
Obstacle Avoidance
with Safety Guarantees
Feasibility of MPC-based Steering Algorithms

Master’s thesis in Signals and Systems

Stephan Heinrich

Department of Signals and Systems
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2015

Master’s thesis 2015:11

Obstacle Avoidance with Safety Guarantees

Feasibility of MPC-based Steering Algorithms

Stephan Heinrich

Department of Signals and Systems
Mechatronics Research Group

Chalmers University of Technology
Gothenburg, Sweden 2015

Obstacle Avoidance with Safety Guarantees
Feasibility of MPC-based Steering Algorithms
Stephan Heinrich

© Stephan Heinrich, 2015.

Examiner:
Paolo Falcone, Department of Signals and Systems
Mathias Lidberg, Department of Applied Mechanics

Master’s Thesis 2015:11
Department of Signals and Systems
Mechatronics Research Group
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Simulation vehicle performing a lane change maneuver with projections of
safe states on the road

Typeset in LATEX
Gothenburg, Sweden 2015

iv

Obstacle Avoidance with Safety Guarantees
Feasibility of MPC-based Steering Algorithms
Stephan Heinrich
Department of Signals and Systems
Department of Applied Mechanics
Chalmers University of Technology

Abstract
Enabled by the increasing computational power available in embedded microcon-
trollers, model predictive control (MPC) for automotive applications has been ex-
tensively studied in the past ten years and has attracted industry, among others, for
autonomous driving applications.
Implementing an MPC control algorithm to determine an optimal steering action
in a lane change maneuver involves iteratively solving a Finite Time Constrained
Optimal Control Problem (FTCOCP). Hence, in a situation where the environment
is restricted by lane boundaries and obstacles, the FTCOCP might be unfeasible
because collision avoidance constraints represent strict boundaries that cannot be
violated if passenger safety shall be guaranteed. Intuitively, in such problems in-
feasibility is more likely to occur as the vehicle velocity increases. Furthermore,
because of the problem structure, classical results from MPC theory for guarantee-
ing feasibility cannot be efficiently applied.
This thesis investigates methods to predict an upper bound on the vehicle’s velocity
leading to feasibility guarantees for an MPC-based lane change algorithm. By ex-
ploiting invariant set theory and reachability analysis tools, we focus on the problem
of (offline) characterizing the set of states for which a solution to the lane change
MPC problem exists for a given speed.
An MPC controller is implemented in a vehicle and test data from lane change ma-
neuvers ranging from 50-100 km/h is collected at the AstaZero proving grounds. The
applicability of the proposed method is evaluated by comparison with experimental
data.

Keywords: model predictive control, vehicle, feasibility, convex optimization, obsta-
cle avoidance, advanced driver assistance systems

v

Acknowledgements
During the past year working on this thesis I had the pleasure to work with a number
of amazing people that dedicated their time and effort to support me in this process.
First of all I would like to thank my examiners Paolo Falcone and Mathias Lidberg
for making this thesis possible and supporting me throughout this period. I don’t
think I could have asked for a better team of advisers in this field. Your support in
both vehicle dynamics as well as control theory let me consider and challenge ideas
and concepts that I was not even aware of at the time when I started this project.
Working along side you really shaped my approach work, to keep challenging existing
thoughts and think outside of the box.
Next I would like to thank Chris Gerdes and the DDL at Stanford. Joining their
lab during the summer was an incredible time. I would not have wanted to miss
the late nights coding and the sizzling hot track days together with Team Marty for
anything. The DDL is full of exceptional people and being part of that for some
time was a very humbling experience.
I would also like to thank my friends and colleagues in the Mechatronics group as
well as the Vehicle Dynamics group at Chalmers. Working together with you has
been an exceptionally welcoming and supportive experience.
I would also like to thank my parents and my brother for supporting me through
all this time. Cheering me up when things got challenging, and always having my
back while I was far away from home let me get through the ups and downs of this
process and makes me feel confident for future challenges to come.
This work would not have been possible without the help and support of all these
exceptional people.

Stephan Heinrich, Gothenburg, 11/2015

vii

Contents

List of Figures x

List of Tables xii

1 Introduction 1
1.1 Literature Review . 2
1.2 Problem Statement . 3
1.3 Structure of the Thesis . 4

2 Invariant Set Theory and Reachability Analysis 7
2.1 Convex Sets . 7

2.1.1 Hyperplanes & Halfspaces . 7
2.1.2 Polyhedra and Polytopes . 9

2.2 Operations on Polytopes . 9
2.2.1 Convex Hull . 9
2.2.2 Vertex Enumeration . 9
2.2.3 Projection . 9
2.2.4 Minkowsky sum . 10

2.3 Representations of Convex sets . 11
2.3.1 H-Representation . 11
2.3.2 V-Representation . 11
2.3.3 Properties of H- and V-Representations 11

2.4 Invariant Sets . 12
2.4.1 Reach()-Set . 12
2.4.2 Pre()-Set . 12
2.4.3 Control Invariant Set . 13
2.4.4 N-Step Controllable Set . 13

2.5 Example: A Simple Discrete Integrator 14

3 Vehicle System Modelling 17
3.1 Two Track Model . 18
3.2 Bicycle Model . 18
3.3 Tire Models . 20

3.3.1 Linear Tire Model . 20
3.3.2 Brush Tire Model . 20

3.4 Linear Bicycle model . 21
3.5 Force Input Model . 22

ix

Contents

3.6 Linear Time Varying Model . 22
3.7 Safe Handling Envelope . 23

4 Model Predictive Control 25
4.1 Receding Horizon Principle . 26
4.2 Modelling of Constraints . 27
4.3 CVXgen . 29

5 Feasibility by Construction 31
5.1 Analytical Approach Using Hyperrectangle Constraints 33
5.2 Numerical Approach . 37

5.2.1 Reachability Calculations with MPT-Toolbox 37
5.2.2 Inner Approximation of Polytopes 39
5.2.3 Numerical Control Invariant Sets 41
5.2.4 Numerical N-step Controllable Sets 42

6 Controller Design 45
6.1 Controller Formulation . 45

6.1.1 Motion Prediction . 46
6.1.2 System Constraints . 47

6.2 Implementation . 48
6.2.1 Horizon length . 49
6.2.2 Simulation environment . 50

7 Experimental Testing 53
7.1 Test Scenario . 53
7.2 Test Vehicle . 54

7.2.1 Testing Equipment . 54
7.2.2 Vehicle Parameters . 55

7.3 Results . 56

8 Discussion 61

9 Conclusion 65

Bibliography 65

A Analytical Projection I
A.1 Fourier Motzkin Projection Algorithm I
A.2 Pre(X) of the AFI-Model using Hypercube Constraints II
A.3 One-Step Controllable Set for the AFI-Model with Hyperrectangle

Constraints . III

B Inner Approximation of Symmetric Polytopes V

C Experimental Testing IX
C.1 CVXgen Optimization Problem Statement IX
C.2 Controller Parameters . XI

x

List of Figures

1.1 Vehicle approaching slower traffic on a multilane road 1
1.2 Spatial localization and boundaries of a lane change maneuver 4
1.3 Discrete visualization of location from where feasibility of the maneu-

ver can be guaranteed. Blue = high speed, green = medium speed,
red = low speed. 5

2.1 A convex and a non-convex set in R2 8
2.2 R2 divided into two halfspaces by a hyperplane 8
2.3 Projection of a polytope in R2 onto the x1-subspace 10
2.4 Minkowsky sum of two polytopes . 10
2.5 Convex set in H-representation . 11
2.6 Convex set in V-representation . 11
2.7 Evolution of the n-step controllable set for the discrete integrator . . 15

3.1 Road coordinate system . 17
3.2 Two track vehicle bodel . 18
3.3 Bicycle model . 19
3.4 Comparison between tire models . 21
3.5 Scaling of the Safe Handling Envelope for different velocities 24

4.1 Receding horizon principle . 25

5.1 Projection of feasible states for a car approaching a static obstacle . . 32
5.2 Hyperrectangle shaped inner approximation of the 1-step controllable

set for the discrete integrator . 34
5.3 Calculation of the N-step controllable set without approximation . . . 38
5.4 Symmetric road geometry for lane change predictions 39
5.5 Inner approximation algorithm for symmetric polytopes 40
5.6 Slices of the control invariant set for 70 km/h 41
5.7 Projections onto the lateral position and slices at β = 0, r = 0 and

ψ = 0 of n-step controllable sets for a lane change maneuver with 70
km/h . 42

5.8 Slices at β = 0 of different N -step controllable set for the lane change
maneuver at 70 km/h . 43

6.1 Visualization of the influence of the correction step on obstacle rep-
resenation in the horizon . 47

xi

List of Figures

6.2 Representation of the environment boundaries as system constraints
at discrete locations . 48

6.3 S-Function Builder block that implements the CVXgen code 49
6.4 Simulation results of the double lane change with different prediction-

horizon lengths . 50
6.5 CarMaker Simulink Framework . 50

7.1 Double lane change track . 53
7.2 SR 60 Orbit steering robot mounted in the test vehicle 54
7.3 Network topology of the experimental setup 55
7.4 Brush tire approximation from measurement data 56
7.5 Experimental results from the double lane change maneuver with 50

km/h with 25 m pop-up obstacle . 58
7.6 Experimental results from the double lane change maneuver with 70

km/h with 30 m pop-up obstacle . 59
7.7 Experimental results from the double lane change maneuver with 100

km/h with 45 m pop-up obstacle . 60

8.1 Comparison of experimental results with numerical feasibility predic-
tions for lane change with 70 km/h 62

xii

List of Tables

6.1 Specification of the prediction horizon 50

7.1 Double lane-change track dimensions 53
7.2 Volvo S60 vehicle parameters . 56
7.3 Safe handling envelope violation during double lane change maneuvers 57

C.1 Controller parameters used in experimental testing XI

xiii

List of Tables

xiv

1
Introduction

With car manufacturers and tech companies running an arms race towards making
the autonomous vehicle a reality, the field of vehicle motion control attempts to
solve the sub-problem of using steering, braking and throttle to control the motion
of the vehicle within its environment.

Figure 1.1: Vehicle approaching slower traffic on a multilane road

This thesis is focused on vehicle motion control in autonomous lane change scenarios
as shown in figure 1.1. As a vehicle approaches slower traffic on a multilane road,
the control algorithm steering the car needs to find a way to avoid the obstacle in
its path. Model predictive control (MPC) has proven to be an efficient approach for
these types of control problems [8]. The MPC controller studied in this thesis finds
the sequence of optimal steering commands to avoid the slower vehicle and change
the lane as the solution of a finite time optimal control problem.

minimize: a function of steering

subject to: vehicle dynamics
collision avoidance
lane boundaries

(1.1)

By using models of the vehicle dynamics and the environment, the optimization
algorithm predicts an optimal path together with the necessary steering actions to
drive it. It is intuitively clear for every driver that the existence of such a path to
avoid a slower vehicle ahead is very much dependent on the vehicle’s own speed, the
speed of the preceding vehicle as well as the dimensions of the road.
For the situation depicted in figure 1.1 the controller may easily find a solution
when the car is driving 20 km/h faster than the truck but it may be impossible to
calculate a path to avoid the truck if it is standing still and the vehicle is travelling
130 km/h.

1

1. Introduction

With model predictive control becoming more and more popular for vehicle motion
control, and extensive body of work on this subject has been developed in recent
years.

1.1 Literature Review
In the mid 2000s Borelli, Falcone et al. [4], [11], [12] applied online model predictive
control to implement steering algorithms for autonomous road vehicles. Using a
Linear Time Varying (LTV) approach, they linearized the vehicle dynamics around
the previous optimization results and the current velocity of the vehicle. They were
able to implement real time capable controllers for path tracking with promising
results. In their work they assumed a known trajectory and they succeeded in
tracking predefined paths.
To account for a changing environment, such as unexpected obstacles, Falcone et
al. [13] introduced a hierarchical approach that allowed online replanning of the
trajectories which act as a reference for the low level path following controller. This
general structure is widely adopted in literature with multiple different approaches
on how this top level trajectory planning problem can be solved efficiently. In their
work Falcone et al. used a vehicle representation as a point mass to represent the
situation as a convex quadratic programming (QP) problem that can be solved
efficiently.
Funke [16] et al. used a parametrizable sequence of clothoids to plan efficient tra-
jectories for obstacle avoidance.
Both approaches use the path curvature and the available road friction to determine
an upper bound on the velocity for which the path is assumed to be feasible. In a
similar approach, Gray et al. [20] used a path planning algorithm based on a set
of parametrizable, predefined motion primitives that can be combined to achieve
efficient trajectory calculations.
Maintaining the approach of hierarchically separated path planning and path follow-
ing, Gao et al. [18] used a general purpose nonlinear solver (NPSOL) to approach the
path planning problem with fewer simplifications. By solving the general nonlinear
problem they were able to determine lateral and longitudinal velocity of the desired
path in one step. At the same time they still implemented an efficient QP-based
path following algorithm as a low level steering controller. While this approach is
very general, the solution of the path planning algorithm does not provide conver-
gence guarantees and is limited to relatively slow controller sampling rates of 200 ms
in their experiments. Such a slow path replanning frequency may not be sufficient to
control vehicles travelling at highway speeds. The vehicle will only start reacting to
a sudden appearance of an obstacle after it has been detected and incorporated into
the solution of the path planner. At typical highway speeds of 130 km/h this means
that the vehicle will travel for more than 7 m before the path planning algorithm
has calculated a new solution and the steering controller can start to react to the
new situation.
To avoid the use of computationally expensive general purpose nonlinear solvers,
Carvalho et al. [7] used an approximation based on sequential quadratic program-
ming (SQP) to repetitively solve and relinearize the problem in one time step while

2

1. Introduction

using an efficient QP-solver algorithm. While the computation time of this approach
can be manually bounded by limiting the number of solver iterations, the approach
cannot guarantee convergence either.
In an alternative approach Hsu and Gerdes [24] as well as following work by Beal,
Erlien and Funke [1], [2], [9], [10], [17] demonstrated a steering controller that com-
bines vehicle stability boundaries and environmental boundaries in one hierarchy
level to be able to avoid obstacles without a separate path replanning step. By in-
troducing environmental constraints in the low level steering controller, it becomes
capable of reacting directly to unexpected obstacles that suddenly appear. They
showed experimental results at controller update rates up to 100 Hz. To achieve
this frequency they linearize the problem around the current vehicle velocity and
utilize efficient problem specific solvers for convex optimization in combination with
powerful computing hardware.
While there has been extensive work and great results from different model pre-
dictive control approaches for vehicle motion control, the overall trade-offs between
generality and accuracy of the solution on the one side and computation time on
the other side still remain a challenge and the optimal approach to this problem is
yet an open field of research.
Trajectory planning algorithms that utilize parametrized maneuvers or nonlinear
optimization can yield pre-calculated trajectories and desired velocity profiles but
typically suffer a trade-off between computational complexity and a need for sim-
plifications that neglect some aspects of the vehicle dynamics.
Approaches that utilize convex QP-solvers have shown to be effective in line fol-
lowing, vehicle stabilization and obstacle avoidance but the problem statements are
linearized and parametrized by velocity. While this is not problematic for simple
path tracking controllers, where the current vehicle speed provides a good approxi-
mation over a relatively short prediction horizon, this property becomes more critical
for controllers that consider longer horizons. These extended horizons are typically
needed if road boundaries and obstacles are to be considered. For problem formu-
lations of that type the velocity may not be assumed as given and the choice of the
desired velocity along the horizon will determine the existence of the solution of the
optimization problem.

1.2 Problem Statement
For this thesis we consider a controller similar to [9] which considers both, vehicle
handling limits as well as environmental boundaries in a linearized, convex prob-
lem formulation. For this type of controller the problem statement (1.1) becomes
parametrized by velocity. We consider the application of this controller in a highway
lane change maneuver as shown in figure 1.1 where the road is restricted by solid
boundaries that have to be avoided at all costs.
To describe the environmental boundaries in this problem the absolute velocity of
the ego vehicle and the differential velocity between the ego and the obstacle in the
way can be used to estimate the location where the vehicles would collide. Assuming
constant velocities we can locate where the potential collision would occur as shown
in figure 1.2a. Figure 1.2b illustrates how such problem can be described by lane

3

1. Introduction

boundaries and the location where the ego vehicle must have translated to the other
lane can be described. Therefore this problem can be treated equally to an obstacle
avoidance maneuver with a stationary object.

(a) Lane change situation and projected location of the
collision

(b) Lane boundaries and target location

Figure 1.2: Spatial localization and boundaries of a lane change maneuver

Without trying to precalculate a path or attempting to solve the parametrized con-
vex optimization problem of the MPC controller for multiple different velocities, we
aim to determine an upper bound on the velocity such that we can guarantee that
a solution to the problem exists and the vehicle can pass the obstacle. We attempt
to classify the sets of vehicle states, located at discrete locations before the pro-
jected point of collision, from where, for discrete constant velocities, feasibility for
the controller can be guaranteed and the the vehicle can safely pass the preceding
vehicle.
This upper bound would allow us to classify whether the current vehicle speed is safe
to attempt the lane change or if heavy braking must be considered as an alternative
measure to ensure the passenger safety. Findings in [16] indicate that, for serious
obstacle maneuvers where the distance to the obstacle and the vehicle speed becomes
critical, full braking and consecutive steering is an adequate approach to an obstacle
avoidance maneuver.
Figure 1.3 visualizes the idea behind this approach. By illustrating and examining
states, for which the maneuver is feasible for different, distinct velocities we we can
check if the current vehicle state is feasible. For a high speed, shown in blue, the
vehicle’s current state is not contained in the locations for which a feasible trajectory
can be guaranteed. For lower speeds as indicated in yellow or red the feasibility for
the maneuver may be guaranteed.

1.3 Structure of the Thesis
In the following three chapters the necessary methods and tools used in this work
are introduced. An overview of the necessary basics in invariant set theory and
reachability analysis is provided in chapter 2. In chapter 3 the vehicle models used
to mathematically describe the motion of the vehicle for simulation and control

4

1. Introduction

Figure 1.3: Discrete visualization of location from where feasibility of the maneuver
can be guaranteed. Blue = high speed, green = medium speed, red = low speed.

design are presented. Chapter 4 introduces the fundamentals of model predictive
control used in this thesis and explains some of the challenges and restrictions of
using convex optimization in online MPC which completes the introductory topics.
Chapter 5 provides the core study of the problem at hand. Different approaches are
examined and the challenges involved are illustrated. An approach for a solution
that allows the use of this concept is proposed.
To gather comparison data, chapter 6 describes the design and implementation of a
model predictive controller that is capable of controlling the vehicle in a lane change
maneuver.
Experimental testing procedures and data from real world autonomous lane change
maneuvers are illustrated in chapter 7 for comparison with the theoretical predic-
tions.
The closing chapters 8 and 9 provide a comparison between the experimental data
and the theoretical calculations derived in chapter 5 and a discussion on the findings
of the thesis.

5

1. Introduction

6

2
Invariant Set Theory and

Reachability Analysis

Invariant set theory and reachability analysis are a powerful tools to mathematically
describe and evaluate possible trajectories of dynamic systems within their state-
space. This chapter provides an introduction to the methods from these fields that
are used to evaluate the feasibility of the highway lane change maneuver.
For a detailed background on the computational geometry involved, the reader is
referred to G. Ziegler’s Lectures on Polytopes [30]. A background on the applications
of these general concepts in the field of constrained optimization and control is
presented in Constrained Optimal Control for Linear and Hybrid Systems by F.
Borrelli [5]. The following definitions provide a condensed excerpt from [5] and [30]
of the most important concepts used in this work. For a further background a survey
of applications of invariant set theory in control can be found in [3].

2.1 Convex Sets
A Set S ∈ Rn is called convex if

λz1 + (1− λ)z2 ∈ S for all z1, z2 ∈ S, λ ∈ [0, 1]. (2.1)
This can be interpreted as that any line that connecting any two points in the set
is also contained in the set. This concept is visualized in figure 2.1.

2.1.1 Hyperplanes & Halfspaces
A Hyperplane is described by a vector a ∈ Rn, a 6= ∅ and a scalar b ∈ R and is
formed by

S =
{
x ∈ Rn | aTx = b

}
. (2.2)

Geometrically a hyperplane can be interpreted as the set of points orthogonal to a
normal vector with a fixed offset from the origin.
The set of points located on either side of a hyperplane can be described by a
halfspace. A halfspace is defined by a linear inequality in the form

S =
{
x ∈ Rn | aTx ≤ b

}
. (2.3)

Both hyperplanes as well as halfspaces are convex sets. Figure 2.2 illustrates a
hyperplane and the two halfspaces created by it in 2 dimensions.

7

2. Invariant Set Theory and Reachability Analysis

(a) Convex set (b) Non-convex set

Figure 2.1: A convex and a non-convex set in R2

(a) Straight line illustrating a hyper-
plane in R2

(b) Halfspace in R2

Figure 2.2: R2 divided into two halfspaces by a hyperplane

8

2. Invariant Set Theory and Reachability Analysis

2.1.2 Polyhedra and Polytopes
Polytopes and polyhedra are geometrical objects with flat sides. They are sets that
can be described by the intersection of a finite number of halfspaces. This thesis
follows the definitions from Ziegler [30].
A polytope is a bounded polyhedron which means that it does not contain any ray
of the type {x + ty | t ≥ 0} for any y 6= 0. This means its outer bound is defined
in all directions and it has a finite volume in Rn.

2.2 Operations on Polytopes
This section introduces basic operations on Polytopes.

2.2.1 Convex Hull
The tightest polytope that encloses a set of points is called its convex hull. For a
set of points V = {V i}NVi=1 with V i ∈ Rn it is defined as

conv(V) =

x ∈ Rn | x =
NV∑
i=1

αiV i, 0 ≤ αi ≤ 1,
NV∑
i=1

αi = 1

 . (2.4)

2.2.2 Vertex Enumeration
Vertex enumeration is the dual operation of the convex hull. If the hyperplanes
bounding a polytope are known, vertex enumeration is the process used to calcu-
late the extreme points of a polytope. Vertex enumeration is typically an expensive
operation as the calculation is exponential in the the number of facets and com-
mon algorithms to solve the vertex enumeration problem are the double description
method or reverse search [5].
Given a polytope P the set of its vertices V is calculated using the vertex enumer-
ation operation

V = {Vi}NVi=1 = vert(P). (2.5)

2.2.3 Projection
By projecting a polytope P ∈ Rn+m ,

P =
{

[x′ y′]′ ∈ Rn+m | P xx+ P yy ≤ P c
}
⊂ Rn+m (2.6)

onto a lower dimensional subspace Rn, a new lower dimensional polytope

projx(P) = {x ∈ Rn | ∃ y ∈ Rm | P xx+ P yy ≤ P c} ⊂ Rn (2.7)

is decribed.
Figure 2.3 illustrates the concept of a projection geometrically from 2 dimensions
to one dimension. The projection includes all values in R1 for which the original

9

2. Invariant Set Theory and Reachability Analysis

polytope P is defined in R2. This idea can be generalized to arbitrary dimensions.
The projection describes the set of states in the remaining dimensions for which
the set was defined in any location of the dimension that is being removed in the
projection.

Figure 2.3: Projection of a polytope in R2 onto the x1-subspace

2.2.4 Minkowsky sum

The Minkowsky sum is an operation on two polytopes P and Q that forms another
polytope. The sum is the set that contains all possible combinations of sums of the
points p ∈ P and q ∈ Q. The concept is visualized in figure 2.4.

P ⊕Q := {p+ q ∈ Rn | p ∈ P , q ∈ Q} (2.8)

Figure 2.4: Minkowsky sum of two polytopes

10

2. Invariant Set Theory and Reachability Analysis

2.3 Representations of Convex sets

2.3.1 H-Representation
For the computational representation of sets, two forms of notations are used. The
H-representation of a polyhedron describes the intersection of a finite number of
closed halfspaces in Rn

P = {x ∈ Rn | Ax ≤ b} . (2.9)

The set of inequalities Ax ≤ b describes a finite number of halfspaces bounding the
polytope in Rn.

Figure 2.5: Convex set in H-representation

2.3.2 V-Representation
An alternative notation to describe a bounded polyhedron is the vertex represen-
tation. By describing the location its extremal points a polytope can be uniquely
identified. A V-polytope is generated by the convex hull of a finite set of points
V = {Vi}Nvi=1, where the convex hull is the smallest convex set containing all the
points.

P = conv(V) (2.10)

Figure 2.6: Convex set in V-representation

2.3.3 Properties of H- and V-Representations
Any polytope in H-representation can be represented by a V-representation and vice
versa. For a mathematical proof the reader is referred to [30]. The H-representation
of a polytope can be calculated from a V-polytope using the convex hull operation.
To move from a H-representation to a V-representation the vertex enumeration
operation is used.

11

2. Invariant Set Theory and Reachability Analysis

BothH- and V-polytopes can contain redundancies. A polytope inH-representation
in Rn bounded by m halfspaces is said to be in minimal representation if the removal
of any row [

a(i,1), ..., a(i,n)
]
x ≤ bi, i = 1, ...,m (2.11)

would change the polytope.
Similarly a V-polytope is said to be in minimal representation if the removal of
any point Vj would change it. A minimal V-polytope is described by the set of its
vertices. A non-minimal representation can contain an arbitrary number of points
within the interior of the polytope.

2.4 Invariant Sets
This section introduces a number of set definitions in the context of discrete time
linear systems. Denote by f() the state update function of a discrete time linear
system with subject to external inputs u(k).

x(k + 1) = f(x(k), u(k)) = Ax(k) +Bu(k) (2.12)

System states and inputs are subject to the constraints

x(k) ∈ X , u(k) ∈ U (2.13)

which are described by the convex polytopes

X , {x |Hx ≤ h}
U , {u |Huu ≤ hu} .

(2.14)

The system is assumed to be n-dimensional in state and subject to m-inputs.

2.4.1 Reach()-Set
The one step reachable set for the system (2.12) describes the set of states that can
be reached by the function f() under some input u ∈ U . It is defined for a set of
initial states S and described by:

Reach(S) , {x ∈ Rn | ∃ x(0) ∈ S, ∃ u(0) ∈ U s.t. x = f(x(0), u(0))} (2.15)

2.4.2 Pre()-Set
As the dual of the one step reachable set, Pre() sets describe the set of the system
(2.12) that can evolve to a target set S in one step under some input u ∈ U .

Pre(S) , {x ∈ Rn | ∃u ∈ U s.t. f(x, u) ⊆ S} (2.16)

The algorithm presented in [5] to calculate the Pre() for a non-autonomous system
is based on the description of the state and input constraints by the polytopes X
and U in H-representation.

12

2. Invariant Set Theory and Reachability Analysis

Pre(S) is calculated by a linear mapping of the state constraints through the system
dynamics.

Pre(S) , {x ∈ Rn | ∃ u ∈ U s.t. f(x, u) ∈ S}

,
{
x ∈ Rn | ∃ u ∈ Rm s.t.

[
HA HB

0 Hu

] [
x
u

]
≤
[
h
hu

] } (2.17)

This definition yields a resulting polytope in the n + m-dimensional state-input
space. To describe Pre(X) in the n-dimensional state space a projection operation
as described in section 2.2.3 can be used.

2.4.3 Control Invariant Set
Generalizing this idea, we can describe a set of states C for which there exist an
input u ∈ U such that the system can remain within C ⊆ X for all future states.
The set C ⊆ X is characterized as a control invariant set for the system (2.12) if
and only if

C , {xk ∈ Rn | ∃ uk ∈ U , xk+1 ∈ C} (2.18)
The set that contains all invariant sets for a system (2.12) subject to the constraints
(2.13) is called maximal control invariant set C∞.
The following algorithm provided in [5] shows the calculation for the maximal control
invariant set:

Data: State Update Function f(x, u), Set of State Constraints X , Set of
Input Constraints U

Result: C∞
k = 0 ;
Ω0 = X ;
Ωk+1 = Pre(Ωk + 1) ∩ Ωk ;
while Ωk+1 6= Ωk do

k = k + 1 ;
Ωk+1 = Pre(Ωk) ∩ Ωk;

end
C∞ = Ωk+1;

Algorithm 1: Calculation of the Maximal Control Invariant Set

2.4.4 N-Step Controllable Set
For an arbitrary target set O ⊆ X the set of states that can be driven to an arbitrary
target set O in N -steps is called the N-step controllable set KN(O).
It is defined by:

KN(O) ,
{
x0 ∈ Rn | ∃ {uk ∈ U}N−1

0 , {xk ∈ X}N−1
0 , xN ∈ O

}
(2.19)

This set is computed in a very similar way as the maximal control invariant set
by iteratively calculating the Pre() and determining its intersection with the state

13

2. Invariant Set Theory and Reachability Analysis

constraints. Algorithm 2 presets the procedure to calculate the N-step controllable
Sets for a linear discrete time system.

Data: Target Set O, Number of Iterations N , State Update Function
f = (A,B), State Constraints X , System Input Constraints U

Result: KN(O)
K0(O) = O ;
for k ∈ [0, 1, 2, ..., N] do
Kk+1(O) = Pre(Kk) ∩ X

end
Algorithm 2: Calculation of the N-Step Controllable Set

2.5 Example: A Simple Discrete Integrator
The meaning of these definitions can be illustrated by a small example in two dimen-
sions. Consider a discrete time integrator system with a sampling time of ts = 0.1
s defined by [

x1(k + 1)
x2(k + 1)

]
=
[
1 ts
0 1

] [
x1(k)
x2(k)

]
+
[

0
ts

]
u(k) (2.20)

subject to the state and input constraints

X ,

x ∈ R2 |

1 0
−1 0
0 0
0 −1

[
x1(k)
x2(k)

]
≤

1
1
1
1

U ,

{
u(k) ∈ R |

[
1
−1

]
u(k) ≤

[
1
1

]}
.

(2.21)

Using algorithm 2 we can calculate the N -step controllable set for the target set X .
For the resulting set of states we can guarantee that the future trajectory can remain
within the state constraints X for N -steps while using control action contained in U .
Iterating this procedure for a finite number of steps yields an outer approximation
of the maximal control invariant set introduced in section 2.4.3.
The results of this calculation are shown in figure 2.7. The one-step maximal control-
lable set is only slightly reshaped compared with the original state constraints. Two
additional hyperplanes were added to introduce tighter bounds on the polytope. Af-
ter multiple iteration steps the shape of the set becomes skewed. The approximation
becomes round shapes and the number of hyperplanes increases significantly.
The shape can be intuitively explained by examining the system equations (2.20).
Consider the case when the derivative state x2 = 1. Due to the input constraints for
each discrete step x2 can only decrease by 0.1. This means to avoid that the state x1
to violates the constraints in the future we can calculate how much x1 will change
over the period when x2 is driven from one to zero to avoid a further increase of x1.

14

2. Invariant Set Theory and Reachability Analysis

(a) 1-step controllable set (b) 20-step controllable set

Figure 2.7: Evolution of the n-step controllable set for the discrete integrator

Using this approach we can derive that

x1 ≤ 1− 0.1 ∗ (1 + 0.9 + 0.8 + ...+ 0.1) = 0.45. (2.22)

Therefore x1 may not be larger than 0.45 if x2 = 1.
Assume we would attempt to formulate a controller that ensures that the state and
input constraints of the system are never violated. It is clear that there exists no
solution for such a controller if the current state of the system was outside the
maximum control invariant set. The existence of a feasible control law to solve the
problem depends on the initial state of the system.

15

2. Invariant Set Theory and Reachability Analysis

16

3
Vehicle System Modelling

In this chapter we introduce the dynamic models of the vehicle used in this work.
We describe the motion in the vehicle reference frame in terms of longitudinal and
lateral velocities u and v and the yaw rate r.
In this thesis we describe the vehicle’s the position on a straight multilane road. The
coordinate s describes the position along the road, e denotes the the lateral offset
from the center of a desired lane and ψ measures the heading error relative to the
road orientation as illustrated in figure 3.1.

Figure 3.1: Road coordinate system

Assuming small angles for the vehicle heading angle ψ and u � v we can describe
the motion of the vehicle in this coordinate system by

ψ̇ =r
ė = sin(ψ) u+ cos(ψ)v ≈ ψ u+ v

ṡ = cos(ψ)u− sin(ψ)v ≈ u− ψ v ≈ u.

(3.1)

For each position along the road s we define lane boundaries

emin(s) ≤ e(s) ≤ emax(s) (3.2)

limiting the available lateral space on the road.
The vehicle is subject to longitudinal forces Fx as well as lateral forces Fy. The
normal tire forces are denoted by Fz. The vehicle is characterized by its mass m
and its moment of inertia Iz. The wheelbase is denoted by l and the distances from
front and rear axle to the location of the center of gravity are denoted by a and b
and the track width is d. The steering angle of the front wheels is δ and the tire slip
angles are α.

17

3. Vehicle System Modelling

3.1 Two Track Model

The two track model is a general model to describe the planar motion of a vehicle.
It takes into account the forces acting on the vehicle on the four individual wheels.
It is derived from first principles by calculating the force balances for lateral and
longitudinal acceleration and a moment balance for the yaw rotation as shown in
figure 3.2. The interaction with the road of each of the individual tires is modelled
by a separate forces {Fxi}4

i=1 and {Fyi}4
i=1 oriented longitudinal and lateral to the

tire’s heading direction. The equations for the two track model are shown in (3.3)

m (u̇− rv) = cos δ (Fx1 + Fx2)− sin δ (Fy1 + Fy2) + Fx3 + Fx4

m (v̇ + ru) = cos δ (Fy1 + Fy2) + sin δ (Fx1 + Fx2) + Fy3 + Fy4

Iz ṙ =a (cos δ (Fy1 + Fy2) + sin δ (Fx1 + Fx2))− b (Fy3 + Fy4)
+ d (sin δ (Fy1 − Fy2) + cos δ (Fx2 − Fx1)− Fx3 + Fx4) .

(3.3)

The equations (3.3) are highly nonlinear due to the trigonometric functions and
the multiplicative coupling between the states. While this model is well suited for
simulation applications, simpler models are better suited for control design.

Figure 3.2: Two track vehicle bodel

3.2 Bicycle Model

To formulate the model predictive control problem as a convex optimization problem,
for which efficient solver exist, a less complex and linearized version of the vehicle
model is necessary. The equations in (3.3) can be simplified by lumping the left and
right tire forces together as illustrated in figure 3.3.

18

3. Vehicle System Modelling

Fyf =Fy1 + Fy2

Fyr =Fy3 + Fy4
(3.4)

Furthermore we assume small angles for the steering angle

sin δ =δ
cos δ =1

. (3.5)

Combining equations (3.3) and using the assumptions (3.4) and (3.5) we can derive
the equations of motion for the planar rigid one track model, commonly called the
bicycle model

u̇ =Fxf + Fxr − δFyf
m

+ rv

v̇ =Fyf + Fyr + δFxf
m

− ru

ṙ =aFyf − bFyr
Iz

.

(3.6)

Figure 3.3: Bicycle model

We can describe the side slip angle β of the vehicle at its center of gravity and its
small angle approximation by

β = tan−1
(
v

u

)
≈ v

u
. (3.7)

For the bicycle model in figure 3.3 we can denote the front and rear tire slip angles
by

αf =arctan
(
v + ar

u

)
− δ ≈ β + a

u
r − δ

αr =arctan
(
v − br
u

)
≈ β − b

u
r.

(3.8)

19

3. Vehicle System Modelling

3.3 Tire Models
Since the entire interaction of a vehicle with the road is based on the distribution
of forces through four small tire contact patches, each approximately the size of
a hand, the modelling of this interaction is crucial to the modeling of the vehicle
motion as a whole.
Pacejka [28] describes several state-of-the-art tire models. In this thesis two different
tire models are used. Due to the necessity of analytical calculation and the restriction
to linear model formulations for control design, this thesis makes use of simple
parameterizable tire models.

3.3.1 Linear Tire Model
The linear tire model is such a model that assumes a simple linear relationship
between tire side slip angle and the generation of lateral tire force. This model is
fairly accurate for small slip angles but the accuracy quickly decreases as the lateral
force reaches approximately half its maximum value as shown in figure 3.4. The tire
model is simply characterized by the so called cornering stiffness

Fy = −Cαα. (3.9)

3.3.2 Brush Tire Model
The more complex brush tire model is an approximation of the tire forces under the
assumption that the contact patch of the tire is subject to a parabolic vertical load
distribution along the contact patch. Due to the slip angle of the tire the lateral
deflection of the tire is larger towards the rear of the contact patch. Thus individual
parts of the contact patch can be either in adhesive or sliding friction. The brush
tire model used in this thesis is similar to the the one proposed by Fiala [15] and
was presented by Fromm in [21] and used by Hindiyeh and Gerdes in [2] as well as
in multiple following pieces of work e.g. by Erlien and Gerdes in [9].
The advantage of the brush tire model is that it gives a more accurate description
of the vehicle tires behavior by modelling the saturation of the lateral tire force
depending on the road friction coefficient. At the same time the brush tire model
sill only requires two parameters which can easily be identified from experimental
data.
The saturation of tire forces is modelled as shown in equation (3.10) and can be
applied to individual tires as well as lumped front or rear axles

Fy =

−Cα tanα + C2
α

3µFz | tanα| tanα− C3
α

27µ2F 2
z

tanα3 , |α| ≤ αsl

−µFzsgnα , |α| > αsl.
(3.10)

The lateral force is saturated at its peak value for slip angles where the entire contact
patch is sliding [23]. This value can be stated analytically and results in

αsl = arctan3µFz
Cα

. (3.11)

20

3. Vehicle System Modelling

While more advanced tire models can capture additional phenomena, such as re-
duced friction for high tire slip angles or the coupling of longitudinal and lateral tire
forces, the models used in this thesis disregards these effects. Since the controller in
this thesis attempts to control the vehicle only in the region up to the peak friction
value, accounting for these effect is not necessary in this context.
An example tire curve from the brush tire model in comparison with the linear
model and a more complex Magic Tire Formula is shown in figure 3.4. The Magic
Tire Formula and the brush tire model have matching peak friction values. All three
models are parametrized with the same cornering stiffness. The figure shows how,
in addition to the saturation effect, the Magic Tire Formula also accounts for the
decrease in lateral force past when the tire starts sliding.

−25 −20 −15 −10 −5 0 5 10 15 20 25

−1

0

1

·104

Slip Angle [°]

La
te
ra
lF

or
ce

[N
]

Linear tire model
Brush tire model
Magic Tire Formula

Figure 3.4: Comparison between tire models

3.4 Linear Bicycle model
During straight line vehicle motion we can assume

u = u

δ = 0
v = 0
r = 0.

(3.12)

By linearizing the equations of motion of the bicycle model (3.6) for small deviation
around the constant velocity u and conditions for straight line motion (3.12) we can
derive the linear bicycle model

v̇ =Fyf + Fyr
m

− ru

ṙ =aFyf − bFyr
Iz

.
(3.13)

21

3. Vehicle System Modelling

Using the approximation of the vehicle side slip from equation (3.7), (3.6) can be
stated in terms of sidslip and yaw rate as

β̇ =Fyf + Fyr
mu

− r

ṙ =aFyf − bFyr
Iz

.
(3.14)

3.5 Force Input Model
By combining a linear rear tire model (3.9) and the approximation for the rear slip
angle (3.8) we can state the rear tire force as a function of the vehicle states β and
r as

Fyr = −Cαrαr = −Cαr

(
β − b

u
r

)
. (3.15)

By replacing the rear tire force in the linear bicycle model (3.14) with equation
(3.15), the lateral vehicle dynamics are derived as a function of the lateral force
generated by front steering Fyf as

β̇ = −Cαr
mu

β +
(
bCαr
mu2 − 1

)
r + 1

mu
Fyf

ṙ = bCαr
Izz

β − b2Cαr
Izzu

r + a

Izz
Fyf .

(3.16)

Since the effects from the front tire enter the dynamics of the bicycle model simply
as a lateral force input, the non-linearity of the front tire can be captured outside
the dynamic equations. This is not possible for the rear tire as the rear tire forces
are directly coupled with the vehicle states.
In state space formulation the equations of motion of the linear force input model
(3.16) can be stated as[

β̇
ṙ

]
=
[
−Cαr

mu
bCαr
mu2 − 1

bCαr
Izz

− b2Cαr
Izzu

] [
β
r

]
+
[1
mu
a
Izz

]
Fyf . (3.17)

3.6 Linear Time Varying Model
To obtain a better approximation of the nonlinear rear tire properties illustrated in
figure 3.4 in dynamic maneuvers, the rear tire force can be linearized around the
current rear slip angle instead of the origin as shown in model (3.17).
Using a first order Taylor expansion of the brush tire model 3.10, the lateral rear
tire force Fyr at a specific operating point αr is described by a current lateral tire
force F yr and a local cornering stiffness C̃αr.

Fyr = F yr + C̃αr (αr − αr) (3.18)

22

3. Vehicle System Modelling

By replacing the rear tire model (3.15) with (3.18) in the linear bicycle model (3.14)
the model (3.17) can be modified to become

[
β̇
ṙ

]
=
− C̃αr

mu
bC̃αr
mu2 − 1

bC̃αr
Izz

− b2C̃αr
Izzu

 [β
r

]
+
[1
mu
a
Izz

]
Fyf +

 (F yr+C̃αrαr)
mu

−b(F yr+C̃αrαr)
Izz

 . (3.19)

Using this technique, the model is able to account for the saturation effects in-
corporated in the brush tire model. This approach can be used for control design
when the current rear sideslip can be measured from high precision sensors to in-
crease model accuracy over a short prediction horizon. Therefore the time varying
model (3.19) yields better accuracy in dynamic maneuvers than the linear force in-
put model in equation (3.17) and still fulfils the requirements imposed to be used
in efficient optimization algorithms. The model was used by Beal and Gerdes [1]
for model predictive control applications at the limits of handling. However it can
only be used when a good estimate for the rear side slip angle is available. For the
feasibility predictions derived in this work this model cannot be used since we don’t
have any knowledge about the future vehicle motion and therefore are forced to
used the LTV model with the rear tire linearization around the origin as presented
in equation (3.17)

3.7 Safe Handling Envelope
To ensure handling stability for the vehicle models 3.17 and 3.19 yaw rate and
sideslip must be bounded. For excessive values of yaw rate and sideslip a vehicle
can become unstable and spin out [1].
Hsu and Gerdes [24] showed an approach that uses model predictive control in
combination with a safe handling envelope that imposes limits on yaw rate and side
slip that can help a vehicle avoid approaching these situations before they occur.
As a limit on yaw rate they use the maximum possible steady state yaw rate rmax
based on the vehicle tire friction µ. Using the linear bicycle model from equation
(3.14) and setting β̇ = 0 and ṙ = 0 we can solve for the yaw rate limits

|r| ≤ rmax =

Fyrmax (1+b/a)

mu
| Fyfmax ≥ b

a
Fyrmax

Fyrmax (1+a/b)
mu

| Fyfmax < b
a
Fyrmax

. (3.20)

Using the description for the rear slip angle αr = β− b
u
r, a natural limit for the side

slip arises. By using equation (3.11) and limiting the sideslip to the value where the
rear tire reaches its maximum force αr ≤ αrsl the side slip bound becomes

b

u
r − αrsl ≤ β ≤ b

u
r + αrsl . (3.21)

Both bounds on this safe handling envelope scale naturally with the longitudinal
velocity u which makes them applicable over a large range of velocities. In their work
Beal and Gerdes showed that for any point on the safe handling envelope a controller
is capable of keeping the vehicle within these boundaries. These constraints describe

23

3. Vehicle System Modelling

−10 0 10
−40

−20

0

20

40

Side slip β [deg]

Ya
w

R
at
e
r
[d
eg
/s
]

50 km/h
80 km/h
100 km/h

Figure 3.5: Scaling of the Safe Handling Envelope for different velocities

an invariant set for yaw rate and side slip that will be used in further control design
and reachability studies in this work.

24

4
Model Predictive Control

This chapter introduces the basic concepts of model predictive control to illustrate
some challenges for utilizing MPC as a real time control method for vehicle motion
control. This chapter uses notations and derivation from [5].
Model predictive control is an optimal control approach typically aimed at solving
control problems in the presence of constraints. These can be actuator constraints
such as limited steering angles or steering rates in a car or constraints that describe
requirements on the system state. This type of constraint can for example be a
limit on a maximum allowed velocity in some direction or a formulation of road
boundaries that shall not be crossed.
By minimizing or maximizing a cost function the optimal inputs to the system can
be determined by solving an optimization problem. Depending on the size of the
problem the solution of such optimization problem is a computationally expensive
process.
The approach became popular in the process industry in the 1980s. Model predic-
tive control provided the possibility to solve complex multi-variable control problems
that were earlier difficult to handle. As these system typically involved very slow
dynamics, it was sufficient to adjust input over the period of minutes and model pre-
dictive control schemes could be applied with the limited computing power available
[26].

Figure 4.1: Receding horizon principle

25

4. Model Predictive Control

Enabled by the increasing computing power available in embedded systems, model
predictive control for vehicle motion became a vibrant field of research in the past
10 years [8].

4.1 Receding Horizon Principle
The general idea of receding horizon control consists of repetitively solving a finite
time optimal control problem as illustrated in figure 4.1. The behavior of the system
is predicted over a discrete time horizon using a mathematical model of the system.
From the resulting optimal input sequence, the first element is applied as the next
input to the system. After the sampling time ts the optimal control problem is
solved again based on the updated measurements and the new prediction horizon
which is shifted one step with respect to the previous calculation [26].
A receding horizon controller can be formulated for any type of nonlinear, time-
invariant system

x(k + 1) = g (x(k), u(k)) (4.1)

subject to a set of constraints

x ∈ X
u ∈ U

(4.2)

in the form of a nonlinear programming problem [5].
Given a discrete time horizon length N and the vector of future inputs

U0→N ,
[
u′0,u

′
N−1

]
(4.3)

we can define an objective function

J0→N (x0, U0→N) , p(xN) +
N−1∑
k=0

q(xk, uk) (4.4)

that consists of stage costs q (xk, uk) for each time step of the prediction horizon
and a terminal cost p(xN).
We can formulate a general finite time optimal control problem for a current state
x(0) and the desired set of terminal set Xf as

J∗0→N = min:
U0→N

J0→N (x(0), U0→N)

subj. to: xk+1 = g(xk, uk), k = 0, ..., N − 1
h (x(t), u(t)) ≤ 0, k = 0, ..., N − 1
uk ∈ U , k = 0, ..., N − 1
xk ∈ X , k = 0, ..., N − 1
xN ∈ Xf
x0 = x(0).

(4.5)

The application of this control approach in a system with hard real time constraints
requires the solution of the optimization problem in finite time. This cannot be

26

4. Model Predictive Control

guaranteed for an arbitrary nonlinear program as shown in (4.5). While there have
been applications of general purpose nonlinear solver algorithms in automotive ap-
plications in recent years, they cannot provide convergence guarantees and have
so far been limited to relatively large sampling times due to high computational
complexity [18].
The majority of model predictive control approaches for vehicle motion control in
the past years has made use of efficient solver algorithms for convex optimization
problems [1], [2], [7], [9], [10].
These algorithms have the advantage of efficiently solving large scale optimization
problems. On the downside they require the user to simplify the general problem
(4.5) and approximate it such that the problem formulation can be represented by
a linear system with a convex cost function and affine constraints.
To fulfil these requirements the nonlinear system in (4.1) must be linearized such
that it can be represented in the form

x(t+ 1) = Ax(t) +Bu(t) (4.6)
subject to the state and input constraints

X = {x | Hx ≤ h}
U = {u | Huu ≤ hu} .

(4.7)

For the vehicle models introduced in chapter 3 we showed how the nonlinear model
(3.6) can be linearized as shown in (3.17) to fit these requirements.
The general objective function (4.4) can replaced by a quadratic version

J0 (x0, U0→N) , x′NPxN +
N−1∑
k=0

x′kQxk + u′kRuk (4.8)

to ensure that the cost function is convex. The terms Q and R are positive semidef-
inite matrices that assign cost to individual states and inputs over the prediction
horizon. The positive semidefinite matrix P assigns the terminal cost to the final
state.
This allows to describe the optimal control problem as a quadratic program

J∗0 = min:
U0→N

J0 (x(0), U0→N))

subj. to: xk+1 = Axk +Buk, k = 0, ..., N − 1
Hkxk ≤ hk, k = 1, ..., N
Hukxk ≤ huk , k = 0, ..., N − 1
x0 = x(0)

(4.9)

for which efficient algorithms exist that can be used in real time constrained optimal
control.

4.2 Modelling of Constraints
Solving a finite time optimal control problem (4.9) for a linear system (4.6) subject
to state and input constraints (4.7) there may exist initial conditions x0 ∈ X such

27

4. Model Predictive Control

that there exist no solutions to the problem without violating either input or state
constraints.
Considering the simple discrete integrator example introduced in section 2.5, it is
easy to find an initial state x0 such that there does not exist any feasible trajectory
for a controller to keep the system states within X for a finite length horizon. For
the initial state x0 = [1 1]′ there exist no allowed control action u ∈ U such that
the state x remains in X in the next time step.
If an MPC controller is faced with this situation the outcome resulting behavior is
dependent on the actual implementation of the solver used. Since no valid result can
be calculated it becomes unclear what control action should be taken. Considering
a car heading for an obstacle at highway speed this certainly presents a situation
that should be avoided.
A common way of avoiding infeasibility is to formulate state constraints as soft con-
straints [6]. Additional slack variables λi are introduced in the constraint inequalities
that are penalized extensively in the cost function if they becomes non-zero. While
input constraints in real systems are usually limited by physical constraints, state
constraints often reflect desired behavior. Therefore is may be acceptable in many
situations that it is acceptable that the state constraints can be slightly violated to
allow the existence of a valid solution.
Using soft constraints the optimization problem (4.9) can be formulated as

J∗0 = min:
U0→N

J0(x(0), U0→N) + l(λ)

subj. to: xk+1 = Axk +Buk, k = 0, ..., N − 1
Hkxk ≤ hk + λ, k = 1, ..., N
Hukxk ≤ huk , k = 0, ..., N − 1
x0 = x(0)
λ ≥ 0

(4.10)

with the additional cost term

l(λ) =

0 , λ = 0
� J0(x(0), U0) , λ 6= 0.

(4.11)

If l(λi) is much larger than the original cost function for all values λ 6= 0 then
the optimal solution remains the same as long as there exists a feasible solution
to the problem. If the problem becomes infeasible the solution will be the optimal
trajectory to bring the system back into the desired region of the state space.
While in many control problems state constraints are often desired values rather than
fixed physical limits this is a very useful strategy. A disadvantage of this strategy
however is, the increased complexity of the problem due to the additional variables.
Also the introduction of cost terms that are several orders of magnitude larger than
the original cost function J , issues with numerical accuracy and convergence may
arise and the system can become ill-conditioned.
In the lane change problem introduced in section 1.2 infeasibility can arise because
the velocity sequence u1,...N−1 chosen to linearize the vehicle model 3.17 for the indi-
vidual steps of the prediction horizon is too high. To avoid these cases of infeasibility

28

4. Model Predictive Control

the velocity profile for linearization should be chosen such that infeasibility does not
occur.

4.3 CVXgen
To solve convex optimization problem as illustrated in equation (4.9) CVXgen is used
in this work. CVXgen is a code generator that can generate fast custom C-code for
solving convex optimization problems [27]. It provides an online interface to specify
the optimization problem and generates C-code that can be implemented into any
embedded system that is capable of compiling C-code. The code is optimized for fast
calculations and is almost branch free to allow consistent and predictable execution
times.
The simple QP-problem in equation (4.9) can be described in CVXgen as the fol-
lowing.

minimize
quad(x[N], P) + sum[k=1..N-1](quad(x[k], Q) + quad(u[k-1], R))

subject to
x[k+1] == A*x[k] + B*u[k], k=0..N-1 # dynamics constraints.
H[k]*x[k] <= h[k], k=1..N # state constraints
H_u[k]*u[k] <= h_u[k], k=0..N-1 # input constraints
x[0] == x0

end

29

4. Model Predictive Control

30

5
Feasibility by Construction

As introduced in chapter 1.2 we consider lane change maneuver on a multilane road.
The moving obstacle is projected onto a fixed position on the road according to
the differential velocity between the ego vehicle and the preceding vehicle and and
treated as a static obstacle on the road at the location where the ego vehicle must
be in the other lane to avoid a collision.
An MPC-controller (see section 4.1) attempts to solves a finite time optimal control
problem (4.9) to calculate a sequence of optimal steering inputs and a trajectory
such that the vehicle (??) can be steered to safely avoid the obstacle ahead of it.
The controller minimizes a cost function (4.8) that penalizes deviation from the
desire lane as well as violent steering maneuvers to ensure smooth motion of the the
vehicle if possible.
The optimal control action is subject to the dynamics of the vehicle model (??),
environmental constraints due to road boundaries and obstacle location (see section
??) as well as tire force limitations (3.10) incorporated into the handling limits as
described in section 3.7.
The finite time optimal control problem is stated as

minimize: Cost function (4.8) (5.1a)

subject to: Vehicle dynamics(3.19) (5.1b)
Safe handling envelope (3.20) , (3.21) (5.1c)
Environmental boundaries (3.2) (5.1d)

Designing a steering control algorithm (5.1) where the path is restricted by solid
obstacles and lane boundaries poses a control problem where infeasibility may occur.
As shown in section 2.5 there may not exist a solution to the problem for some
initial conditions. The existence of the solution is also dependent on the velocity
used to parametrize the vehicle dynamics (3.19). The problem (5.1) is time varying
and standard results to guarantee feasibility from literature do not apply.
Therefore this chapter aims at using tools introduced in chapter 2 to guarantee
persistent feasibility for the problem (5.1). Given a certain distance to an obstacle,
fixed lane boundaries and vehicle capabilities and the state of the vehicle, there
exists an upper bound on the velocity for which feasibility of the problem (5.1) can
be ensured.
In [14] Falcone et al. proposed an algorithm for model based threat assessment by
using methods from reachability analysis and set invariance theory. By targeting

31

5. Feasibility by Construction

a set of safe states within their lane, they predicted threats for lane crossing and
vehicle instability over a finite time horizon. Using a similar approach the feasibility
of the constrained model optimal control problem (5.1) can be studied.
By calculating a control invariant set C (algorithm 1 in section 2.4.3) for the vehicle
model (3.17) subject to the same constraints as in (5.1) we predict the vehicle states
that ensure persistent feasibility and safe driving conditions for future states within
one lane of the road.
If an obstacle is blocking one lane of the road we use this control invariant set within
a single lane C as a target set located in the open lane as illustrated in figure 5.1.
Using algorithm 2 (section 2.4.4) n-step controllable sets K1,...(C) are determined
that guarantee that for all states contained in these sets there exists a sequence of
inputs such that the state can be driven to the the target set C in the safe lane.
With the linear vehicle model (3.17) and road coordinates (3.1), the vehicle motion
can be predicted in the state space X = [β , r, ψ, e]′ by the discrete, parametrized
motion model for discrete steps in s in the form

X(k + 1) = A(u)x(k) +B(u)Fyf . (5.2)
Given the longitudinal velocity of the vehicle u and the distance to the obstacle ∆s

in s direction, the number of steps for the controller until the obstacle is reached is
given by N = ∆s/u.
With the motion model 5.2 being parametrized by the velocity u the control invariant
set C(u) and the n-step controllable sets KN(C, u) both become functions of the
velocity.
If the state x0 of the vehicle is contained in the N-step controllable set KN(C, u) for
a fixed velocity u, then persistent feasibility for the maneuver can be guaranteed for
that velocity.
This concept is illustrated in figure 5.1. The checkered line depicts the location
of the control invariant set C that guarantees persistent feasibility for future steps.
The green lines illustrate locations of the n-step controllable sets K1,...(C). While
the image can only show projections of the sets onto the road, the sets are bounded
in the four dimensional state space of the vehicle.

Figure 5.1: Projection of feasible states for a car approaching a static obstacle

Since the vehicle model is parametrized by the velocity we aim to solve the cal-
culation of KN(C, u) analytically in section 5.1 to obtain an upper bound on the

32

5. Feasibility by Construction

velocity that guarantees persistent feasibility. An analytical solution would allow to
determine that velocity threshold as an online calculation in a vehicle.
Section 5.2 shows an alternative approach to the problem. By studying the problem
offline, it is possible to perform these calculations numerically for a range of ve-
locities. An algorithm implemented in a vehicle could then use these precalculated
sets to online determine a velocity for which such a maneuver becomes feasible.
The complexity of the online calculation can be lowered significantly at the cost of
extensive offline calculations and significant data storage necessary.

5.1 Analytical Approach Using Hyperrectangle Con-
straints

This section investigates the possibility to solve the problem of finding an upper
bound on the velocity for the lane change maneuver in an analytical way. The
computation to determine such an upper bound should be quick and efficient to
allow implementation in embedded computers used in vehicles. At the very least,
the calculation should be less computationally expensive than what is needed to
repetitively attempt to solve the optimization problem for different velocities until
an feasible solution is found.
As shown in section 2.5, one disadvantage of algorithm 2 to calculate N-step con-
trollable sets is, that the complexity of each iteration grows as more hyperplanes are
added to the state constraints. If an algorithm can be found that yields an efficient
calculation of an inner approximation of the one-step controllable set K1(X) and
can be represented in a structure such that is has the same structure and the same
number of hyperplanes as the target set X , such algorithm may be used to effi-
ciently calculate multiple iterations of algorithm 2 (section 2.4.4) to calculate n-step
controllable sets.
Since the physical road boundaries are represented by simple limitations on the lat-
eral position the simplest form to approximate the constraints in (5.1) is a bounded
polytope in the shape of a hyperrectangle. A hyperrectangle is a box type geometric
shape in a higher dimension N > 3 where each state is limited by a single upper
and a lower bound.
A simplified illustration of the approach in two dimensions is shown in figure 5.2 for
the discrete integrator introduced in section 2.5 in two dimensions. The invariant
set C, previously shown in figure 2.7, is approximated by an inner rectangle as
shown in figure 5.2a. Then the one-step controllable set is calculated in 5.2b and
approximated by another inner rectangle in 5.2c.
For the vehicle performing the lane change maneuver, we consider the discretized
version of the linear force input model (3.17) with the road coordinate system (3.1)

v(k + 1)
r(k + 1)
ψ(k + 1)
e(k + 1)

 =

1− Cαrts

mu
ts
(
bCαr
mu
− u

)
0 0

bCαrts
Izzu

1− b2Cαrts
Izzu

0 0
0 ts 1 0
ts 0 tsu 1

v(k)
r(k)
ψ(k)
e(k)

+

ts
m
ats
Izz
0
0

Fyf(k). (5.3)

33

5. Feasibility by Construction

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

State

D
er
iv
at
iv
e

(a) Control invariant set C and hyperrect-
angle shaped approximation X

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

State

D
er
iv
at
iv
e

(b) 1-step controllable set K1(X) of the
hyperrectangle shaped inner approxima-
tion X

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

State

D
er
iv
at
iv
e Control invariant set C

Hyperrectangle approximation X
1-step controllable set K1(X)
1-step approximation

(c) Inner approximation of 1-step controllable set K1(X)

Figure 5.2: Hyperrectangle shaped inner approximation of the 1-step controllable
set for the discrete integrator

34

5. Feasibility by Construction

We can formulate the state constraints shown in equation (5.4) as a target set X .
Considering a straight road we can assume the constraints on lateral velocity, yaw
rate and heading to be symmetric.

X ,

1 0 0 0
−1 0 0 0
0 1 0 0
0 −1 0 0
0 0 1 0
0 0 −1 0
0 0 0 1
0 0 0 −1

v(k)
r(k)
ψ(k)
e(k)

 ≤

vmax
vmax
rmax
rmax
ψmax
ψmax
eXmax
−eXmin

(5.4)

Using algorithm 2 we attempt to calculate K1(X , u) for the system (5.3) analytically.
By performing the the matrix calculations presented in chapter 2.4.2 we can derive
Pre(X). The result of this first step of algorithm 2 is shown in appendix A.2. In the
second part of the algortithm to derive the 1-step controllable set, the projection
(see section 2.2.3) of Pre(X) onto the R4-state space has to be calculated.
Using the Fourier-Motzkin algorithm provided in appendix A.1, the set can be pro-
jected analytically. The one-step controllable set is derived by intersecting the re-
sult of the projection with the set of state constraints at the location of the one-step
controllable set. The result is shown in appendix A.3. Assigning an inner hyperrect-
angle into this set of constraints is generally possible without extended numerical
calculations.
The results show that in principle it is possible to efficiently find an inner approxi-
mation of the set K1(X) in the shape of a hyperrectangle set that was derived from
hyperrectangle type constraints X .
To examine the applicability of these results we can take a closer look at constraints
three and four from the one-step controllable set shown in A.3

[
ts 0 tsu 1
ts 0 tsu −1

]
v(k − 1)
r(k − 1)
ψ(k − 1)
e(k − 1)

 ≤
[
eXmax
−eXmin

]
. (5.5)

Rewriting this equation in terms of the lateral position of the one-step controllable
set e(t− 1) these hyperplanes can be stated as

e(k − 1) ≤ eXmax − ts v(k − 1)− ts uψ(k − 1)
e(k − 1) ≥ eXmin + ts v(k − 1) + ts uψ(k − 1).

(5.6)

These two equations simply represent the linear mapping of the boundaries on the
lateral position e for one discrete time step of the motion model (5.3). Since the
model does not have any direct input term on the lateral position, this mapping is
only dependent on the lateral velocity and the lateral motion due to the heading
direction.
Assuming ts > 0 and u > 0, which is true for regular driving situations, we can
again assign a new hyperrectangle approximation into these constraints. With the

35

5. Feasibility by Construction

target set 5.4 being symmetric in all dimensions we can assume the same for the
approximation of the one-step controllable set.
The boundaries on the approximation of the one-step controllable set are defined by

−vmax(k − 1) ≤ v(k − 1) ≤ vmax(k − 1)
−rmax(k − 1) ≤ r(k − 1) ≤ rmax(k − 1)
−ψmax(k − 1) ≤ ψ(k − 1) ≤ ψmax(k − 1)
emin(k − 1) ≤ e(k − 1) ≤ emax(k − 1).

(5.7)

With vmax(k − 1) ≥ 0, rmax(k − 1) ≥ 0, ψmax(k − 1) ≥ 0, emin(k − 1) ≤ 0 and
emax(k − 1) ≥ 0 this set has the same geometrical structure as the target set (5.4).
To fit this hyperrectangle into the polytope K1(X), all inequalities have to be fulfilled
for all values inside the hyperrectangle. Since K1(X) is a convex set, it is sufficient
to test if all the extremal values of the hyperrectangle fulfil the constraints. The
combinations of these extremal values in all dimensions correspond with the vertices
of the hyperrectangle. Inserting the extremal values for e(k − 1), v(k − 1) and
ψ(k− 1) into equations 5.6 yield the following inequalities that must be true for the
hyperrectangle to be a valid inner approximation.

e(k − 1) ≤ eXmax − tsvmax(k − 1)− ts u ψmax(k − 1) (5.8a)
e(k − 1) ≤ eXmax + tsvmax(k − 1)− ts u ψmax(k − 1) (5.8b)
e(k − 1) ≤ eXmax − tsvmax(k − 1) + ts u ψmax(k − 1) (5.8c)
e(k − 1) ≤ eXmax + tsvmax(k − 1) + ts u ψmax(k − 1) (5.8d)
e(k − 1) ≥ eXmin − tsvmax(k − 1)− ts u ψmax(k − 1) (5.8e)
e(k − 1) ≥ eXmin + tsvmax(k − 1)− ts u ψmax(k − 1) (5.8f)
e(k − 1) ≥ eXmin − tsvmax(k − 1) + ts u ψmax(k − 1) (5.8g)
e(k − 1) ≥ eXmin + tsvmax(k − 1) + ts u ψmax(k − 1) (5.8h)

With eXmin = −eXmax and all other variables on the right hand side being positive
it is clear that the inequalities (5.8a) and (5.8h) represent the tightest bounds on
e(k − 1). Therefore we can neglect the other inequalities as they will hold true if
these two are fulfilled. The relevant bounds on the lateral position of the one-step
controllable set are described by

eXmin+tsvmax(k−1)+ts uψmax(k−1)≤e(k−1)≤eXmax−tsvmax(k−1)−ts uψmax(k−1).
(5.9)

For vmax(k − 1) > 0 and ψmax(k − 1) > 0 we can conclude that emax(k − 1) < eXmax
and emin(k − 1) > eXmin. The lateral bounds of the hyperrectangle approximation
of the one-step controllable set are shrinking in each iteration step if we attempt to
assign a hyperrectangle with a nonzero range in the derivative states v and ψ.
Considering an obstacle maneuver in which the safe target set is to the side of
the obstacle while a vehicle is heading straight towards the obstacle renders this
approach impractical. For the lane change maneuver the target set of the N-step

36

5. Feasibility by Construction

controllable set calculation is located in the an open lane this set needs to expand
for each iteration to eventually enclose the vehicle state.
This analytical result can also be confirmed in the simple case of a discrete integrator
as shown in figure 5.2. From the figure it is clear that an approximation of the one-
step controllable set in the shape of a rectangle is always smaller that the target set
X if the target set has the shape of a rectangle.
Therefore a simple approximation of the n-step controllable set using hyperrectangle
constraints cannot be used to efficiently calculate iterations of n-step controllable
sets through a lane change maneuver.

5.2 Numerical Approach
As an alternative approach to the analytical calculations presented in section 5.1
we use numerical calculation to determine an upper bound on the velocity that
guarantees feasibility during a lane change maneuver. Using offline calculations we
can pre-calculate trajectories of n-step controllable sets for a range of velocities as
shown in figure 1.2.
If sufficient trajectories of n-step controllable sets for different velocities are stored,
simple set membership tests can be used to test which velocity allows a safe avoid-
ance of an obstacle if the vehicle is located at a certain distance from the obstacle.

5.2.1 Reachability Calculations with MPT-Toolbox
For numerical calculations the Multi-Parametric Toolbox (MPT) [22] in its current
version 3.0.4 is used. The toolbox is developed by the Automatic Control Laboratory
at the ETH Zürich in Switzerland and provides a Matlab interface to implement state
of the art solver techniques for parametric optimization problems.
MPT-toobox version 3.0 provides an interface for algorithms to perform both el-
ementary operations on polytopes as explained in section 2.2 as well a integrated
algorithms for reachability analysis as described in section 2.4.
Examining the algorithms for the control invariant set 1 and for n-step controllable
sets 2 in section 2.4, the main part of both operations is an iterative cycle of calcu-
lating the Pre() of a set, projecting the resulting polytope in the state-input space
back onto the original state space and calculating the intersection with the state
constraints at that iteration step.
The Pre() calculation is a simple matrix operation that can be quickly performed
for large number of half spaces as shown in equation (2.17). The intersection with
additional state constraints for a polytope in H-representation is performed by ap-
pending the additional constraints to the set of halfspaces bounding the polytope.
To perform the projection of the Pre() onto the original [β, r, ψ, e] state space the
MPT toolbox provides a number or different algorithms. This step is by far the
most computationally expensive operation in this iterative calculation.
The most consistent results were obtained using the MPLP-algorithm. As an alter-
native the toolbox provides two algorithms based on Fourier elimination, with and
without intermediate redundancy elimination, and one algorithm that computes the
projection based on a vertex representation.

37

5. Feasibility by Construction

Attempting to calculate the invariant set results of the four dimensional vehicle
model using the Fourier-elimination based algorithms lead to a Matlab crash after
only ten iterations. The vertex based algorithm crashed with a Matlab error after
only three iterations. While the exact cause of these errors could not be determined,
it is evident that the implementations of these algorithms are not robust for four
dimensional system with the complexity of the model 5.3. The MPLP-algorithm is
the only algorithm provided in the toolbox that is capable of reliably performing
higher dimensional projections with large numbers of halfspaces.
Figure 5.3 illustrates the performance of the different projection algorithms provided
in the MPT-toolbox and how the complexity and the n-step controllable set increases
if no means for simplification are taken.

5 10 15

101

102

103

Iteration

N
um

be
r
of

ha
lfs
pa

ce
s

MPLP
Fourier
iFourier
Vrep

(a) Complexity of the N-step control-
lable set

5 10 15100

101

102

103

Iteration

C
al
cu
la
tio

n
tim

e[
s]

(b) Calculation time per iteration

Figure 5.3: Calculation of the N-step controllable set without approximation

As shown by the example of the discrete integrator in section 2.5, calculating n-step
controllable sets of systems containing integrators yield in skewed shaped polytopes.
Therefore the accuracy of this calculation is directly correlated with the number of
halfspaces used in the approximation. When calculating such sets the number of
halfspaces increases with each iteration step. While this does increases the accuracy
of the representation it also makes the calculation of the next step more computa-
tionally expensive.
Figure 5.3 shows that this increase in calculation time is exponential almost expo-
nential in the number of halfspaces bounding resulting polytopes. Starting from
eight initial constraints the calculation results in more than 500 hyperplanes in less
than 20 iterations. The calculation time increases from 1.5 seconds for the first
iteration to five minutes. These calculations were performed with Matlab 2011a and
the MPT toolbox 3.2 on a quad core Intel i7 CPU with 2.5 Ghz. From the results it
is clear that this trend makes the calculation of long trajectories with regular com-
puting hardware impossible without suitable approximations algorithms that bound
the calculation time.

38

5. Feasibility by Construction

5.2.2 Inner Approximation of Polytopes

To allow the calculation of the n-step controllable set for longer distances as well as to
achieve a result from control invariant set calculations an approximation algorithm is
necessary. Since any subset of an n-step controllable set is also an n-step controllable
set for the system with the desired target set and every subset of an invariant set is
still an invariant set for the system for both calculations the approximation algorithm
must ensure that an approximated polytope Papprox ⊆ P .
Goubault, Mullier et al. [19] state in their paper on inner approximated reacha-
bility analysis: "Computing a tight inner approximation of the range of a function
over some set is notoriously difficult, way beyond obtaining outer approximations".
While there is a large number of algorithms for outer approximation of polytopes in
literature, there is rather limited material on inner approximation.
In this thesis a heuristic approach for an inner approximation of a convex polytope
is developed that allows an efficient reduction in the number of half spaces in a
polytope. The algorithm utilizes the assumption that the polytope considered is
symmetric with respect to the origin. This allows the algorithm to correct for
possible numerical biases in the other steps of the iterative calculations studied in
this work. Due to numerical rounding effects during the projection is can happen
that the symmetry of the set is lost.
The system constraints 5.1 provide symmetric boundaries on the system states β, r
and ψ. For a vehicle driving in a single lane the bounda on the lateral position e are
symmetric as well. Therefore all sets calculated using algorithm 1 will be symmetric
as well.
For the sets K1,...(X) calculated using algorithm 2 we can ensure the same property
if we simply assume that the preceding traffic is located in both outer lanes on a
3 lane road. With this assumption we can define symmetric bounds on the lateral
position emin ≤ e ≤ emax relative to the symmetric control invariant set C as shown
in figure 5.4. The lateral limits are defined for the center of gravity of the vehicle,
therefore they are offset from the road boundaries by half the vehicle width and a
safety margin.

Figure 5.4: Symmetric road geometry for lane change predictions

39

5. Feasibility by Construction

The algorithm implemented is illustrated in figure 5.5 in two dimensions. The
halfspaces of the polytope shown in 5.5a are not exactly symmetrical which is a
common case since they are results of numerical calculations. By comparing the
normal vectors of the half spaces, opposing facets can be identified and sorted in
pairs, as illustrated in 5.5b.
By using averages of the normal vectors, the symmetry of the polytopes can be en-
forced as shown in the third step. The distance to the origin of the new hyperplanes
is modified such that all vertices on the original facets are on or outside the modified
facets. Illustration 5.5d shows the final inner approximation of the polytope. By
combining facets that have small angle differences, the number of hyperplanes can
be reduced. Averaging the normal vectors and assigning a new distance to the origin
such that all previous vertices are on or outside the newly created hyperplane leads
to a inner approximation. In the figure the blue and purple halfspaces are combined
to reduce complexity. This procedure can be performed iteratively until the number
of halfspaces is reduced to a bearable level. Using this approach the symmetry of the
polytope can be enforced and the number of hyperplanes is reduced. This approach
can be generalized for higher dimensions. The implementation of the algorithm is
shown in appendix B.

(a) Input polytope bounded by six
halfspaces

(b) Halfspaces ordered in pairs

(c) Numerical correction of pairs of
halfspaces

(d) Inner approximation with four
halfspaces

Figure 5.5: Inner approximation algorithm for symmetric polytopes

40

5. Feasibility by Construction

While this algorithm has no claim for optimality, it does provide a reliable method for
inner approximation such the sets calculated in algorithm 1 for the control invariant
set, as well as algorithm 2 for the N-step controllable sets, can be calculated with
bounded numbers of hyperplanes.

5.2.3 Numerical Control Invariant Sets
Using the inner approximation algorithm presented, calculations of invariant sets
and n-step controllable sets can be performed. By iterating algorithm 1 (section
2.4.3) for the discretized linear force input model (3.17) and envelope constraints
(3.20) , (3.21) a safe, control invariant set C(u) within one lane can be determined
for a specific velocity u.
Since the calculations are performed offline, it is possible to utilize these algorithm
although they are very computationally expensive.
Figure 5.6 shows slices through the invariant set of the vehicle within one lane for
the vehicle driving at 70 km/h. The polytope shown is an inner approximation
with 160 halfspaces and 1018 vertices. The set is calculated in 100 iteration steps
of algorithm 1 with an approximation combining halfspaces within two degrees in
each step.
As the set is defined in four dimensions, it is not possible to visualize the shape of
the set in a single comprehensive figure. Therefore slices and projections are used
to gain an understanding of the nature of the shape of these representations.

−0.2
00.2

−0.200.2

−0.5
0

0.5

Yaw Rate
[rad/s] Heading Angle

[rad]

La
te
ra
lp

os
iti
on

[m
]

(a) Slice at β = 0 rad

−0.2
00.2

−0.20

−0.5

0

0.5

Yaw Rate
[rad/s] Heading Angle

[rad]

La
te
ra
lp

os
iti
on

[m
]

(b) Slice at β = 0.10 rad

Figure 5.6: Slices of the control invariant set for 70 km/h

The shape of the set reveals some properties that are intuitively understandable. In
the lateral position on the road it is bounded by the physical bounds described by
the width of the road and the width of the vehicle. Along the lateral boundaries
is is clear that a positive heading angle at the negative lateral road boundary is no
problem because it brings the vehicle back towards the center of the track in the
next step. In the same position negative heading is not allowed in the slice at zero

41

5. Feasibility by Construction

sideslip because the vehicle would violate the road boundary in the next step. For a
sideslip of 0.1 rad some amount of negative heading is possible since the lateral the
lateral motion due to the heading angle can be compensated by the sideslip.

5.2.4 Numerical N-step Controllable Sets
To calculate the N-step controllable sets KN for the vehicle in lane change maneuver
algorithm 2 (section 2.4.4) is used. Starting from the control invariant set C(70km/h)
shown in figure 5.6, the algorithm uses the safe handling envelope constraints (3.20) ,
(3.21) together with boundaries on the lateral position (3.2) that restrict the allowed
region to the adjacent lanes to calculate n-step controllable sets. For each iteration
step N , the N-step controllable set predicts the set of states for which it can be
guaranteed that a feasible trajectory to the target set exists, located a distance
∆s = N ts u ahead of the obstacle.
Figure 5.7 shows a bird’s eye view on the predictions for the lane change maneuver
with 70 km/h. Projections in green limit the lateral positions on the road where there
exist any states for which feasibility of the future trajectory can be guaranteed. The
markers in red indicate slices of the sets at β = 0, r = 0 and ψ = 0. This corresponds
to the locations from where the vehicle can start a lane change maneuver to pass
the obstacle if is currently driving straight. The road is delimited by solid black
lines and the dashed black lines delimit the region in which the center of the car is
allowed to move.

Figure 5.7: Projections onto the lateral position and slices at β = 0, r = 0 and
ψ = 0 of n-step controllable sets for a lane change maneuver with 70 km/h

The evolution of the N-step controllable set is shown in figure 5.8. Slices at β = 0
are provided for different iteration steps. The different slices illustrate the expan-
sion of the set over the backwards trajectory. Since significant lateral motion and
therefore a significant expansion of the set in the lateral direction is mainly caused
by driving at significant heading angles, we can see that the set initially gets more
skewed. Large negative lateral positions become possible rather quickly for signifi-
cant positive heading angles.

42

5. Feasibility by Construction

(a) N = 0 (b) N = 25

(c) N = 50 (d) N = 75

Figure 5.8: Slices at β = 0 of different N -step controllable set for the lane change
maneuver at 70 km/h

43

5. Feasibility by Construction

When the set spans the entire lateral width of the road as depicted in figure 5.8c,
it continues to expand further to also include states with smaller heading angles
for negative lateral position and larger heading angles for positive lateral positions.
Eventually the set expands to a size such that it contains the target set C laterally
located at the center of each of the lanes

44

6
Controller Design

To gather experimental data to compare a real vehicle’s capabilities with the predic-
tions derived in the previous chapter, an MPC-controller based on similar assump-
tions (5.1) is implemented.
The general concept of the controller implementation follows the work from Erlien,
Funke and Gerdes [9]. In their paper they formulate a shared vehicle control for a
steer-by-wire vehicle that tracks a driver’s steering intent while allowing interven-
tions if the driver input would lead to unsafe situations. In [17] Funke applies the the
concept to fully autonomous vehicles for path tracking with obstacle avoidance. In
this work we assume the reference trajectory to be a straight line within a highway
lane that the controller attempts to track. If an obstacle is detected in in that lane,
the controller has to intervene and calculate an optimal steering trajectory to avoid
the obstacle and return to the original lane.

6.1 Controller Formulation
The controller aims to determine an optimal steering input force Fyf for the vehicle
model (3.19) such that the vehicle can safely navigate through the environment while
trying to stay as close to the desired lateral position as possible and maintaining a
smooth motion of the vehicle by minimizing the objective function

min
Fyf

nnear+nfar∑
k=nnear+1

σenv
(
S(k)
env

)2
+

nnear+nfar∑
k=1

σsh|S(k)
sh | (6.1a)

+
nnear+nfar∑
k=nnear+1

σe|e(k)|+ σψ
(
ψ(k)

)2
(6.1b)

+
nnear−1∑
k=0

σunear
(
F

(k)
yf

)2
+

nnear+nfar−1∑
k=nnear

σufar
(
F

(k)
yf

)2
(6.1c)

+
nnear−1∑
k=0

σdunear
(
F

(k+1)
yf − F (k)

yf

)2
+

nnear+nfar−2∑
k=nnear

σdufar(F
(k+1)
yf − F (k)

yf)2. (6.1d)

These possibly conflicting goals are managed by assigning different weighted cost
terms σx to the objectives formulated in equation (6.1).
Forcing the vehicle to stay inside the road boundaries and avoiding obstacles (3.2)
is enforced by soft constraints with the slack variable Senv. Second highest priority
is the avoidance of possibly dangerous driving situations by violating the vehicle’s

45

6. Controller Design

handling capabilities. To ensure the vehicle stability the safe handling envelope
(3.20), (3.21) is enforced with soft constraints using the slack variable Ssh. These
two cost terms (6.1a) with σenv � σsh are enforcing safety for the maneuver. Both
terms are significantly larger than all other cost terms in (6.1).
The lane tracking objective σe (6.1b) penalizes the lateral deviation from the desired
path. To avoid severe steering maneuvers when the vehicle is required to travel in a
different lane due to an obstacle, this objective is enforced by a linear term.
To influence the trajectory taken while the vehicle is changing the lane to avoid an
obstacle, additional terms are introduced. A small cost σψ on the vehicle heading ψ
helps avoid oscillations and provides damping to the system. Additional cost terms
on the input force (6.1c) as well as the rate of the input (6.1d) allow reducing the
severity of the steering action when the vehicle has to navigate around an obstacle
and return to its original path.

6.1.1 Motion Prediction
The MPC controller predicts the vehicle motion over the discrete time horizon using
two different motion models (3.17) and (3.19)

x(k+1) =A(k)
d (x(0), tnear, Vx)x(k) +B

(k)
d (x(0), tnear, Vx)F (k)

yf

+ d
(k)
d (x(0), tnear, Vx) k ∈ [0...nnear − 1]

(6.2a)
x(k+1) = A

(k)
d (0, tcorr, Vx)x(k) +B

(k)
d (0, tcorr, Vx)F (k)

yf k = nnear
(6.2b)

x(k+1) = A
(k)
d (0, tfar, Vx)x(k) +B

(k)
d (0, tfar, Vx)F (k)

yf k ∈ [nnear + 1...nfar − 1].
(6.2c)

The prediction horizon is split into a near horizon (6.2a) and a far horizon (6.2c) and
a correction step (6.2b). A small discretization time is chosen for the near horizon
and a significantly longer step size is chosen for the far horizon. For the near horizon
k = [0, ..., nnear] the controller uses the linear time varying vehicle model (3.19)
which is a bicycle model linearized at the current velocity u = u0 and current rear
tire slip angle αr0 . This allows to account for the rear tire saturation effects. For
the prediction horizon k = [nnear + 1, ..., nfar] controller uses the linear force input
model (3.17) which is also linearized at the current vehicle velocity but assumes a
rear tire linearization at αr = 0. This is necessary because for the prediction horizon
further ahead, an estimation of the future rear tire slip angle is becomes inaccurate
since the future motion of the vehicle is yet unknown.
In their paper Erlien, Funke and Gerdes [9] use a 10-step horizon with a sampling
time of 10 ms to capture the vehicle dynamics in the near future and a 30-step far
horizon with a sampling time of 200 ms to cover a longer distance farther ahead of
the vehicle for path planning and obstacle avoidance. The combination of the two
horizons adds up to a total prediction time horizon of 6.1 s.

46

6. Controller Design

The motion model also implements a correction time step (6.2b) between the near
and the far horizon with variable length as proposed in [10]. Since lateral bound-
aries can only be assigned at the discretization points, any obstacle detected in the
prediction horizon has to be extended in the direction of travel to span between
discretization points.
By shortening the first step time of the far horizon dynamically, the spatial location
of all other time steps in the far horizon can remain spatially fixed while the car
is cruising towards the obstacle. This allows the optimization to account for the
fact that the ego vehicle is approaching the obstacle in each sampling interval as
illustrated in figure 6.1. Without the correction step, the optimization would not
account for the fact that it is getting closer until the obstacle would be captured
by the next far horizon discretization point. Since this involves multiple sampling
intervals of the controller it would lead to non-smooth control actions.

(a) Vehicle approaching an obstacle in the far horizon

(b) Location of discretization points a short time later without cor-
rection step

(c) Location of discretization points a short time later with correc-
tion step

Figure 6.1: Visualization of the influence of the correction step on obstacle repre-
senation in the horizon

6.1.2 System Constraints
The system is subject to a number of constraints to ensure vehicle safety. The
environmental envelope which models lane boundaries as well as rigid obstacles
(3.2) is most critical to passenger safety. These boundaries are implemented as a

47

6. Controller Design

soft constraint (6.3a) and enforced over the far horizon as illustrated in figure 6.2.

Henvx
(k) ≤ Genv + S(k)

env k ∈ [nnear + 1...nnear + nfar − 1] (6.3a)
Hshx

(k) ≤ Gsh + S
(k)
sh k ∈ [1...nnear + nfar] (6.3b)

F
(k)
yf ≤ Fyf,max k ∈ [0...nnear + nfar − 1] (6.3c)
|F (k)
yf − F

(k−1)
yf | ≤ ∆Fyf,maxnear k ∈ [0...nnear − 1] (6.3d)

The safe handling envelope introduced in (3.20) and (3.21) is enforced by constraint
. To make sure that the optimization results can actually be achieved by the vehicle,
the input to the system has to be bounded according to physical limits. Equation
(6.3c) assigns a limit on the maximum lateral front force and the constraint (6.3d)
assigns limits on the maximum rate of change in the input. The total limit of
the lateral force is limited by the lateral force that the front tires can physically
transmit. The rate of change is limited by the steering rate of the robot as well as
the tire properties. The constraint for the rate of change of the input force is only
enforced over the near horizon since it would not have any effect for sampling rates
in the order of 200 ms in the far horizon. The steering actuator is fast enough to
achieve any commanded force input which renders the constraint in the far horizon
unnecessary.

Figure 6.2: Representation of the environment boundaries as system constraints
at discrete locations

6.2 Implementation
The controller specified in sections 6.1 to 6.1.2 is implemented using a custom solver
generated by CVXgen as presented in chapter 4.3. The detailed formulation to
generate the custom solver used in experimental testing is shown in appendix C.1.
CVXgen provides an online interface to generate and download the C-code for the
solver together with a Matlab-MEX interface for the embedded solver and an imple-
mentation of the specified problem statement using the general purpose CVX-solver
that is not optimized for embedded execution. This enables the possibility to com-
pare the custom solver with a more general solver to make sure it performs according
to specification. To ensure that simulation results are consistent with the implemen-
tation in the vehicle, the custom solver C-code is also used for simulations in this
work.

48

6. Controller Design

The C-code is integrated into a Simulink model using an S-Function Builder Block.
This block offers a simple interface in which inputs and outputs to the S-function are
specified and a wrapper function is used to feed the solver code with the numerical
data of the optimization problem. The interface of the block is shown in figure 6.3.

Figure 6.3: S-Function Builder block that implements the CVXgen code

6.2.1 Horizon length
As described in section 6.1.1 the controller uses a predicion horizon that is split
up into a near horizon to account for vehicle dynamcis and a far horizon for path
planning. In their work Erlien et al. [9] use a 10-step near horizon with a sampling
time of 10 ms and a 30-step far horizon with a sampling time of 200 ms.
Using this configuration and exploiting the possibility of CVXgen to specify sparse
matrices yields in a complexity of slightly over 4000 non-zero KKT-entries which
is approximately the limit of the solver generator. The generated code with that
horizon length performs well in simulation but implementation on the available
real-time hardware do not allow the execution of the controller in real-time. On the
embedded hardware used in the experimental setup described in chapter 7.2.1 the
convergence time of the solver exceeds the desired sampling time of the controller.
To allow a real-time implementation the near horizon is modified to 5 steps with 20
ms time step and the far horizon is shortened to 20 steps as illustrated in table 6.1.
Figure 6.4 shows simulation results for the double lane change comparing a controller
with a 30-step far horizon and a 10ms sampling rate with the controller that uses
the reduced horizon length at 20 ms sampling rate. The results indicate that the
modifications do not change the controller’s performance in a double lane change
maneuver.
For low velocities a long look ahead distance is not necessary because the motion of
the vehicle is not significantly limited by the dynamics. For velocities above 20 m/s
a, four second look ahead more than sufficient to cover the entire trajectory of the
double lane change before the vehicle has to start steering. Therefore the reduction
in horizon length does not negatively affect the performance of the controller for
this maneuver.

49

6. Controller Design

60 80 100 120 140 160
−2

0

2

4

6

Position along the track

La
te
ra
lD

isp
la
ce
m
en
t 30 km/h - 5/20 step horizon

30 km/h - 10/30 step horizon
50 km/h - 5/20 step horizon
50 km/h - 10/30 step horizon
70 km/h - 5/20 step horizon
70 km/h - 10/30 step horizon
Road boundaries

Figure 6.4: Simulation results of the double lane change with different prediction-
horizon lengths

Near horizon length nnear 5 steps
Long horizon length nfar 20 steps

Near horizon time step tnear 20 ms
Far horizon time step tfar 200 ms
Controller sampling time ts 20 ms

Table 6.1: Specification of the prediction horizon

6.2.2 Simulation environment
For closed loop simulation the controller was implemented in a Simulink model in
connection with IPG CarMaker. Implementing the controller as a Simulink library
allows the identical function to be used for simulation as well as for experimental
testing in a real vehicle vehicle.
CarMaker is a simulation environment that provides a set of detailed vehicle models
and a modular environment capable of simulating complex driving situations. It
also provides a Simulink extension in which individual elements of the simulation
can be replaced. It allows the implementation of custom vehicle parts such as tires
or engines and lets the user modify control signals to the vehicle such as steering
and throttle to evaluate vehicle motion control algorithms.

Figure 6.5: CarMaker Simulink Framework

The CarMaker Simulink extension provides access to the simulated vehicle motion
data similar to what a high precision GPS system can provide in a real vehicle.
For the purpose of simulating the steering controller the VehicleControl subsystem

50

6. Controller Design

shown in figure 6.5 is modified. By replacing the steering command from the driver
simulation with a steering command calculated by the controller, the vehicle motion
can be simulated in closed loop.

51

6. Controller Design

52

7
Experimental Testing

7.1 Test Scenario
The test scenario considered in this work is a double lane change maneuver for
obstacle avoidance to evaluate controller performance and gather comparison data
to evaluate the vehicles actual capabilities.
The longitudinal dimensions of the test track are derived from the ISO 3888-1 stan-
dardized double lane change maneuver [25]. Lateral dimensions of the track are
modified to yield more vehicle independent results. While the ISO standard defines
the track width based on the vehicle width and an additive margin, this thesis uses
a fixed lane width of 3.5 m to represent a standard highway lane. An illustration of
the track is shown in figure 7.1. Dimensions of the individual sections are provided
in table 7.1.

Figure 7.1: Double lane change track

Lane width 1, 2, 3 3.5 m
Section length 4 15 m
Section length 5 30 m
Section length 6 25 m
Section length 7 25 m
Section length 8 15 m

Table 7.1: Double lane-change track dimensions

Controller tests are performed at constant velocity in the range from 50 to 100 km/h.
During the tests the obstacle, visualized in red, becomes recognized by the controller
only after the vehicle comes closer than a specified distance to the obstacle. This

53

7. Experimental Testing

distance is adjusted according to the longitudinal velocity of the test vehicle and
used to adjust the difficulty of the maneuver.
By varying the reference path in the starting lane, the difficulty of the double lane
change maneuver is varied. Tests are performed with the reference trajectory along
the center of the starting lane as well as with the reference path located at ±0.5 m
lateral offset from the center of the starting lane.

7.2 Test Vehicle
Experimental tests were performed using a 2012 Volvo S60 sedan with an automatic,
six-speed gearbox. The vehicle provides an open CAN-bus interface provided by the
Volvo Cars Corporation that allows access to data from the vehicle’s internal sensors
as well provides the possibility to send braking and acceleration commands to the
cruise control.

Figure 7.2: SR 60 Orbit steering robot mounted in the test vehicle

7.2.1 Testing Equipment
The controller is implemented on a dSpace MicroAutobox real-time embedded com-
puter. This rapid control prototyping environment provides the possibility to gener-
ate real time capable code from directly from a Matlab/Simulink. The MicroAuto-
box is equipped with a Power PC 750 GL microprocessor clocked at 900 Mhz. The
system provides 16 MB RAM and 16 MB of local flash memory.
To localize the vehicle on the track, an Oxford Technologies RT3002 precision Iner-
tial and GPS Navigation system is used. Using differential corrections from a fixed
base station, localization with an accuracy up to 0.01 m is possible.
To control the lateral motion of the vehicle, an Anthony Best Dynamics SR 60 Orbit
steering robot is installed. As shown in figure 7.2, the steering robot is mounted
behind the steering wheel to allow quick installation without removing the steering
wheel and the car can still be driven manually with the robot installed.

54

7. Experimental Testing

The additional components are connected in an private CAN-bus network in the
vehicle as shown in the network topology in figure 7.3. The RT3002 GPS System
broadcasts the vehicle motion and position measurements in cyclic messages every
10 ms on the bus. Motion data is read by the MicroAutobox and every 20ms the next
control action is calculated and sent to the SR60 steering robot. A laptop connected
to the system is used to operate the components and to collect measurements.
The network topology allows for three different data collection sources. Measure-
ments from the steering robot can be collected via a USB connection. Message
data from the CAN-Bus can be collected using a Vector CAN-Case with CANalyzer
measurement software and internal data from the controller can be collected via the
Host-PC interface to the MicroAutobox.

Figure 7.3: Network topology of the experimental setup

7.2.2 Vehicle Parameters
To make practical use of the vehicle models described in chapter 3 in a simulation
environment or for control design the physical vehicle parameters have to be iden-
tified. While parameters like vehicle mass, wheelbase and weight distribution are
readily available from vehicle documentation, tire parameters have to be estimated
from measurement data to match their actual performance on the test surface. To
fully parametrize the vehicle model (3.19) the effective cornering stiffnesses and the
friction coefficients for both axles of the vehicle are determined.
These parameters are estimated from measurements collected from a steady state
cornering test. Starting from a very low velocity the vehicle drives around a circle
with a fixed radius while slowly increasing the velocity. By assuming steady state
cornering condition with ṙ = 0 and β̇ = 0 the equations of motions from the linear
bicycle model (3.6) can be used to estimate front and rear lateral tire forces. By
slowly increasing the velocity while measuring slip angles the lateral tire curves can
be approximated.
Results from the test are shown in figure 7.4 together with curve fits of the brush
tire model (3.10).
The set of vehicle parameters used for experimental testing is shown in table 7.2.

55

7. Experimental Testing

−0.2 −0.15 −0.1−5 · 10−2 0 5 · 10−2 0.1 0.15 0.2
−1

−0.5

0

0.5

1
·104

Tire slip angle [rad]

T
ire

la
te
ra
lf
or
ce

[N
]

Front tire samples
Rear tire samples
Front tire model
Rear tire model

Figure 7.4: Brush tire approximation from measurement data

Mass (Equipment & Driver) 1823 kg
Wheelbase 2.77 m
Track width 1.865

Location CG to front/rear axle 1.104m/ 1.666m
Yaw moment of inertia 3500
Tire friction coefficient 0.88
Cornering stiffness front 110650 N/rad
Cornering stiffness rear 92393 N/rad

Table 7.2: Volvo S60 vehicle parameters

7.3 Results

Experimental tests were performed at the AstaZero proving grounds.
The controller described in section 6.1 was used to gather experimental data to
determine the test vehicles capabilities in performing a double lane change maneuver
and avoiding an static obstacle while maintaining vehicle stability as described in
section 7.1. The controller parameters that were used during experimental testing
are shown in appendix C.2.
Table 7.3 shows an overview of the results from the tests performed. It illustrates
which maneuvers were performed without violating the safe handling envelope and
which maneuvers were only possible with driving past these limits.
Test results for the velocities below 70 km/h lead to fast and violent steering maneu-
vers but they did not violate the save handling envelope during testing. The vehicle
tends to understeer which makes it hard to avoid the obstacle but does not pose a
threat to vehicle stability. For higher velocities the vehicle is much more likely to
violate the stability boundaries.
Figures 7.5 to 7.7 present experimental test results from the double lane change
maneuver at 50, 70 and 100 km/h. The first plot for each velocity shows a bird’s eye

56

7. Experimental Testing

view on the situation with the cones and outer lane boundaries physically delimiting
the track. Dashed inner boundaries represent the area that the center of gravity of
the car has to stay within. The dotted black line indicates the center line of the
starting lane that is obstructed by the obstacle.
For each velocity three results are presented where the reference line is either on the
center of the starting lane or parallel with a lateral offset of ±0.5 m.

Velocity Dist. of recognition -0.5 m offset 0 m offset 0.5 m offset
50 km/h 25 m no no no
50 km/h 30 m no no no
60 km/h 30 m no no no
70 km/h 30 m no close yes
80 km/h 40 m no no no
90 km/h 40 m no close yes
100 km/h 45 m close yes yes
100 km/h 50 m no close yes

Table 7.3: Safe handling envelope violation during double lane change maneuvers

While results from experimental testing of a similar controller in [9] show a significant
build-up of side slip when performing similar maneuvers on low friction (µ ≈ 0.55)
surfaces when approaching the handling limits. This behavior was not observed
during the testing for this work. On the high friction asphalt (µ ≈ 0.88) in this
work the vehicle builds up significant yaw rate before building up side slip.
This observation is consistent with expectations that can be derived from the com-
parison between high- and low-friction tire curves presented in literature [28]. Tire
curves measured on low friction surfaces tend to have lower cornering stiffness and
a less pronounced peaking behavior as opposed to tires on high friction surfaces.
Therefore the rear tire can build up more side slip while still remaining in the con-
trollable area. With stiffer tires on a high friction surface the yaw rate may build up
quicker without significant rear tire slip. Only when the rear tires passes the peak
friction level, the side slip will increase significantly.
Overall it can be concluded that the controller is able to stabilize the vehicle and
allows the operation of the vehicle close to its handling limits. As illustrated in
figure 7.6c and ??c the controller even manages to control the vehicle when the of
the yaw rate limit of the safe handling envelope is slightly violated.
These results provide a good measure to evaluate the applicability of the feasibility
predictions derived in the previous chapter.

57

7. Experimental Testing

−40 −20 0 20 40 60
−2

0

2

4

6

Longitudinal position [m]

La
te
ra
lp

os
iti
on

[m
] Desired trajectory

Track boundaries
Driving boundaries
Cone positions
Obstacle Recognition
Vehicle path - 0m
Vehicle path +0.5m
Vehicle path -0.5m

(a) Vehicle trajectory during double lane change

−40 −20 0 20 40 60
−5

0

5

Longitudinal position [m]

R
oa
d
w
he
el

an
gl
e
[◦]

(b) Steering input

−10 0 10

−20

0

20

Side slip β [◦]

Ya
w

ra
te

r
[◦ /

s]

(c) Safe handling envelope

Figure 7.5: Experimental results from the double lane change maneuver with 50
km/h with 25 m pop-up obstacle

58

7. Experimental Testing

−40 −20 0 20 40 60
−2

0

2

4

6

Longitudinal position [m]

La
te
ra
lp

os
iti
on

[m
] Desired trajectory

Track boundaries
Driving boundaries
Cone positions
Obstacle Recognition
Vehicle path - 0m
Vehicle path +0.5m
Vehicle path -0.5m

(a) Vehicle trajectory during double lane change

−40 −20 0 20 40 60

−5

0

5

Longitudinal position [m]

R
oa
d
w
he
el

an
gl
e
[◦]

(b) Steering input

−10 0 10

−20

0

20

Side slip β [◦]

Ya
w

ra
te

r
[◦ /

s]

(c) Safe handling envelope

Figure 7.6: Experimental results from the double lane change maneuver with 70
km/h with 30 m pop-up obstacle

59

7. Experimental Testing

−40 −20 0 20 40 60
−2

0

2

4

6

Longitudinal position [m]

La
te
ra
lp

os
iti
on

[m
] Desired trajectory

Track boundaries
Driving boundaries
Cone positions
Obstacle Recognition
Vehicle path - 0m
Vehicle path +0.5m
Vehicle path -0.5m

(a) Vehicle trajectory during double lane change

−40 −20 0 20 40 60
−5

0

5

Longitudinal position [m]

R
oa
d
w
he
el

an
gl
e
[◦]

(b) Steering input

−10 0 10

−20

0

20

Side slip β [◦]

Ya
w

ra
te

r
[◦ /

s]

(c) Safe handling envelope

Figure 7.7: Experimental results from the double lane change maneuver with 100
km/h with 45 m pop-up obstacle

60

8
Discussion

Using the data collected from experimental results shown in section 7.3 we can
evaluate the applicability of the numerical offline calculations. Figure 8.1 shows the
experimental results of vehicle performing the lane change maneuver at 70 km/h in
comparison with the numerical predictions calculated in chapter 5.
Dotted gray lines indicate the spatial locations of projections of the offline precal-
culated N-step controllable sets on the lateral position. Stars on the trajectories
indicate points that are contained in the predictions at a given location and circles
along the trajectory indicate measurements which are not contained in the corre-
sponding N-step controllable set.
At these instances the feasibility of the controller as well as the safety for the future
trajectory in the lane change maneuver cannot be guaranteed.
The measurements which are not contained in their respective N-step controllable
sets correspond to the time instances where the yaw rate in the experimental tests
was already outside of the the safe handling envelope as indicated by the red circles
in the figures 8.1a to 8.1c. Clearly from such point a feasible trajectory that satisfies
the handling constraints is unlikely to exist as it would require the system to bring
the vehicle states back into the safe handling envelope within a single time step.
For other points along the observed trajectories, even before the constraint violation
in the magenta trajectory, the numerical offline calculations predict the existence of
feasible solutions for the maneuver.
Therefore we can conclude that the predictions are rather overoptimistic with respect
to what the controller can actually achieve. The N-step controllable set calculation
from section 5.2.4 promises the existence of a feasible trajectory without constraint
violation for all three initial locations but the controller in closed loop does not man-
age to keep the vehicle along such trajectory and within the safe handling envelope
for the increased lateral offset in the lane change maneuver.
By considering the steering input data shown in figure 7.6 and the yaw rate data in
figure 8.1b, it seems likely that with a smoother control action it would be possible
to pass the obstacle while remaining within the handling envelope. If the controller
would be able to maintain a more constant yaw rate it should be possible to pass
the obstacle for all three starting positions without violating stability boundaries.
This lack of optimality of the observed control action can be attributed to a model
mismatch between the controller prediction model and the real vehicle dynamics.
Model mismatches between the prediction model used in the controller and the real
vehicle are inevitable since every prediction model can only be an approximation of
reality.
The bicycle model used in the controller is based on a number of simplifications (3.4)

61

8. Discussion

−35 −30 −25 −20 −15 −10 −5 0 5
−2

0

2

4

Longitudinal position [m]

La
te
ra
lp

os
iti
on

[m
] Desired trajectory

Track boundaries
Driving boundaries
Cone positions
Obstacle Recognition
Reachability projections
Vehicle Path - 0m
Vehicle Path +0.5m
Vehicle Path -0.5m

(a) Spatial projections of feasibility predictions

−35 −30 −25 −20 −15 −10 −5 0 5

−20

0

20

Longitudinal position [m]

Ya
w

R
at
e
[d
eg
/s
]

(b) Yaw rate envelope violations

−10 0 10

−20

0

20

Side slip β [◦]

Ya
w

ra
te

r
[◦ /

s]

(c) Handling envelope

Figure 8.1: Comparison of experimental results with numerical feasibility predic-
tions for lane change with 70 km/h

62

8. Discussion

and (3.5). This mismatch may lead to situations where control actions that were
predicted and calculated to keep the vehicle within the stability bounds actually
lead to a violation of the these limits.
Modeling assumptions (3.4) and (3.5) as well as the linear rear tire model (3.9) used
in the reachability calculations 5.2 also lead to mismatches between the feasibility
calculation and actual capabilities of the vehicle.
Although these assumptions typically yield accurate results only up to half of the
vehicle’s handling limits [28], the experimental results from the lane change at the
limits of handling still shows close resemblance to the numerical predictions.
While the experimental results showed that the controller implemented is able to
stabilize the vehicle up and even slightly beyond its handling limits, this will typically
not be necessary for the highway lane change maneuver considered in this work.
Significantly reduced limits on yaw rate and side slip will be enforced for a fully
automated vehicle driving on a highway. To ensure the comfort and the perception of
safety of a passenger in such vehicle the motion will have to very smooth. Therefore
for the application in a fully automated lane change we can expect a better match
between experimental performance and feasibility prediction.
A further approach for improving the concept presented in this work resulting in
better prediction accuracy could be attempted by explicitly accounting for model
mismatches in the sense of disturbances. Both suboptimal control action in the ve-
hicle as well as the errors introduced due to model mismatch between the prediction
model for the offline calculations and the real vehicle’s handling capabilities could
be described by disturbances. If quantified properly they could be used to yield
more conservative robust control invariant sets as well as robust N-step controllable
sets which would improve prediction accuracy.

63

8. Discussion

64

9
Conclusion

The work presented in this thesis provides an analysis of possibilities for using reach-
ability analysis and invariant set theory to predict feasibility for a MPC controller
performing an lane change maneuver.
To study the possibility of an online implementable algorithm the analytical solution
of one iteration step of the N-step controllable set algorithm using hyperrectangles
for inner approximation was determined.
We were able to prove that iteratively performing inner approximations of interme-
diate sets for control invariant set calculations or N-step controllable set calculations
for systems containing integrators using such simple geometrical shapes leads to an
inevitable collapse of the sets considered.
Although computationally very expensive, it was shown that with a heuristic ap-
proximation algorithm it is possible to numerically calculate the control invariant
set as well as N-step controllable sets for a vehicle in a lane change maneuver.
To compare these offline precalculated predictions with experimental data an MPC
controller was implemented that proved to be able to stabilize and control the vehicle
during a lane change maneuver up and even slightly beyond the handling limits.
The predictions are slightly overestimating the ability of the controller to find a
solution to pass an obstacle without violating vehicle stability boundaries.
We can attribute this result to modelling assumptions necessary to enable both the
calculation of the feasibility prediction as well as the real-time controller imple-
mentation which loose accuracy in the high dynamic maneuvers performed in this
work.
Future work can account for these inaccuracies by modelling them as disturbances
which would lead to more conservative and precise results. Furthermore an applica-
tion in a real autonomous vehicle will lead to an increased accuracy of the predictions
since the modelling assumptions used are more accurate in typical driving situations
compared to the severe lane change maneuver used for evaluation in this work.
From these results we can conclude that the feasibility of an MPC controller in a
lane change maneuver can be evaluated using the techniques illustrated in this work.
For an implementation in a vehicle it is possible to determine the upper bound for
a feasible velocity of a maneuver by offline precalculating the maneuver for a range
of velocities and using this data online to determine the feasibility of the maneuver
for a given vehicle state in relation to an obstacle or a preceding car in its lane.

65

9. Conclusion

66

Bibliography

[1] Beal, C. E. (2011). Applications of Model Predictive Control to Vehicle Dynam-
ics for Active Safety and Stability, Doctoral dissertation, Stanford University,
USA

[2] Beal, C. E., & Gerdes, J. C. (2013). Model Predictive Control for Vehicle Sta-
bilization at the Limits of Handling. Ieee Transactions on Control Systems
Technology, 21(4), 1258–1269.

[3] Blanchini, F. (1999). Set invariance in control. Automatica, 35(11), 1747–1767.

[4] Borrelli, F., Falcone, P., Keviczky, T., Asgari, J., & Hrovat, D. (2005). MPC-
based approach to active steering for autonomous vehicle systems. International
Journal of Vehicle Autonomous Systems, 3(2/3/4), 265.

[5] F. Borrelli, A. Bemporad, M. Morari (2010) Constrained Optimal Control and
Predictive Control for linear and hybrid systems, Berlin, Germany: Springer-
Verlag, Sept. 2010

[6] Boyd, S., & Vandenberghe, L. (2010). Convex Optimization. Optimization
Methods and Software (Vol. 25).

[7] Carvalho, A., Gao, Y., Gray, A., Tseng, H. E., & Borrelli, F. (2013). Predic-
tive control of an autonomous ground vehicle using an iterative linearization
approach. Intelligent Transportation Systems - (ITSC), 2013 16th International
IEEE Conference on, (Itsc), 2335–2340.

[8] Del Re, L., Allgower, F., Glielmo, L., Guardiola, C. (2010). Automotive
Model Predictive Control Models, Methods and Applications. Berlin Heidel-
berg: Springer-Verlag.

[9] Erlien, S. M., Funke, J., & Gerdes, J. C. (2014). Incorporating non-linear tire
dynamics into a convex approach to shared steering control. Proceedings of the
American Control Conference, 3468–3473.

[10] Erlien, S.M. (2015) Shared Vehicle Control using Safe Driving Envelopes for
Obstacle Avoidance and Stability, Doctoral dissertation, Stanford University,
USA

[11] P Falcone, F Borrelli, J Asgari, HE Tseng, D Hrovat (2011) Predictive active
steering control for autonomous vehicle systems; Control Systems Technology,
IEEE Transactions on 15 (3), 566-580.

67

Bibliography

[12] Falcone, P., Borrelli, F., Asgari, J., Tseng, H. E., & Hrovat, D. (2007). A model
predictive control approach for combined braking and steering in autonomous
vehicles. 2007 Mediterranean Conference on Control Automation, 1–6.

[13] Falcone, P., Borrelli, F., Tseng, H. E., Asgari, J., & Hrovat, D. (2008). A hier-
archical Model Predictive Control framework for autonomous ground vehicles.
2008 American Control Conference, 3719–3724.

[14] Falcone, P., Ali, M., & Sjöberg, J. (2011). Predictive threat assessment via
reachability analysis and set invariance theory. IEEE Transactions on Intelligent
Transportation Systems, 12(4), 1352–1361.

[15] Fiala, E. (1954) Lateral forces on rolling pneumatic tires, Zeitschrift V.D.I.,
vol. 96/29, 973–979.

[16] Funke, J., & Gerdes, J. (2013). Simple Clothoid Paths for Autonomous Vehicle
Lane Changes at the Limits of Handling. Asme 2013, 1–10.

[17] Funke, J., (2016) Collision Avoidance Up to the Handling Limits for Au-
tonomous Vehicles, Doctoral dissertation, Stanford University, USA

[18] Gao, Y., Gray, A., Frasch, J. V, Lin, T., Tseng, E., Hedrick, J. K., & Borrelli, F.
(2012). Spatial Predictive Control for Agile Semi-Autonomous Ground Vehicles.
Proceedings of the 11th International Symposium on Advanced Vehicle Control,
VD11(2), 1–6.

[19] Goubault, E., Mullier, O., Putot, S., & Kieffer, M. (2014). Inner Approximated
Reachability Analysis. In Proceedings of the 17th International Conference on
Hybrid Systems: Computation and Control (pp. 163–172). New York, NY,
USA: ACM.

[20] Gray, A., Gao, Y., Lin, T., Hedrick, J. K., Tseng, H. E., & Borrelli, F. (2012).
Predictive control for agile semi-autonomous ground vehicles using motion
primitives. American Control Conference (ACC), 2012, 4239–4244.

[21] Hadekel, R., (1952) The mechanical characteristics of pneumatic tyres. In S
and T Memo TPA3/TIB.

[22] Herceg, M., Kvasnica, M., Jones, C., & Morari, M. (2013). Multi-Parametric
Toolbox 3.0. In Proceedings of the European Control Conference (pp. 502–510).

[23] Hindiyeh, R. Y. (2013). Dynamics and Control of Drifting in Automobiles,
(March 2013)., PHD Dissertation, Stanford University. Department of Mechan-
ical Engineering

[24] Hsu, Y. H. J., & Gerdes, J. C. (2009). Envelope Control: Keeping the Vehi-
cle Within its Handling Limits Using Front Steering. Proceedings of the 21st
International Symposium on Dynamics of Vehicles on Roads and Tracks.

[25] ISO 3888-1:1999 Passenger cars — Test track for a severe lane-change manoeu-
vre — Part 1: Double lane-change, ISO, Geneva, Switzerland

68

Bibliography

[26] Maciejowski, J. M. (2002). Predictive Control with Constraints. Computers and
Electronics in Agriculture (Vol. 63).

[27] Mattingley, J., & Boyd, S. (2012). CVXGEN: A code generator for embedded
convex optimization. Optimization and Engineering, 13(1), 1–27.

[28] Pacejka, H.B (2005) Tire and Vehicle Dynamics. Society of Automotive Engi-
neers, Warrendale, PA USA, 2nd edition

[29] Schrijver, A. (1998). Theory of Linear and Integer Programming. John Wiley
& sons. pp. 155–156. ISBN 0-471-98232-6.

[30] Ziegler, G. M., (1995) Lectures on Polytopes, Springer New York, updated
Seventh Printing of the First Edition

69

Bibliography

70

A
Analytical Projection

A.1 Fourier Motzkin Projection Algorithm
The Fourier Motzkin Elimination algorithm is a method to eliminate variables from
a system of linear inequalities. Since the hyperplanes bounding the convex sets
considered in this thesis are described by sets of linear inequations this algorithm
can be used to project a polytope in RN onto an RN−1 dimensional subspace. This
explanation of the algorithm follows the presentation in [29].

Data: A system of inequalities Ax ≤ b with matrix A ∈ Rm×n, vector
b ∈ Rm, index j ∈ [1..n] specifying the column to be eliminated

Result: System of inequalities Dx ≤ d with Matrix D ∈ Rr×n such that
Di,j = 0 for all i = 1, ..., r], Vector d ∈ Rr

Z ← {i ∈M | ai,j = 0}
N ← {i ∈M | ai,j < 0}
P ← {i ∈M | ai,j > 0}
R← Z ∪ (N × P)
r ← |R|
p← an index of the elements in R, p : 1, ...r → R for i ∈ [1, ..., r] do

if p(i) ∈ Z then
Di ← Ap(i)
di ← bp(i)

else if p(i) = (s, t) ∈ N × P then
Di ← atjAs − asjAt
di ← atjbs − asjbt

end
end

Algorithm 3: Calculation of the N-Step Controllable Set

The rows of the matrix A are sorted according to the value of the elements ai,j in
the row j to be eliminated. Indices of Zero entries are stored in Z while indices of
positive and negative entries are stored in P and N . The set R is used to represent
the intersection of all indices of Z as well as tuples created by N × P . Iterating
through the elements of R the new set of inequalities is built. If an inequality had a
zero entry for the variable to be eliminated it remains unchanged. For all the tuples
in R the inequalities are combined in such way that the entry for the inequality to
be eliminated becomes zero. The new set of inequalities contains only zero entries
in the jth column and therefore becomes independent of that dimension.

I

A. Analytical Projection

A.2 Pre(X) of the AFI-Model using Hypercube
Constraints

1− Cαrts
mu(t) ts

(
bCαr
mu(t) − u(t)

)
0 0 ts

m

Cαrts
mu(t) − 1 ts(u(t)2− bCαr

m)
u(t) 0 0 − ts

m
bCαrts
Izu(t) 1− b2Cαrts

Izu(t) 0 0 ats
Iz

− bCαrts
Izu(t)

b2Cαrts
Izu(t) − 1 0 0 −ats

Iz

0 ts 1 0 0
0 −ts −1 0 0
ts 0 tsu(t) 1 0
−ts 0 −tsu(t) −1 0
0 0 0 0 1
0 0 0 0 −1

v(t)
r(t)
ψ(t)
e(t)
Fyf(t)

 ≤

vmax
vmax
rmax
rmax
ψmax
−ψmin

emax(t+ 1)
−emin(t+ 1)

Fyfmax

Fyfmax

(A.1)

II

A. Analytical Projection

A.3 One-Step Controllable Set for the AFI-Model
with Hyperrectangle Constraints

0 ts 1 0
0 −ts −1 0
ts 0 tsu(t) 1
−ts 0 −tsu(t) −1

aCαrt2s
mIzu(t) −

ats
Iz

+ bCαrt2s
mIzu(t) −abCαrt2s

mIzu(t) + at2su(t)
Iz
− b2Cαrt2s

mIzu(t) + ts
m

0 0
Cαrts
mu(t) − 1 tsu(t)− bCαrts

mu(t) 0 0
− aCαrt2s
mIzu(t) + ats

Iz
− bCαrt2s

mIzu(t)
abCαrt2s
mIzu(t) −

at2su(t)
Iz

+ b2Cαrt2s
mIzu(t) −

ts
m

0 0
− bCαrts

Izu(t)
b2Cαrts
Izu(t) − 1 0 0

1− Cαrts
mu(t)

bCαrts
mu(t) − tsu(t) 0 0

bCαrts
Izu(t) 1− b2Cαrts

Izu(t) 0 0
1 0 0 0
−1 0 0 0
0 1 0 0
0 −1 0 0
0 0 1 0
0 0 −1 0
0 0 0 1
0 0 0 −1

.

v(t)
r(t)
ψ(t)
e(t)

≤

ψmax
ψmax

emax(t+ 1)
−emin(t+ 1)
atsvmax

Iz
+ tsrmax

m
Fyfmaxts

m
+ vmax

atsvmax
Iz

+ tsrmax
m

aFyfmaxts
Iz

+ rmax
Fyfmaxts

m
+ vmax

aFyfmaxts
Iz

+ rmax
vmax
vmax
rmax
rmax
ψmax
ψmax
emax(t)
−emin(t)

(A.2)

III

A. Analytical Projection

IV

B
Inner Approximation of

Symmetric Polytopes

function [P_out] = ForcePolytopeSymmetrySimplification_4D(P , ...
nSymmetricConstraints, tolAngle)

% ForcePolytopeSymmetrySimplification_4D - Calculate symmetric inner
% approximation of a 4D-Polytope
%
% Inputs:
% P - Input Polytope
% nSymmetricConstraints - Number of desired remaining hyperplanes
% tolAngle - Desired minimal angle between resulting hyperplanes
% Outputs:
% P_out - Output Polytope
% Example:
% P_out = ForcePolytopeSymmetrySimplification_4D(P , 500, 2)
%
% Toolboxes required: MPT Toolbox 3.0.4
% Parallel Computing Toolbox
% Author: Stephan Heinrich
% email: stehei@student.chalmers.se
% Website:
% April 2015; Last revision: 25-October-2015
%------------- BEGIN CODE --------------
% Norm the input Polytope
Pnorm = normPolytope(P.minHRep());
H = Pnorm.H;
%% Calculate the facets for the input polytope
for i = 1:size(H,1)

Facet(i) = Pnorm.getFacet(i);
end
%% Calculate the scaled difference between the hyperplane supporting vectors
OuterBox = Pnorm.outerApprox;
BoxScaling = OuterBox.H(1:4,5)';
MinErr = zeros(1,size(H,1));
MinIndex = zeros(1,size(H,1));
for i = 1:size(H,1)

[MinErr(i),MinIndex(i)] = min(sum(...
[abs(H(:,1)+H(i,1))/BoxScaling(1),...
abs(H(:,2)+H(i,2))/BoxScaling(2),...
abs(H(:,3)+H(i,3))/BoxScaling(3),...
abs(H(:,4)+H(i,4))/BoxScaling(4)],2));

end

V

B. Inner Approximation of Symmetric Polytopes

%% Check if they are all pairwise ordered or if a new hyperplane
% must be added
SingleHyperplaneI = setdiff([1:size(H,1)], unique(MinIndex));
H_SingleHyperplanes = [];
h_SingleHyperplanes = [];
if ~isempty(SingleHyperplaneI)

disp('Symmetry violated and needs to be fixed')
H_SingleHyperplanes = [H(SingleHyperplaneI, 1:4) ;...

(-1)*H(SingleHyperplaneI, 1:4)];
h_SingleHyperplanes = [H(SingleHyperplaneI, 5); H(SingleHyperplaneI, 5)];

end
%% Order the halfplanes in pairs
PairList = [];
for i = 1:size(H,1)

if MinIndex(MinIndex(i)) == i
PairList = [PairList; [sort([i, MinIndex(i)])]];
MinIndex(i) = 0;

end
end
%% Calculate the average slope for each pair. Sign is kept from the first
% entry of the pair
SlopeList = zeros(size(PairList,1),4);
for i = 1:size(PairList)

SlopeList(i,:) = [H(PairList(i,1), 1:4)+(-1).*H(PairList(i,2), 1:4)];
end
SlopeList = SlopeList./2;
%% Reevaluate the distance to the obstacle to ensure the corrected symmetric
% facets are inner approximations
dList = zeros(size(PairList,1),1);
VertexArrayPos= cell(1,size(PairList,1));
VertexArrayNeg= cell(1,size(PairList,1));
parfor i = 1:size(PairList,1)

% Enumerate all vertices assiciated with the first halfspace of a pair
dPos = 1;
if ~Facet(PairList(i,1)).isEmptySet

VertexArrayPos{i} = Facet(PairList(i,1)).V;
try

% Recalculate distance from the origin to make sure all
% vertices are outside
dPos = min(abs(SlopeList(i,:)* VertexArrayPos{i}'));

catch
disp('Corrupt facet detected... Caught error')

end
else

disp('Corrupt facet detected..')
end
% Enumerate all vertices assiciated with the 2nd halfspace of a pair
dNeg = 1;
if ~Facet(PairList(i,2)).isEmptySet

VertexArrayNeg{i} = Facet(PairList(i,2)).V;
try

% Recalculate distance from the origin to make sure all
% vertices are outside
dNeg = min(abs(SlopeList(i,:)* VertexArrayPos{i}'));

catch
disp('Corrupt facet detected... Caught error')

VI

B. Inner Approximation of Symmetric Polytopes

end

else
disp('Corrupt facet detected..')

end
% Keep the smaller distance to the origin to remain symmetric
dList(i) = min([dPos dNeg]);

end
%% Find Halfspaces with similar normal vectors and combine them to an inner
% approximation
% Initially determine angles between hyperplanes
AngleMatrix = zeros(size(SlopeList,1),size(SlopeList,1));
for i = 1:size(SlopeList,1)

AngleMatrix(:,i) = SlopeList*SlopeList(i,:)'./ ...
(sqrt(sum(SlopeList.*SlopeList,2))*sqrt(SlopeList(i,:)*SlopeList(i,:)'));

end
% Ignore diagonals
AngleMatrix(eye(size(AngleMatrix))== true) = 0;
% Determine the angle between hyperplanes
[max_val,idx]=max(abs(AngleMatrix(:)));
% Iteratively combine halfspaces until conditions are met
while max_val > cos(tolAngle*pi/180) && ...

size(SlopeList, 1) > nSymmetricConstraints
% Determine which hyperplanes will be combined
[row,col]=ind2sub(size(AngleMatrix),idx);
%Check if they are in the same direction and combine
if sign(AngleMatrix(row, col)) == 1

NewSlope = (SlopeList(row,:)+SlopeList(col,:))./2;
PosVertexList = [VertexArrayPos{row};VertexArrayPos{col}];
NegVertexList = [VertexArrayPos{row};VertexArrayPos{col}];

else
NewSlope = (SlopeList(row,:)-SlopeList(col,:))./2;
PosVertexList = [VertexArrayPos{row};VertexArrayNeg{col}];
NegVertexList = [VertexArrayNeg{row};VertexArrayPos{col}];

end
% Determine new distance to the origin
New_d = min([abs(NewSlope*PosVertexList'), abs(NewSlope*NegVertexList')]);
% Change the starting matrices to enable iteration
VertexArrayPos(max([row col])) = [];
VertexArrayPos(min([row col])) = [];
VertexArrayNeg(max([row col])) = [];
VertexArrayNeg(min([row col])) = [];
VertexArrayPos{end+1} = PosVertexList;
VertexArrayNeg{end+1} = NegVertexList;
SlopeList(max([row col]),:) = [];
SlopeList(min([row col]),:) = [];
SlopeList(end+1,:) = NewSlope;
dList(max([row col])) = [];
dList(min([row col])) = [];
dList(end+1) = New_d;
% Recalculate the angles between remaining hyperplanes
AngleMatrix = zeros(size(SlopeList,1),size(SlopeList,1));
for i = 1:size(SlopeList,1)

AngleMatrix(:,i) = SlopeList*SlopeList(i,:)'./ ...
(sqrt(sum(SlopeList.*SlopeList,2))...

*sqrt(SlopeList(i,:)*SlopeList(i,:)'));

VII

B. Inner Approximation of Symmetric Polytopes

end
% Ignore diagonals
AngleMatrix(eye(size(AngleMatrix))== true) = 0;
%calculate the vectors that should be combined
[max_val,idx]=max(abs(AngleMatrix(:)));

end
%% Rebuild the approximated polytope
P_out = Polyhedron([SlopeList; SlopeList.*(-1); H_SingleHyperplanes],...

[dList; dList; h_SingleHyperplanes]);
end

VIII

C
Experimental Testing

C.1 CVXgen Optimization Problem Statement

dimensions
m = 1 # Number of inputs.
n = 4 # Number of states
T_short = 5 # Near horizon.
T_long = 20 # Far horizon.

end
parameters

x[0] (n) # Initial state.
u0 (1) # Previous input

Linearized system dynmics in near horizon
A_short (n,n)1,1 1,2 2,1 2,2 3,2 3,3 4,1 4,3 4,4
B_short (n,m)1,1 2,1
dc_short (n)1,1 2,1

Linearized system dynmics in correction step
A_int (n,n)1,1 1,2 2,1 2,2 3,2 3,3 4,1 4,3 4,4
B_int (n,m)1,1 2,1 # input matrix.

Linearized system dynmics in far step
A_long (n,n)1,1 1,2 2,1 2,2 3,2 3,3 4,1 4,3 4,4
B_long (n,m)1,1 2,1 # input matrix.

Input limits
Fyf_max nonnegative # Input limit.
dFyf_max nonnegative # Input slew rate limit.

Handling Envelope. H_sh*x<=G_sh
H_sh (4,n)1,1 1,2 2,2 3,1 3,2 4,2
G_sh (4)

Environmental Envelope. H_env*x <=G_env
H_env (2,n)1,4 2,4
G_env[i] (2), i=1..T_short+T_long

IX

C. Experimental Testing

sigma_env psd # Environment envelope cost term
sigma_sh psd # Handling envelope cost term

sigma_e nonneg # lane tracking cost
sigma_psi psd # Heading cost

sigma_u_near psd # Input force cost term
sigma_u_far psd # Input force cost term

sigma_du_near psd # Input derivative cost term
sigma_du_far psd # Input derivative cost term

end
variables

x[t] (n), t=1..T_short+T_long # State
u[t] (m), t=0..T_short+T_long-1 # Input
s_sh[t] (1), t=1..T_short+T_long # Safe handling envelope
s_env[t] (1), t=1..T_short+T_long # Environmental envelope

end
minimize

sum[t=T_short+1..T_short+T_long](quad(s_env[t], sigma_env))
+sum[t=1..T_short+T_long](sigma_sh*s_sh[t])
+sum[t=T_short+1..T_short+T_long](sigma_e*abs(x[t][4])

+quad(x[t][3], sigma_psi))
+sum[t=0..T_short-1](quad(u[t], sigma_u_near))
+sum[t=T_short..T_short+T_long-1](quad(u[t], sigma_u_far))
+sum[t=0..T_short-1](quad(u[t]-u[t+1], sigma_du_near))
+sum[t=T_short..T_short+T_long-2](quad(u[t]-u[t+1], sigma_du_far))

subject to
Motion model near horizon
x[t+1] == A_short*x[t] + B_short*u[t]+ dc_short , t=0..T_short-1
Motion model correction step
x[t+1] == A_int*x[t] + B_int*u[t] , t=T_short..T_short
Motion model far horizon
x[t+1] == A_long*x[t] + B_long*u[t], t=T_short+1..T_short+T_long-1

Environmental envelope
H_env *x[t] <= G_env[t] + s_env[t] , t=T_short+1..T_long

Safe handling envelope
H_sh *x[t] <= G_sh + s_sh[t] , t= 1..T_short+T_long

Input limit constraint
abs(u[t]) <= Fyf_max , t=0..T_short+T_long-1
Input slew rate constraint
abs(u[t+1] - u[t]) <= dFyf_max , t=0..T_short

X

C. Experimental Testing

abs(u[0] - u0) <= dFyf_max

Soft constraint slack variables
s_sh[t] >= 0 , t=1..T_short+T_long
s_env[t] >= 0 , t=1..T_short+T_long

end

C.2 Controller Parameters

σenv 1000
σsh 60
σe 10
σψ 5

σunear 2× 10−6

σufar 2× 10−5

σdunear 5× 10−10

σdufar 5× 10−9

Table C.1: Controller parameters used in experimental testing

XI

	List of Figures
	List of Tables
	Introduction
	Literature Review
	Problem Statement
	Structure of the Thesis

	Invariant Set Theory and Reachability Analysis
	Convex Sets
	Hyperplanes & Halfspaces
	Polyhedra and Polytopes

	Operations on Polytopes
	Convex Hull
	Vertex Enumeration
	Projection
	Minkowsky sum

	Representations of Convex sets
	H-Representation
	V-Representation
	Properties of H- and V-Representations

	Invariant Sets
	Reach()-Set
	Pre()-Set
	Control Invariant Set
	N-Step Controllable Set

	Example: A Simple Discrete Integrator

	Vehicle System Modelling
	Two Track Model
	Bicycle Model
	Tire Models
	Linear Tire Model
	Brush Tire Model

	Linear Bicycle model
	Force Input Model
	Linear Time Varying Model
	Safe Handling Envelope

	Model Predictive Control
	Receding Horizon Principle
	Modelling of Constraints
	CVXgen

	Feasibility by Construction
	Analytical Approach Using Hyperrectangle Constraints
	Numerical Approach
	Reachability Calculations with MPT-Toolbox
	Inner Approximation of Polytopes
	Numerical Control Invariant Sets
	Numerical N-step Controllable Sets

	Controller Design
	Controller Formulation
	Motion Prediction
	System Constraints

	Implementation
	Horizon length
	Simulation environment

	Experimental Testing
	Test Scenario
	Test Vehicle
	Testing Equipment
	Vehicle Parameters

	Results

	Discussion
	Conclusion
	Bibliography
	Analytical Projection
	Fourier Motzkin Projection Algorithm
	Pre(X) of the AFI-Model using Hypercube Constraints
	One-Step Controllable Set for the AFI-Model with Hyperrectangle Constraints

	Inner Approximation of Symmetric Polytopes
	Experimental Testing
	CVXgen Optimization Problem Statement
	Controller Parameters

