector x B z= T is created. Next, a search algorithm is applied to find the closest

codevector to x in the lattice, denoted c B u* = T . Finally, the difference vector e x c= − *

is uniformly distributed over the Voronoi region Ω .

To steer the training, we need the gradient of the integrand in (2.7). Hence, we

differentiate e 2 with respect to each component of f :

∂
∂

∂
∂

∂
∂

e 2
2

1 1

2
b b

e e
e

bi j i j
k

k

d

k
k

i jk

d

, , ,

= = ⋅
= =

∑ ∑ (2.8)

where ek denotes component k of e. To find the partial derivatives ∂ ∂e bk i j, , e is first

written as a function of f . Defining y z u= () = −y yd1, ,L , we obtain

14

e x c B z B u B y= − = − =* T T T , (2.9)

or, componentwise,

e b yk l k l
l

d

=
=
∑ ,

1

(2.10)

This gives e as a function of B, which in turn is a function of f . To continue, we

employ (2.6):

e b y

b y k d

y b k d

k l k l
l k

d

l k l
l k

d

d l l
l

d

=

=
<

=

=

=

−

=

−

∑

∑

∏

,

,

,

if

if 1

1

1
(2.11)

which is a function of f only. The derivative is

∂
∂

e

b

y j k d
y

b
b i j k dk

i j

i

d

i i
l l

l

d

, ,
,=

= <

− = =

−

=

−

∏
if

if and

otherwise

1

1

1

0

(2.12)

Inserted into (2.8), finally, this yields

∂
∂

e 2

1

1

1

2

2
2

b

e y i j

e y
e y

b
b i j

i j

j i

i i
d d

i i
l l

l

d

,
,

,
=

≠

− =

−

=

−

∏
if

if (2.13)

for all components bi j, of f . Equation (2.13) gives, componentwise, the gradient of e 2

with respect to f . According to the steepest descent rule, f should be updated in the

direction of the negative gradient.

It is well known that many small changes to a matrix may eventually make it ill-

conditioned. This means that an iterative algorithm for lattice design may grow long and

almost parallel basis vectors, which may slow the algorithm down and in severe cases

cause numerical problems. Fortunately, there is a way to counteract this problem. Again

we rely on the theory of equivalent lattices. Through a basis change, a given generator

matrix can be replaced by one in which the basis vectors are short and reasonably

orthogonal to each other. This process, which is called reduction, should be repeated

regularly during lattice training. Several reduction algorithms have been proposed, of

which the one by Lenstra et al. [34] is probably the most popular. The reduction normally

destroys the triangular structure of the generator matrix, so reduction is immediately

succeeded by rotation in our algorithm. It is worth stressing that neither reduction nor

15

TABLE 2.1. THE LATTICE TRAINING ALGORITHM.

Step 1: Initialize the generator matrix B with values that satisfy (2.3). Set the number of

iterations M , the start step size ε0 , and the reduction interval Mr to suitable

values. Set m = 1.

Step 2: Compute a new training vector as x B z= T , where each component of z is

uniformly distributed in the interval 0 1,().
Step 3: Find the lattice vector c B u* = T that is closest to the training vector x . Set

y z u= − and e B y= T .

Step 4: Update all components of f as

b b
bi j i j m

i j
, ,

,

:= − ⋅ε ∂
∂

e 2

where

∂
∂

e 2
2

2 2b

e y i j

e y e y
b

b
i j

i j

j i

i i d d
d d

i i
,

,

,

=
≠

− =

if

if

and εm is a linearly decreasing step size parameter, ε εm m M= −()0 1 / . The last

diagonal element, bd d, , is computed by the expression

b bd d k k
k

d

, ,=

=

− −

∏
1

1 1

in order to maintain (2.3).

Step 5: If m is divisible by Mr , then perform a reduction on B and subsequently rotate

B into lower triangular form.

Step 6: If the desired number of iterations has been performed, m M= , then exit.

Otherwise, set m m:= + 1 and continue from step 2.

rotation changes the lattice (except into an equivalent one); it is the representation of the

lattice that is changed.

Some details must be decided in order to complete the training algorithm. The choices

include block- or sample-based training, step size values, etc. In table 2.1, we have

formulated one suggestion, a sample-based algorithm with linearly decreasing step size.

Note that the diagonal elements of the generator matrix are updated differently from the

other elements. The upper triangular part is not updated, and the last diagonal element,

bd d, , is computed from the other diagonal components as in (2.6). In the execution of the

training algorithm, we employ bd d, to simplify the expressions (2.11) and (2.13). Still,

bd d, should be regarded purely as a function of other matrix elements, and bd d, does not

16

enter the vector of optimization variables, f .

Any lattice can serve as initial value for B. We recommend the cubic lattice (see

appendix), possibly with a small random disturbance. This lattice is neutral, in the sense

that it is not close to any local optimum. Almost any adjustment will reduce the

normalized second moment. Metaphorically speaking, the cubic lattice lies on top of the

hill. Of course, a better lattice can be used as initialization, if the user wishes to examine

this specific lattice, for instance to determine whether it is a local optimum, but this is not

a good strategy in the search for a global optimum, especially if the chosen initial lattice is

already good. From a point below the hill, you will not see the deep valleys on the other

side. The strength with our training algorithm is that it may point at previously unknown

lattices.

Three training parameters, ε0 , M , and Mr , must be specified in advance for the

algorithm. Our standard choice, empirically found, is ε0
310= − , M = 107, and

Mr = 104 . Small changes in the values, tailored to the intended experiment, may yield

slightly improved performance (in terms of speed and/or quality), but the algorithm is not

too sensitive to these parameter values. In fact, Mr = ∞ works well in dimensions up to

about 10, which means that low-dimensional lattices can be designed by a simplified

version of the algorithm, in which step 5 is omitted.

The computational complexity in the training algorithm is, for high d , dominated by

the so-called closest point problem, the search for the closest lattice point of the training

data, in step 3. Algorithms have been developed by Kannan [35] and Agrell and Eriksson

[36]. It has been theoretically proved that the problem is NP-hard, see, e.g., [37], but the

complexity is nevertheless not overwhelming. To indicate the order of magnitude, we

mention that with one implementation, the average time to find the closest point in a 24-

dimensional lattice is 37 milliseconds.

The lattice training algorithm is easily modified to solve other problems that can be

formulated in a similar framework. For example, if we search for a lattice under the

constraint of a specific structure, all that is needed is the identification of a vector of free

optimization variables f and the gradient of e 2 with respect this vector. One application

of this idea is reported in section 3.2, where the generator matrix (3.1) was refined by

such a constrained lattice training algorithm.

2 . 3 Identification of Lattices

In applications of numerical optimization, exact solutions cannot be expected. The

presented training algorithm for lattices is of course no exception: the results are

17

approximations of true optima, local or global. This section is a discussion of the

interpretation of approximate results. An example concludes the section.

The purpose of the lattice training algorithm is to find lattices with the lowest possible

value of the normalized second moment G , for a given dimension d . The computation of

G for a general lattice involves the determination of every vertex, edge, 2-dimensional

face, etc., of the Voronoi region [38]. The complexity of this computation grows

dramatically with the dimension, so it is practically feasible only for lattices of moderate

dimension. As a less complex alternative, G can be estimated through Monte Carlo

integration of (2.7). This method, proposed by Conway and Sloane in [33], is the one we

use in this report. We also follow their nomenclature in presenting estimates of G on the

form ˆ ˆG ± 2σ , where σ̂ is an estimate of the standard deviation of Ĝ .

When the lattice training algorithm exits, it has converged to the vicinity of a local

minimum. Thus, the training algorithm does not directly point out exact local minima f*;

it terminates anywhere inside a small region around f*. All f ’s inside the region represent

the same minimum, and to find this (exact) minimum, we need some kind of “round-off”

process. The round-off, which takes place when the training is complete, is guided by the

following rule.

Postulate 1: If two lattices represent the same local minimum, the one with most

symmetry is the more accurate representative.

The postulate is empirically motivated. Nature favors symmetry. In the past, every

lattice that has shown good quantization performance has also possessed a high degree of

symmetry, while on the other hand, the (unrounded) lattices generated by the training

algorithm have minimum symmetry (that is, reflection in the origin and nothing else).

There is a practical reason to encourage symmetry as well: search time. For many lattices,

the symmetrical structure has been exploited in the development of very efficient search

algorithms [39].

In the comparison of lattices, it is important to remember the possibilities of basis

change and rotation. As discussed in section 1.3, equivalent lattices can have generator

matrices that look quite different from each other. This effect is due to change of basis and

rotation (W and Q in (1.17)). In the identification of lattices, these two tools are

valuable, as the following example will demonstrate. The example also illustrates how we

employ postulate 1.

Example 1: For d = 5, one run of the lattice training algorithm gave the following

generator matrix:

18

B1 =

1.285 0.000 0.000 0.000 0.000
–0.518 1.025 0.000 0.000 0.000
–0.255 0.517 1.149 0.000 0.000
–0.514 –0.261 –0.579 0.811 0.000
0.513 0.263 –0.572 –0.003 0.815

The normalized second moment G was estimated to 0.075624 ± 0.000010. Direct

inspection of the generator matrix does not immediately suggest any symmetries. To see

the structure of this lattice better, we create another generator matrix through (1.17) with a

basis change given by

W =

0 –1 0 0 0
1 0 1 1 0
0 0 0 –1 0
0 0 0 0 1
1 0 0 0 0

a rotation given by

Q =

0.449011 0.448323 0.447087 0.446851 0.444785
–0.893513 0.224658 0.226453 0.227533 0.219344
0.001054 0.496921 0.500431 –0.500429 –0.502203

–0.001532 0.708240 –0.705966 –0.002575 –0.000121
0.004514 –0.001350 –0.003817 0.705774 –0.708411

and a scaling of V V2 1 0 5= . . The new generator matrix,

B WB Q2
2

1

1

1=

=V

V

d

1.000 0.002 –0.000 –0.001 0.005
0.002 0.999 0.002 0.001 –0.001

–0.000 0.002 1.002 0.001 –0.004
–0.001 0.001 0.001 1.002 –0.003
0.502 0.501 0.500 0.500 0.498

specifies a lattice that is equivalent to B1. The structure underlying this matrix is clearly

visible, and postulate 1 allows us to create a more accurate representation of the found

minimum by rounding off the elements:

B =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

1/2 1/2 1/2 1/2 1/2

This generator matrix is well known. It produces the very symmetrical D5
* lattice (A.3),

which is the best 5-dimensional lattice currently known, in terms of low normalized

second moment, G . Its G value is known exactly [40]; it is 2 2641 45 0 07562548 5− ⋅ ≈ . ,

which falls well within the interval estimated for B1. o

19

1 2 3 4 5 6 7 8 9 10

Dimension

0.070

0.075

0.080

N
or

m
al

iz
ed

 s
ec

on
d

m
om

en
t

Lower bound
Best classical lattice

Figure 3.1. The lowest normalized second moments
previously known, in dimensions 1–10. This diagram is
supplemented with our results in subsequent figures.

III. EXPERIMENTS

The work presented in this report was inspired by the need for better lattices for

quantization. As discussed in chapter I, the performance of a lattice quantizer is, under

some circumstances, characterized by the normalized second moment of the lattice, G .

Figure 3.1 summarizes the best classical lattices [40, 41, 42, 43] along with Conway and

Sloane’s conjectured lower bound [41]. With “classical” we mean lattices for which the

normalized second moment has been reported previously. The figure hints a potential for

improvement, especially in 9 and 10 dimensions. 10-dimensional quantization has

received a lot of attention in speech coding [44, 45], where suboptimal structures such as

split VQ and multistage VQ have been much employed. A good 10-dimensional lattice

might provide an attractive alternative in this application.

In section 3.1, the results obtained through lattice training are presented. When the

dimension d is 9 or 10, we find lattices with normalized second moments considerably

lower than the values previously known for these dimensions. If the new lattices are

indeed optimal, they disprove a famous conjecture by Conway and Sloane. The structure

of the new lattices draws our attention to a class of nonlattice tessellations, which is

20

examined in section 3.2. We report tessellations that are better than all previously studied

tessellations, including lattices, in 7 and 9 dimensions. We tried to focus the chapter on

the results of the training algorithm, without expanding the work into an essay on lattice

theory. Hence, some theoretical background and definitions are left to references.

3 . 1 The Best Lattices Found

There is no theoretical limitation on the number of dimensions that the lattice training

algorithm can handle, only a practical one. The algorithm, in its present form, typically

requires 2 hours in 3 dimensions, 4 hours in 10, and 25 hours in 20. With other training

parameters, time can, of course, be bought to the price of accuracy. To evaluate the

algorithm, especially to assess its ability to converge into local minima with low

normalized second moments G , we considered it important to run the algorithm several

times in each dimension, and identify each output lattice through the methodology of

section 2.3, in a manner similar to example 1. This required some manual work on each

lattice, the amount of which ranged from seconds to hours for the identification of a single

lattice.

The considerations above led to the following experiment setup. The training

algorithm was run 10 times in each dimension from 2 to 10, and the trained lattices were

identified. Most of this section is devoted to results from this experiment. To study some

further features of the algorithm, we also designed 100 3-dimensional lattices and one 20-

dimensional one.

In table 3.1, the 10 lattices obtained in dimensions 2–10 are listed, grouped according

to which local minimum they represent. Normalized second moments G were estimated

for one (randomly selected) member of each group. Most of the groups represent one of

the “classical” lattices, among which the most notable are d , Ad , and Ad
* for d ≥ 1; Dd

and Dd
* for d ≥ 3; and Ed and Ed

* for 6 8≤ ≤d . They are all defined in the appendix and

their properties (normalized second moment, etc.) can be found in [2, chs. 4 and 21]. A

few groups do not represent any known and named lattice; these lattices are characterized

below. For comparison, the previously best known G values12 and Conway and

Sloane’s lower bound13 are included in the table.

The 10 runs for each dimension turned out to converge into just a few different local

minima; more than three local minima were not found for any dimension. Of these

minima, one, called the principal minimum for a given d , always got significantly more

12 Among the “best known” lattices, only the ones in dimensions 1–3 have been proven optimal.

13 The values were computed using a series expansion of the recursive integral equation in [41].

21

TABLE 3.1. THE LATTICES OBTAINED BY THE TRAINING ALGORITHM,
GROUPED ACCORDING TO LOCAL MINIMA .

Trained lattices Previously best known Lower bound

d Number of local
minima

Hits in each
minimum

G
Name of

minimum
G Name G

2 1 10 0.080180 ± 0.000010 A2 0.080188 A2 0.080188

3 1 10 0.078540 ± 0.000010 A3
* 0.078543 A3

* 0.077875

4 2
9
1

0.076602 ± 0.000010
0.077551 ± 0.000010

D4
A4

* 0.076603 D4 0.076087

5 2
9
1

0.075624 ± 0.000010
0.075796 ± 0.000010

D5
*

—
0.075625 D5

* 0.074654

6 2
7
3

0.074240 ± 0.000010
0.074342 ± 0.000010

E6
*

E6
0.074244 E6

* 0.073475

7 2
9
1

0.073121 ± 0.000010
0.073234 ± 0.000010

E7
*

E7
0.073116 E7

* 0.072484

8 1 10 0.071681 ± 0.000010 E8 0.071682 E8 0.071636

9 3
8
1
1

0.071626 ± 0.000002
0.071634 ± 0.000002
0.071640 ± 0.000003

—
—
—

0.074693 D9
* 0.070902

10 1 10 0.070814 ± 0.000010 D10
+ 0.074701 D10

* 0.070258

hits than the others. It can be seen in table 3.1 that in all dimensions, the principal

minimum turned out to be equivalent to the best known d -dimensional lattice—or better!

In none of the studied dimensions, our lattice training algorithm failed to reach a

performance that has been attained through other design methods. In dimensions 9 and

10, we found lattices that have not been considered for quantization before. Both these

cases are discussed in detail below. In dimensions 2–8, the principal minima were

equivalent to best known results, which lends confidence to our training algorithm as well

as to previous investigations. We do not claim that the principal minimum found by the

lattice training algorithm is always the global minimum, but we have not yet seen a

counterexample.

Figure 3.2 summarizes the results obtained by lattice training, in relation to the

previously known results of figure 3.1. Lattice training carries the normalized second

moment much closer to the bound for d = 9 and 10. In 10 dimensions, the gain over the

best classical lattice, D10
* , is 0.23 dB, a gain that (1.18) indicates can be interpreted as the

SNR difference between corresponding lattice quantizers.

We now comment on the results in each dimension; first we give a brief summary of

dimensions from 2 to 8, then a more detailed presentation of dimensions 9 and 10, which

is where our lattice results improve on previous knowledge. For d = 2 and 3, all trials

22

1 2 3 4 5 6 7 8 9 10

Dimension

0.070

0.075

0.080

N
or

m
al

iz
ed

 s
ec

on
d

m
om

en
t

Lower bound
Best classical lattice
Best lattice found

Figure 3.2. A comparison between classical lattices and the
principal minima given by the training algorithm.

converged to the same local minimum, A2 and A3
* . For d = 4 and 5, we found two local

minima, of which the principal ones (D4 and D5
*) were reached in 9 out of 10 attempts.

The suboptimal local minima are A4
* and an unnamed 5-dimensional sublattice of D6

* .1 4

For d = 6 and 7, the principal minimum is Ed
*, and Ed is a secondary minimum. For

d = 8 , the only local minimum found is E8, which is known as a very good and very

symmetrical lattice [41].

Before proceeding to the lattices found in dimensions 9 and 10, we pause to make an

observation on the less frequent local minima in table 3.1. Since some local minima only

received one hit in 10 attempts, there may well exist other lattices that are also locally

optimal, even though none of the 10 runs arrived there. If we wish to estimate the exact

number of local minima in a given dimension, 10 trials are apparently insufficient; if, on

the other hand, we are more concerned with finding the one global optimum in each

dimension, the trend of better local minima getting more hits, as the table indicates, is

encouraging. As an example of a thorough search for local minima, we executed the

algorithm 100 times in 3 dimensions. All of them converged to A3
* ; hence, it is likely that

this is the only 3-dimensional local minimum. Especially, the face-centered cubic

14 The 5-dimensional locally optimal lattice can be obtained as the intersection of D6
* and a hyperplane

perpendicular to the vector 1 1 1 1 1 1, , , , ,()T . This specification of the new lattice is analogous to the
definition of E7 as a sublattice of D8

* , see the appendix.

23

lattice, A3, was never reached. Its G is known to be slightly higher than that of A3
* ;

apparently, A3 is not even locally optimal.

Nine-dimensional lattices are special. The lattices we reached are more irregular than

the ones in other dimensions, and none of them were found in the literature. Moreover,

they do not appear to be integer lattices [2, p. 47] for any scaling, which makes them

unique amongst the presently best known lattices. While confusing at first, this

irregularity was to some extent explained when we studied nonlattice tessellation (see

section 3.2). It turned out that there is a 9-dimensional nonlattice tessellation (yes, a

highly regular tessellation!) that is considerably better than all known lattices. If the

optimal tessellation for d = 9 is not a lattice at all, then the irregular lattices we observe

may be attempts by the training algorithm to approximate the nonlattice structure within a

lattice constraint.

The generator matrix of the 9-dimensional principal minimum is

2 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 573.

(3.1)

and the normalized second moment of the lattice was estimated to 0.071622 ± 0.000003.

In (3.1), we have interpreted the output of the algorithm according to postulate 1, but for

this lattice, the postulate does not give exact values of all matrix elements. One element,

0.573, was left unrounded. We will explain later why no value can be replaced for 0.573

to increase the symmetry of the lattice.

Since postulate 1 yields exact values of all but one element of the generator matrix of

this locally optimal lattice, a single-variate optimization can be formulated to increase the

accuracy of this one variable. We modified the lattice training algorithm of chapter II for

this purpose. The lattice structure was constrained to (3.1) with an unknown variable

substituted for the lower right element. A derivative similar to (2.13) was calculated and

the algorithm was run to optimize the single variable. The result, based on 100 runs of

this single-variate training algorithm, was 0.57321 ± 0.00014, where the interval is again

given on the form ±2σ̂ , using an estimate σ̂ of the standard deviation. Hence, the three

decimals in (3.1) can be considered significant.

24

The matrix (3.1) generates a peculiar lattice, in which the lattice points lie closer

together along the d th coordinate that along the others. This follows from the fact that the

nonzero lattice points closest to the origin are ±()0 0 0 1 146, , , , .L .15 Just these two points;

for example, 1 146 0 0 0. , , , ,L() is not a lattice point. The distance to the two closest points

is 1.146; in other directions, the distance to any lattice point is 2 or greater. Hence, the

Voronoi region of this lattice is flat. In is tempting to conclude that the lattice therefore

must have a relatively high normalized second moment G , since this measure

characterizes how round the Voronoi region is (see section 1.2), but the conclusion is

severely wrong. A lower G is not known among 9-dimensional lattices. This lattice

apparently compensates its weird 9th coordinate with being extremely round in the first 8

dimensions. The projection of the lattice orthogonal to 0 0 0 1 146, , , , .L() is D8
+ , better

known as E8, whose Voronoi region is very round, as mentioned above. The geometry

of the 9th coordinate also explains why symmetry arguments will not suffice to identify

the local minimum represented by (3.1) completely. To use an analogy, a cylinder cannot

be made more symmetrical by changing its height.

The two suboptimal local minima that the algorithm converged into one time each for

d = 9 display similar irregularities. One of them reminds much of (3.1) above, in that it

has a pair of vectors being significantly shorter than any other lattice vector, and the

projection orthogonal to them is E8. The last local optimum has two pairs of extra short

vectors, and the projection orthogonal to both of them is E7
*.

The obtained 10-dimensional lattices, finally, are all equivalent to the lattice generated

by

2 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 1 0

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

(3.2)

This lattice is well known, it is called D10
+ , but it has, to our knowledge, not been

considered for quantization earlier. Its normalized second moment lies very close to the

15 To see that these points belong to the lattice, use the construction B uT with u = − −()m L3 1 1 1 2, , , , , .

25

TABLE 3.2. LATTICES THAT CHALLENGE CONWAY AND

SLOANE’ S CONJECTURE. SHADED CELLS DENOTE BEST

KNOWN VALUES IN THEIR DIMENSION.

Lattice G δ of dual

(3.1) 0.071622 ± 0.000003 0.02857 ± 0.00002

Λ9
* 0.071769 ± 0.000006 1 16 2 0 04419≈ .

D10
+ 0.070813 ± 0.000003 1 32 0 03125= .

Λ10
* 0.071339 ± 0.000009 1 16 3 0 03608≈ .

lower bound; we estimated ˆ . .G = ±0 070813 0 000003. More on the D+ family, including

a very fast search method, is discussed in the next section.

There is a famous conjecture regarding the relation between optimal lattices for

“quantization” and “packing.”16 It is based on the observation that the best known d -

dimensional lattices for the two purposes were always each other’s duals. In 1982,

Conway and Sloane conjectured that this duality would be true for the optimal lattices in

any dimension [40]. The conjecture was supported in [33] and, although some doubts

were expressed in [2, p. 62], no counterexample has been presented to date. We now

claim that our 9- and 10-dimensional discoveries both are counterexamples to the

conjecture, and present evidence in the form of G and δ values.

The best known lattices for packing in 9 and 10 dimensions are called Λ9 and Λ10 ,

respectively [2, chs. 1 and 6]. The best known lattices for quantization are now given by

(3.1) and (3.2), the latter being D10
+ . In table 3.2, we show that our new lattices have a

lower G than Λ9
* and Λ10

* , thus showing that Λ9
* and Λ10

* are not optimal, as the

conjecture would imply. We also show that the duals of the new lattices are not optimal

packings, which, if it were true, would have been a second way to satisfy the conjecture.

Our new lattice results thus strongly indicate that the conjecture is false, but they do

not prove it. A proof would be complete the day one of four shaded values in table 3.2

would be proved optimal. For now, we have to be content with a “counter-conjecture”:

d = 9 is the lowest dimension for which the optimal lattices for quantization and packing

are not duals.

The present study ends with d = 10, but the algorithm is able to design lattices in

considerably higher dimensions than this. The only thing that limits the number of

dimensions is, as far as we have found, the available time. As an example, a 20-

16 In the lattice literature, the quantization problem is to minimize G , and the packing problem is to
maximize [2, Ch. 1]

δ = ()∉

1
V

d

inf
x

x
Ω

26

1 2 3 4 5 6 7 8 9 10

Dimension

0.070

0.075

0.080

N
or

m
al

iz
ed

 s
ec

on
d

m
om

en
t

Lower bound
Best lattice found

Ad

Dd

Ad
*

Dd
*

Dd
+

Figure 3.3. The performance of the D+ tessellation, versus
lattices and the lower bound. Note the improvement in 7 and 9
dimensions.

dimensional lattice was designed. It took 25 hours, and the normalized second moment of

the resulting lattice was estimated to 0.067594 ± 0.000005. The lower bound for d = 20

is 0.066457.

3 . 2 The Best Tessellations Found

In the study of the trained lattices, we were struck by the similarities between the best

found lattices in 8 and 10 dimensions. In this section, we generalize the pattern and

discover very good nonlattice tessellations in 7 and 9 dimensions. Traditionally, the study

of tessellation for quantization applications has been heavily dominated by lattices, see,

e.g., [2, p. 61]. This is, to our knowledge, the first time that nonlattice tessellations have

shown any competitive performance in relation to lattices.

Compare (3.2) and (A.7): the pattern is obvious. On the other hand, the best found

lattice in 9 dimensions (3.1) is different, not very much, but still significantly. The key to

this mystery lies in the D+ family. It is defined as the union of Dd and a translation of

Dd [2, pp. 46 and 119]:

 D D Dd d d
T+ = ∪ + ()()1 2 1 2, ,L (3.3)

where Dd is defined in the appendix. When d is even, Dd
+ is a lattice, whereas for odd

values of d , Dd
+ is a nonlattice tessellation. We will return to the geometrical properties

27

TABLE 3.3. THE BEST KNOWN NORMALIZED SECOND

MOMENT G FOR LATTICES AND TESSELLATIONS IN

DIMENSIONS 7–10. SHADED CELLS DENOTE NEW RESULTS.

d Best known lattice Best known tessellation Lower bound

7 0.073116 0.072734 ± 0.000003 0.072484

8 0.071682 0.071682 0.071636

9 0.071622 ± 0.000003 0.071103 ± 0.000003 0.070902

10 0.070813 ± 0.000003 0.070813 ± 0.000003 0.070258

of Dd
+ , and the peculiar 9th dimension later in the section. For now, we turn to the main

point of interest, namely, the normalized second moment.

Figure 3.3 shows the results in dimensions from 2 to 10. For comparison, the figure

includes the conjectured lower bound [41] and the best known lattices, including the new

results from the previous section. The performances of the lattices Ad , Ad
* , Dd , and Dd

*

[40] are also shown. Dd
+ gives significantly lower normalized second moments than these

four lattice families for d ≥ 6 ; the curve for Dd
+ indeed passes through the best lattices in

8 and 10 dimensions, as expected. In 7 and 9 dimensions, however, the best known

lattices are inferior to Dd
+ , which performs considerably closer to the lower bound. That

the best lattices have higher normalized second moments than other tessellations in certain

dimensions has never before been observed.

In table 3.3, the results in dimensions from 7 to 10 are summarized in terms of

normalized second moment. The new contributions of this report are indicated by a

shaded background.

Consider figure 3.2 again and observe G for the best lattices, that is, study the

pattern formed by the circles. Without too much imagination, the pattern can be described

as somewhat zigzag: lattices are in general worse for odd dimensions than for even,

compared with the lower bound. This property can, to some extent, be explained by the

relation between lattices and nonlattice tessellations. To put it simple, good tessellations

are more often lattices in even dimensions than in odd. This observation motivates a

closer look upon the geometry of Dd
+ .

It is not hard to show that when d is even, Dd
+ is a lattice, with the generator matrix

B =

2 0 0 0
1 1 0 0
1 0 1 0

1 2 1 2 1 2 1 2

L
L
L

M M M M
L

(3.4)

The situation is more complicated when d is odd. To begin with, (3.4) does not generate

28

Dd
+ . Instead, it generates a peculiar lattice, which has many characteristics in common

with the best found 9-dimensional lattice (3.1) discussed above. E. g., ±()0 0 0 1, , , ,L are

lattice points, so the lattice points lie closer together along the d th coordinate than along

the others. For d = 9, (3.4) generates Λ9
* , which was discussed in connection with table

3.2.

So what is the generator matrix of Dd
+ for odd values of d ? The answer is that there

is none. As mentioned, Dd
+ is not a lattice when d is odd. However, it is still a

tessellation, because all its Voronoi regions are congruent. Half of them are upside-down

(more precisely, reflected in a point), which disqualifies the tessellation from being a

lattice. In a lattice, all Voronoi regions are translations of each other, without scaling,

rotation, or reflection, see section 1.3.

Conway and Sloane [2, p. 120] summarize some parameters of the tessellation Dd
+ .

We conclude this section by adding two facts to their list, without further comments. The

covering radius is R = 3 2 d =()3 , 1 4 8≤ ≤()d , d 8 even d ≥()8 , or 2 1 4d −
odd d ≥()8 . For even d , the lattice Dd

+ is geometrically self-dual [2, p. xix]: the dual is

equivalent to the lattice itself.

29

IV. SUMMARY AND CONCLUSIONS

The contribution of this report is an algorithm for numerical minimization of the

normalized second moment of lattices. The algorithm shows the following features:

• It works on a constrained generator matrix with the minimum degrees of freedom

needed to encompass all lattices, but only one rotation and scaling of each.

• It is a stochastic gradient algorithm.

• It can operate in dimensions from 2 to at least 20.

• It has initially the ability to escape shallow local minima, but the ability decreases

with training time.

• Its output is accurate enough to make possible the identification of exact generator

matrices for locally optimal lattices.

• It converges to relatively few local minima. Of the local minima, it tends to favor the

better ones.

• In dimensions 2–8, it rediscovers the lattices that have previously been reported as

best known.

• In dimension 9, it discovers a new lattice (3.1), which is considerably better than

any lattice previously known. It has an uncommon structure for locally optimal

lattices.

• In dimension 10, it shows that a significant improvement can be attained by

employing D10
+ instead of the lattices that have been considered before.

• It suggests that the famous duality conjecture by Conway and Sloane may be false.

• It directs us towards the Dd
+ tessellation, which was shown to perform better than

any known lattice tessellation in dimensions 7 and 9. This is the first time that

lattices do not hold all second moment world records for tessellations.

As a graphical summary, we conclude this report with figure 4.1, which presents our

values (circles and dots) compared with what was previously known.

30

1 2 3 4 5 6 7 8 9 10

Dimension

0.070

0.075

0.080

N
or

m
al

iz
ed

 s
ec

on
d

m
om

en
t

Lower bound
Best classical lattice
Best lattice found
Best nonlattice found

Figure 4.1. A comparison between classical lattices and the
lattices and tessellations found through training.

31

APPENDIX: THE CLASSICAL LATTICES

In this appendix, the lattices d , Ad , Dd , and Ed are briefly defined. A much more

thorough treatise on their structure and properties is found in [2, Ch. 4].

The cubic lattice d is the Cartesian product of d 1-dimensional lattices. The

generator matrix depends, as discussed in section 1.3, on rotation and choice of basis

vectors. One generator matrix for d is the d d× identity matrix. The lattice is its own

dual.

The lattice Ad can be defined as a sublattice of the cubic lattice: Ad consists of the

points of d +1 that lie on a hyperplane orthogonal to 1 1 1, , ,L()T . A rotated version of Ad

is generated by the matrix17

α
α

α

1 1
1 1

1 1

L
L

M M M
L

(A.1)

where α = + +d 1 2 . A2 is the hexagonal lattice, see figure 1.1. One choice of a

generator matrix of the dual Ad
* is (A.1) with α = + −d d1 .

The lattice Dd is defined for d ≥ 3. It consists of every second point in d , namely,

those points whose coordinate sum is even. A generator matrix is

2 0 0 0
1 1 0 0
1 0 1 0

1 0 0 1

L
L
L

M M M M
L

(A.2)

Its dual, Dd
* has the generator matrix

1 0 0 0
0 1 0 0

0 0 1 0
1 2 1 2 1 2 1 2

L
L

M M M M
L
L

(A.3)

17 For consistency, we give square generator matrices for all lattices, which is why some of our
definitions may appear unfamiliar. Especially in literature with focus on theory rather than application, it
is common to present the lattices Ad , E6 , E7 , and their duals using nonsquare generator matrices.

32

The Ed family is defined for d = 6, 7, and 8 only. E6 is a sublattice of A7
* . With A7

*

generated by (A.1), E6 is the lattice being orthogonal to any of the basis vectors of A7
* . A

generator matrix for E6 and its dual is

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

1 2 1 2 1 2 1 2 1 2 3 2

α
α
α
α
α
α

(A.4)

with α = 3 for E6 and α = 1 3 for E6
*. E7 is the sublattice of D8

* (A.3) being

orthogonal to 1 1 1, , ,L()T . As a generator matrices for E7 , we can use

2 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 2 0 0 0
1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1

(A.5)

and for E7
*,

2 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 0 0 0 0
1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

(A.6)

E8, finally, is equivalent to D8
+ , see section 3.2. The lattice, which is also equivalent to

its dual E8
*, can be generated by the matrix

2 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

(A.7)

33

REFERENCES

[1] T. Eriksson and E. Agrell, “Lattice-Based Quantization, Part II,” Tech. Report 18, Dept. of
Information Theory, Chalmers Univ. of Technology, Göteborg, Sweden, 1996.

[2] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, 2nd ed. New York,
NY: Springer-Verlag, 1993.

[3] S. P. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inform. Theory, vol. IT-28, no. 2,
pp. 129–137, Mar. 1982.

[4] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer design,” IEEE Trans.
Commun., vol. COM-28, no. 1, pp. 84–95, Jan. 1980.

[5] T. Kohonen, Self-Organization and Associative Memory, 2nd ed. Berlin, Germany: Springer-
Verlag, 1988.

[6] J. K. Flanagan, D. R. Morrell, R. L. Frost, C. J. Read, and B. E. Nelson, “Vector quantization
codebook generation using simulated annealing,” in Proc. IEEE International Conference on
Acoustics, Speech, and Signal Processing, vol. 3, pp. 1759–1762, Glasgow, Scotland, U.K., May
1989.

[7] A. Gersho, “Asymptotically optimal block quantization,” IEEE Trans. Inform. Theory, vol. IT-25,
no. 4, pp. 373–380, July 1979.

[8] T. Linder and K. Zeger, “Asymptotic entropy-constrained performance of tessellating and universal
randomized lattice quantization,” IEEE Trans. Inform. Theory, vol. 40, no. 2, pp. 575–579, Mar.
1994.

[9] A. Gersho, “On the structure of vector quantizer,” IEEE Trans. Inform. Theory, vol. IT-28, no. 2,
pp. 157–166, Mar. 1982.

[10] H. Cohn, A Second Course in Number Theory. New York, NY: John Wiley & Sons, 1962.

[11] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization. New York, NY:
John Wiley & Sons, 1988.

[12] N. S. Jayant and P. Noll, Digital Coding of Waveforms: Principles and Applications to Speech
and Video. Englewood Cliffs, NJ: Prentice-Hall, 1984.

[13] T. Berger, Rate Distortion Theory. A Mathematical Basis for Data Compression. Englewood
Cliffs, NJ: Prentice-Hall, 1971.

[14] T. R. Fischer, “Geometric source coding and vector quantization,” IEEE Trans. Inform. Theory,
vol. 35, no. 1, pp. 137–145, Jan. 1989.

[15] C. E. Shannon, “Communication in the presence of noise,” Proceedings of the I.R.E., vol. 37, no.
1, pp. 10–21, Jan. 1949.

[16] T. R. Fischer, “A pyramid vector quantizer,” IEEE Trans. Inform. Theory, vol. IT-32, no. 4, pp.
568–583, July 1986.

[17] C. Lamblin, J. P. Adoul, D. Massaloux, and S. Morissette, “Fast CELP coding based on the
Barnes-Wall lattice in 16 dimensions,” in Proc. IEEE International Conference on Acoustics,
Speech, and Signal Processing, vol. 1, pp. 61–64, Glasgow, Scotland, U.K., May 1989.

[18] M. Xie and J.-P. Adoul, “Embedded algebraic vector quantizers (EAVQ) with application to
wideband speech coding,” in Proc. IEEE International Conference on Acoustics, Speech, and
Signal Processing, vol. 1, pp. 240–243, Atlanta, GA, May 1996.

[19] D. G. Jeong and J. D. Gibson, “Lattice vector quantization for image coding,” in Proc. IEEE
International Conference on Acoustics, Speech, and Signal Processing, vol. 3, pp. 1743–1746,
Glasgow, Scotland, U.K., May 1989.

[20] D. G. Jeong and J. D. Gibson, “Uniform and piecewise uniform lattice vector quantization for
memoryless Gaussian and Laplacian sources,” IEEE Trans. Inform. Theory, vol. 39, no. 3, pp.
786–804, May 1993.

34

[21] F. Kuhlmann and J. A. Bucklew, “Piecewise uniform vector quantizers,” IEEE Trans. Inform.
Theory, vol. 34, no. 5, pp. 1259–1263, Sept. 1988.

[22] P. F. Swazek, “Unrestricted multistage vector quantizers,” IEEE Trans. Inform. Theory, vol. 38,
no. 3, pp. 1169–1174, May 1992.

[23] T. Eriksson, “Multistage vector quantization with dynamic bit allocation,” in Signal Processing VII:
Theories and Applications, vol. 1, M. J. J. Holt, C. F. N. Cowan, P. M. Grant, and W. A.
Sandham, Eds., pp. 383–386, Proc. EUSIPCO, Edinburgh, Scotland, U.K., Sept. 1994.

[24] J. Pan and T. R. Fischer, “Two-stage vector quantization—lattice vector quantization,” IEEE Trans.
Inform. Theory, vol. 41, no. 1, pp. 155–163, Jan. 1995.

[25] J. A. Bucklew, “Companding and random quantization in several dimensions,” IEEE Trans. Inform.
Theory, vol. IT-27, no. 2, pp. 207–211, Mar. 1981.

[26] J. A. Bucklew, “A note on optimal multidimensional companders,” IEEE Trans. Inform. Theory,
vol. IT-29, no. 2, p. 279, Mar. 1983.

[27] M. Antonini, M. Barlaud, and T. Gaidon, “Adaptive entropy constrained lattice vector quantization
for multiresolution image coding,” in Proceedings of SPIE, vol. 1818, pt. 2, P. Maragos, Ed., pp.
441–457, Proc. Visual Communications and Image Processing, Boston, MA, Nov. 1992.

[28] R. M. Gray, Source Coding Theory. Boston, MA: Kluwer Academic Publishers, 1990.

[29] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression. Boston, MA: Kluwer
Academic Publishers, 1992.

[30] M. Antonini, M. Barlaud, and P. Mathieu, “Image coding using lattice vector quantization of
wavelet coefficients,” in Proc. IEEE International Conference on Acoustics, Speech, and Signal
Processing, vol. 4, pp. 2273–2276, Toronto, Ontario, Canada, May 1991.

[31] Z. Mohd-Yusof and T. R. Fischer, “An entropy-coded lattice vector quantizer for transform and
subband image coding,” IEEE Transactions on Image Processing, vol. 5, no. 2, pp. 289–298, Feb.
1996.

[32] K. Sayood and S. J. Blankenau, “A fast quantization algorithm for lattice quantizer design,” in
Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp.
1168–1171, New York, NY, Apr. 1988.

[33] J. H. Conway and N. J. A. Sloane, “On the Voronoi regions of certain lattices,” SIAM Journal on
Algebraic and Discrete Methods, vol. 5, no. 3, pp. 294–305, Sept. 1984.

[34] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász, “Factoring polynomials with rational
coefficients,” Mathematische Annalen, vol. 261, pp. 515–534, 1982.

[35] R. Kannan, “Improved algorithms for integer programming and related lattice problems,” in Proc.
Annual ACM Symposium on Theory of Computing, pp. 193–206, Boston, MA, Apr. 1983.

[36] E. Agrell and T. Eriksson, unpublished work, 1996.

[37] L. Babai, “On Lovász’ lattice reduction and the nearest lattice point problem,” Combinatorica, vol.
6, no. 1, pp. 1–13, 1986.

[38] E. Viterbo and E. Biglieri, “Computing the Voronoi cell of a lattice: the diamond-cutting
algorithm,” IEEE Trans. Inform. Theory, vol. 42, no. 1, pp. 161–171, Jan. 1996.

[39] J. H. Conway and N. J. A. Sloane, “Fast quantizing and decoding algorithms for lattice quantizers
and codes,” IEEE Trans. Inform. Theory, vol. IT-28, no. 2, pp. 227–232, Mar. 1982.

[40] J. H. Conway and N. J. A. Sloane, “Voronoi regions of lattices, second moments of polytopes, and
quantization,” IEEE Trans. Inform. Theory, vol. IT-28, no. 2, pp. 211–226, Mar. 1982.

[41] J. H. Conway and N. J. A. Sloane, “A lower bound on the average error of vector quantizers,” IEEE
Trans. Inform. Theory, vol. IT-31, no. 1, pp. 106–109, Jan. 1985.

[42] J. Makhoul, S. Roucos, and H. Gish, “Vector quantization in speech coding,” Proc. IEEE, vol. 73,
no. 11, pp. 1551–1588, Nov. 1985.

[43] J. D. Gibson and K. Sayood, “Lattice quantization,” in Advances in Electronics and Electron
Physics, vol. 72, P. W. Hawkes and B. Kazan, Eds. Boston, MA: Academic Press, pp. 259–330,
1988.

35

[44] K. K. Paliwal and B. S. Atal, “Efficient vector quantization of LPC parameters at 24 bits/frame,” in
Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 1, pp.
661–664, Toronto, Ontario, Canada, May 1991.

[45] P. Hedelin, “Single stage spectral quantization at 20 bits,” in Proc. IEEE International Conference
on Acoustics, Speech, and Signal Processing, vol. 1, pp. 525–528, Adelaide, Australia, Apr. 1994.

