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NONLINEAR INSTRUMENT VARIABLE METHODS
BASED ON LOCAL LINEAR MODELS

Astrid Lundgren and Jonas Sjöberg

Department of Machine and Vehicle Systems,
Chalmers University of Technology, 412 96 Göteborg, Sweden,

Email: astrid.lundgren@me.chalmers.se,
jonas.sjoberg@me.chalmers.se

Abstract: The aim of the present study is to derive nonlinear instrument variable methods
by using local linear models. Two algorithms to estimate consistent local ARX-models
of the system order are presented. A local ARX-model with a regressor of higher order
than the system is simulated to estimate an approximately noise-free data set. In the first
algorithm this approximately noise-free data is used as estimation data to a local ARX-
model of the system order. The second algorithm uses the simulated data as instrument in
a local instrument variable method. The algorithms are demonstrated on both simulated
and laboratory data. Copyright ©2004 IFAC
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1. INTRODUCTION

In linear system identification, the advantage of the
ARX-model structure is that the prediction can be
expressed as linear regression, ie,

ŷ(t|θ) = ϕT (t)θ (1)

where
θ = [a1 . . .ana b0 . . .bnb ]

T (2)

is the parameter vector, and the regressor

ϕ(t) = [−y(t −1) · · ·− y(t −na)

u(t −nk) . . .u(t −nk −nb +1)]T (3)

is made of na lagged old outputs and nb lagged old
inputs with delay nk samples. If the parameter estimate
is defined as the minimum of the sum of squared
errors, the parameter estimate can be expressed as a
closed expression

θ̂N =

[
1
N

N

∑
t=1

ϕ(t)ϕT (t)

]−1
1
N

N

∑
t=1

ϕ(t)y(t) (4)

where N is the size of the estimation data set. This
means that the estimate can be calculated very rapidly

and there are no problems with local minima. The
drawback with the ARX model is that there is no inde-
pendently parameterized noise model, which implies
that the estimate of the plant model will normally be
biased depending on the color of the noise. This means
that the plant estimate is not consistent. In transfer
functions, the ARX model is described by

y(t) =
B(q)
A(q)

u(t)+
1

A(q)
e(t) (5)

where B(q) and A(q) are polynomials in the shift
operator qu(t) = u(t + 1) parameterized by θ , (2). It
is the common denominator A(q) in (5) which causes
the inconsistency.

There are two common remedies to the inconsistency
problem in linear identification. The first, and proba-
bly the most common, is to introduce an independent
noise model, for example the output error (OE) model
and the Box-Jenkin’s (BJ) model, or a partly indepen-
dent noise model as in the ARMAX model. For these
models, the parameter estimate has to be calculated
with an iterative search for the minimum of a criterion.
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This is more time consuming and there is also a risk
to be stack in a local minimum.

The second remedy of the inconsistency is to use an
instrument-variable (IV) method to estimate the plant
parameters. The main idea of IV methods is to choose
instruments that are uncorrelated with the noise and
that replace the measured output in the regressor. For
a background on linear identification see eg (Ljung,
1999; Söderström and Stoica, 1989).

In nonlinear system identification, it is possible to for-
mulate nonlinear counterparts of the common linear
model structures, see eg, (Ljung, 1999; Sjöberg et al.,
1995). The most commonly used model structure is
the nonlinear ARX model (NARX) which consists of
a nonlinear mapping of the regressor (1), ie, prediction
is described by

ŷ(t|θ) = g(θ ,ϕ(t)) (6)

where g(·, ·) is the nonlinear mapping. However the
NARX has similar consistency problems as its linear
counterpart and it is possible to define NOE, NBJ, and
NARMAX models to counteract the problem, see, eg,
(Ljung, 1999; Sjöberg et al., 1995; Nørgaard et al.,
2000; Chen and Billings, 1992). In principle, these
model structures solve the inconsistency problem, but
there are some drawbacks. First, stability of the pre-
diction model has to be monitored during the iterative
search for the parameter estimate. Secondly, a simul-
taneous search for nonlinear plant and noise mod-
els increases search space so that many more model
structures have to be investigated. So far, at least to
the authors’ knowledge, there are no IV identification
methods available for nonlinear systems. The reason
for this is that IV methods rely on model structures
described as linear regression.

This contribution suggests two IV-related estimation
methods for nonlinear system identification. Both
methods are based on local linear models where a sub-
set of the data is used in the linear regression step (1).
This makes it possible to combine ideas from linear
IV methods with nonlinear system identification meth-
ods based on local models. So far these local models
have only been used to define NARX models. See, eg,
(Atkeson et al., 1997; Stenman, 1999; Bontempi et al.,
1999).

The paper is organized as follows: the first give a
background on linear methods to make consistent
estimates and the theory of local linear models. The
second section discusses how to combine theory from
linear IV-methods with local linear models. In the
third part the parameter estimation algorithms are
demonstrated on simulated and laboratory data.

2. BACKGROUND

This section gives a brief background of the relevant
linear identification theory and the local linear tech-
nique used.

2.1 Inconsistency of linear regression models

Assume that the estimation data has been generated by

y(t) = ϕT (t)θ0 + e(t) (7)

where θ0 is the true parameter vector and e(t) is a
disturbance signal. The parameter estimate, (4), then
becomes

θ̂N =

[
1
N

N

∑
t=1

ϕ(t)ϕT (t)

]−1

×

1
N

(
N

∑
t=1

ϕ(t)ϕT (t)θ0 +
N

∑
t=1

ϕ(t)e(t)

)
(8)

which limits θ0 only if

lim
N→∞

1
N

N

∑
t=1

ϕ(t)e(t) = 0 (9)

This holds only if the data is described by (7), or
equivalently by (5), ie, if the disturbance is described
by the plant denominator, 1/A(q). If this assumptions
does not hold, the estimate (8) gives a biased estimate
of the plant B(q)/A(q). How this is handled with IV
method is described next.

2.1.1. Linear Instrumental-Variable-methods The
IV-methods are extensions of the linear regression
and avoid the problem of inconsistent estimate by
introducing an instrument variable, ζ (t), in the linear
regression (4)

θ̂ IV
N =

[
1
N

N

∑
t=1

ζ (t)ϕT (t)

]−1
1
N

N

∑
t=1

ζ (t)y(t) (10)

where the instrument variable is chosen as a function
of the input u(t) and the output y(t), with the following
properties

lim
N→∞

1
N

N

∑
t=1

ζ (t)ϕT (t) nonsingular (11)

lim
N→∞

1
N

N

∑
t=1

ζ (t)e(t) = 0 (12)

With these properties, (10) is shown to be consistent
by taking the same steps as in (8).

Many studies have been done on IV-methods of which
early examples are (Reiersol, 1941; Wong and Polak,
1967). The methods can also be found in textbooks
on system identification e.g. (Ljung, 1999; Söderström
and Stoica, 1989).

2.1.2. Two-step ARX estimation An alternative to
the IV-methods to obtain a consistent plant of correct
order is the following two-step estimation. The first
step is to estimate a high order ARX-model. This
will give the A(q) polynomial a sufficient number
of parameters so that both the denominators of the
plant and noise parts can be modelled, and the extra

502



parameters in the B(q) polynomial are then used to
cancel the poles which are only needed in the noise
part. If the order of the model tends towards infinity,
consistency is obtained (Ljung and Whalberg, 1992).
In a second step the high order model is simulated
using the input signal from the estimation data. The
simulated output

ys(t) =
B̂(q)
Â(q)

u(t) (13)

is an estimate of the noise-free output from the system.
Finally a low order ARX-model is estimated using the
simulated outputs and the inputs from the estimation
data. Since the model is estimated from approximately
noise free-data, (9) holds and the parameter estimate is
consistent, see for example (Pandya, 1974).

2.2 Local linear models

A local model means that a subset of the estimation
data of k data points around the point in the regressor
space ϕ0 one wants to predict or simulate is chosen.
From the k data in the subset, a model is estimated by
minimizing the criterion

θ̂ = minargθ

k

∑
t=1

(y(t)− (ϕ(t)−ϕ0)T wtθab − ŷ)2

(14)
where θ̂ = [ŷ θ̂ T

ab]
T = [ŷ a1...ana b0...bnb ]

T and wt are
weights on the data in ϕ(t), giving higher weight on
data close to ϕ0. Note that the estimate of y at ϕ0,
denoted ŷ, becomes one of the parameters in (14). The
estimate the parameters θ̂ can according to (14) be
formulated as

θ̂ =

[
1
k

k

∑
t=1

ϕ̄(t)wt ϕ̄T (t)

]−1
1
k

k

∑
t=1

ϕ̄(t)wty(t) (15)

where

ϕ̄(t) =
(

1
ϕ(t)−ϕ0

)
(16)

and the prediction ŷ is the first element in θ̂ .

The size of k can either be a constant number or be
optimized for each ϕ0 by minimizing a goodness-
of-fit-criterion. For examples on goodness-of-fit cri-
teria see (Stenman, 1999). The weights, wt , can be
set by a kernel function (Atkeson et al., 1997), wt =
K(d(ϕ(t),ϕ0)) where d(ϕ(t),ϕ0) is a distance func-
tion. An alternative to set the weights with a kernel
function is to optimize the distribution of the weights,
see (Stenman, 1999) and (Roll et al., 2003).

3. ALGORITHMS

3.1 First step

The first step in both of the algorithms is a local
ARX-model with a regressor of higher order than the
expected system order

ˆ̃θ =

[
1
k

k

∑
t=1

¯̃ϕ(t)wt ¯̃ϕT (t)

]−1
1
k

k

∑
t=1

¯̃ϕ(t)wty(t) (17)

where

ϕ̃(t) = [−y(t −1)...− y(t − ña)

u(t −nk)...u(t −nk − ñb +1)]T (18)

note that ¯̃ϕ(t) is defined in analogy with (16). The sim-
ulated output from (17) is called ys(t). The simulated
data forms a new set of estimation data [ys(t) u(t)]Nt=1

3.2 Local two-step ARX

The first algorithm is a local version of the two-step
ARX estimation from section 2.2.

• The first step is according to section 3.1
• Estimate and simulate a local ARX-model of the

expected system order [na nb nk]

θ̂ =

[
1
k

k

∑
t=1

ζ̄ (t)wt ζ̄ T (t)

]−1
1
k

k

∑
t=1

ζ̄ (t)wtys(t)

(19)
where

ζ (t) = [−ys(t −1)...− ys(t −na)

u(t −nk)...u(t −nk −nb +1)]T (20)

and ña > na and ñb > nb, from the new estimation
data set. Note that ζ̄ (t) is defined in analogy with
(16).

3.3 Local IV-method

The second algorithm is a local version of the IV-
method from section 2.1.1.

• The first step is according to section 3.1
• Form an instrument of the simulated outputs,

ζ (t) = [−ys(t −1)...− ys(t −na)

u(t −nk)...u(t −nk −nb +1)]T (21)

• Estimate and simulate a local ARX-model of the
order [na nb nk], using the instrument ζ (t)

θ̂ =

[
1
k

k

∑
t=1

ζ̄ (t)wt ϕ̄T (t)

]−1
1
k

k

∑
t=1

ζ̄ (t)wty(t)

(22)
where

ϕ(t) = [−y(t −1)...− y(t −na)

u(t −nk)...u(t −nk −nb +1)]T (23)

4. EXAMPLES

4.1 Simulated data

Three simple examples on simulated data will be used
to compare the local two-step ARX-model, the local
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IV-method and a local ARX-model of the system
order. The influence of the number of data and model
order in section 3.1 will be illustrated as well as the
variance and bias parts of the estimation error of the
simulated output. In all the examples data have been
generated by the function

y0(t) = 0.5u(t −1)(1− sin(y0(t −1)))

y(t) = y0(t)+ e(t) (24)

with a system order of [na nb nk] = [1 1 1] and where
{u(t)}N

t=1 are randomly generated numbers equally
distributed between −2.5 and 2.5 and {e(t)}N

t=1 are
Gaussian white noise with zero mean and unity vari-
ance. The noise free output {y0(t)}N

t=1 is used as vali-
dation data.

4.1.1. Example I, convergence as a function of the
number of data The aim of example I is to demon-
strate how the simulated output converges to the true
output for increasing number of data. The model order

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.05

0.1

0.15

0.2

0.25

N

m
se

local two−step ARX
local IV−method
local ARX−model, short regressor
long regressor

Fig. 1. On the x-axis the number of estimation data and
on the y-axis is the mean squared error between
the simulated outputs and the validation output.
The solid line is the local two-step ARX, the
dashed/dotted line is the local IV-method, the
dotted line is the local model of the system order
and the dashed line is the local model of the order
[5 5 1].

in section 3.1 is chosen to [ña ñb nk] = [5 5 1]. The
number of estimation data is varied from 300 to 5000.
The mean squared error between the simulated output
and the validation output is calculated for each simu-
lation.

In figure 1 the mean squared errors calculated for the
local two-step ARX-model, the local IV-method and a
local model of the system order is plotted versus the
number of data points. The mean squared error for the
local model in section 3.1 is also plotted. The perfor-
mance of this model is of interest since its simulated
output is the estimation data in the second step of the
local two-step ARX (19) and is the instrument in the
local IV-method (22). Figure 1 shows that both the
local two-step ARX-model and the local IV-method
give smaller mean squared errors for larger amounts of
estimation data and that they both give smaller mean

squared error than the local model of order [na nb nk].
It can also be seen that mean squared error of the local
two-step ARX converges to (17) faster than the local
IV-method.

4.1.2. Example II, bias error and variance error
The aim of example II is to show how the bias and
variance parts of the estimate error are affected by
using the local two-step ARX-model and the local IV-
method compared to a local model of the system order.
A data set of 1000 points from (24) is used. The re-
gressor in section 3.1 has the order [ña ñb nk] = [5 5 1].
The results of the two-step algorithms are compared
with a local model of the system order. The calcu-
lations are run 200 times with different noise real-
izations {e(t)}N

t=1. To make it easier to illustrate the
result, two outputs in the data set have been chosen:
output number t = 600 and output number t = 700,
which are plotted against each other in figure 2. Figure
2 also shows the mean of the 200 outputs and the
noise-free value of the outputs. The bias error has been
calculated as

bias = ((
1

200

200

∑
i=1

(yi
s(600))− y0(600))2+

+(
1

200

200

∑
i=1

(yi
s(700))− y0(700))2)1/2 (25)

and the variance error as

variance = variance(ys(600))+variance(ys(700))
(26)

Figure 2 shows that the local two-step ARX-model,
figure 2(a), and the local ARX-model of the system
order, figure 2(c), give approximately the same vari-
ance error of the simulated output, but the bias error
is, as expected greater for the local ARX-model of the
system order. The local IV-method on the other hand
gives a greater variance of the simulated outputs, but
has the smallest bias, figure 2(b).

4.1.3. Example III, model order The aim of exam-
ple III is to demonstrate how the order of the regressor
in section 3.1 will affect the estimation result. In this
example two data sets from (24) are used: one of 1000
data and one of 5000. The data sets are simulated using
the local two-step ARX (19) and the local IV-method
(22). The order of (18), ña = ñb = n, goes from 1
to 10. For each model size, the mean squared error
between validation output and the simulated output is
calculated. The results of the calculations are shown
in figure 3. The figure shows that for the local two-
step ARX-model the order of the large regressor (18)
is important and that the order of the best larger model
depends on the number of data. In the case when the
number of data was 1000, the optimum is [2 2 1] and
for N = 5000 the optimum is [3 3 1]. The local IV-
method seems to be robuster towards the order of the
model in section 3.1.
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(a) Local two-step ARX, bias = 0.0716,
variance = 0.0127
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(b) Local IV-method, bias = 0.0425, vari-
ance = 0.0224
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(c) Local ARX, system order, bias = 0.1088,
variance = 0.0135

Fig. 2. Output 600 on the x-axis vs point 700 on the
y-axis. The circles are the simulated outputs, the
crosses are the mean of the simulations and the
stars are the noise free outputs. The arrows are
help to find the crosses and the stars.

4.2 DC-motor

The algorithms will be illustrated on laboratory data
from a DC-motor with a flexible torsional load. The
input is the voltage applied to the motor and the output
is the angular speed of the load. The linear trend in the
data is removed and a data set of 1191 data point is
divided into an estimation set of the first three quarters
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(a) Number of data 1000
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order larger regressor

m
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local two−step ARX
local IV−method

(b) Number of data 5000

Fig. 3. The mean squared error between simulated out-
put and validation output vs the model order. The
solid line is the local two-step ARX-model, the
dashed line the local IV-method and the dotted
line is the local model of the system order.

of the data and a validation set of the last quarter of
the data, see figure 4. The data in the estimation set
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−100

−50

0

50

100

150
output

0 200 400 600 800 1000 1200
−150

−100

−50

0

50

100

150
input

Fig. 4. Data from DC-motor. The first three quarters
are used as estimation data and the last quarter as
validation data.

is simulated with the local two-step ARX-algorithm,
the local IV-algorithm and a local ARX-model of
order [3 2 2]. The model in the first step has the order
[5 4 2] and the model in the second step has the order
[3 2 2]. To compare the results the mean squared error
between the output and simulated output

mse =
1
N

N

∑
t=1

(yval(t)− ys(t))2 (27)

is calculated for each case. Figure 5 shows that the
local IV-method preforms the best and the local two
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(a) Local two step ARX, mse= 176.7080
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(b) Local IV, mse= 27.0949
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(c) Local ARX, mse= 341.5614

Fig. 5. Simulations of data from a DC-motor and the
residuals between the simulation and the vali-
dation data by the local two-step ARX-model
and the local IV-method compered with a local
ARX-model of order [3 2 2]. The solid line is the
simulated output and the dashed/dotted line is the
validation output.

step ARX simulates data well, but the local ARX-
model of order [3 2 2] does not.

5. CONCLUSIONS

In this study we have proposed two parameter estima-
tion algorithms for consistent estimates of local linear
models. The estimation result’s dependence on the

order of the model used to simulate an approximately
noise-free data set and the number of data has been
illustrated in a couple of examples.
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