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Abstract

Optical communication systems provide data rates that far exceeds alternate systems
for on-premises data links and equipment wiring and also for long-haul communications.
Fiber is mostly preferred not only for its extremely large data-carrying capacity, but
also for its small attenuation over large bandwidths, small physical size and immunity
to interference from extraneous ambient electrical signals.

However, inherent intensity-dependent nonlinearities in fiber tend to reduce system
performance for high input power ranges. The state-of-the-art design to compensate
for these nonlinearities is the digital back propagation (DBP) (digital-signal processing
(DSP) - based approach), which does not account for noise that is present in real life
systems with periodic amplification. The stochastic digital back propagation (SDBP)
technique extends the DBP technique to account for noise in addition to compensating
for deterministic linear and nonlinear impairments.

In this work we show that, the decision unit of the SDBP receiver is not optimal since
it neglects any residual memory that may be present. We extend the SDBP algorithm by
applying a maximum a posterior (MAP)-based criterion using factor graphs and the sum
product algorithm (SPA) to develop a novel detector that accounts for non-optimality
in the stochastic digital back propagation (SDBP). We shown that the proposed method
performs significantly better than the original SDBP. For inline dispersion-managed
links, the proposed algorithm has up to 2 times lower symbol error rate (SER) than
the original SDBP and up to 9 times lower SER than DBP in the nonlinear power
regime for 16-QAM modulation.
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1
Introduction

1.1 Background and motivation

Over the past decades, demand for fast reliable communications has risen to an all
time high. High speed, data consuming, and power hungry electronic applications have
driven the need for high-efficient transmission and detection algorithms to extraordinary
limits. Forecasts however show that this ever increasing global data traffic is bound for
a thousand-fold rise by the year 2020 [1] with 24 billion globally networked devices and
connections by 2019, representing a 71% raise from 2014 [2].

Meanwhile, the advent of semiconductor and electronic architecture technology has
bolstered the efficiency of digital signal processing (DSP)-based informational signal
processing leading to increased data rates [3], whilst the data-carying capacity of some
transmission media have tremendously improved over the years. In that vein, fiber-optic
communication based systems have attracted immense attention for high-speed inter-
continental backbone communications. This is because fiber has a very high bandwidth
(several Terabits/sec [4]), has low attenuation factor (about 0.2 dB/km [4], over several
THz), is small in size [10] (with a cross sectional area of about 30µm2 - 100µm2 [4]), and
is immune to other electromagnetic interference (which implies that electrical cables can
be run along with it without any electrical disturbance).

Due to the increasing aggregate of global data traffic, exploration of efficient ways
to achieve higher data rates in fiber has driven its transmission capacity to increase by
a factor of approximately 10 every four years as shown in Fig. 1.1 [9]. Key technological
breakthroughs in fiber-optic communication systems include the development of low-loss
single-mode fiber (SMF), the erbium doped fiber amplifier (EDFA), wavelength division
multiplexing (WDM) and high-spectral-efficiency coding through DSP-enabled coherent
transmission [9]. Exploration of innovative ways however present challenges, which were
nearly impossible to tackle in the early years of fiber-optic communications due to ex-
tremely low level DSP technology available at the time [4].
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1.1. BACKGROUND AND MOTIVATION CHAPTER 1. INTRODUCTION

Figure 1.1: Improvement of fiber systems over the years [9].

In general, response of any dielectric material to light becomes nonlinear for high
intensity electromagnetic fields and fiber-optic materials are no exception [4]. This can
be explained fundamentally by the anharmonic motion of bound electrons of the fiber
atoms with increasing input power intensity [24], resulting in a nonlinear susceptibil-
ity and eventually leading to the so called Kerr effect. The induced refractive index
variations translate into changes in the signal’s optical phase [10]. Thus, the signal is
distorted (in the frequency domain) and the effective symbol error rate (SER) of the
system increases. Fiber systems have an optimum transmit power beyond which the
SER begins to increase due to the nonlinearity domination in the fiber. This is shown
in the graph in Fig. 1.2

In order to address nonlinearities in the fiber, early lightwave systems applied input
power back-off from the nonlinear dominated power regions, and used binary modula-
tion formats at the transmitter with fixed threshold detection at the receiver. Although
communication distances were in the hundreds of kilometers, the power levels were too
low for any accumulated nonlinear impairments to have any significant impact on the
transmission. Hence the only main problems that confronted communications were linear
impairments like dispersion and power attenuation [4]. High spectral efficiency coding
(e.g. through high order constellation schemes with coherent detection) require explor-
ing different high input power options in order to maintain a specific SER performance
for example. However, as seen in Fig. 1.2 high input powers lead to operation in the
nonlinear dominated region.
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Figure 1.2: Effects of nonlinearities on symbol error rate in optical communication systems.

DSP receiver-based efforts have been made to find different ways of compensating for
the impact of the inherent nonlinearities in the fiber, by processing the received signal
before making best effort decisions to minimize errors. These DSP methods include
channel phase conjugation techniques such as the nonlinear phase noise (NLPN) com-
pensation technique [27], which applies phase conjugation to the received signal at the
receiver to remove the nonlinear phase noise, channel inversion techniques such as digital
back propagation (DBP) [11] and the SDBP [7] techniques, which back propagates the
received signal through a virtual inverted channel to remove the effects of the inherent
fiber impairments and other methods based on Voltera kernels [14]. Other contribu-
tions pertinent to this work are referenced in relevant sections of the thesis. Three of
such DSP based optimization techniques are considered in Chapter 3. We will however
be particularly concerned with one of these techniques, namely the SDBP, which uses
factor graphs, particle methods and message passing in the design of communication
detection algorithms. In the next section, we briefly describe the principle behind back
propagation and highlight the main problem, which we wish to tackle in this work.

1.2 Existing approaches

Light propagating through an optical fiber can be modeled with the nonlinear schrödinger
equation (NLSE). Closed-form solutions to the NLSE exist if either the linear or nonlinear
impairments is negligible. However when both linear and nonlinear impairments are
present, the resulting nonlinear partial differential equation does not generally lend itself

3



1.3. OUR METHODOLOGY CHAPTER 1. INTRODUCTION

to a closed-form solution . In that case, the split step Fourier method (SSFM) can be
used as a numerical method to simulate the NLSE [4]. The SSFM approximates NLSE
by assuming linear and nonlinear effects act independently along a very small segment
of the fiber. Given the transmitted signal that propagates through a fiber cable, the
received signal can be approximated with simulations just as in practice with the SSFM.
DBP is a receiver-based signal processing technique to jointly compensate for linear
and nonlinear impairments in a fiber-optic cable by applying the SSFM solution to the
received optical signal with opposite optical fiber propagation parameters [11]. A more
detailed mathematical description of this algorithm is given in Chapter 3.

In long-haul lightwave systems, optical amplifiers are used to reinforce weak signals.
Optical amplifiers often introduce noise through amplified spontaneous emission (ASE),
which distorts the optical signal. For such systems the DBP technique cannot perform
optimally since it does not account for noise. Irukulapati et. al. [7], proposed a technique
to improve on DBP. Having the maximum a posteriori (MAP) criterion as the starting
point and with factor graphs and a message passing algorithm, namely the sum product
algorithm (SPA), they arrive at a solution whose primary objective is to minimize the
probability of error. It assumes that the ASE noise from the optical amplifiers is white,
Gaussian and additive. In the detection unit of [7], in order to maximize the signal to
noise ratio, a filter matched to the pulse shape and a symbol rate sampler at optimal
sampling times is applied (assuming perfect synchronization) [30]. The matched filtering
technique here is only applied heuristically. This thesis work investigates the optimality
of the matched filtering (MF) in the SDBP, and attempts to develop a novel detector
that avoids heuristics and hence improves on the SER within the nonlinear dominant
power regime. The tools we employ are highlighted in the next section.

1.3 Our methodology: message passing on factor graphs

The graphical model approach (such as factor graph (FG)) to problem solving is in-
creasingly becoming a universal way of representing complex signal processing, channel
coding and machine learning problems in a comprehensive and systematic manner [6].
Just as Tanner graphs are associated with low-density parity-check (LDPC) and Trellis
graphs are associated with the Viterbi algorithm, it is also common to associate factor
graphs with a number of message passing algorithms. The SPA or belief propagation
and the maximum product or minsum algorithms are such algorithms of which the SPA
is arguably the most common [20].

Factor graphs works well with the SPA message passing algorithms in Bayesian in-
ference problems [6]. The SPA solves inference problems by computing the posterior
marginal of the variable of interest, provided there are no cycles in the graph and all
variables are discrete. Particle representation is a way to represent messages as a list of
particles with weights [23]. It has been shown in [23] that particle representations are
a full member of the family of message-passing methods that enables for a number of
possibilities including: applying particle methods at nodes in factor graphs to determine
forward and backward messages and applying particle methods to factor graphs with
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cycles.
In the following Chapters, we exploit these tools to tackle the SDBP detection problem,
which was highlighted in the previous section.

1.4 Objective and outline

SDBP is one of the few techniques that accounts for ASE noise in its operation. At the
detection unit, a matched filter and symbol rate sampling is used to maximize signal to
noise ratio (SNR). This method was only applied based on heuristics and need not be
optimal. This thesis work aims to find out the following:

1. if the matched filtering and symbol rate sampling employed by the SDBP is optimal
and if not

2. develop an algorithm that will minimize SER better than matched filtering and
sampling and

3. investigate whether the proposed algorithm is optimal.

The structure of this work is as follows:
Chapter 2 provides a mathematical background in fiber-optical communication and the
SPA. It entails a mathematical representation of the system and channel models, the
NLSE, and an introduction to linear factor graphs models as well as the SPA.

In Chapter 3, we review and compare existing receiver-based algorithms that jointly
compensate for linear and nonlinear impairments. Following that, is a formal formulation
of the problem statement.

In Chapter 4, we derive the proposed technique and verify its performance improve-
ment over SDBP. Some implementation problems are also discussed and solved.

Finally, we draw our conclusions in Chapter 5 and provide suggestions for future
work.

5



1.4. OBJECTIVE AND OUTLINE CHAPTER 1. INTRODUCTION

6



2
Background review

2.1 System model

Notation: x(t) represents a single-polarized continuous-time optical signal. Its vec-
tor representation, which is an over-sampled version (sequence of data symbols, spaced
at symbol time Ts apart), and in general all vectors are represented with lower case bold
letter x. x̃ is the frequency domain representation of x. ∆z represents an infinitesimal
width along a distance variable, z, often too small for any depending variable to vary
along that distance. The Hermitian conjugate of a complex matrix A is denoted as AH

and transpose of a real matrix, M is MT . The Moore-Penrose pseudo inverse is denoted
as (•)#. The Dirac delta function is also written as δ(•). A multivariate Gaussian prob-
ability density function (PDF) of a random variable, X with mean mX and covariance
ΣX is denoted as N (x;mX ,ΣX).

2.1.1 Transmitter

The transmitter system connects to the receiver system via the Nspan spans of optical
fiber and EDFAs. A binary sequence b[n] = {b[0], b[1],...,b[Lb − 1]} of length Lb, is
modulated using a Quadrature Amplitude Modulation (QAM) or phase-shift keying
(PSK) modulator where the available symbol set is given as Ω, log2(Ω) = Lb/M . M is
the length of the resulting complex symbol sequence, s = {s[0], s[1],...,s[M − 1]} ∈ ΩM

and s[n] ∈ C. s is then upsampled with upsampling factor q and filtered with a continuous
time pulse, p(t), usually a root-raised-cosine pulse. The continuous-time complex base-
band signal propagated through the fiber-optical communication system from the output
of the pulse shaper is given as:

v(t,l1,1) =
M−1∑
n=0

s[n]p(t− nTs) (2.1)

7



2.1. SYSTEM MODEL CHAPTER 2. BACKGROUND REVIEW

P
u

ls
e

S
h
ap

er

Transmitter

D
B

P
/S

D
B

P

D
ec

is
io

n
s

×Nspan

Fiber-optical link

ŝ
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Figure 2.1: System model consisting of a fiber link with Nspan span concatenations of an
SMF, a dispersion compensation fiber (DCF) (for dispersion managed (DM) links), and an
EDFA [8].

where p(t) is the impulse response of filter. v(t,l1,1) is the signal at the output of the
pulse shaping and is different from the signal in other segments of the fiber spans, which
are denoted as v(t,ln6=1,m 6=1).

2.1.2 Receiver

The receiver consists of a matched filter that filters the received signal, r(t) with p(t)
to avoid inter-symbol interference (ISI) and downsamples the resulting signal at symbol
rate. Its overall aim is to optimally determine s given r(t) based on an optimality
criterion. In this work we consider the MAP criterion. A MAP detection criterion will
make the decision according to:

ŝ = argmax
s∈ΩM

p(s|r) (2.2)

= argmax
s∈ΩM

p(r|s)p(s)

p(r)
(2.3)

where p(s|r) is the posterior distribution, p(r|s) is the likelihood function and the p(s)
is the a priori distribution. To reduce complexity a symbol-by-symbol detection could
be used:

ŝi = argmax
si∈Ω

p(si|r) (2.4)

The QAM or PSK detected symbols are demodulated according to the symbol mapping
in the transmitter to yield b̂.

2.1.3 Channel model

A. Signal Propagation in fiber

Signal propagation in an optical channel can be modeled with the NLSE as [7]:

∂v

∂z
= (N̂ + D̂)v where : N̂ = jγ|v|2, D̂ = −j β2

2

∂2

∂t2
− α

2
(2.5)
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Figure 2.2: SSFM model for one fiber segment with nonlinear and linear impairments,
where h(ω,∆z) = exp(jβ2ω

2∆z/2) and F = exp(α∆z/2).

where v is the electric field, |v|2 is the signal power, γ is the nonlinear parameter, β2

is the group velocity dispersion (GVD) and α is the attenuation factor. The linear
differential operator, D̂, operates on linear impairments parameters whilst N̂ , represents
the nonlinear operation. The exact analytic solution when all parameters are non-zero is
not available in closed form except for some specific instances like soliton transmission.
It is possible however, to determine the solution when the nonlinear factor γ = 0 or
when GVD, β2 is set to zero. When all parameters are non-zero, it is normal to resort to
approximate numerical solutions to describe the optical signal evolution. One of the most
common methods is the SSFM. The SSMF is based on two assumptions: (i) linearities
and nonlinearities act independently in a small enough segment of the fiber. (ii) the
phase change in the time domain due to the Kerr effect, and the phase change due to the
channel dispersion (CD) in the frequency domain is constant over a very small distance
∆z. In this case, the size of the chosen segment size, ∆z is crucial and determines the
accuracy of the approximation. With the SSFM, the transmitted signal can be retrieved
from the received signal by the inverse NLSE solution: this is given by solving for v(z,t)
in the equation:

v(t,zn,m+1) ≈ exp (∆zD̂) exp (∆zN̂)v(t,zn,m) (2.6)

where ∆z = zn,m+1 − zn,m is the step size, D̂ and N̂ are defined as in equation 2.5. An
iterative process is then used to solve the equation. (2.6) is referred to as the asymmetric
SSFM as the nonlinearity is added at the boundary of the segment. In the symmetric
SSFM, the nonlinear operation is in the middle of the segment whilst symmetric linear
exponential operators are at the boundaries. The exponential operators, exp (∆zD̂) and
exp (∆zN̂), can be interpreted as a phase shift, in the frequency domain (in the case of
the linear operator) or in the time domain (in the case of the nonlinear operator). In the
limit of ∆z approaching zero, both the symmetric and asymmetric SSFM approach the
true NLSE solution [11]. In long haul optical communication systems, Nspan fiber spans,
each of length L, consisting of an SMF and DCF is concatenated into small segments
of size ∆z (applies to both DCF and SMF fibers). For each segment, linear effects and
nonlinear effects are treated independently assuming ∆z is chosen to be small enough.
We can therefore refer to the distance of the input of a segment, m ∈ {1,2, · · · ,Nseg}
in fiber span n ∈ {1,2, · · · ,Nspan} as: zn,m. The input-output signal relationship of

9



2.1. SYSTEM MODEL CHAPTER 2. BACKGROUND REVIEW

segment m in span n according to the SSFM algorithm is given as:

u(t,zn,m+1) = v(t,zn,m) exp (jγ∆z|v(t,zn,m)|2) (2.7)

and

ṽ(ω,zn,m+1) = ũ(ω,zn,m+1)× exp (−j(α
2

+
β2ω

2

2
)∆z) (2.8)

where zn,m = (m−1)∆z+(n−1)L, ũ(ω,zn,m) is the Fourier transform of the intermediary
optical intensity, u(t,z+∆z), between the linear and nonlinear sections of each segment.
Equation 2.8 can be represented in the time domain as:

v(t,zn,m+1) = Fu(t,zn,m+1) ∗ e
−jt2/(2β2∆z)

√
j2πβ2∆z

(2.9)

Where ∗ is the convolution operation and F , e(−α∆z/2). β2 is the GVD parameter,
and γ is the nonlinear paramter. The operation of the nonlinear effects before linear
effects per segment is based on the assumption that since signal intensity is highest at
the beginning of each fiber segment, nonlinear effects are are also highest at those points.
From (2.7) - (2.8) it can be observed that the time spread caused by the GVD is as a
result of phase change in the frequency domain, (2.8), whilst the spectrum spread due
to the nonlinearities is due to phase change in the time domain as expressed in equation
(2.7).

B. SMF

The SMF allows for a single mode of light to propagate. The input-output relationship
in the SMF is given as:

Algorithm 1 Signal propagation in SMF using SSFM

1: procedure Signal propagation SMF
2: for each segment m ∈ {1,...,Nseg} do
3: uSMF (zn,m+1) = vSMF (zn,m)× exp (kSMF,NL|vSMF (zn,m=1)|2)
4: ṽSMF (zn,m+1) = ũSMF (zn,m+1)× exp (kSMF,L)
5: end for
6: vDCF (zn,m=1) = vSMF (zn,m=Nseg+1)
7: end procedure

where ṽSMF (zn,m) is the frequency domain representation of vSMF (zn,m), kSMF,L =

(−j(α2 + β2ω2

2 )∆z) and kSMF,NL = exp (jγ∆z|v(t,zn,m)|2) are SMF linear and nonlinear
constants respectively.

C. DCF

The DCF also allows for only a single mode of light to propagate. In our system model
in Fig. 2.1, the output of the SMF (which is input to the DCF) is related to the output

10
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Algorithm 2 Signal propagation in SMF using SSFM

1: procedure Signal propagation SMF
2: for each segment m ∈ {1,...,Nseg} do
3: uDCF (zn,m+1) = vDCF (zn,m)× exp (kDCF,NL|vDCF (zn,m=1)|2)
4: ṽDCF (zn,m+1) = ũDCF (zn,m+1)× exp (kDCF,L)
5: end for
6: vSMF (zn+1,m=1) = vDCF (zn,m=Nseg+1)
7: end procedure

of the DCF according to:

where ṽDCF (zn,m) is the frequency domain representation of vDCF (n,m), kDCF,L =

(−j(α2 + β2ω2

2 )∆z) and kDCF,NL = exp (jγ∆z|v(t,zn,m)|2) are respectively, DCF linear
and nonlinear constants. The main difference between the DCF and the SMF is that their
dispersion parameters are opposite in signs, and the magnitude of the DCF’s dispersion
parameter is much larger than that of the SMF, i.e., |DDCF | >> |DSMF |.

D. EDFA

EDFAs are by far the most common types of optical amplifiers, where accumulated
degradation is compensated by signal regeneration with fibers doped with erbium ions ≈
10m long [4]. Amplification in the EDFA occurs by the principle of stimulated emission.
However ASE can occur when electrons in higher-energy levels of the erbium-ions decay
at random and emit photons at random phases and directions. Some of which end up in
the fiber core and is amplified by stimulated emission. ASE is the main limiting factor
in light-wave communications. The power spectral density of the ASE noise is given
as: Sp = GFnhν, where G is the gain of the amplifier, hν is the photon energy and
Fn is the noise figure of the amplifier given to be [4]: Fn = 2nsp(1 − G−1). nsp is the
spontaneous emission factor that depends on the inversion population. In this work we
compensate attenuation losses completely. Since optical power decreases according to:
Pout = Pine

−αz [4] in lumped amplification with amplifier spacing LA, the amplifier gain
is designed so that: G = e(αLA).

Therefore in the EDFA unit of our system model, if the incoming signal is given
as: z(zn,Nseg), the output signal is given as: r(zn,Nseg) = Gz(zn,Nseg) + n where n ∼
N (n; 0,Σ).

In the next section, we introduce the tools that are needed in later sections to describe
the development of the SDBP algorithm, from which we derive our problem statement.

2.2 Message passing on FG

Message passing processing refers to a collection of low complexity processes (blocks)
working in a distributed fashion by sending messages to each another and relying on these

11



2.2. MESSAGE PASSING ON FG CHAPTER 2. BACKGROUND REVIEW

f(x) f(x,z) f(y,z)-
x

-
z

-
y

Figure 2.3: Example: Factor graph representation of factorization.

messages to perform a task [5]. Graphical representations such as factor graphs allows us
to represent these passing of messages in a visually comprehensive and systematic manner
[20]. Each block performs a process based on an algorithm whose output (message) may
be the input of another process. In the next sections we introduce a special type of
factor graphs called the Forney-factor graph (FFG) as a graphical representation model
and show how the SPA algorithm is used to compute messages on it.

Notation: Messages are represented with overhead arrows, −→µ , ←−µ for rightward
and leftward messages respectively. The direction of the arrow is the direction of the
message. A general function, f of variables x,y,z is represented as f(x,y,z). A linear
function of x is denoted f(x,y) = δ(y−Ax), whilst a nonlinear function is represented as
f(x,y) = δ(y − ψ(x)). The multivariate Gaussian PDF of a variable y with covariance
ΣY , conditioned on x and related to it by noise addition, y = x + n is denoted as
N (y|x,Σ) where n is a zero mean Gaussian noise process and N (y; mY ,ΣY ) denotes a
Gaussian distribution of y with mean and covariance mY and ΣY respectively.

2.2.1 Factor graphs

FG have a long standing history in error-coding theory back as early as in 1960s. Just
as it is common to relate the trellis diagram to the Viterbi algorithm, it is quite common
to also relate the SPA and max-product algorithm to factor graphs. In this work we will
consider only the FFGs and execute the SPA algorithm on it. We first present a set of
linear factor blocks and show with an example how the SPA can be applied in the case
Gaussian messages.
For random variables, x, y, z, assume that a generic function f(x,y,z) can be factored
as:

f(x,y,z) = f1(x)f2(x,z)f3(y,z) (2.10)

This factorization is expressed by the Forney-style FG in Fig. 2.3. We note however that
this factorization is not unique and can always be varied in ways so as to simplify the
problem. Each factor represents a node and each variable represents an edge. Each edge
connected to two factors is referred to as a full edge (i.e x and z in Fig. 2.3) whilst an
edge connected to one factor is a half edge (i.e y in Fig. (2.3)). The obvious limitation
is that, a variable cannot appear in factor more than twice. We show how to overcome

12
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+- -

?

X Y

Z

Figure 2.4: The 3-way addition block.

N- -X Y

Figure 2.5: Noise addition block.

=X Y

Z

Figure 2.6: The equality block.

A- -X Y

Figure 2.7: Matrix multiplication block.

this problem in the next section.
In linear models, the factor blocks commonly used are shown in Figs. 2.4 - 2.7 and are
explained in details below.

Summation: the factor function is given as: f(x,y,z) = δ(z − (x + y)) and the
function block is shown in Fig. 2.4. We assume that x, y and z are of the same lengths.

Noise addition: the function block for the addition of noise is represented in
Fig. 2.5. The factor function is: f(x,y) = N (y|x,ΣY ). Here again, it is assumed that x,
y, and z are of the same lengths. Where N (y; mY ,ΣY ) is a Gaussian distribution of y
with mean mY and covariance ΣY .

3-way equality: the function block for the 3-way equality is shown in Fig. 2.6 and
the factor graph function representation is given by: f(x,y,z) = δ(x − y)δ(x − z) =
δ(x−z)δ(y−z) = δ(y−z)δ(x−y). It is assumed that x, y and z have the same lengths.
When a variable appears in more than 2 functions, the 3-way equality is used to connect
the all equivalent variables together.

Matrix Multiplication: the factor block representation is shown in Fig. 2.7. The
matrix represents a linear operation as applied in the numerical examples presented in
section 4.1.5. If the message is Gaussian, both forward and backward messages can be
computed in closed form [6]. This however is not the case for nonlinear systems. The
factor representation is given as δ(y− f(x)). Where y and x need not be the same size.
If AN×M , then y is of dimension N , and x is of dimension M .

13
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f(x1,...xN ,xj)- -

��
��*

HHHHj

XN

−→µ XN

X1
−→µ X1

X2

−→µ X2
Xj

−→µ Xj

...

Figure 2.8: Message passing representa-
tion for N+1 variables. −→µ Xj

is computed
with the SPA using −→µ X1

,...,−→µ XN
.

p(x) δ(y− f(x))- -

−→µ Y (y)

←−µ Y (y)

−→µ X(x)

←−µ X(x)

Figure 2.9: Incoming (−→µ X , ←−µ Y ), outgo-
ing (−→µ Y , ←−µ X), forward (−→µ Y ) and back-
ward (←−µ X) messages.

2.2.2 The SPA algorithm

The SPA algorithm, also known as belief propagation, is a message passing iterative
algorithm that is used to perform inference problems to find marginal distributions of
unobserved nodes on factor graphs. It is ubiquitous in artificial intelligence algorithms,
as well as LDPC and turbo decoding algorithms in information technology. It has been
shown that Fourier Analysis [33] and convolution theory algorithms and many other well
known algorithms are all special cases of the SPA algorithm.

We recall that each edge on a factor graph corresponds to a variable. Consider the
Fig.2.8 for a factor node with N+1 variables. An outgoing message is any message
leaving the function block and is the output of the SPA algorithm whilst the incoming
messages are the messages entering the function block whose product are involved in the
integration operation to compute the outgoing message. In Fig. 2.8, −→µ X1 ,

−→µ X2 ,...,
−→µ XN

are incoming messages whilst −→µ Xj is the outgoing message. For the general function
block, δ(y − f(x)) in Fig. 2.9, the forward message is denoted as −→µ Y and backward
message is denoted as ←−µ X , hence an outgoing message can be a forward or backward
message depending on the functional relation of variables.

The computation of the outgoing message, −→µ Xj (xj), is given by the SPA algorithm
as:

−→µ Xj (xj) ∝
∑
xi 6=j

f(x1,x2,...,xN+1)
∏
i 6=j

−→µ Xi(xi) (2.11)

where summation is replaced by integration for continuous variables.
On the FG in Fig. 2.9, we can compute messages from right, ←−µ Y (y) to left, ←−µ X(x).

Assuming, f(x,y) = f(x)f(x,y), ←−µ Y (y) = N (y,mY ,ΣY ), f(x,y) = δ(y − Ax). To
compute the message ←−µ X(x):

←−µ X(x) =

∫
δ(y−Ax)N (y,mY ,ΣY ) dy (2.12)

= N (Ax,mY ,ΣY ) (2.13)

14
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2.2.3 Particle representation

Particle representation is a way of expressing general functions or probability density
(or mass) functions (usually scaled) as a list of samples with corresponding weights.

The weights are assigned to have the property such that
K∑
k=1

wkX = 1. Let the particle

representation of a general message µX(x) corresponding to a variable x, be given as:
PR{µX(x)} = Lf = {x(k), w(k)}Kk=1 where x(i) ∈ χ is the ith sample drawn from µX(x),
χ is the set of all x realizations, and w(k) ∈ R+ are the weights . The weights are such
that, for any integrable function g(x) [23]:∫

g(x)µX(x)dx ≈
K∑
k=1

w
(k)
X g(x(k)) µX(x) ≈

K∑
k=1

w
(k)
X δ(x− x(k)) (2.14)

to evaluate the expectation of g(x). Depending on whether the mass points are drawn
from a distribution or a general function, the weights can be uniform or non-uniform [23].
It is shown in [23] that particle methods are a full member of message passing techniques
such as the SPA algorithm and is even applicable to factor graphs with cycles. It is also
shown that when the straight forward application of the SPA is unavailable, (this happens
when some of the variables, Xk in the system is continuous and hence the messages can
not be determined at that node or that the alphabets of the variable, Xk, is too large)
the marginals of variables can still be approximated with particle methods. In this work,
we mainly focus on discrete variables, and hence a straight forward application of ([23]
section III-A). The main difference in this work however is that each particle x(k) ∈ CN ,
is a waveform and represented as a multidimensional variable of size N .
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3
Nonlinear compensation

We recall that one cause of the Kerr effects is high power intensity introduced over a
relatively small cross section area of the fiber. Therefore one way to reduce this effect
is to increase the cross-sectional area of the fiber optic cable as a way to reduce the
magnitude of the nonlinear parameter However, this technique has serious implications
and limitations as wider fiber aperture means more modes of propagation which can be
detrimental to SMFs. Currently quite a number of receiver-based DSP techniques exist
to compensate nonlinear fiber impairments in the electrical domain. In this next section,
we will describe some of these DSP techniques and formulate the problem statement of
the thesis.

3.1 Nonlinear phase compensation technique

For certain optimized channels, a method described as the NLPN compensation is used
to compensate for nonlinear phase shift. We refer to the model described in Fig. 2.1 [27].
Attempts to reduce the effect of the nonlinear phase shift has been made by estimating
the phase shift and de-rotating the phase of the received symbols in DSP. Ho and Khan
[27], designed a model to compensate the nonlinear phase shift in the absence of CD and
polarization mode dispersion (PMD). In zero-compensation fibers the nonlinear phase
shift impact on received symbols is given by:

φNL,n = γLeff

Nspan∑
k=1

|xn +
k∑
l=1

ml,n|2 Leff =
(1− e−αz)

α
(3.1)

where Leff is the effective length, γ is the nonlinear parameter, α is the attenuation
factor and the nth transmitted symbol (xn) and the noise effect on it by the lth amplifier

is given by |xn +
k∑
l=1

ml,n|2. The noise is an additive white Gaussian noise process drawn

17
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Figure 3.1: Comparison of NLNC and DBP [11].

from ml,n ∼ N (m; 0,2σ2). At the receiver, compensation is done according to:

ψ̂n = arg(yn)− ξ|yn|2 (3.2)

where arg(yn) is the phase of the nth received symbol, ξ is an optimization parameter
whose optimal value is ξopt ≈ −γLeff (Nspanspan + 1)/2. It has been shown that this
scheme reduces the impact of NLPN by cutting down the noise by a factor of 4 [11]. In
the next section, we describe the DBP algorithm and compare its performance with the
NLPN compensation technique.

3.2 Digital back propagation

DBP has received a great deal of attention over recent years and is increasingly consid-
ered the universal standard for joint linear and nonlinear compensation of optical fiber
impairments. The DBP algorithm is based directly on the inverse solution of the NLSE
equation using SSFM. In its rigorous form, the DBP operates by applying the inverse
to the segments of size ∆z, of each fiber in the long haul of concatenated SMF-DCF
units. However variations exits that simplify the complexity of original algorithm [11].
The DBP applies opposite transmission parameters (−β2,−α,−γ) in the SSFM to undo
the linear and nonlinear effects experienced by the received optical pulse. This is done
according to:
In the DCF:
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ũ(ω,zn,m) = ṽ(ω,zn,m+1) exp

(
jβ2,DCFLDCFω

2

2

)
(3.3)

v(t,zn,m) = u(t,zn,m) exp(−jξDCF |u(t,zn,m)|2) (3.4)

ξNL,DCF = ξγDCFLeff,DCFG exp (−αSMFLSMF ) (3.5)

In the SMF

ũ(ω,zn,m) = ṽ(ω,zn,m+1) exp

(
jβ2,SMFLSMFω

2

2

)
(3.6)

v(t,zn,m) = u(t,zn,m) exp(−jξSMF |u(t,zn,m)|2) (3.7)

ξNL,SMF = ξγSMFLeff,SMF (3.8)

where v and u are given in Fig. 2.2. A recursive process is applied Ln,dcf/∆z times in each
DCF and Ln,SMF /∆z in each SMF staring from v(t,zNspan,Nseg) for Nspan spans until
the transmitted signal, v(t,z0,0) is computed. Whether the DCF or SMF subroutine is
computed first, depends on the system architecture. In (3.3) - (3.8), the DCF subroutine
is executed first in each fiber span because it was designed according to the system model
in 2.1 (post-compensation link). The presence of noise from the EDFAs (when present),
cause the resulting computed v̂(t,z1,1) to deviate from the original transmitted optical
signal, v(t,z1,1).

Results: In Fig. 3.1, a comparison of the phase errors of detected symbols of three
algorithms are shown, namely; a linear equalizer which compensates only for linear im-
pairments (shown as ”Lin. Eq. Only”), the nonlinear phase noise compensation technique
(shown as ”NLPN + Lin. Eq”) and the DBP algorithm (”BP - 1S”). The experiment
consists of Nspan spans of SMF-EDFA-DCF-EDFA units which are concatenated to form
a hypothetical long haul terrestrial link. DSMF = 17ps/nm/km with LSMF = 80km.
DDCF = −80ps/nm/km with LDCF = 15.3km. Hence DDCFLDCF + DSMFLSMF =
136 6= 0 which is an under-compensation of LDCF = 1.7km or 136

1360 × 100 = 10%.
In the linear region, all the algorithms perform close to the additive white Gaussian noise
(AWGN) limit. However, in the nonlinear power dependent region, as signal propagates
through long distances, non-zero nonlinear effects and significant CD accumulates in the
fiber and can not be ignored. Hence the NLPN compensation technique phase model pre-
sented in (3.1) is far from correct in such under-compensated channels. In that regime,
the DBP algorithm outperforms the NLPN algorithm. [11] shows that better perfor-
mance of the DBP is achieved when the dispersion in the SMF is under-compensated
whilst the linear compensation is performed in DSP.

However, for channels with periodic amplification using optical amplifiers such as
EDFAs, the DBP algorithm is sub-optimal since it does not accounted for the presence
of noise in the system. In the next section, we study the SDBP algorithm, which aims at
optimally minimizing detection errors in systems that consists of optical amplifier noise.
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fP fNL fL fG

×Nspan×Nseg

−→µ (s) ←−µ (v1,1) ←−µ (vn,m) ←−µ (un,m) ←−µ (vn,m+1) ←−µ (zn,Nseg
) ←−µ (rn,Nseg

) ←−µ (r)

Figure 3.2: Factor graph representation of system model. fP represents the pulse shaping
block, fNL represents the nonlinear block, fL represents the linear block and fG corresponds
to the EDFA block

.

3.3 Stochastic DBP

It is seen that none of the methods described above account for the nonlinear signal
to (ASE) noise interaction (nonlinear signal to noise interaction (NSNI)). The ASE
noise is a result of the spontaneous emissions from the amplifier, characterized by a
large bandwidth. However a low pass filter is used to filter out the noise outside the
bandwidth of the optical signal leaving only the NSNI noise. Is has been shown that the
NSNI has significant penalty on the system performance in proportion to symbol rate
and modulation formats for dispersion managed links systems with inline amplification
[7]. In the SDBP algorithm, the NSNI is factored into developing a novel receiver by
accounting for ASE noise. It is shown that the SDBP method outperforms the DBP
algorithm in some power regimes. It is also shown that in non-dispersion managed links,
the difference in performance of the two algorithms is even more significant [7]. Unlike
the DBP, the SDBP is developed with the aid of message passing on factor graphs and
the SPA algorithm since it accounts for the stochastic property of the information signal
due to the presence of the amplifier noise. The algorithm approximates each message
with particles of size Np. Similar to the DBP, the SDBP performs an iterative back
propagation by segmentation the fiber into Nseg sections each of size ∆z. However, unlike
the DBP where optical signals are computed at each stage, distributions (messages) are
computed in the SDBP algorithm. The message computation is done for each sub-block;
each consisting of building blocks in the SSFM i.e, linear block (fL), a nonlinear block
(fNL), and an EDFA sub-block (fG) as seen in Fig. 3.2. We show how the messages are
computed in the system model blocks in Fig. 3.2.

Message computation in EDFA (fG)

In Fig. 3.2, the message←−µ (r) =←−µ (rNspan,Nseg) is represented in a particle representation
form as :

1
Np

Np∑
k=1

δ(rn,Nseg−r
(k)
n,Nseg

). We also write that rn,Nseg =
√
Gzn,Nseg +n for n ∼ N (n; 0,Σ).

Hence the factor function representation of the EDFA block, fG is given as fG =
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N (rn,Nseg ;
√
Gzn,Nseg ,Σ). Then:

µZn,Nseg
(zn,Nseg) =

1

Np

∫
N (rn,Nseg ;

√
Gzn,Nseg ,Σ)

Np∑
k=1

δ(rn,Nseg − r
(k)
n,Nseg

)drn,Nseg

=
1

Np

Np∑
k=1

N (r
(k)
n,Nseg

;
√
Gzn,Nseg ,Σ)

thenNp particles of zn,Nseg are generated according to z
(k)
n,Nseg

∼ N (zn,Nseg ; r
(k)
n,Nseg

/
√
G,Σ/G).

Message computation in linear block (fL)

From Fig. 3.2 we have that, zn,Nseg = vn,m+1 when m = Nseg. In the linear block, our
aim is to compute the particle representation (PR) for←−µUn,m given the PR of←−µVn,m+1 .

The two variables are related by: v
(k)
n,m+1 = Fu

(k)
n,m ∗ h(t,∆z), hence the factor block

representation fL : p(vn,m+1|un,m) = δ(vn,m+1−Fum,n ∗h(∆z)). Then solving for u
(k)
n,m

will involve a deconvolution operation. Since it is computationally effective to work in
the frequency domain, the FFT of the input-output variables will be used. This is done
as follows [7]:

let PR {←−µUn,m} be the particle list of←−µUn,m(un,m) given as {u(k)
n,m}Np

k=1. The IFFT and
FFT of vn,m be IFFT(vn,m) and FFT(vn,m) respectively.

PR{←−µ Ũn,m+1
} = {FFT (v

(k)
n,m+1)}Np

k=1

PR{←−µ Ũn,m
} = {F−1h̃

−1
(ω,∆z)ũ

(k)
n,m+1}

Np

k=1

PR{←−µUn,m} = {IFFT (ũ(k)
n,m)}Np

k=1

since FFT(•) and IFFT(•) are bijective functions on vectors.

Message computation in nonlinear block (fNL)

In this block we wish to compute PR {←−µVn,m} = {v(k)
n,m}Np

k=1 when we have PR {←−µUn,m}
= {u(k)

n,m}Np

k=1. From Fig. 2.2, we know that the input-output relationship for the non-
linear block is given as:

v(k)
n,m = u(k)

n,m exp(−jγ∆z|u(k)
n,m|2) (3.10)

Hence the factor graph function representation:

fNL : p(un,m|vn,m) = δ(un,m − vn,m exp (jγ∆z)|vn,m|2)
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Figure 3.3: Comparison of SDBP with DBP. At 0dBm, SDBP has 3.5 times less errors
compared to DBP.

meaning for every particle, u
(k)
n,m, we de-rotate the phase using the product in the expo-

nential argument which is proportional to the power of the waveform.

We continue the iterative process for all Nspan fiber spans and for each span n,
iterating for Nseg segments until we arrive with PR{←−µV1,1}.

Detection:

In general, to compute the marginal distribution for a variable S in factor graphs, we
compute the product of the messages in the two directions on the edge, i.e, µS(s) =
−→µ S(s)×←−µ S(s). In the SDBP algorithm, since back propagation is always done with a
fixed r, the product of −→µ S(s) ×←−µ S(s) yields the a posteriori distribution, p(s|r). The
aim is to make decisions on the most likely transmitted symbol sequence, by maximizing
the posterior distribution over s, i.e ŝ = argmax

s
p(s|r). However p(s|r) is not readily

available.

Since v1,1 = s ∗p (factor graph representation is fP : p(v1,1|s) = δ(v1,1− s ∗p)), the
availability of p(v1,1|r) gives rise to p(s|r) directly. The posterior distribution p(v1,1|r)
can be found by multiplying the forward and backward messages on the edge of the
variable v1,1, ←−µ v1,1 × −→µ v1,1 . PR{µv1,1} is the particle representation of ←−µ v1,1 whilst
−→µ v1,1 comes directly from −→µs. However a multiplication of the two messages (←−µ v1,1 ×−→µ v1,1) requires that both messages are available for the same v1,1. PR{µv1,1} can be
reconstructed into a continuous function, by the use of kernel density estimation [28] or
a Gaussian process [29].

But the problem arises where the complexity of the maximization operation, i.e
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Algorithm 3 Detection in SDBP receiver using matched filtering and symbol rate
sampling

1: procedure symbol-by-symbol (SBS) SDBP
2: for each particle (k) ∈ {1,...,Np} do

3: e
(k)
MF (t) = v

(k)
1,1 ∗ p(t)

4: r
(k)
MF [n] = e

(k)
MF (nTs)

5: end for
6: end procedure

argmax
s

p(s|r), increases exponentially with M , i.e |Ω|M , where M is the dimension of

s. In the SDBP algorithm, complexity is reduced to a symbol by symbol detector.

Each particle in PR {µv1,1} v
(k)
1,1 ∈ CN is filtered with a filter that is matched to the

transmit pulse. This is then followed by symbol rate sampling at optimal sampling
times to maximize the SNR [30], [31] as shown in Algorithm 3. The output of the

sampler for particle (k) is r
(k)
MF = [r

(k)
MF [1],...,r

(k)
MF [M ]] where r

(k)
MF [n] ∈ C corresponding

to symbol s[n]. The final product is a particle representation, {r(k)
MF [n]}Np

(k=1) representing

p(rMF [n]|s[n]). In this way, complexity increases linearly as M × |Ω|. rMF is assumed
to be Gaussian whose variance and mean of each sample (rMF [n]) is given as:

Σ[n] =
1

Np

Np∑
k=1

(r
(k)
MF [n]−m[n])(r

(k)
MF [n]−m[n])T m[n] =

1

Np

∑
∀k

r
(k)
MF [n] (3.11)

We know that,

p(s[n]|r) =

c× exp

(
− 1

2(s[n]−m[n])TΣ[n]−1(s[n]−m[n])

)
× p(s[n])

p(r)
(3.12)

where c is a constant. But since p(r[n]) is the same in the maximization operation, we
ignore it in the argmax operation. We also assume a uniform distribution of p(s[n])

which can also be ignored in the argmax operation. Hence:

p(s[n]|r) ≈ c× exp

(
− 1

2
(s[n]−m[n])TΣ[n]−1(s[n]−m[n])

)
(3.13)

Results: Fig. 3.3, shows the results of a simulation of symbol error rate (SER) vs
launch power in an optical communication system to compare the performance of the
SDBP and DBP algorithms. 60 spans of SMF-DCF-EDFA units are used, the optical
signal is transmitted on a single polarization and all PMDs are absent. The SER is
averaged over 30 iterations and the modulation format is 16 QAM. An oversampling
rate of 4 is applied at the transmitter. The receiver pulse shaping is a root raised cosine
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pulse and Np=500 particles are used in the SDBP. In both cases a matched filter is
applied, however in the case of the SDBP, the matched filter is applied to all particles
and detection is done according to (3.13). We observe than in the linear region where
the AWGN dominates, both algorithms have almost the same performance. However
within the power regimes of −2 dB to 5dB, when the nonlinearities begin to dominate
the SDBP is more tolerant to the nonlinearities compared to the DBP and outperforms
the DBP.

3.4 Limitation of SDBP

In the detection unit of the SDBP algorithm, we can write in message passing terms,
the backward message of the pulse shaping function p(r|s)/p(r), as ←−µ s(s). Whilst p(s)
is the incoming message to the pulse function, −→µ s(s) as seen in Fig. 3.2. If PR{µv1,1}
is assumed to be Gaussian with sample mean mV1,1 and covariance ΣV1,1 , then the

matched filtering operation according to algorithm 3 will yield a Gaussian PR{r(k)
MF },

with mean and covariance in vector-matrix representation [APPENDIX A]:

m̂rMF = (ATA)#ATmV1,1 (3.14)

Σ̂rMF = (ATA)#ATΣV1,1A(ATA)# (3.15)

where (∗)# is the Moore-Penrose inverse and A is the matrix representation of the
pulse shaping. If A is a root-raised-cosine pulse, A# = AT and m̂rMF [n] = ATmV1,1 ,

Σ̂rMF = ATΣV1,1A . The derivation of p(s|r) based on algorithm 3, i.e using matched
filtering and symbol rate sampling, is based on heuristics hence there is no claim that it
optimally computes the correct backward message, ←−µ S(s).

In the next chapter, we investigate if the matched filtering with symbol rate sam-
pling are optimal methods for deriving the true posteriori distribution in the SDBP
detector. We also derive a true near-MAP inference detector using message passing and
the SPA algorithm on FFGs by computing the backward message,←−µ S(s) from the parti-
cle representation PR{←−µ V1,1(v1,1)}. Following that, we introduce some implementation
challenges and propose solutions to them.
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4
Proposed Approach

4.1 Computing messages

In this chapter, we show how to compute forward and backward messages in linear
and nonlinear models and highlight the reason why backward message computation for
nonlinear models can be tedious. We also show the special case when all messages
are Gaussian in a linear model and address some implementation issues such as the
small sample size problem. With the help of some numerical examples, we demonstrate
the computation of backward messages in different linear scenarios and finally apply
the operation to a practical optical communication system in comparison with some
benchmark methods such as the DBP and the SDBP with matched filtering and symbol
rate sampling.

Notation: As in the previous chapter, messages are represented with overhead
arrows, with incoming messages of y being denoted as ←−µ Y and outgoing messages of
y denoted as −→µ Y as shown in Fig. 2.9. f(x,y) denotes a general function (linear and
nonlinear) of x and y. y = Ax represents a linear function (which could either be a
matrix or a vector) whilst y = ψ(x) represents a nonlinear function. χ(y) represents the
set of all possible values of x that gives y for the function y = f(x). |χ(y)| denotes the
cardinality of the set χ(y).

4.1.1 Forward message for (non)linear channels

Forward computation is relatively simple to compute. The outgoing message −→µ Y (y),
from a function block y = ψ(x) given an incoming message, −→µ X(x), is given as [6]:

−→µ Y (y) =
∑

x∈χ(y)

−→µ X(x)

|J(ψ(x))|
(4.1)
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where χ(y) = x|ψ(x) = y is finite (0<|χ(y)|< ∞) or empty, |J(ψ(x))| is the absolute
determinant of the Jacobian of the function y = ψ(x).

If the incoming message is given in a particle list i.e, PR{−→µ X(x)} = {x(k),w(k)}Kk=1.

Hence −→µ X(x) =
K∑
k=1

w
(k)
X δ(x− x(k)) the outgoing message is given as [6]:

−→µ Y (y) ≈
K∑
k=1

w
(k)
X δ(y− ψ(x(k)))

with the accuracy of the computed message approaching the real value as number of
particles K, approaches ∞. Note here however that the weights in the particle list for

outgoing and incoming messages are the same, i.e { w(k)
Y = w

(k)
X ,y(k) = ψ(x(k))} where

particle list of message −→µ Y (y), PR{−→µ Y (y)} is { w(k)
Y ,y(k)} K

k=1. This applies to both
linear and nonlinear functions.

4.1.2 Backward message for (non)linear models

We first consider the general model case and later consider the linear Gaussian case. In
general, computing the backward message can be tedious especially for surjection func-
tions and with intractable message representations. Here we say the incoming message
is←−µ Y (y) whilst the outgoing message is given by←−µ X(x). If←−µ Y (y) is given as a particle

list PR{←−µ Y (y)} = { w(k)
Y ,y(k)} Kk=1, i.e −→µ Y (y) =

K∑
k=1

w
(k)
Y δ(y− y(k)), then the outgoing

message is given as [6]:

←−µ X(x) =

∫
δ(y− ψ(x))←−µ Y (y)dy (4.2)

≈
K∑
k=1

w
(k)
Y δ(y(k) − ψ(x)) (4.3)

For each particle y(k), there exist |χ(y(k))| particles according to the inverse function

ψ−1(y(k)) with weights equal to w
(k)
Y . The particle list is of ←−µ X(x) is therefore given as:

{ x(k,1),x(k,2),...,x(k,|χ(y(k))|) : wkX = wkY } . In this case there are a total of
K∑
k=1

|χ(y(k))|

particles. If |χ(y(k))| > 1 for any y the function ψ(x) is surjective. If |χ(y(k))| ≤ 1, ψ(x)
is injective and if |χ(y(k))| = 1, ψ(x) is bijective and invertible.

It is clear from the above that tractable forms of expressing ψ−1(y) and a non zero
χ(y(k)) set is necessary for computing the outgoing particle list µX(x). In the case of
an injective function when |χ(y(k))| = 0 for all or for a certain (k) i.e particle(s) do not
exist on the ψ(x) subspace, x(k) has no mass and can not be represented in particle
representation (PR). This problem is overcome when ψ(x) is surjective or bijective.

However for linear models with Gaussian messages, a closed form solution is possible
for both forward and backward message passing [6]. The forward case is according to
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section 4.1.1 where the Jacobian becomes the matrix representation of the linear function.
Consider a linear system in the form y = Ax, for AN×M , if x is Gaussian, then y will
also be Gaussian (and vice versa) according to equation 4.1 (since the determinant of
the Jacobian is the determinant of A). In the backward case, if f(x) = δ(y − Ax) and
the incoming message, ←−µ Y is given as N (y; mY ,ΣY ), we can apply the SPA algorithm
to compute the backward message ←−µ X(x), as follows:

←−µ X(x) =

∫
δ(y−Ax)N (y; mY ,Σ) (4.4)

= N (Ax; mY ,ΣY ) ∝ N (x; mX ,ΣX) (4.5)

= s×N
(
x; mX ,ΣX

)
(4.6)

where the constant of proportionality, s is given as:

s = exp

(
− 1

2
(mT

Y Σ−1
Y mY −mT

XΣ−1
X mX)

)
(4.7)

In [6], the equations used for computing the mean and covariances are:

Σ−1
X = AHΣ−1

Y A (4.8)

mX = (AHΣ−1
Y A)#AHΣ−1

Y mY (4.9)

where ΣX is covariance of X and ΣY is the covariance of Y . The (A)# is the Moore-
Penrose pseudo-inverse whose definition is given as A# = (A∗A)−1A∗ when (A) has full
column rank and A# = A∗(AA∗)−1 when (A) has full row rank.

4.1.3 Backward Gaussian particle message passing for linear models

GMP - Slicing: If the incoming message, ←−µ Y (y) is represented by a particle list,
we can approximate the outgoing message ←−µ X(x) in closed form. By assuming that
the particles are drawn from a Gaussian distribution [6], the outgoing message can be
computed by estimating the incoming message ←−µ Y (y) according to:

mY =
1

K

K∑
k=1

yk Σ̂Y =
1

K − 1

K∑
k=1

(yk −mY )(yk −mY )T (4.10)

where Y ∈ CN and K is the number of samples (particles). This sample covariance, Σ̂Y ,
is the Maximum Likelihood estimate (MLE) of the covariance ΣY . We then apply (4.8)
and (4.9).
If µY (y) is a mixture of Gaussian components we can:

• apply a uniform weight, w(k) to each mixture component in the linear combination.
Thus we have:

←−µ Y (y) =
K̃∑
k=1

w
(k)
Y N (y,m

(k)
Y ,Σ

(k)
Y ) (4.11)
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• apply (4.4) to ←−µ Y (y) to compute outgoing message, ←−µ X(x)

←−µ X(x) =

∫
δ(y−Ax)

K̃∑
k=1

w
(k)
Y N (y,m

(k)
Y ,Σ

(k)
Y )dx (4.12)

=
K̃∑
k=1

∫
δ(y−Ax)w

(k)
Y N (y,m

(k)
Y ,Σ

(k)
Y )dx (4.13)

=
K̃∑
k=1

w
(k)
Y N (Ax; m

(k)
Y ,Σ

(k)
Y ) =

K̃∑
k=1

w
(k)
Y s(k)N (x; m

(k)
X ,Σ

(k)
X ) (4.14)

=
K̃∑
k=1

w
(k)
Y s(k)N (x; (AH(Σ

(k)
Y )−1A)#AH(Σ

(k)
Y )−1m

(k)
Y , AH(Σ

(k)
Y )−1A) (4.15)

each Gaussian is scaled by the proportionality factor, s, since each Gaussian mixture
will have different contributions to the Ax subspace depending on its distance from Ax:

s(k) = exp

(
− 1

2
(m

(k),T
Y (Σ

(k)
Y )−1m

(k)
Y −m

(k),T
X (Σ

(k)
Y )−1m

(k)
X )

)
. (4.16)

We see from (4.8) - (4.9) that the mean and covariance of ←−µX(x) is a function of the
inverse covariance of←−µ Y (y), i.e {mX ,ΣX} = f(Σ−1

Y ). The accuracy of←−µ X(x) therefore
heavily depends on the accuracy on estimation of ΣY .
It is seen from (4.4) that the evaluation of ←−µ X(x) can be done by evaluating ←−µ Y (y) on
the y = Ax subspace for the case when the linear function A is injective, which can be
interpreted as ”slicing”←−µ Y (y) along y = Ax subspace.

Projection: Consider the special case when Σ
(k)
Y = σ2I, m

(k)
X = y(k), and K = 1

(one Gaussian PDF). In this case [6]:

mX =

(
AT

I

σ2
A

)#

AT
(
I

σ2

)
y =

(
ATA

)#

ATy (4.17)

Σ−1
X = (ATΣ−1

Y A) ≡ 1

σ2
(ATA) ≡ Qdiag

[
λ1

σ2
· · · λL

σ2
0 · · · 0

]
QT (4.18)

where λ1,...λL are the strictly positive eigenvalues of ATA and Q contains the corre-
sponding eigenvectors. The last M −L columns of Q are the eigenvectors that span the
null space of ATA thereby making zTATAz = 0 for those eigenvectors, z.
Applying the SPA for the above case gives:

←−µ X(x) = swYN
(

x; (ATA)#ATy, σ2(ATA)−1

)
(4.19)

where swY = 1.
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This means that for non-bijective (only surjective or only injective) linear functions,
the projection technique can not yield a meaningful Gaussian PR since (4.19) can not
have a valid covariance matrix. One way of looking at (4.19) is as follows: to compute
←−µ X(x), each particle, y(k), which may not exist on the Ax subspace is projected onto
it using (4.17) and becomes the mean of the PDF.

At this point, we observe that (4.17) - (4.18)) i.e projection technique is the same
as (3.14) - (3.15) in Chapter 2, section 3.3. In order words, performing a projection
of particles is equivalent to matched filtering and sampling. Since the projection is
only applicable for the case where ΣY is a diagonal matrix, and since the more general
technique is the GMP technique, we conclude that matched filtering is not optimal in
computing the posterior distribution in the SDBP algorithm. However, if the incom-
ing message particles can be approximated with a Gaussian distribution, the backward
outgoing message can be computed with the slicing (GMP) method yielding an optimal
solution since Gaussian message passing is exact in linear models. We illustrate these
ideas in the examples in section 4.1.5.

4.1.4 Computation of GMP for large dimensions

We have seen a way to compute backward messages in linear models for particles list that
are drawn from a Gaussian distribution. Equations 4.8 - 4.9 is referred to hereafter as
the slicing operation or GMP. The resulting message, ←−µ X(x), is Gaussian whose mean
and covariance is scaled with the inverse covariance, Σ−1

Y , of the incoming message,
←−µ Y (y) (4.12). If the incoming message is represented by a particle list and a Gaussian
approximation of the incoming message is done according to the GMP technique, the
mean and covariance of the incoming message, ←−µ Y (y), can be computed with 4.10.

In the case where K < N , where K is the number of particles and N is the dimension
of the variable Y , we have the small sample size problem: the observation sample size is
smaller than the number of classes (dimensions). The resulting sample covariance, Σ̂Y ,
will then be rank deficient and with linearly dependent rows (or columns). Hence Σ̂Y will
be singular and noninvertible. Even in the case when K > N , the fraction, N

K will have

to be extremely small ( logN
K → 0) for the sample covariance to be properly scaled and

well conditioned. If not, computing the inverse of Σ̂Y will give unstable results, which
will yield infinite elements of Σ̂−1

Y . This is observed in Fig. 4.1 where the least N −K
eigenvectors correspond to zero eigenvalues of the undersampled covariance matrix. We
will now investigate how to solve this problem of under-sampled covariance matrix for
large dimensions.

A. Banding

We know that a covariance matrix must: (i) be positive semi-definite and (ii) be symmet-
ric. A positive definite matrix, Σ̂Y , always satisfies the condition: zTΣY z > 0, for any
non zero vector z. A positive (or negative) semi-definite matrix will give a non-negative
(or non-positive respectively) value for the same product. The product of eigenvalues
of a positive definite matrix is positive. By this definition, a positive definite matrix is
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Figure 4.1: Eigenvalues plot showing banding effect on singularity. K = 500 and N = 1000
and Γ = 0.05 ×N , where N is the size of the matrix, K is the particle size and Γ is the
bandwidth of the simple banded technique.

necessarily invertible whilst this cannot be said for the case of a positive semi-definite
matrix. A positive semi-definite matrix that satisfies the equality sign in: zTΣY z ≥ 0 for
a certain non-zero z (specifically if z is the eigenvector corresponding to the 0 eigenvalue)
is non invertible. A symmetric matrix on the other hand is a square matrix, AM×M in
which [ai,j ] = [aj,i] for all i,j = 1,..,M .
In [18], different methods are used to well condition a sample covariance matrix com-

puted from a data, which does not satisfy N
K → ∞. The simplest method of well

conditioning covariance matrices is to set all off diagonals to zero leaving only the main
digonal. This assumption is based on the fact that correlation decreases away from
the main diagonal. Such methods aims at biasing the sample covariance matrix to-
wards the main diagonal. [18] suggests a form of banding off diagonals according to
|i − j| > Γ → σi,j = 0, where i,j are the indices of the matrix and Γ is a certain pre-
defined bandwidth, to remove the linear dependency. Linear shrinkage estimators make
a convex combination of the sample covariance (4.10) and a regularization matrix that
is varied to approach a specified target covariance matrix with the aim to minimize the
Frobenius risk [18].

The first of the two algorithm proposed in [18], involves defining a function,Bsim
Γ ():

Bsim
Γ (Σ̂Y ) ≡ σi,j = 0, (4.20)
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Figure 4.2: Histogram of eigenvalues of
simple banded matrix, Bsim

Γ=0.5×N (ΣY ).

0 200 400 600 800 1000 1200 1400
0

50

100

150

200

250

Figure 4.3: Histogram of eigenvalues of
tapered matrix, Btap

Γ=N (ΣY ).

for j < i− Γ and j > i+ Γ, ∀ {i,j}.

The bandwidth determine the sparsity of the matrix. This has an advantage of not
only taking away the singularity property but it also saves memory space (matrix can
be stored as a sparse matrix) with a trade-off of losing some covariance information.

Recall that a covariance matrix is always symmetric, ΣT
Y = ΣY , and positive semi-

definite, zΣY z ≥ 0 for all z.

Example1: K = 500 particles are drawn from a multivariate Gaussian variable
y ∈ RN=1000 with a narrow covariance matrix bandwidth. The estimated covariance is
a sample covariance according to 4.10 (brown in Fig. 4.1) and is banded according to
(4.20) for Γ = 0.05×N , the symmetric property is preserved and the determinant of ΣY

|ΣY |, > 0 (invertible). This is seen in Fig. 4.1 (blue).
However we recall also that all eigenvalues of a positive semi-definite matrix are non-

negative. A simple banding of ΣY according to (4.20) can result in negative eigenvalues
(depending on the bandwidth) as shown in a histogram plot of the eigenvalues of Σ̂Y in
Fig. 4.2 when the bandwidth was set at Γ = 0.5 × N . The conclusion therefore is that
a simple banding of the covariance matrix according to 4.20 does not guarantee positive
semi-definiteness (Fig. 4.2) and hence an assured valid covariance matrix, although it
may guarantee invertibility (Fig. 4.1). We note that Fig. 4.2 - Fig. 4.3 are histograms.
Hence the frequency bar showing at the 0 eigenvalue point does not necessarily mean
there exists a zero eigenvalue but that between an interval of say 0 and the histogram
bin size∆b, there exists a number of eigenvalues.
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Figure 4.4: Eigenvalues of ”tapered” covariance for different Γ.

B. Tapering

A regularization approach proposed in [18], to address the lack of assured positive def-
initeness in a simple banded covariance matrix is to apply a tapering function. Furrer
and Bengtsson [19] have showed that positive definiteness can be preserved by “tapering”
the covariance matrix. Since the coordinate-wise product of positive definite matrices
is also positive definite, the ”tapering” is done by performing a coordinate wise mul-
tiplication of the sample covariance with a function R where R is a positive definite
matrix. Let us assume that R = [ri,j ]i,j∈R+ where ri,j = g(δ(i,j)). If δ is a distance
parameter such that, δ(i,j) = 0 when i = j, and increases as ∆(i− j) increases, and also
g(0) = 1, g(∞) = 0, then Btap

Γ (ΣY ) = ΣY
⊙
R is a regularization of ΣY where

⊙
is a

coordinate-wise multiplication and Γ is a tapering factor. One of the suggestions in [18]
for R is:

rΓ(i,j) = exp

(
−|i− j|

Γ

)
(4.21)

We apply the tapering operation in 4.21 for Γ = 0.01 to example Example 1 and compare
the resulting eigenvalue structure with the simple banded method. The result is shown
in Fig. 4.1 for bandwidth, Γ = 0.01,100,1000,100000. We observe that, all eigenvalues are
positive and nonzero. We also observe smaller the value of Γ, the better the estimation.
In Fig. 4.3, we show a histogram for the case of a large bandwidth, Γ = N . Again we
observe no eigenvalue is non-positive. Hence tapering an undersampled covariance matrix
yields an assured valid symmetric positive-definite covariance matrix (regardless of Γ;
except when Γ→∞ in which case the sample covariance matrix is unregularized) whilst
the simple banded technique does not always yield a positive semi-definite covariance
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Figure 4.5: Largest 15 eigenvalues of tapered covariances matrices of bandwidth,
Γ=0.001,1000,10000,100000.

matrix. We also observe in Fig. 4.4 that the estimation of the eigenvalues (and hence
the matrix) of the tapered matrix, approaches the true covariance when the bandwidth
is reduced. It is worth mentioning that in cases where the true covariance is a diagonal
matrix or close, the estimate of the simple banded operation approaches that of the
tapering method if the bandwidth of the simple banded covariance is reduced sufficiently
enough, albeit highly unstable and lacks assurance of positive definiteness.

Example 2: In another example, K = 500 particles are drawn from a multivariate
Gaussian variable y ∈ RN=1000 with a non-diagonal covariance matrix shown in Fig. 4.6
(unlike in the previous example). Figs. 4.7 − 4.9 show the structures of the estimated
covariance estimates for different Γ whilst Fig. 4.5 shows the estimates of their eigen-
values. We observe in this case that the larger the bandwidth of the tapering function,
Γ, the better the estimation since a larger bandwidth will preserve its element’s relative
values and smoothen (well condition) the structure (Fig. 4.7) whilst a small bandwidth
will taper away the off-diagonal correlation elements and yield a poor estimation (Fig.
4.9). Therefore from the Examples 1 and 2, we see that the bandwidth of the tapering
function Γ, should be optimized for different covariance matrices.

C. Handling large matrices

Dealing with very large matrices where only a few elements are non-zero is common in
many applications. In such cases, memory consumption can be minimized and perfor-
mance increased by applying a specialized representation of storing only the nonzero
elements. Such a matrix is called a sparse matrix. There are several ways to implement
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Figure 4.6: True covariance matrix.
Figure 4.7: Tapered covariance matrix es-
timate with Γ: 1000.

Figure 4.8: Tapered covariance matrix es-
timate with Γ: 100.

Figure 4.9: Tapered covariance matrix es-
timate with Γ: 0.001.

the storing and manipulation of a sparse matrix in DSP. Some are best for saving mem-
ory whilst others are better suited for computations. In the dictionary of Keys (DOK)
for example, only the non-zero elements together with their positions are stored [35].
The required memory for storing such a matrix is given as: 8×(nnz) + 4×(nnz + n +
1), where n is the number of columns and nnz is the number of non-zero elements.

Another method is called the Yale method in which an m×n sparse matrix is stored
in 3 one-dimensional arrays: A, IA,JA. Where the array A is of length NNZ and holds
all the nonzero entries of M in left-to-right top-to-bottom (”row-major”) order. The
array IA is of length m + 1 and contains the index in A of the first element in each
row, followed by the total number of nonzero elements nnz [36]. The third array, JA,
contains the column index in M of each element of A and hence is of length nnz. This
method is often useful when, nnz ≤ (m(n−1)−1)

2 , else the memory consumed in storing
the sparse matrix exceeds the memory size if it had not been stored as a sparse matrix.
These methods of saving memory works best for the simple banded method of sample
matrix regularization than the tapering method since the band cutting-off of the banded
covariance matrix is sharp whereas the tapering method ’tapers off’ and hence does not
generally lend itself to sparse matrix operations. However since simulations were done
in matlab, a method similar to the DOK was used to compress the large covariance
matrices, which were sparse.

In computing Σ−1
Y for very large dimensions, various techniques can be used to ex-

ploit the banded nature of the matrix to reduce the complexity of the computation. The
results of a simulation is shown in Fig. 4.10. We investigate for a very large matrix by de-
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Figure 4.10: Time complexity for LU, QR, Cholesky, Eigenvalue and SVD decomposition.

composing the matrix to find out if it can reduce time complexity of inverse computation
complexity as compared to when using traditional methods (Gauss Jordan elimination).
Time taken to decompose various sizes of Σ′Y for different decomposition techniques are
shown in Fig. 4.10. The motivation for investigation is as follows: (i) most matrices can
be decomposed into submatrices A = B × C ×D where B and D are orthogonal (ii) it
takes lesser computations to transpose than to perform Gauss elimination (for inverse).
For example to apply an eigenvalue decomposition to compute the inverse of a large
matrix will be as follows:

[V D] = EIG(ΣY ) (4.22)

ΣY = V T ×D × V (4.23)

Σ−1
Y = (V T ×D × V )−1 (4.24)

= (V )−1 ×D−1 × (V T )−1 (4.25)

= (V )T ×D−1 × V (4.26)

where V is orthogonal and D is diagonal. Since computing the inverse of a diagonal
matrix simply requires finding the inverse of the individual diagonal elements and com-
puting the inverse of an orthogonal matrix is by simply transposing, once the matrix has
been decomposed it takes a simple step to compute the inverse. However in the Fig. 4.10
we see that traditional Gauss-Jordan inverse computation gives the minimum time com-
plexity in computing the inverse of a very large covariance matrix (upto 4000 × 4000).
This is because the time it takes to compute the traditional inverse using the Gauss-
Jordan elimination technique is almost the time it takes to decompose the matrix and
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Figure 4.11: Scattered plot representa-
tion of PR{←−µ Y (y)} = {y(k)}104

k=1, y(k) ∼ N
(y,[0; 2],[2 1.9; 1.9 2]).
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Figure 4.12: Computed outgoing message
←−µ X(x), for projection, GMP and reference
techniques.

the additional transpose, inverse diagonal and multiplication operations requires extra
time hence the relatively longer time.

In the next section we will apply the GMP and the projection operations to simple
numerical examples to illustrate the performance of GMP algorithm, and also we show
the condition under which both methods are equivalent.

4.1.5 Numerical examples

Injection transformation:

This example illustrates the slicing method (backward Gaussian message passing) com-
pared with the projection method. We show that the GMP (slicing) method gives the
true outgoing message and is optimal if the incoming messages are indeed Gaussian and
that the projection method is not. We also find that the only scenario when the two
algorithms converge is in case when the incoming variable (whose incoming message is
observable) is an i.i.d process with a diagonal covariance matrix.
Consider a linear function y = Ax, where A is tall matrix (an injective transformation)
and thus χ(y(k)) ≤ 1 and Y is a multivariate Gaussian variable of dimension R2. We
also assume that |µY (y)| > 0 and is represented by K = 104 particle list with uniform
weight as illustrated in the scattered plot 4.11. We simulate two scenarios. In the first
case, PR {←−µ Y (y)} is a 2D particle list drawn from a Gaussian distribution with mean,
mX = [ 0

2 ] and covariance ΣY = [ 2 1.9
1.9 2 ] thus PR{←−µ Y (y)} = {y(k)}104

k=1 (uniform weights
are ignored) drawn from N (y,[ 0

2 ],[ 2 1.9
1.9 2 ]). The SPA algorithm is applied according

to (4.4) to determine the outgoing message,←−µ X(x). The mean and covariance is found
according to (4.10). Thus we have:

Σ−1
X = [1 2]× [ 2 1.9

1.9 2 ](−1) × [1 2]T (4.27)

mX = (Σ−1
Y )# × [1 2]T × [ 2 1.9

1.9 2 ](−1) ×mY (4.28)

This gives the result shown in blue in Fig. 4.12. In the same figure, we see the results
of projecting the individual particles onto the y = Ax subspace. This is equivalent to
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applying (4.17) with s = 1. For each particle, y(k), there exist exactly one particle,
x(k) = (AHA)#AHy(k) = [1 2] × 1

5 × y(k). The result is shown in red as ”projection of
particles” in the same figure. It clear that, the ”sliced Gaussian approximation” method
provides the true message (when the number of particles, K is large) whilst in this par-
ticular case the projection method does not. In addition to the projection and GMP
techniques are two other reference techniques: one reference takes the mean of the pro-
jection method and covariance of the GMP method (green), whilst the other takes the
mean from the GMP method and covariance from the projection method (black). This
reference computation helps us to notice that the correct mean computation is much
more important than the correct covariance computation in determining the true outgo-
ing message. Hence the suboptimality of the projection method lies more in the incorrect
computation of the mean than the covariance.

In the second instance,←−µ Y (y) =N (y,[ 0
2 ],[ 2 0

0 2 ]) (uncorrelated samples of y(k) = [y
(k)
1 y

(k)
2 ] ∈

R2). A scattered plot representation is shown in Fig. 4.13 with the y = Ax subspace
shown in black in the same figure. The slicing (GMP) and projection methods are ap-
plied as before and the results are shown on 4.14. Here we observe that the two methods
produce the same result in terms of mean and variance. Which means whereas the GMP
(slicing) technique considers the correlation between samples to determine the outgoing
message←−µ X(x), the projection method determines the outgoing message on the assump-
tion that, samples are uncorrelated thus it merely projects the message particles onto
the Ax subspace.

4.2 Application to a coherent optical system

In this simulation, we investigate the performance of the slicing algorithm (GMP) by
comparing it to the standard matched filtering and sampling method, which we have
identified as a projection technique. We refer to the canonical optical communication
model described in Chapter 2. In the receiver, three other different receiver algorithms
are used for comparison: DBP, SDBP with MF and a reference technique, which applies
the mean of the projection method whilst maintaining the covariance of the GMP. We
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Table 4.1: Fiber and EDFA parameters.

SMF DCF

D (ps/nm/km) 1.6 -120

γ(1/W/km) 1.3 5.2

α(dB/km) 0.2 0.6

LSMF + LDCF (km) 80

refer to this receiver as the projection-style reference receiver.

Figure 4.15: SDBP paticle evolution through the fiber [7].

4.2.1 System description

Fig. 4.15 shows the signal evolution from transmission up to back propagation at the pulse
shaper output, which corresponds to PR{←−µV(v1,1)} in section 3.3. The received signal
r(t), which has no uncertainty, yet distorted by both linear and nonlinear impairments
is back propagated through a virtual channel to yield a signal with a certain level of
uncertainty (due to the optical amplifiers; shown by the grey area in Fig. 4.15). Our goal
is to compute the correct outgoing message, ←−µ S(s) given ←−µV(v1,1).

Transmitter: 16 QAM symbol sequence, s ∈ CM , where M = 512, is upsampled
with oversampling rate, q = 4, and filtered with a root raised cosine pulse with a roll-off
factor of 0.25. The output of the pulse shaping is an over-sampled continuous signal,
v1,1 ∈ CN , where N = 2000, and is fed into a concatenation of fiber spans.

Channel: The experiment is limited to a single polarization transmission. The
channel is concatenation of Nspan = 60 SMF-DCF-EDFA units whose parameters are
presented in Table 4.1. The SMF introduces power dependent nonlinearities, attenuation
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Figure 4.16: Convolution matrix representation of pulse shaper.

and chromatic dispersion. The DCF compensates for the dispersion from the SMF whilst
the EDFA reinforces the weak signal from the DCF in the optical domain.

Receiver: In the absence of PMD, the received signal, r(t) ∈ CN is distorted by
fiber nonlinear phase shift due to Kerr effect, pulse spreading due to under-compensation
by the DCF(s) and noise due to the amplifiers. The aim is to recover the transmitted
symbols, ŝ, from the received signal r by computing p(s|r). Hence with the received
signal, r(t), which contains no uncertainty, we apply SDBP by back propagating the
message through the hidden states in the 60 fiber spans, we retrieve ←−µY, corresponding
to the message at the output of the pulse shaping (and equivalent to µV1,1(v1,1) in
the SDBP algorithm in Chapter 2 section 3.3). ←−µ Y is represented by a particle list,

{y(k)}Np

k=1 of size, Np = 500. Due to the nature of the algorithms we wish to implement,
we rearrange the received signal so as to set the real and imaginary parts of the waveform
as shown in (4.29). Assuming y is an over-sampled complex signal where yreal[n] is the
real part of the nth symbol, the rearrangement in general is done as follows:

y(k) = [yreal[1],yimag[1],...,yreal[N ],yimag[N ]] (4.29)

In this way we can take advantage of the correlation between the real and imaginary
parts of the signal for detection. In the MF and sampling detector, ←−µ S is computed by
matched filtering and downsampling followed by the application of equations: 4.17, which
is equivalent to projecting each particle, y(k), unto the Ax subspace, i.e (ATA)#ATy(k)

and applying (3.11) - (3.12) to determine p(s|r). In the GMP slicing detector, we apply
(4.12) - (4.15) to PR{←−µV1,1} to derive ←−µ S.
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A ≡ p(t− nTs)- -

←−µX(x) ←−µY (y)
X Y
−→µX(x) −→µY (y)

Figure 4.17: Pulse shaping represented as linear function in factor graphs.

In order to apply the GMP function to the canonical coherent optical communication
system in Fig. 2.1, the pulse shaping p(t), needs to be represented by a linear transfor-
mation function i.e matrix as illustrated in Fig. 4.17. A is a matrix representation of
the up-sampling and filtering process hence it is a tall (injective) matrix of real elements
that projects an M dimensional space onto an N dimensional space.

Since we apply an orthogonal pulse p(t) at the transmitter to up-sample and filter
the sequence of symbols s[n], a convolution matrix, C is constructed from p(t) (C is a
circulant matrix, which when pre-multiplied by an arbitrary vector x is equivalent to
filtering the vector with the filter p(t)). A 3-D plot of C is shown in Fig. 4.16. In order to
account for the up-sample in the pulse shaper, C is up-sampled by a factor of q, which is
equivalent to post-multiplying C by B i.e A′N×M = C×B where B is an identity matrix
with (q − 1)×M zeros inserted between each row.

In the receiver, each (k) particle is re-arranged as shown in (4.29), we therefore need
to rearrange A to correspond to this arrangement. This involves upsampling matrix A′

by a factor of q = 2, repeating each column of A next to each other and cyclic shifting
the repeated columns downwards by one place. This will yield A that is used in the
GMP algorithm.

4.2.2 Simulation results

Mean and covariance of particle symbols

In the SDBP receiver, after back-propagating the received signal, r(t) according the sec-
tion 3.3 to yield PR {µ(v1,1)}, the mean and covariance of the outgoing message, ←−µ S(s)
is computed according to (4.17) - (4.19) and (4.15) for the matched filter and the GMP
(slicing) receiver respectively and inference is done according to 4.24. In this experiment,
an input power of 0 dbm is used and the nonlinear parameters of the SMF and DCF as
well as the amplifier gain are shown in Table 4.1. For the GMP algorithm, a bandwidth
of 30 is applied. In Figs. 4.18 and 4.19, we see an IQ (16-QAM) plot of the mean out-
going message of the projection technique (left) as well as the GMP (slicing, right) for
M = 512 symbols. We see that the Gaussian approximation method yields an improved
symbol mean scatter plot of the projection method and is better well conditioned.

In Figs. 4.20 and 4.21, the PDF contours of particle representation {r(k)
MF [n]}Np

k=1 for one
symbol is shown for matched filtering and GMP. We use a Gaussian approximation to
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of particle representation for SDBP with
Gaussian message passing.

plot the contours for both cases and the black point indicates the mean of the distribu-
tion. It is clear that in this instance ŝ in the MAP computation, will be ŝ = argmax

s∈ΩM

p(r|s)

= 3 + j3 in both algorithms.
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Figure 4.22: Input power versus SER.

SER versus input power

In this experiment, the bandwidth, Γ is kept at 30, the number of particles, Np is also
kept at 500, whilst the input power is varied for the system parameters in Table 4.1.
The SER versus input power is shown in Fig. 4.22. We notice significant gains over DBP
and SDBP at the nonlinear dominated region for the Gaussian slicing receiver whilst,
performance is the same in the noise limited region. We also observe that, the projection-
style method works better than the DBP algorithm but not as well as the SDBP matched
filtering method. If we consider the 0 dBm input power level, the SER of the DBP is
SERDBP= 0.761, the SER of the SDBP and matched filtering is SERSDBP−MF = 0.0214,
whilst the SER of the GMP SDBP is SERGMP−SDBP = 0.008. Therefore we say that
SERSDBP+MF = 2 × SERGMP−SDBP whilst SERDBP = 9 × SERGMP−SDBP .

SER versus bandwidth

First, the bandwidth, Γ, of the covariance matrix was varied with a constant input power
of −3dBm and also Np = 500, number of particles kept constant. The results are shown
in Fig. 4.23. The left region i.e small bandwidth region whilst the right region represents
the large bandwidth region. As the true covariance, ΣY contains significant off-diagonal
elements (i.e received signal samples are correlated), increasing the bandwidth, Γ of
the tapering function, Btap

Γ (ΣY ), yields a better estimation of the covariance matrix
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Figure 4.23: Bandwidth versus SER.

and hence improves the SER of the system. In Fig. 4.23, the reference detector whose
mean is the mean of the matched filter technique, shows results worst than matched-
filter technique. Its performance however improves with increasing bandwidth but never
reaches the matched filter’s performance. This shows that although the performance
of the GMP operation is increases with accuracy of the covariance matrix estimation,
performance is improved on a smaller scale compared to the improvement introduced by
the correct mean computation. Therefore we conclude that the correct computation of
the mean, is the major contributor to the optimality of the GMP receiver.

SER versus number of particles

We further investigate the effect of particle number Np, on the SER performance. Power
is kept at −3dBm whilst the bandwidth, Γ is 30. The DBP is also shown as reference.
From Fig. 4.24, we observe that the SER improves with increasing particle number and
saturates after about Np = 500. This is true for both projection and slicing. However
slicing only improves over matched filter after Np = 100 particles. Since particles are

used to estimate the message, (
Np∑
k=1

w
(k)
X δ(x − x(k)) → µX(x) as Np → ∞ ), increasing

the particle number yields a more accurate message (mean and covariance estimation
of ←−µ V (v1,1) discussed under section 4.1.4), hence the improved SER. When the number

of particles is less than 100, the condition log(N)
K → 0, is hardly approached and the

tapering function is even helpless in solving the small sample problem, therefore the
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Figure 4.24: Number of particles, Np versus SER.

Σ estimation is incorrect leading to the high SER in the low particle number region.
Similarly in the matched filter, the mean and covariance derived from rMF [n] is not
correct hence the high SER. The DBP algorithm however is not affected by this since it
has no stochastic property involved in its development as it does not include the ASE
noise in its formulation; it remains unchanged regardless of the particle number.

4.3 Discussion

In the noise-dominated regime in Fig. 4.22, the ultimate limitation of the system is noise
and the effects of the nonlinearities are insignificant. Since we can hardly do better
than the AWGN limit, all the algorithms perform along that limit. Beyond the noise-
limited regime, nonlinearities begin to dominate and the slicing algorithm is ultimately
limited by nonlinearities and any non-optimal processing in SDBP. Fig. 4.22 shows that
the slicing function performs better than the DBP by several orders and the projection
method by about 2 times in the nonlinear region. This improvement was introduced
by the correct message computation in the pulse shaping block and hence shows the
importance of correct computation of each outgoing message of the hidden blocks in the
algorithm.

Apart from bandwidth, Γ and sample number Np, which can be varied to improve the
system performance, the sampling factor, q, can also improve on performance. Increasing
this value will increase the degree of freedom and provide more covariance information
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with which to compute a more accurate outgoing message however with a trade-off of a
some computational complexity.

Although the message estimate is made better by including more particles, this also
implies increased computational complexity. A particle size of Np = 500 as used in the
simulation is practical not only for complexity reasons, but also system performance
(SER) saturates after that value. Typically, in DSP, communication systems will use a
greater number of signal samples N , than number of SDBP particles Np in dsp, in which
case a badly scaled matrix results. The tapering function then becomes advantageous.

The main difference between the GMP and the projection is that, GMP computes
backward message by considering received signal sample correlations. However, if the
correlation is ignored so that the estimated covariance is a scaled diagonal matrix, the
slicing method collapses into the projection method. The bandwidth varies the size
of correlation samples that is used to compute the backward message. However if the
bandwidth is reduced to be sufficiently small, memory consumption of the covariance
matrix can be reduced by using the sparse matrix to compress the data at the expense
of performance. In Fig. 4.23 reducing the bandwidth to a certain band almost makes
the covariance matrix a diagonal matrix, which explains the crossing point between the
GMP and the projection methods.

As the bandwidth is increased further, the SER saturates because correlation between
the samples slowly reduces after a certain range. Beyond a short range of about Γ = 19 as
seen in Fig. 4.23, ΣY makes no further improvement in the message computation. Since
Γ → ∞ means no regularization of the sample covariance, increasing the bandwidth
further towards N implies high SER. Hence bandwidth Γ, needs to be optimized for
each covariance matrix.
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5
Conclusion and Summary

In this work, we considered the process of message passing in linear and nonlinear models
when messages are given in a particle form. We see that, particle message passing is
a full member of message passing algorithms and we demonstrate this with the SPA
algorithm on factor graphs. We also show why the problem of particle message passing
can be difficult for the injective function case. However, the solution is closed in linear
models when a Gaussian assumption is made. We called this proposed method, the GMP
and considered a special case called projection method. We see that the projection
of particles is equivalent to matched filtering with symbol rate down sampling in the
SDBP algorithm and is sub-optimal in computing backward messages for cases where
the incoming random process is correlated.

We further applied the GMP method in a fiber optic communication receiver to
improve the performance of the original SDBP algorithm, which jointly compensates for
fiber linear (ASE noise, CD, attenuation) and nonlinear (self phase modulation (SPM))
impairments. We see that, compared to DBP and SDBP with matched filtering, the
slicing operation performs better in terms of SER in the nonlinear regime.

Since in this work, we investigated the GMP-SDBP method for only for attenuation,
CD and SPM losses, future work can investigate the effects of PMD, and higher order
nonlinear impairments such as cross phase modulation (XPM), four wave mixing (FWM),
Brillioun and Raman scaterring processes. Also analysis could be made to quantify the
gains of the GMP detector over the DBP and SDBP with matched filtering techniques
in WDM systems.
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A
Appendix A

Assume a linear model in the form, Y = AX. WhereA ∈ RM×N . IfX = {X1, · · · , XM}T
and Y = {Y1, · · · , YN}T are Gaussian distributions with mean mX and mY respectively
and covariance ΣX and ΣY respectively. As a linear combination:

Y1 = a1,1X1 + a1,2X2 + · · ·+ a1,MXM

Y2 = a2,1X1 + a2,2X2 + · · ·+ a2,MXM

...

YN = aN,1X1 + aN,2X2 + · · ·+ aN,MXM

A=



a1,1 a1,2 · · · a1,M−1 a1,M

a2,1 a2,2 · · · a2,M−1 a2,M
...

...
. . .

...
...

aN−1,1 aN−1,2 · · · aN−1,M−1 aN−1,M

aN,1 aN,2 · · · aN,M−1 aN,M



Let E[X] = mX and E[Y ] = mY . Then the relation between mX and mY is:

mY = AmX (A.1)

ATmY = ATAmX (A.2)

(ATA)#ATmY = mX (A.3)
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And that of ΣX and ΣY :

ΣY = AΣXA
T (A.4)

ATΣYA = ATAΣXA
TA (A.5)

(ATA)#ATΣYA(ATA)# = ΣX (A.6)
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