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Abstract. As part of European Space Agency’s (ESA) cli-

mate change initiative, high vertical resolution ozone pro-

files from three instruments all aboard ESA’s Envisat (GO-

MOS, MIPAS, SCIAMACHY) and ESA’s third party mis-

sions (OSIRIS, SMR, ACE-FTS) are to be combined in order

to create an essential climate variable data record for the last

decade. A prerequisite before combining data is the exami-

nation of differences and drifts between the data sets. In this

paper, we present a detailed analysis of ozone profile differ-

ences based on pairwise collocated measurements, including

the evolution of the differences with time. Such a diagno-

sis is helpful to identify strengths and weaknesses of each

data set that may vary in time and introduce uncertainties in

long-term trend estimates. The analysis reveals that the rel-

ative drift between the sensors is not statistically significant

for most pairs of instruments. The relative drift values can be

used to estimate the added uncertainty in physical trends. The

added drift uncertainty is estimated at about 3 % decade−1

(1σ ). Larger differences and variability in the differences are

found in the lowermost stratosphere (below 20 km) and in the

mesosphere.

1 Introduction

Ozone as the main absorber in the UV wavelength region is

one of the crucial atmospheric trace gases which has been in-

vestigated extensively in the past 40 years due to its role as

a protecting shield against UV radiation that is harmful for

living species. Different observation techniques have been

used to extract the ozone signal from the troposphere to the

mesosphere (Hassler et al., 2014).

Due to a limited lifetime of a single space instrument,

long-term studies on ozone require a combination of mea-

surements from different instruments to be merged to obtain

a coherent climate data record. For this purpose the merg-

ing of the data sets from several instruments is one possible

method. In order to have the best observations included in the

merged data, information about biases and drifts is needed

for the optimal use of the data. Similar activities on merging

are performed by GOZCARDS (Global OZone Chemistry

And Related trace gas Data records for the Stratosphere) for

SAGE I, SAGE II, ACE-FTS, and MLS-Aura (Froidevaux

et al., 2013) and by a combination of SAGE II and GOMOS

(Kyrölä et al., 2013) and SAGE II and OSIRIS (Bourassa

et al., 2014). This paper deals with the intercomparison of six

limb ozone data sets in the framework of the ESA (European

Space Agency) climate change initiative (O3 CCI) and is part
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of the ongoing merging activities (See Bhartia et al. (2011)

SI2N special issue and papers therein for an overview).

Trend estimation of stratospheric ozone of sensors used

in this paper have been evaluated by SCIAMACHY (Geb-

hard et al., 2014), MIPAS (Eckert et al., 2014), GOMOS

(Kyrölä et al., 2013), and OSIRIS (Adams et al., 2014;

Bourassa et al., 2014) (see Sect. 5.2). Each instrument of the

CCI data sets has been validated by comparison with correla-

tive measurements to establish the uncertainty and precision

(Steck et al., 2007; Dupuy et al., 2009; Mieruch et al., 2012;

Tegtmeier et al., 2013; Adams et al., 2014; Eckert et al.,

2014; Laeng et al., 2014).

One important aspect of this work is that the intercompar-

isons are carried out for each possible sensor pair. A linear

regression model has been applied in order to determine the

differences and drifts between all pairs of instruments. The

differences and drifts can be used to estimate drift-corrected

trends of the merged pairs and overall merged product.

The paper is divided into five sections. In Sect. 2 we

describe briefly the instruments and their performance. In

Sect. 3 basic formulae and definitions for the pairwise com-

parisons are summarized. In Sect. 4, an overview of the time

series from the intercomparisons with SCIAMACHY is pro-

vided. In Sect. 5 results from the regression model for the

combination of all sensors are discussed and compared with

other similar intercomparison and validation works and a

summary of the main results and concluding remarks are

given.

2 Instruments

The six instruments used for the comparison in this work are

carried by three different satellites. Three atmospheric chem-

istry experiments (GOMOS, MIPAS, and SCIAMACHY)

were onboard the Envisat satellite, which operated from 2002

to 2012. It flew in a sun-synchronous orbit at an altitude of

780 km, leading to an orbital period of ≈ 100 min and 14

orbits per day. OSIRIS and SMR aboard Odin are two in-

struments which have been taking measurements since 2001

and are still operating. Odin circles the Earth in a polar,

sun-synchronous, near-terminator orbit with an inclination of

97.8◦ at an altitude of 600 km. ACE-FTS has been providing

measurements since 2004 on SCISAT that has a circular orbit

with an inclination of 74◦ at an altitude of 650 km.

All instruments are briefly described in the following sub-

sections. Table 1 gives an overview of the time period used

for the intercomparison, local time of the measurements,

vertical resolution, precision and other instrument-specific

information. More details on the instruments, their perfor-

mance, and validation can be found in Hassler et al. (2014).

2.1 GOMOS on Envisat

GOMOS (Global Ozone Monitoring by Occultation of Stars)

is the stellar occultation instrument onboard the Envisat

satellite that exploits the absorption and scattering of stel-

lar light in ultraviolet (UV), visible and near-infrared wave-

lengths to retrieve vertical profiles of ozone, NO2, NO3, O2,

H2O, and aerosol extinction (Kyrölä et al., 2004; Bertaux

et al., 2010). Ozone number density profiles are retrieved

from measurements by the UV-Vis spectrometer in the al-

titude range ≈ 10–100 km (Kyrölä et al., 2010). The vertical

resolution of GOMOS ozone profiles is 2 km below 30 and

3 km above 40 km with the linear transition between. The es-

timated uncertainty of the retrieved ozone profiles is 0.5–5 %

(Tamminen et al., 2010). In this paper GOMOS ozone pro-

files processed with IPF 6.0 are used.

2.2 MIPAS on Envisat

MIPAS (Michelson Interferometer for Passive Atmospheric

Sounding) aboard Envisat is a middle infrared Fourier trans-

form spectrometer measuring atmospheric emission spectra

in limb mode (Fischer et al., 2008). MIPAS measurements

include CH4, H2O, HNO3, N2O, NO2, HNO3, HNO4, N2O5,

PAN, CH4, C2H2, C2H6, CO, H2CO, HCN, HCOOH, ClO,

ClONO2, HOCl CFC-11, CFC-12, HCFC-22, and SO2, as

well as NO, HNO3, HNO4, N2O5, PAN, C2H2, C2H6, CO,

HCN, HCOOH, ClO, ClONO2, HOCl, CFC-11, CFC-12,

HCFC-22, SO2, O3, temperature, and pressure profiles. The

high-resolution measurements (0.025 cm−1) are performed

from 685 to 2410 cm−1 (14.6 to 4.15 µm) for the years 2002–

2004. The vertical resolution ranges from 3 to 8 km in the

altitude range from 6 to 68 km. After an anomaly in the in-

terferometric drive, the operational mode has been switched

to lower spectral resolution with a finer vertical grid (Cortesi

et al., 2007). In this work we use data from 2005 onwards,

which is the low-resolution mode that is currently available

from MIPAS-IMK version R 220 (Laeng et al., 2014).

2.3 SCIAMACHY on Envisat

SCIAMACHY measures the Earth’s atmosphere in three ob-

servation modes, i.e. nadir, limb and occultation (Bovens-

mann et al., 1999, 2002). In limb mode, SCIAMACHY scans

the atmosphere in 3.3 km steps vertically and 960 km across-

track. SCIAMACHY covers the wavelengths between 212

and 2386 nm, divided into eight channels. Atmospheric trace

gases such as BrO, CH4, CO, CO2, H2O, IO, NO2, OClO,

O2, O3, NO2, SO2, and aerosol extinction can be retrieved

with SCIAMACHY (Bovensmann et al., 2011).

The retrieved SCIAMACHY ozone profiles from the ver-

sion V2.5 are used in this study (Rozanov et al., 2001) The

algorithm, validation, and error analysis are described in

Sonkaew et al. (2009), Mieruch et al. (2012), and Rahpoe

et al. (2013), respectively.
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Table 1. Overview of data sets used (adopted from Sofieva et al., 2013). If necessary, the profiles were converted to volume mixing ratio

(vmr) and interpolated to a 1 km vertical grid.

Instruments Time period Local time Vertical resolution Estimated Average number Original ozone unit Source of

precision of profiles/day and Level 2 grid temperature

SCIAMACHY 2002–2012 10:00 profile-dependent, 10–15 % 1300 number density ECMWF

3–5 km fixed altitude grid analysis

GOMOS 2002–2012 22:00 2 km below 30 km, 0.5–5 % 110 number density ECMWF

3 km above 40 km, tangent altitude grid analysis

a linear transition between 30 and 40 km

OSIRIS 2002–2012 06:00 2 km–3 km, 2–10 % 250 number density ECMWF

18:00 altitude-dependent fixed altitude grid analysis

MIPAS 2005–2012 10:00 profile-dependent, 1–4 % 1000 vmr on fixed Retrieved

22:00 3–5 km altitude grid

ACE-FTS 2004–2010 sunrise 3 km 1–3 % 11 vmr on fixed Retrieved

sunset altitude grid

SMR 2002–2012 06:00 profile-dependent, 20 % 250 vmr on fixed ECMWF

18:00 2.5–3.5 km altitude grid analysis

2.4 OSIRIS on Odin

OSIRIS (Optical Spectrograph and InfraRed Imager System)

is the instrument onboard the Odin satellite that was launched

on 20 February 2001 (Murtagh et al., 2002; Llewellyn et al.,

2004). OSIRIS measures the ozone number density profiles

with a vertical resolution of 1–3 km in a limb mode from 10

to 70 km. The measurement is performed in the optical spec-

tral range of 280–800 nm with a resolution of 1 nm. In this

work the OSIRIS ozone data V5.01 have been used (Adams

et al., 2014).

2.5 SMR on Odin

The second instrument on the Odin satellite is SMR (Sub-

millimeter and Millimeter Radiometer) which uses hetero-

dyne radiometers to measure thermal emission in the fre-

quency range of 486–581 GHz. Atmospheric species mea-

sured in the frequency bands at 501.8 and 544.6 GHz are

ClO, HNO3, N2O, and O3 (Urban et al., 2005). For this

study we use the SMR ozone data version 2.1 processed at

the Chalmers University of Technology, Gothenburg, Swe-

den. The optimal estimation method (OEM) scheme is used

to retrieve the ozone VMR from the O3 line at 501.8 GHz.

2.6 ACE-FTS on SCISAT

The solar occultation instrument ACE-FTS (Atmospheric

Chemistry Experiment Fourier Transform Spectrometer) on-

board the Canadian satellite mission SCISAT was launched

on 12 August 2003 (Bernath et al., 1999). It measures high-

resolution (0.02 cm−1) spectra between 750 and 4400 cm−1

(2.2–13 µm). The vertical resolution of the profiles is 3–4 km

with a sampling of 1.5–6 km. More than 30 trace gases,

temperature, and pressure are retrieved by ACE-FTS us-

ing a modified global fit approach based on the Levenberg–

Marquardt non-linear least-squares method (Boone et al.,

2005). In this study we use the ACE-FTS ozone profiles ver-

sion 3.0 retrieved at the University of Waterloo (Boone et al.,

2013).

3 Methodology and definitions

Ozone volume mixing ratios on a common fixed altitude

grid with 1 km spacing are used in this study. All profiles

have been converted, regridded, and interpolated, if neces-

sary, from native ozone profiles using pressure and temper-

ature either from meteorological analyses or retrieved using

the same instrument (see Table 1).

The screening and filtering of the data sets was performed

as follows:

– SCIAMACHY: only cloud-free profiles are used;

– GOMOS: no screening is performed by us;

– OSIRIS: outliers are screened out for negative ozone

values and ozone volume mixing ratio (vmr) > 15 ppmv;

– MIPAS: screening for zero visualization values

(VizO3
= 0) and diagonal elements of averaging kernels

AKdiag< 0.03, as recommended by the data providers;

– ACE-FTS: if ozone values were negative and errors

were larger than 100 %, as recommended by the data

providers;

– SMR: for poor-quality data sets with the flag set to zero,

e.g. quality= 0, as recommended by the data providers.

In our analyses, we use collocated measurements for each

pair of instruments. The collocation criteria depend on the

sampling and coverage of the satellite pair in such a way
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that a sufficient number of profile pairs is achieved. Specific

collocation criteria and the total number of collocations are

listed in Tables 2 and 3, respectively. The sensitivity on collo-

cation criteria have been performed for 5 and 12 h in the case

of MIPAS and OSIRIS. No major differences have been ob-

served for the variation of collocation criteria in stratosphere

for this case

The relative difference (δ) is calculated for collocated sin-

gle profile pairs in a given month, altitude, and latitude bins

(5, 15, and 30◦) as follows:

δi(z)= 2 ·
xci − xri

Xc+Xr

. (1)

The mean relative difference (1) is the monthly mean of the

δ’s at altitude z as follows:

1(z)=
∑
i

δi(z)

N(z)
, (2)

where xci and xri
correspond to the collocated single ozone

profiles of the comparison instrument (c) and the “reference”

instrument (r) with Xc and Xr as monthly mean averages of

xci
and xri

, respectively. N(z) is the number of available pairs

at altitude z for a given month and latitude bin. The standard

deviation of 1 is calculated as follows:

σ(z)=

√∑N(z)
i=1 [δi(z)−1(z)]

2

N(z)− 1
. (3)

In addition to the relative difference we also applied a linear

regression to the monthly mean relative difference time se-

ries for each altitude and latitude bin. The mean relative dif-

ference between two instruments is not necessarily a constant

but can vary with time. We analyse this time dependence by

using a multilinear regression model:

1(t,z)= α(z) · (t − t∗)+β(z)

+

2∑
i

[κi(z)sin(ωi t)+ νi(z)cos(ωi t)] +R(t,z), (4)

where 1(t,z) is the monthly mean relative difference time

series for each altitude and latitude bin. The slope α(z) is

the “pairwise relative drift” and β(z) is the “pairwise relative

bias” derived from the regression function.

The term “bias” is avoided here, since the comparison is

not based on one reference sensor but rather each sensor is

used as a reference. Instead of “bias” the terms “pairwise rel-

ative bias” and “pairwise relative drift” between two instru-

ments are more appropriate here and refer hereafter to “rela-

tive bias” and “relative drift” denoted by the Greek symbols

β(z) and α(z), respectively. Non-linearity effects are not ac-

counted for here.

The corresponding α(z), β(z) are derived using a mul-

tivariate linear regression and the autocorrelation method.

The noise term R(t,z) is assumed to be autoregressive func-

tion with lag one AR(1). We used the methods described in

Weatherhead et al. (1998) and Gebhard et al. (2014) to de-

rive autocorrelation, white noise, σα , and σβ , respectively,

for each pair of instruments. Only time series with number

of months larger than 36 are used for the analysis. For the

periodic variation, periods of 6 and 12 months have been

considered with corresponding harmonic functions and pa-

rameters κ(z), ν(z). No proxies of the quasi-biennial oscilla-

tion or other natural variability have been considered because

natural effects are assumed to cancel out when differences

are calculated. Since MIPAS RR (reduced resolution) pro-

files are only available from January 2005 onwards, Febru-

ary 2005 was used as reference time t∗ or in other words, the

relative bias β(z) is the observed bias at time t∗.

4 Relative difference time series

In this part, only a brief example of mean relative difference

time series is presented with SCIAMACHY as the reference

instrument.

In Sect. 5 the results from the regression analyses (relative

bias and relative drifts) of all sensors as reference instrument

are discussed. We could have chosen any instrument as we

consider none of the instruments as an absolute reference.

SCIAMACHY is the only data set under investigation from

a dense sampler covering the full Envisat observation period.

Further details from all possible pair combinations from 5◦

latitude bin analyses can be viewed as contour plots for β(z)

and α(z) as Supplement.

The monthly mean relative difference time series of all

CCI limb data with respect to SCIAMACHY for different

latitude bands are presented in Figs. 1–3.

In the Arctic (70–60◦ N, Fig. 1) most of the data sets

agree to within±10 % for all altitudes between 25 and 40 km

with SCIAMACHY. The best agreement for most instru-

ments with SCIAMACHY is found at 25 km. Above 30 km,

MIPAS showed a pronounced seasonal cycle compared to

SCIAMACHY. SCIAMACHY tends to be lower than the

other instruments at 30 km.

At northern mid-latitudes (50–40◦ N, Fig. 2) the best

agreement with SCIAMACHY is at 30 km and below. At

30 km and above, SCIAMACHY is lower than ACE-FTS and

MIPAS; at 40 km, SCIAMACHY is in agreement with MI-

PAS, but higher than the other data sets by up to 10 %.

In the tropics (0–10◦ N, Fig. 3), at 25 km, SCIAMACHY

is lower than most of the other instruments, but all instru-

ments agree to within ±5 % with SCIAMACHY. It is appar-

ent that SMR data are quite noisy at this altitude. At 30 km,

agreement is similar, except that SCIAMACHY shows a con-

sistent positive bias of about +10 %. At 35 km, SMR shows

a negative bias of about −5 to −10 % with respect to SCIA-

Atmos. Meas. Tech., 8, 4369–4381, 2015 www.atmos-meas-tech.net/8/4369/2015/
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Table 2. Collocation criteria in time (hours) and distance (km).

Pairs SCIA GOMOS OSIRIS MIPAS ACE SMR

SCIAMACHY – 12 h, 1000 km 12 h, 1000 km 5 h, 500 km 12 h, 1000 km 12 h, 1000 km

GOMOS – – 24 h, 1000 km 12 h, 1000 km 24 h, 1000 km 12 h, 1000 km

OSIRIS – – – 24 h, 1000 km 24 h, 1000 km 24 h, 1000 km

MIPAS – – - – 12 h, 1000 km 12 h, 1000 km

ACE – – – – – 12 h, 1000 km

Table 3. Number of total collocations (90◦ S–90◦ N) for pairwise

combinations.

Pairs SCIA GOMOS OSIRIS MIPAS ACE SMR

SCIAMACHY – 155 825 429 500 605 174 16 340 129 832

GOMOS – – 276 712 65 284 9737 23 043

OSIRIS – – – 900 552 8471 248 703

MIPAS – – - – 8726 140 876

ACE – – – – – 11 356
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Figure 1. Mean relative difference 1(z) time series between all in-

struments (comparison sensor) and SCIAMACHY (reference sen-

sor) in the latitude band 70–60◦ N.

MACHY and is quite noisy. At 40 km, MIPAS and SCIA-

MACHY are in very good agreement. SCIAMACHY is 10 %

higher on average than all other data at this altitude, similar

to what is observed at northern mid-latitudes (Fig. 2).

From these figures it is evident that the difference time

series are smoothest for a pair of dense samplers like MI-

PAS and SCIAMACHY. Part of the variability seen in the
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Figure 2. Same as Fig. 1, but for the northern middle latitudes (50–

40◦ N).

difference time series, thus, are a consequence of the differ-

ent sampling statistics.

5 Intercomparison results and discussion

In order to get an overall picture of the pairwise comparisons

with each instrument as a reference sensor, the vertical distri-

bution of β (relative bias) is drawn in Fig. 4 for 30◦ S–30◦ N

at altitudes between 20 km and 50 km in 5 km steps. Each

colour identifies the reference sensor. The position of the dif-

ferent symbols mark the value of each comparison sensor

relative to the reference sensor. This compact representation

gives a detailed view of the performance of each sensor.

In the lowermost stratosphere (LS) the β range is large for

most of the instruments. The smallest β range for most of

the reference sensors is observed at 25 km which is to within

±5 %. Only MIPAS and GOMOS have a slightly larger ab-

solute β with respect to SMR. At 30 km, the β range is

www.atmos-meas-tech.net/8/4369/2015/ Atmos. Meas. Tech., 8, 4369–4381, 2015
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Figure 3. Same as Fig. 2, but for the tropical latitudes (10–0◦ N).

within ±5 % except for SCIAMACHY as the reference sen-

sor, showing a positive β with respect to four comparison

sensors.

Between 35 and 50 km, the β range increases for each sen-

sor and shows different behaviour. Four different groups can

be identified between 25 and 50 km. The classification be-

tween groups is mainly determined by the vertical β range

behaviour. If all comparison sensors show positive relative

bias with respect to the reference sensor, then we classify the

reference sensor as negative relative bias (β) range. Between

25 and 50 km for the latitude band of 30◦ S–30◦ N (Fig. 4a),

Group I consists of OSIRIS (balanced β range), Group II in-

cludes GOMOS (low negative β range), Group III includes

MIPAS and SCIAMACHY (positive β range), and Group IV

is SMR (systematic negative β range).

The balanced β range means that differences to that in-

strument may be positive or negative without favouring any

sign.

Most of the time, Group I (OSIRIS) shows a balanced be-

haviour with statistically β values at the 95 % confidence

level (i.e. |β|>2σβ ) (See Fig. 4b).

For Group II, which consists of GOMOS, the absolute β

values are not larger than ±15 %. GOMOS shows similarity

with OSIRIS at 25 and 30 km.

In Group III (MIPAS, SCIAMACHY) the β range is

mainly positive with respect to the other sensors. Above

40 km, SCIAMACHY shows the largest β value with respect

to SMR of up to 20 % at 45 km (see Fig. 4b). The values

are statistically significant for the majority of the compari-

son sensors.

Group IV consists of SMR with a negative β range with

respect to all comparison sensors.

Because of the low sampling of ACE-FTS in the tropics,

there are only two comparison sensors available, and there-

fore no general behaviour of ACE-FTS is possible. We ob-

serve a balanced β range (Group I) behaviour at 30, 40, and

at 45 km and a slightly positive β range (Group III) at other

altitudes.

From this plot we can conclude, that in the altitude range

of 25 km, most of the groups show similar behaviour in sign

and β range to within±10 %. Highest variability is observed

below 20 km (>± 20 %). Between 25 and 45 km, sign and

range of β depends on the reference sensor with four dis-

tinct groups as discussed before. Looking at Fig. 4b, one can

conclude that all β values that are larger than ±10 % are sta-

tistically significant.

At northern middle latitudes (30–60◦ N), SCIAMACHY

changed its behaviour between 25 and 35 km (Fig. 5a). All

other sensors show similar behaviour as in the tropics.

The main difference to the tropics is seen at 20 km. Here,

all sensors present lower variability (<± 12 %) than in the

tropics and show balanced behaviour with the exception of

SMR.

In the southern middle latitudes (30–60◦ S) (Fig. 6a) the

relative bias range resembles the behaviour of the tropical

band. ACE-FTS, on the other hand, performs as in the north-

ern middle latitudes. The variability below 20 km is however

smaller (<± 20 %) in comparison to the tropics.

There is no clear group behaviour for relative drift α in

the tropics 30◦ S–30◦ N (see Fig. 7). Hereafter, we consider

a drift estimate α to be statistically significant if it is outside

the ±2σα uncertainty interval (non-shaded values Fig. 7b).

At 40 km the relative drift between OSIRIS and SMR is up

to ±18 % decade−1 but is statistically non-significant.

A significant α value is observed for few combination

pairs at different altitudes. SMR shows significant values

with respect to three instruments at 45 km and at 20 km.

SCIAMACHY shows significant values with respect to two

instruments at 20 km (α<±20 % decade−1) and OSIRIS with

two instruments at 35 km (α<± 5 % decade−1). For most of

the comparisons, no systematic significant relative drift is ob-

served in this latitude band.

In 30–60◦ N (Fig. 8a) the range of α values is

larger than in the tropics. Especially the instrument pairs

MIPAS/SCIAMACHY and SMR/ACE-FTS show α>±

10 % decade−1. But these values are non-significant as it

can be seen in Fig. 8b with exception of SMR/ACE-FTS

at 35 and 50 km. SCIAMACHY shows significant values

with respect to OSIRIS between 20 and 40 km (α<±

5 % decade−1) and OSIRIS with two instruments at 25 km

(α<± 10 % decade−1).

In southern mid-latitudes (30–60◦ S) the α values are

largest below 25 km and smallest between 30 and 40 km
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Figure 4. (a) “Pairwise relative bias” (β) range for all sensors as a function of altitude in the tropical band (30◦ S–30◦ N). Reference sensors

are indicated by colour and individual comparison sensors by corresponding symbols. (b) Same as (a) but only significant β values are shown

(non-significant values are shaded out).
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Figure 5. Same as Fig. 4 but for the northern middle latitudes (30–60◦ N).

(Fig. 9a), but they are not statistically significant (Fig. 9b).

ACE-FTS shows significant values with respect to three in-

struments at 25 km with α<±15 % decade−1. SCIAMACHY

shows significant values with respect to two instruments at

50 km (α<±10 % decade−1). The total number of significant

values is lowest in this latitude band.

Only few statistically significant relative drift values are

observed. Generally 90 % of the pairs show non-significant

relative drifts in these three latitude bands at the described

altitudes. Since the majority of the pairs presented show no

significant relative drift, we can conclude that merging of the

data sets from these six instruments is possible.
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Figure 6. Same as Fig. 4 but for the southern middle latitudes (30–60◦ S).
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Figure 7. (a) Relative drift (α) range for all sensors as a function of altitude in the tropical band (30◦ S–30◦ N). Reference sensors are

indicated by colour and individual comparison sensors by corresponding symbols. (b) Same as (a) but only significant α values are shown

(non-significant values are shaded out).

Such a drift analysis as carried out here can be helpful for

identifying outliers which could then be drift-corrected. In

our case all instruments show mostly statistically insignif-

icant drift with respect to each other. In the middle strato-

sphere the drifts are generally below ±6 % decade−1 (2σ ),

but can be higher in the upper stratosphere and above, and in

the lowermost stratosphere below about 20 km. When merg-

ing the data by simply taking averages from all sensors as

done in the last WMO (World Meteorological Organization)

ozone assessment (WMO Assessment, 2014), an additional

uncertainty of about 3 % decade−1 (1σ ) should be added to

the physical trend uncertainty derived from the linear trend
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Figure 8. Same as Fig. 7 but for the northern middle latitudes (30–60◦ N).
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Figure 9. Same as Fig. 7 but for the southern middle latitudes (30–60◦ S).

regression to obtain a more realistic estimate of the overall

uncertainty.

5.1 Impact of local time and diurnal variation

The difference in local time of measurement can have an im-

pact on the differences in the collocated ozone profiles in the

upper stratosphere (above 40 km) (Sakazaki et al., 2013; Par-

rish et al., 2014). Following Studer et al. (2013) the diurnal

variation has the largest impact above 50 km with its differ-

ence between night-time and daytime of up to ±20 %. This

might explain the variability observed in the relative biases

at 50 km but cannot explain the significant relative biases ob-

served for the altitudes below 50 km where the differences in

the local time are expected to have less than ±5 % impact on
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the differences in ozone. We conclude that the variability ob-

served in the biases is intrinsical and instrument-dependent

and not based on the differences in local time.

5.2 Comparison to other validation results

Our results can be compared with other validation works as

discussed in the following.

Eckert et al. (2014) performed a detailed drift analysis of

MIPAS V5 220 to derive a drift-corrected trend for the MI-

PAS ozone time series. We give an overview of their results

of drifts between MIPAS and OSIRIS and between MIPAS

and ACE-FTS. For the drifts between MIPAS and OSIRIS,

they found mostly negative statistically insignificant drifts in

the upper stratosphere, with negative statistically significant

values in the northern middle latitudes. The drift signs are

in agreement with ours if we compare the MIPAS-OSIRIS

drifts in the Southern Hemisphere (as light blue squares in

Fig. 9). They find statistically insignificant positive drift val-

ues in the latitude bin of 30–40◦ S between 40 and 48 km.

We observe a positive drift at 40 and 50 km, respectively,

that agrees qualitatively with their results. The drifts are on

the order of 2–5 % decade−1 going up to ±10 % decade−1

for lower altitudes and are insignificant, in agreement with

their findings. In the northern middle latitudes the drifts do

not agree with our results. In our case the drifts are non-

significant and are positive, where in their results, the drifts

are negative and significant (see Fig. 8b). The reason can

arise from the different time periods, i.e. 2005–2010 in our

case and 2002–2010 in their case and by neglecting quasi-

biennial oscillation in our drift analysis.

For comparison between MIPAS and ACE-FTS, the sign

of the drifts are consistent with our results for the south-

ern middle latitudes 30–60◦ S. Both papers observe non-

significant drift in this latitude band. On the other hand at

25 km we see a significant drift between ACE-FTS and MI-

PAS which is not observed by Eckert et al. (2014). In the

northern middle latitude 30–60◦ N the dominating sign of the

drifts are negative in our case in agreement with their results

above 22 km. Below this altitude we still observe a negative

drift in contrast to their findings.

Adams et al. (2014) made an analysis of differences be-

tween OSIRIS V5.07 and GOMOS V6 ozone profiles. In

their comparison, mean relative difference values for the

tropical band are lower than 5 % between 20 and 40 km.

At 40 km OSIRIS is lower than GOMOS by about 10 % in

the tropics. In our case, the comparison between OSIRIS

5.01 and GOMOS V6 shows similar mean relative differ-

ence value and shape, especially the sign and values of the

mean relative difference between 20 and 40 km. The update

of the ozone data led to the reduction of the mean relative

difference (compared to GOMOS V5) between the two in-

struments in this specific region. The comparison of relative

drift is in general agreement, except at 45 km, where they ob-

serve a significant negative drift, and we only see a positive

non-significant drift between OSIRIS and GOMOS. Signif-

icant drift values are only observed in the northern middle

latitudes 30–60◦ N below 25 km.

Gebhard et al. (2014) performed an individual trend analy-

ses of three sensors (MLS, SCIAMACHY, and OSIRIS). The

results show a significant trend of SCIAMACHY, MLS, and

OSIRIS data at 35 km in the tropical latitude band of 20◦ S–

20◦ N. Their results are consistent with our findings of sig-

nificant relative drift between OSIRIS and SCIAMACHY at

35 km.

The methods applied here differ such that we used the

mean relative differences. The drifts given by Eckert et al.

(2014) are based on the absolute differences and not on rel-

ative. Adams et al. (2014) provides the drifts by using a ro-

bust method of the median values. Other validation works are

based on few pairs mainly from the perspective of a single

comparison sensor. A caveat to all methods (including ours)

is that non-linearity effects in biases and drifts can have an

impact on the final derived parameters.

6 Conclusions

Comparisons of ozone limb/occultation profiles between six

independent instruments from three platforms have been per-

formed, i.e. from Envisat, Odin, and SCISAT. The pairwise

comparison using collocated data has been used to estab-

lish the mean relative differences between 15 pairs of in-

struments. Monthly mean relative difference time series have

been used for the analysis by applying a linear regression

model on the differences. The two regression parameters of

the linear model, the slope α (relative drift) and the intercept

β (relative bias) for the reference time of February 2005 have

been calculated for different altitudes and latitude bands. Be-

tween 25 and 50 km the β is within ±22 % (in the majority

of cases below ±10 %). Large variability in the lowermost

stratosphere below 20 km is observed for all pairs in the trop-

ics. This can be explained by retrieval problems for sensors

due to low signal to noise ratios, larger natural variability,

and the impact of clouds and aerosols.

Overall, β can be sorted into different groups for reference

sensors:

– group I: OSIRIS (balanced β range)

– group II: GOMOS (low negative β range)

– group III: SCIAMACHY, MIPAS, and ACE-FTS (posi-

tive β range)

– group IV: SMR (systematical negative β range)

The relative drifts between the various instruments can be

quite large at some altitudes, but because of the short data

record (about 10 years), they are mostly statistically insignif-

icant.
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Since 90 % of the pairs presented show no significant rela-

tive drift, we can conclude that merging of the data sets from

these six instruments is possible.

The evaluation of relative biases and relative drifts be-

tween pairwise sensors demonstrates its value in understand-

ing the differences between the sensors and differences of

the derived trends and can be used to estimate the added un-

certainty in physical trends from the drift. The added drift

uncertainty is estimated at about 3 % decade−1 (1σ ).

The Supplement related to this article is available online

at doi:10.5194/amt-8-4369-2015-supplement.
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