
Archive of Numerical Software
vol. 3, no. 100, pages 9–23

c© 2015

The FEniCS Project Version 1.5

Martin S. Alnæs1, Jan Blechta2, Johan Hake3, August Johansson4,
Benjamin Kehlet5, Anders Logg6, Chris Richardson7, Johannes Ring8, Marie

E. Rognes9, and Garth N. Wells10

1Simula Research Laboratory, martinal@simula.no
2Charles University in Prague, blechta@karlin.mff.cuni.cz

3Simula Research Laboratory, hake@simula.no
4Simula Research Laboratory, august@simula.no

5Simula Research Laboratory, benjamik@simula.no
6Chalmers University of Technology and University of Gothenburg, logg@chalmers.se

7University of Cambridge, chris@bpi.cam.ac.uk
8Simula Research Laboratory, johannr@simula.no

9Simula Research Laboratory, meg@simula.no
10University of Cambridge, gnw20@cam.ac.uk

Received: May 28th, 2015; final revision: December 1st, 2015; published: December 7th, 2015.

Abstract: The FEniCS Project is a collaborative project for the development of innovative
concepts and tools for automated scientific computing, with a particular focus on the solution of
differential equations by finite element methods. The FEniCS Project consists of a collection of
interoperable software components, including DOLFIN, FFC, FIAT, Instant, mshr, and UFL. This
note describes the new features and changes introduced in the release of FEniCS version 1.5.

1 Overview

FEniCS version 1.5 was released on 12th January 2015. This article provides an overview of the
new features of this release and serves as a citable reference for FEniCS version 1.5. The FEniCS
software can be downloaded from the FEniCS Project web page at http://fenicsproject.org.

The FEniCS software consists of a collection of interoperable components. These are, in alpha-
betical order, DOLFIN, FFC, FIAT, Instant, mshr, and UFL. In addition, FEniCS includes the code
generation interface component UFC, which is now technically a part of FFC. All FEniCS compo-
nents, except mshr, are licensed under the GNU LGPL. Due to upstream dependencies, mshr is
licensed under the GNU GPL. The components are released simultaneously with the same major
and minor version numbers, making it straightforward for users to find compatible versions of
the components. The version number of packages that may be unchanged are still incremented
to avoid divergence of version numbers.

http://fenicsproject.org


10

2 New features

2.1 Parallel computing

The performance of parallel computations with DOLFIN continues to be enhanced. Notable
enhancements and new features in the 1.5 release include:

• switch to local (process-wise) degree-of-freedom indexing; for more details see subsec-
tion 2.9;

• full support (including from Python) for problems with over 232 dofs via complete support
for 64-bit indices;

• substantial improvements in performance scaling and memory use for degree-of-freedom
map construction;

• new parallel mesh refinement strategy;

• support for overlapping mesh ‘ghost’ layers in parallel;

• interior facet integrals are now supported in parallel, which enables discontinuous Galerkin
methods in parallel;

• improvements in parallel IO using HDF5.

DOLFIN has been used to solve the Poisson equation with over 12 billion degrees of free-
dom [Richardson and Wells, 2015] on 24576 cores on a Cray XC30.

Improvements have been made to decrease the load on the filesystem during just-in-time com-
pilation, which can be a bottleneck on large machines. Further effort is required to address the
well-known issue of importing Python modules on parallel computers.

A memory corruption issue during forks on OFED-based (InfiniBand) clusters has been tracked
down. Users of OFED machines are advised to read the Instant README file and export the
INSTANT_SYSTEM_CALL_METHOD environment variable.

2.2 New mesh refinement strategy

A new refinement algorithm has been adopted for DOLFIN, following the work of Plaza and
Carey [2000]. This algorithm uses edge bisection to subdivide the marked triangles of a Mesh,
be they the cells themselves in two dimensions, or the facets of tetrahedra in three-dimensions.
The subdivision is chosen so as to maximize the internal angles of the new triangulation, thus
maintaining mesh quality after multiple refinements; see Figure 1. Edges which are marked
for refinement propagate between processes in parallel, whilst the refinement operation is local,
resulting in good scaling.

2.3 Mesh generation: the new mshr component

The mesh generation functionality of FEniCS, except for simple meshes like UnitSquareMesh and
UnitCubeMesh, has been moved to a new FEniCS Component named mshr. The motivation for this
change is twofold: first, to simplify the list of dependencies and reduce the amount of resources
(CPU time and memory usage) for building DOLFIN (by moving the CGAL dependency to mshr);
and second, to simplify the addition of new features to the new meshing component. Currently,
both CGAL and Tetgen are available as mesh generation backends for mshr.

Much like the old meshing interface in DOLFIN, the new mshr interface allows simple generation
of meshes from Constructive Solid Geometry (CSG) descriptions, as demonstrated by the example
listed below. The generated mesh is shown in Figure 2.

Archive of Numerical Software 3(100), 2015 c© by the authors, 2015



The FEniCS Project Version 1.5 11

Figure 1: Tetrahedron refined multiple times, whilst preserving mesh quality.

Figure 2: A mesh generated from a CSG description in FEniCS. The left image shows the surface
of the generated tetrahedral mesh while the right image shows a volume rendering in which the
subtracted sphere in the center is visible.

Python code
1 from dolfin import *
2 from mshr import *
3
4 # Define geometry
5 box = Box(Point(0, 0, 0), Point(1, 1, 1))
6 sphere = Sphere(Point(0, 0, 0), 0.3)
7 cylinder = Cylinder(Point(0, 0, -1), Point(0, 0, 1), 1.0, 0.5)
8 geometry = box + cylinder - sphere
9

10 # Generate mesh
11 mesh = generate_mesh(geometry , 16)

Through a combination of simple CSG primitives and Boolean operations (and, or, negation),
meshes can be created for geometries ranging from simple domains like the canonical L-shaped
domain, to relatively complex geometries. Figure 3 shows a pair of meshes generated using mshr.

c© by the authors, 2015 Archive of Numerical Software 3(100), 2015



12

Figure 3: Meshes generated from CSG geometries using the new FEniCS mesh generation com-
ponent mshr.

Figure 4: Multimesh solution of the Stokes problem on two overlapping non-matching meshes.

2.4 Multimesh finite element methods

Multimesh finite element methods (CutFEM) are finite element methods posed on two or more
possibly non-matching meshes. The formulation of multimesh finite element methods involves
the formulation of variational problems on function spaces composed by regular function spaces
on the intersecting meshes. Continuity between meshes is imposed using Nitsche’s method
and stability ensured by adding suitable stabilization terms (ghost penalties) to the variational
problem.

FEniCS 1.5 adds support for the formulation of multimesh methods, including automatic and
efficient computation of mesh-mesh intersections, quadrature rules for cut cells and interfaces, and
expression of integrals that typically appear in the formulation of multimesh/CutFEM methods.
Figure 4 shows results for a Taylor–Hood formulation for the Stokes problem on two overlapping
and intersecting meshes; a boundary-fitted mesh embedding a propeller-shaped hole, which
overlaps a fixed background mesh; for details see Johansson et al. [2015].

The FEniCS interface to multimesh finite element methods currently requires a user to define the
integrals in terms of the newly added custom_integral interface. This new interface enables
code generation for integrals expressed on arbitrary domains, among them cut cells, interfaces,
and overlaps, as illustrated by the following UFL code for expression of a multimesh formulation
of Poisson’s equation:

Archive of Numerical Software 3(100), 2015 c© by the authors, 2015



The FEniCS Project Version 1.5 13

Python code
1 # Define custom measures (simplify syntax in future versions)
2 dc0 = dc(0, metadata={"num_cells": 1})
3 dc1 = dc(1, metadata={"num_cells": 2})
4 dc2 = dc(2, metadata={"num_cells": 2})
5
6 # Define measures for integration
7 dx = dx + dc0 # domain integral
8 di = dc1 # interface integral
9 do = dc2 # overlap integral

10
11 # Parameters
12 alpha = 4.0
13 beta = 4.0
14
15 # Bilinear form
16 a = dot(grad(u), grad(v))*dx \
17 - dot(avg(grad(u)), jump(v, n))*di \
18 - dot(avg(grad(v)), jump(u, n))*di \
19 + alpha/h*jump(u)*jump(v)*di \
20 + dot(jump(grad(u)), jump(grad(v)))*do

On the C++ side, multimesh function spaces must currently be explicitly constructed as demon-
strated by the following excerpt from the multimesh-poisson demo:

C++ code
1 // Create function spaces
2 MultiMeshPoisson::FunctionSpace V0(mesh_0);
3 MultiMeshPoisson::FunctionSpace V1(mesh_1);
4 MultiMeshPoisson::FunctionSpace V2(mesh_2);
5
6 // Build multimesh function space
7 MultiMeshFunctionSpace V;
8 V.parameters("multimesh")["quadrature_order"] = 2;
9 V.add(V0);

10 V.add(V1);
11 V.add(V2);
12 V.build();

Future improvements to the multimesh functionality of FEniCS will include the introduction of
specific integration measures in UFL, so that the measures don’t need to be defined in terms
of custom_measure, as well as simplified and higher level interfaces for assembly and problem
solving in DOLFIN.

2.5 Assembly of point integrals

In addition to the classical cell integrals, exterior facet integrals, and interior facet integrals, FEniCS
version 1.5 supports specification of point integrals. A point integral represents the integrand
evaluated at each vertex, summed over the vertices of the mesh. Starting with FEniCS version
1.5, the DOLFIN assemblers recognize point integrals and assemble contributions from such
integrals. We remark that for each vertex, the integrand will be restricted to the arbitrarily
chosen first cell associated with this vertex prior to evaluation. This operation is therefore only
consistently defined for functions and integrands that are continuous at the vertices.

2.6 Point integral solvers and Rush–Larsen schemes

The FEniCS PointIntegralSolvers are special-purpose solvers dedicated to solving multistage
integration schemes defined for each vertex of a mesh. Such problems typically occur in con-
nection with spatially varying systems of ODEs, for instance in electrophysiology. In FEniCS
version 1.5, we have extended the range of available schemes to also include the Rush–Larsen

c© by the authors, 2015 Archive of Numerical Software 3(100), 2015



14

[Rush and Larsen, 1978] and the generalized Rush–Larsen [Sundnes et al., 2009] schemes for
solving systems of nonlinear ODEs.

2.7 Redesign of core symbolic representation and algorithms

The domain-specific language UFL represents equations as symbolic expression trees, where
each node represents some value or mathematical operation. For nonlinear equations with
large expression trees, the performance and memory overhead of symbolic computations and
form compiler algorithms can become significant, especially when running in parallel, where
this overhead is a limiting factor for scalability according to Amdahl’s law. This becomes even
more important when FEniCS is combined with high-level algorithms, such as the dolfin-adjoint
package, that rely extensively on symbolic algorithms from UFL. To reduce this overhead, the
core representation of symbolic expressions has been redesigned (see ufl.core), followed by a
rewrite of the core framework for developing additional symbolic algorithms (see ufl.corealg).
Each expression tree node type now has the following attributes:

• ufl_operands Tuple of child nodes in expression tree. Equivalent to deprecated operands().

• ufl_shape Tuple of value shape dimensions. Equivalent to deprecated shape().

• ufl_free_indices Tuple of free index integer ids. Replaces deprecated free_indices().

• ufl_free_index_dimensions Tuple of dimensions associated with corresponding free index
ids in ufl_free_indices. Replaces deprecated free_indices().

The deprecated functions mentioned above are still available as wrappers around the new at-
tributes. Type traits of symbolic expression classes have also been made available through an
efficient property-based API using the naming scheme ExprType._ufl_*_ (see ufl.core.expr).
This is mainly intended for internal usage but also for developers building on the symbolic
capabilities of FEniCS.

A major guiding principle in the redesign of core algorithms in UFL was to replace all uses
of expensive recursion in Python with loops. Algorithms for expression traversal (see module
ufl.corealg.traversal) have all been reimplemented without recursion, and further fine-tuned
for specific iteration scenarios. The former Transformer base class for visitor-like algorithms
has been deprecated in favor of an implementation that avoids recursion. The new function
map_expr_dag(function, expression) applies the given function to transform each expression
tree node in a non-recursive post-order traversal. The function arguments include the node as
well as the previously transformed node operands. This algorithm is further optimized to reduce
the number of function calls and avoid duplicated expression tree nodes by (optionally) caching
intermediate results in a hashmap with the original expression nodes as keys.

Previous implementations of the Transformer class can easily be rewritten as implementations
of MultiFunction, which implements the same dynamic type dispatch mechanism, and passed
as the function argument to map_expr_dag. Key algorithms such as automatic differentiation
(apply_derivatives) and propagation of restrictions (apply_restrictions) have been reimple-
mented in this optimized algorithm framework, and may serve as models. In addition, form
signatures are now computed without first applying automatic differentiation, which reduces the
symbolic overhead significantly when the signature is found in the form compiler cache. Together
these improvements have reduced the symbolic overhead in FEniCS 1.5 by 20–60%. To give a few
examples: the initial just-in-time (JIT) compilation of a Poisson equation form was reduced from
5s to 4s including C++ compilation, while for a complicated cardiac hyperelasticity model the JIT
time was reduced from 103s to 48s. For the latter model, subsequent program runs now avoid a
2s delay in the signature computation used for disk cache lookup.

Archive of Numerical Software 3(100), 2015 c© by the authors, 2015



The FEniCS Project Version 1.5 15

P
−
r Λk(∆n)

k = 0 k = 1 k = 2 k = 3
n = 1 P DP
n = 2 P RT[E,F] DP
n = 3 P N1E N1F DP

PrΛ
k(∆n)

k = 0 k = 1 k = 2 k = 3
n = 1 P DP
n = 2 P BDM[E,F] DP
n = 3 P N2E N2F DP

Q
−
r Λk(�n)

k = 0 k = 1 k = 2 k = 3
n = 1 Q DQ
n = 2 Q RTC[E,F] DQ
n = 3 Q NCE NCF DQ

SrΛ
k(�n)

k = 0 k = 1 k = 2 k = 3
n = 1 S DPC
n = 2 S BDMC[E,F] DPC
n = 3 S AAE AAF DPC

Table 1: New notation for finite elements adopted from the Periodic Table of the Finite Elements.

2.8 Notation from Periodic Table of the Finite Elements

FEniCS now supports the notation for finite elements as set out in the Periodic Table of the Finite
Elements [Arnold and Logg, 2014] based on the finite element exterior calculus, see Arnold et al.
[2006]. The notation introduces new aliases for the existing elements in FEniCS and introduces
new placeholder names for the not yet implemented elements on quadrilaterals and hexahedra.
Earlier FEniCS notation (“Lagrange”, “CG”, etc.) is still supported but may be phased out in
future versions. Table 1 summarizes the notation. In this table, n is the topological dimension
of the finite element domain (1D, 2D, 3D), r is the polynomial degree and k is the form degree;
k = 0 means scalars, k = 1 means 1-forms (oriented line segments), k = 2 means 2-forms (oriented
surfaces) and k = 3 means 3-forms (oriented volumes).

Figure 5 shows a miniature (but high resolution) version of the periodic table. The full version
can be downloaded from http://femtable.org.

As an example, the following code shows how to instantiate a pair of cubic Nédélec face elements
of the first and second kinds on a tetrahedron:

Python code
1 element_1 = FiniteElement("N1F", "tetrahedron", 3)
2 element_2 = FiniteElement("N2F", "tetrahedron", 3)

2.9 Changes in degree-of-freedom map construction

A number of performance improvements have been made in the degree-of-freedom (DOF) map
construction, and changes to how to DOF maps are order have been made. Specifically:

• DOLFIN now uses local (process-wise) numbering of degrees of freedom, which has re-
duced the memory use of degree-of-freedom maps. This change also permits some new
developments in interfacing to linear-algebra backends.

• The degree-of-freedom map construction code has been re-written, reducing the time for
construction and substantially improving parallel scaling of construction.

• Node-wise block structure in DOF maps, e.g. a fixed number of DOFs at each node, is now
automatically detected. This provides better data locality and faster graph-based DOF map
reordering.

c© by the authors, 2015 Archive of Numerical Software 3(100), 2015



16

k       01012012301234

k       01012012301234

k       01012012301234

k       01012012301234

r = 12236341212452030205

r = 12133146415101051

r = 1214418126116322481

r = 122483824184166472325

2336126103030101560906015

2326831020154154045245

2329124275436881
216
2169616

23381462048391048
144
1688415

3441020102060602035
140
210
14035

343101562045361035
105
1267015

3431624964
144
10827

256
768
864
43281

3441222103284722080
272
336
18035

45515301535
105
1053570
280
420
28070

4541524103584702070
224
280
16035

454254016

125
300
24064

625
2000
2400
1280

256

45517321550
135
12035

136
472
606
34070

56621422156
168
16856

126
504
756
504
126

56521351556
140
12035

126
420
540
31570

565366025

216
540
450
125

1296
4320
5400
3000

625

56623442174
204
18656

216
768

1014
588
126

67728562884
252
25284

210
840

1260
840
210

67628482184
216
18956

210
720
945
560
126

676498436

343
882
756
216

2401
8232

10584
6048
1296

677305828

105
294
27384

328
1188
1602

952
210

788367236

120
360
360
120

330
1320
1980
1320

330

787366328

120
315
28084

330
1155
1540

924
210

78764
11249

512
1344
1176

343

4096
14336
18816
10976

2401

788387436

144
408
384
120

480
1764
2418
1464

330

22
33

44
55

66
77

88
21

32
43

54
65

76
87

21
32

43
54

65
76

87
22

33
44

55
66

77
88

363

6126

102010

153015

214221

285628

367236

331

683

10156

152410

213515

284821

366328

441

9124

16249

254016

366025

498436

64
11249

483

8146

122210

173215

234421

305828

387436

412124

10303010

20606020

35
105
10535

56
168
16856

84
252
25284

120
360
360
120

4641

1020154

20453610

35847020

56
140
12035

84
216
18956

120
315
28084

81261

2754368

64
144
10827

125
300
24064

216
540
450
125

343
882
756
216

512
1344
1176

343

824184

20483910

32847220

50
135
12035

74
204
18656

105
294
27384

144
408
384
120

52030205

1560906015

35
140
210
14035

70
280
420
28070

126
504
756
504
126

210
840

1260
840
210

330
1320
1980
1320

330

5101051

154045245

35
105
1267015

70
224
280
16035

126
420
540
31570

210
720
945
560
126

330
1155
1540

924
210

16322481

81
216
2169616

256
768
864
43281

625
2000
2400
1280

256

1296
4320
5400
3000

625

2401
8232

10584
6048
1296

4096
14336
18816
10976

2401

166472325

48
144
1688415

80
272
336
18035

136
472
606
34070

216
768

1014
588
126

328
1188
1602

952
210

480
1764
2418
1464

330

P
eriod

ic T
able of th

e Fin
ite E

lem
en

ts
k

=
0

k
=

0
k

=
0

k
=

0

r=
1

r=
1

r=
1

n
=

1

n
=

2

n
=

3

r=
2

r=
2

r=
2

r=
3

r=
3

r=
3

k
=

1
k

=
1

k
=

1
k

=
1

k
=

2
k

=
2

k
=

2
k

=
2

k
=

3
k

=
3

k
=

3
k

=
3

The table presents the prim
ary spaces of finite elem

ents for the 
discretization of the fundam

ental operators of vector calculus: the 
gradient, curl, and divergence. A finite elem

ent space is a space of 
piecew

ise polynom
ial functions on a dom

ain determ
ined by: (1) a 

m
esh of the dom

ain into polyhedral cells called elem
ents, (2) a finite 

dim
ensional space of polynom

ial functions on each elem
ent called 

the shape functions, and (3) a unisolvent set of functionals on the 
shape functions of each elem

ent called degrees of freedom
 (DOFs), 

each DOF being associated to a (generalized) face of the elem
ent, 

and specifying a quantity w
hich takes a single value for all elem

ents 
sharing the face. The elem

ent diagram
s depict the DOFs and their 

association to faces.

The spaces 
 and 

 depicted on the left half of the table 
are the tw

o prim
ary fam

ilies of finite elem
ent spaces for m

eshes of 
sim

plices, and the spaces 
are the tw

o prim
ary fam

ilies of finite elem
ent spaces for m

eshes of 
 and 

are the tw
o prim

ary fam
ilies of finite elem

ent spaces for m
eshes of 

 on the right side are for 
m

eshes of cubes or boxes. Each is defined in any dim
ension n

≥
1 

for each value of the polynom
ial degree r≥

1, and each value of 
0

≤
k≤

n. The param
eter k refers to the operator: the spaces consist 

of differential k-form
s w

hich belong to the dom
ain of the kth exterior 

derivative. Thus for k=
0, the spaces discretize the Sobolev space H

1, 
the dom

ain of the gradient operator; for k=
1, they discretize H

(curl), 
the dom

ain of the curl; for k=
n

–
1 they discretize H

(div), the dom
ain 

of the divergence; and for k = n, they discretize L
2.

The spaces 
 and 

, w
hich coincide, are the earliest finite 

elem
ents, going back in the case r = 1 of linear elem

ents to Cou-
rant, 1 and collectively referred to as the Lagrange elem

ents. The 
spaces 

 and 
, w

hich also coincide, are the disconti-
nuous Galerkin elem

ents, consisting of piecew
ise polynom

ials w
ith 

no interelem
ent continuity im

posed, first introduced by Reed and 
Hill. 2 The space 

 in 2 dim
ensions w

as introduced by Raviart 
and Thom

as 3 and generalized to the 3-dim
ensional spaces 

 
and 

 by N
édélec, 4 w

hile 
 is due to Brezzi, Douglas and 

M
arini 5 in 2 dim

ensions, its generalization to 3 dim
ensions again 

due to N
édélec. 6 The unified treatm

ent and notation of the 
 in 2 dim

ensions, its generalization to 3 dim
ensions again  

and 
 fam

ilies is due to Arnold, Falk and W
inther as part of finite 

elem
ent exterior calculus, 7 extending earlier w

ork of Hiptm
air  for the 

 fam
ily. 8 The space 

 is the span of the elem
entary form

s 
introduced by W

hitney. 9 

R. Courant, Bulletin of the Am
erican M

athem
atical Society 49, 1943.

W
. H. Reed and T. R. Hill, Los Alam

os report LA-UR-73-479, 1973.
P. A. Raviart and J. M

. Thom
as, Lecture N

otes in M
athem

atics 606, Springer, 1977.
J. C. N

édélec, N
um

erische M
athem

atik 35, 1980.
F. Brezzi, J. Douglas Jr., and L. D. M

arini, N
um

erische M
athem

atik 47, 1985.
J. C. N

édélec, N
um

erische M
athem

atik 50, 1986.
D. N

. Arnold, R.S. Falk, and R. W
inther, Acta N

um
erica 15, 2006.

R. Hiptm
air, M

athem
atics of Com

putation 68, 1999.
H. W

hitney, Geom
etric Integration Theory, 1957.

D. N
. Arnold, D. Boffi, and F. Bonizzoni, N

um
erische M

athem
atik, 2014.

D. N
. Arnold and G. Aw

anou, M
athem

atics of Com
putation, 2013.

A
. Logg, K.-A

. M
ardal, and G. N

. W
ells (eds.), Autom

ated Solution of Differential 
Equations by the Finite Elem

ent M
ethod, Springer, 2012.

R. C. Kirby, ACM
 Transactions on M

athem
atical Softw

are 30, 2004.
A. Logg and G. N

. W
ells, ACM

 Transactions on M
athem

atical Softw
are 37, 2010.

M
. Alnæ

s, A. Logg, K. B. Ølgaard, M
. E. Rognes, and G. N

. W
ells, ACM

 Transactions 
on M

athem
atical Softw

are 40, 2014.

1.2.3.4.5.6.7.8.9.
10.
11.
12.

13.
14.
15.

The fam
ily 

 of cubical elem
ents can be derived from

 the 1-di-
m

ensional Lagrange and discontinuous Galerkin elem
ents by a tensor 

product construction detailed by Arnold, Boffi and Bonizzoni, 10 but for 
the m

ost part w
ere presented individually along w

ith the correspon-
ding sim

plicial elem
ents in the papers m

entioned. The second cubical 
fam

ily 
 is due to Arnold and Aw

anou. 11 

The finite elem
ents in this table have been im

plem
ented as part of 

the FEniCS Project. 12, 13, 14 Each m
ay be referenced in the Unified Form

 
Language (UFL) 15 by giving its fam

ily, shape, and degree, w
ith the 

fam
ily as show

n on the table. For exam
ple, the space 

 by giving its fam
ily, shape, and degree, w

ith the 
 m

ay 
be referred to in UFL as:

FiniteElement("N2E", tetrahedron, 3) 
Alternatively, the elem

ents m
ay be accessed in a uniform

 fashion as:
FiniteElement("P-", shape, r, k)
FiniteElement("P", 

shape, r, k)
FiniteElement("Q-", shape, r, k)
FiniteElement("S", 

shape, r, k)
for 

FiniteElement("S", 
shape, r, k)

, 
FiniteElement("S", 

shape, r, k)
, 

FiniteElement("S", 
shape, r, k)

, and 
FiniteElement("S", 

shape, r, k)
, respectively.

("P", interval, 1)
("P", interval, 1)

("DP", interval, 0)
("DP", interval, 1)

("P", interval, 2)
("P", interval, 2)

("DP", interval, 1)
("DP", interval, 2)

("P", interval, 3)
("P", interval, 3)

("DP", interval, 2)
("DP", interval, 3)

2
2

1
2

3
3

2
3

4
4

3
4

P
1

P
1

d
P

0
d

P
1

P
2

P
2

d
P

1
d

P
2

P
3

P
3

d
P

2
d

P
3

3
3

4
4

4
8

1
3

9
8

1
2

1
4

4
6

1
6

1
2

2
2

9
1
0

8
8

1
2

2
4

6
1
8

1
4

2
7

2
0

5
4

4
8

3
6

3
9

8
1
0

6
4

3
2

1
4

4
8

4
1
0

8
7

2
2

7
2

0

1
3

44

4
4

1
2

6
6

3
6

1
0

1
0

1
5

3
0

1
0

1
0

6
1
0

2
0

2
0

3
6

6
0

3
6

6
1
2

1
4

8
1
2

2
0

3
0

4
1
0

1
5

2
0

4
5

6
0

1
0

2
0

("P", triangle, 1)
("P", triangle, 1)

("Q", quadrilateral, 1)
("S", quadrilateral, 1)

("RTC[E,F]", quadrilateral, 1)
("BDMC[E,F]", quadrilateral, 1)

("DQ", quadrilateral, 0)
("DPC", quadrilateral, 1)

("Q", quadrilateral, 2)
("S", quadrilateral, 2)

("RTC[E,F]", quadrilateral, 2)
("BDMC[E,F]", quadrilateral, 2)

("DQ", quadrilateral, 1)
("DPC", quadrilateral, 2)

("Q", quadrilateral, 3)
("S", quadrilateral, 3)

("RTC[E,F]", quadrilateral, 3)
("BDMC[E,F]", quadrilateral, 3)

("DQ", quadrilateral, 2)
("DPC", quadrilateral, 3)

("Q", hexahedron, 1)
("S", hexahedron, 1)

("NCE", hexahedron, 1)
("AAE", hexahedron, 1)

("NCF", hexahedron, 1)
("AAF", hexahedron, 1)

("DQ", hexahedron, 0)
("DPC", hexahedron, 1)

("Q", hexahedron, 2)
("S", hexahedron, 2)

("NCE", hexahedron, 2)
("AAE", hexahedron, 2)

("NCF", hexahedron, 2)
("AAF", hexahedron, 2)

("DQ", hexahedron, 1)
("DPC", hexahedron, 2)

("Q", hexahedron, 3)
("S", hexahedron, 3)

("NCE", hexahedron, 3)
("AAE", hexahedron, 3)

("NCF", hexahedron, 3)
("AAF", hexahedron, 3)

("DQ", hexahedron, 2)
("DPC", hexahedron, 3)

("DP", triangle, 0)
("DP", triangle, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", tetrahedron, 1)

("P", triangle, 2)
("P", triangle, 2)

("DP", triangle, 1)
("DP", triangle, 2)

("P", tetrahedron, 2)
("P", tetrahedron, 2)

("P", triangle, 3)
("P", triangle, 3)

("DP", triangle, 2)
("DP", triangle, 3)

("P", tetrahedron, 3)
("P", tetrahedron, 3)

("RT[E,F]", triangle, 1)
("BDM[E,F]", triangle, 1)

("N1E", tetrahedron, 1)
("N2E", tetrahedron, 1)

("N1F", tetrahedron, 1)
("N2F", tetrahedron, 1)

("DP", tetrahedron, 0)
("DP", tetrahedron, 1)

("RT[E,F]", triangle, 2)
("BDM[E,F]", triangle, 2)

("N1E", tetrahedron, 2)
("N2E", tetrahedron, 2)

("N1F", tetrahedron, 2)
("N2F", tetrahedron, 2)

("DP", tetrahedron, 1)
("DP", tetrahedron, 2)

("RT[E,F]", triangle, 3)
("BDM[E,F]", triangle, 3)

("N1E", tetrahedron, 3)
("N2E", tetrahedron, 3)

("N1F", tetrahedron, 3)
("N2F", tetrahedron, 3)

("DP", tetrahedron, 2)
("DP", tetrahedron, 3)

P
1

P
1

Q
1

S
1

d
Q

0
d

P
c

1

Q
2

S
2

d
Q

1
d

P
c

2

Q
3

S
3

d
Q

2
d

P
c

3

Q
1

S
1

d
Q

0
d

P
c

1

Q
2

S
2

d
Q

1
d

P
c

2

Q
3

S
3

d
Q

2
d

P
c

3

d
P

0
d

P
1

P
1

P
1

P
1

P
2

P
2

d
P

1
d

P
2

P
2

P
2

P
3

P
3

d
P

2
d

P
3

P
3

P
3

N
1

1
N

2
1

N
2

1
N

1
1

N
1

2
N

1
2

N
1

3
N

1
3

d
P

0
d

P
1

d
P

1
d

P
2

d
P

2
d

P
3

N
1

e
N

1
f

N
1

e
N

1
f

N
1

e
N

1
f

("Q", interval, 1)
("S", interval, 1)

("DQ", interval, 0)
("DPC", interval, 1)

("Q", interval, 2)
("S", interval, 2)

("DQ", interval, 1)
("DPC", interval, 2)

("Q", interval, 3)
("S", interval, 3)

("DQ", interval, 2)
("DPC", interval, 3)

2
2

1
2

3
3

2
3

4
4

3
4

Q
1

S
1

d
Q

0
d

P
c

1

Q
2

S
2

d
Q

1
d

P
c

2

Q
3

S
3

d
Q

2
d

P
c

3

n = 1
n = 1

n = 1
n = 1

n = 2
n = 2

n = 2
n = 2

n = 3
n = 3

n = 3
n = 3

n = 4
n = 4

n = 4
n = 4

W
eight functions 

for DOFs

Sym
bol of elem

ent

Elem
ent w

ith degrees 
of freedom

 (DOFs)

L
e
g

e
n

d
Fin

ite
 e

le
m

e
n

ts
R

e
fe

re
n

c
e
s

Dim
ension of elem

ent 
function space

Finite elem
ent exterior 

calculus notation

Elem
ent specification 

in FEniCS

2
4

Concept and scientific content: Douglas N
. Arnold (University of M

innesota) and Anders Logg (Chalm
ers University of 

Technology). Graphic design: M
attias Schläger. The production of this poster has been supported by Sim

ula Research 
Laboratory and is partially based on w

ork supported by the U.S. N
ational Science Foundation under grant DM

S-1115291. 
Findings do not necessarily represent the view

s of Sim
ula or of the N

SF. Produced in 2014 and licensed under a Creative 
Com

m
ons Attribution-ShareAlike 4.0 International license.

fem
table.org

[e/f] R
T

[e/f]
R

T
1

R
T

[e/f]
R

T
2

R
T

[e/f]
R

T
3

B
D

M
[e/f]

B
D

M
c

[e/f]

B
D

M
c

[e/f]

B
D

M
c

[e/f]

B
D

M
1

B
D

M
c

1

B
D

M
c

2

B
D

M
c

3

B
D

M
[e/f]

B
D

M
2

B
D

M
[e/f]

B
D

M
3

N
2

e
N

c
e

A
A

e
A

A
f

A
A

e
A

A
f

A
A

e
A

A
f

N
c

f

N
c

e
N

c
f

N
c

e
N

c
f

N
2

f

N
2

e
N

2
f

N
2

2
N

2
2

N
2

e
N

2
f

N
2

3

R
T

c
[e/f]

R
T

c
[e/f]

R
T

c
[e/f]

N
2

3

R
T

c
1

R
T

c
2

R
T

c
3

N
c

1
A

A
1

A
A

1

A
A

2
A

A
2

A
A

3
A

A
3

N
c

1

N
c

2
N

c
2

N
c

3
N

c
3

PTofFE_poster_fin.indd   1
2014-09-22   14:24

Figure 5: Periodic Table of the Finite Elements.

Archive of Numerical Software 3(100), 2015 c© by the authors, 2015



The FEniCS Project Version 1.5 17

Figure 6: Comparison of sparsity patterns of the Taylor–Hood Stokes operator on the DOLFIN
gearmesh.

Figure 7: Comparison of sparsity patterns of the Taylor–Hood Stokes operator on a NACA 0018
airfoilmesh.

Improvements in sparsity patterns that follow from improved DOF map ordering are shown in
Figures 6 and 7. The sparsity patterns produced by DOLFIN 1.5.0 are better clustered around
the diagonal. When DOLFIN is configured with SCOTCH, the SCOTCH implementation of
Gibbs-Poole–Stockmeyer reordering is used.

The code for reproducing the sparsity patterns in Figures 6 and 7 and patterns on other meshes
can be found at https://www.repository.cam.ac.uk/handle/1810/252670. The meshes are
shown at http://fenicsproject.org/download/data.html#meshes.

2.10 Linear algebra interface

FEniCS uses the PETSc and SLEPc libraries as backends providing parallel infrastructure for
linear algebra, non-linear solvers, and eigensolvers. The wrapper layer to these packages has
been improved, in particular, as follows:

• PETScTAOSolver, the DOLFIN interface to the PETSc TAO framework, which provides
solvers for non-linear optimization problems, has been introduced;

• LinearOperator, the DOLFIN interface to matrix-free operators, can now be unwrapped
into a respective PETSc or petsc4py object;

c© by the authors, 2015 Archive of Numerical Software 3(100), 2015

https://www.repository.cam.ac.uk/handle/1810/252670
http://fenicsproject.org/download/data.html#meshes


18

• SLEPcEigenSolver, the DOLFIN interface to eigensolvers, can now be unwrapped into
a respective SLEPc or slepc4py object.

The latter two extend the feature already available for other backend wrappers, e.g., PETScMatrix,
PETScKrylovSolver, etc. This feature allows for finer, but still convenient, control over a solution
process and other details, in such cases when the coverage of backend features or options in
DOLFIN is not sufficiently detailed.

In this release, support for the Trilinos Epetra backend has been removed. Support for the newer
Trilinos Tpetra backend will be added to a future release.

2.11 Use of C++ 11

The FEniCS team has started using selected C++11 features, allowing removal of the dependency
on Boost shared pointers and some simplifications of the C++ source code. The set of features
is limited for the time being, to remain compatible with some common compilers. GCC 4.6.3 is
known to be compatible.

For users of the DOLFIN C++ interface, the use of C++11 can lead to less verbose code by using
the key word auto, initializer lists, and range-based loops, for instance.

2.12 Python versions

FEniCS now requires Python 2.7, and has experimental support for Python 3.x. As part of
supporting Python 3, FIAT no longer depends on Scientific Python. In place of Scientific Python,
which does not support Python 3, FIAT now depends on SymPy.

2.13 Packaging and installation

As before, FEniCS is available as a binary package as part of the standard Debian and Ubuntu
repositories. For users who wish to access the latest FEniCS versions before these have propagated
downstream, a personal package archive (PPA) is provided (ppa:fenics-packages/fenics). A
binary package is also available for Mac OSX.

With the release of version 1.5, FEniCS has retired the installer Dorsal in favor of the new
tool fenics-install.sh. This script relies on HashDist (https://hashdist.github.io/) for
installation of FEniCS and its dependencies. Using this script, users can easily build FEniCS with
a one-line command:

curl -s http://fenicsproject.org/fenics-install.sh | bash

FEniCS developers (who need to modify the source code) are encouraged to use the two related
scripts fenics-install-all.sh and fenics-install-component.sh as standard tools in their
normal workflow. These scripts are part of the FEniCS Developer Tools repository on BitBucket.

In addition, FEniCS can now also be installed via a community-supported Conda recipe, see
https://github.com/Juanlu001/fenics-recipes/releases/tag/v1.5.0 as well as via a cus-
tom virtualization image provided on the FEniCS web page.

Archive of Numerical Software 3(100), 2015 c© by the authors, 2015

ppa:fenics-packages/fenics
https://hashdist.github.io/
https://github.com/Juanlu001/fenics-recipes/releases/tag/v1.5.0


The FEniCS Project Version 1.5 19

3 New demo programs

Some new example programs have been added to demonstrate the use of new user-level features.
The new demo programs are:

• Smoothed aggregation algebraic multigrid for three-dimensional elasticity. The demo il-
lustrates the construction and specification of the near-nullspace which is required by the
multigrid preconditioner. It also demonstrates how to construct a scalable solver for elas-
ticity problems.

• Two new demos illustrating the implementation of multimesh-methods: multimesh-poisson
and multimesh-stokes.

4 Interface changes

The following interface changes were made in the release of FEniCS version 1.5:

• The classes FacetArea, FacetNormal, CellSize, CellVolume, SpatialCoordinate,
Circumradius, MinFacetEdgeLength, and MaxFacetEdgeLength now require a Mesh argu-
ment instead of a Cell argument.

• The signature for the assemble function has been simplified to not require/accept the argu-
ments coefficients, cells, and common_cell.

• Differentiation of expressions with respect to a Coefficient or Function using diff does
not require the function to be wrapped in a variable construct.

• Quadrature degree and rule name can be specified as keywords to form integration mea-
sures, i.e. f*dx(degree=3, rule="canonical"). The syntax
Measure.__getitem__(mesh_function).__call__(subdomain_id),
e.g., dx[mesh_function](42), has been deprecated in favor of keyword arguments, for
example: dx(subdomain_data=mesh_function, subdomain_id=42).

• GenericTensors cannot be reinitialized anymore, hence the reset_sparsity parameter has
been removed from all assemble functions.

• Deprecated MPI::process_number and MPI::num_processes were removed in favor of
MPI::rank and MPI::size respectively.

• GenericVector.__setitem__, e.g., vec[indices] = values, now takes localindiceswhich
can be list of ints, NumPy array of ints, int, or full slice :. Type of values can be scalar,
NumPy array, or GenericVectorwhere applicable. Operation is collective and finalizes the
vector automatically.

5 Dependencies

FEniCS, mostly DOLFIN, depends on a number of external packages. Here we list and describe
these external packages, along with required version numbers (to the best of our knowledge).

Necessary dependencies:

• C++11 compiler (GCC ≥ 4.6 and Clang 3.6 are known to work), see section 2.11 for details

• Boost ≥ 1.48; provides some low-level data structures and algorithms, DOF reordering and
mesh coloring [Schling, 2011]

• CMake ≥ 2.8; used by DOLFIN build system and optionally by Python JIT chain

c© by the authors, 2015 Archive of Numerical Software 3(100), 2015



20

• Eigen≥ 3.0; provides data structures and operations used by adaptive solvers [Guennebaud
et al., 2015]

• Python 2.7 or ≥ 3.2; six (Python 2 and 3 compatibility tool); needed by FIAT, UFL, FFC, and
Instant; optionally needed for Python interface to DOLFIN and mshr

• NumPy; Python package providing data structures and operations on N-dimensional arrays
[van der Walt et al., 2011]

• SymPy; Python symbolic maths library, used by FIAT [SymPy Development Team, 2014]

Optional dependencies:

• OpenMP; supports parallel computing on shared memory systems

• MPI; supports parallel computing on distributed memory systems

• PETSc ≥ 3.3, < 3.6; serves as parallel (linear) algebra backend; provides data structures
and routines for handling parallel vectors, matrices, Krylov solvers, sparse direct solvers,
various preconditioners and non-linear solvers [Balay et al., 2014b,a, 1997]

• petsc4py ≥ 3.3, < 3.6; provides Python bindings to PETSc [Dalcin et al., 2011]

• SLEPc ≥ 3.3, < 3.6; provides parallel eigen-problem solvers [Hernandez et al., 2005]

• slepc4py ≥ 3.5.1, < 3.6; provides Python bindings to SLEPc [Dalcin et al., 2011]

• UMFPACK; provides sequential sparse LU decomposition using multifrontal method [Davis,
2004]

• CHOLMOD; provides sequential sparse Cholesky decomposition using supernodal method
[Chen et al., 2008]

• PaStiX ≥ 5.2.1; provides parallel (both distributed and threaded) sparse LU and Cholesky
decomposition [Hénon et al., 2002]

• Trilinos ≥ 11.0.0; provides mesh partitioning and coloring [Heroux et al., 2005]

• SCOTCH; provides mesh partitioning and DOF reordering [Chevalier and Pellegrini, 2006]

• ParMETIS ≥ 4.0.2; provides mesh partitioning [Karypis and Kumar, 1998]

• SWIG ≥ 2.0 (with Python 2) or ≥ 3.0.3 (with Python 3); tool needed for generating Python
interface to DOLFIN and mshr

• flufl.lock; implements file locking (used by Instant) on NFS file system

• HDF5; provides parallel, scalable IO backend; needs to be built with parallel support [The
HDF Group, 2015]

• zlib; reading compressed XML files and compressed VTK output

• VTK ≥ 5.2; provides interactive plotting in DOLFIN

• CGAL 4.5.1, TetGen 1.5.0; mshr backends, built automatically by mshr build system [The
CGAL Project, 2015, Si, 2015]

• GMP, MPFR; arbitrary-precision and multiple-precision arithmetic libraries, required by
mshr [Granlund and the GMP development team, 2014, Fousse et al., 2007]

• Scipy; needed by UFL for evaluation of error and Bessel functions

Archive of Numerical Software 3(100), 2015 c© by the authors, 2015



The FEniCS Project Version 1.5 21

• pytest; Python testing tool, needed for running unit tests

• Sphinx ≥ 1.1.0; enables building documentation

• Qt4; provides API for writing graphical applications

• Soya; Python 3D engine, used for plotting finite elements

6 How to cite FEniCS 1.5

Users of FEniCS version 1.5 are encouraged to cite this article, in addition to one or more of the
publications listed on the FEniCS Project web site:

http://fenicsproject.org/citing/

7 Acknowledgments

Although this article lists as authors only those developers who have made significant contri-
butions specifically to the release of FEniCS 1.5, we gratefully acknowledge the contributions
by many people to the FEniCS Project, including Martin S. Alnæs, Jan Blechta, Juan Luis Cano
Rodríguez Patrick Farrell, Johan Hake, Johan Hoffman, Johan Jansson, Niclas Jansson, August
Johansson, Claes Johnson, Benjamin Kehlet, Robert C. Kirby, Matthew Knepley, Miroslav Kuchta,
Hans Petter Langtangen, Anders Logg, Kent-Andre Mardal, Andre Massing, Mikael Mortensen,
Harish Narayanan, Chris Richardson, Johannes Ring, Marie E. Rognes, L. Ridgway Scott, Ola
Skavhaug, Andy Terrel, Garth N. Wells, and Kristian Ølgaard.

The FEniCS Project is supported by The Research Council of Norway through a Centre of Ex-
cellence grant to the Center for Biomedical Computing at Simula Research Laboratory, project
number 179578. Anders Logg acknowledges support by the Swedish Research Council Grant
No. 2014–6093. Jan Blechta acknowledges the support of the project LL1202 in the programme
ERC-CZ funded by the Ministry of Education, Youth and Sports of the Czech Republic.

References
D. N. Arnold and A. Logg. Periodic table of the finite elements. SIAM News, 2014.

D. N. Arnold, R. S. Falk, and R. Winther. Finite element exterior calculus, homological tech-
niques, and applications. Acta numerica, 15:1–155, 2006. URL http://dx.doi.org/10.1017/
S0962492906210018.

S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient management of parallelism in
object oriented numerical software libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen,
editors, Modern Software Tools in Scientific Computing, pages 163–202. Birkhäuser Press, 1997.
URL http://dx.doi.org/10.1007/978-1-4612-1986-6_8.

S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W. D. Gropp,
D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, and H. Zhang. PETSc users
manual. Technical Report ANL-95/11 - Revision 3.5, Argonne National Laboratory, 2014a. URL
http://www.mcs.anl.gov/petsc.

S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W. D. Gropp,
D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, and H. Zhang. PETSc Web
page, 2014b. URL http://www.mcs.anl.gov/petsc.

Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam. Algorithm 887: CHOLMOD, supernodal
sparse Cholesky factorization and update/downdate. ACM Trans. Math. Softw., 35(3):22:1–22:14,
Oct. 2008. ISSN 0098-3500. URL http://doi.acm.org/10.1145/1391989.1391995.

c© by the authors, 2015 Archive of Numerical Software 3(100), 2015

http://fenicsproject.org/citing/
http://dx.doi.org/10.1017/S0962492906210018
http://dx.doi.org/10.1017/S0962492906210018
http://dx.doi.org/10.1007/978-1-4612-1986-6_8
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://doi.acm.org/10.1145/1391989.1391995


22

C. Chevalier and F. Pellegrini. PT-Scotch: A tool for efficient parallel graph ordering. In 4th
International Workshop on Parallel Matrix Algorithms and Applications (PMAA’06), IRISA, Rennes,
France, Sept. 2006.

L. D. Dalcin, R. R. Paz, P. A. Kler, and A. Cosimo. Parallel distributed computing using Python.
Advances in Water Resources, 34(9):1124 – 1139, 2011. ISSN 0309-1708. URL http://dx.doi.
org/10.1016/j.advwatres.2011.04.013. New Computational Methods and Software Tools.

T. A. Davis. Algorithm 832: UMFPACK v4.3—an unsymmetric-pattern multifrontal method.
ACM Trans. Math. Softw., 30(2):196–199, June 2004. ISSN 0098-3500. URL http://doi.acm.
org/10.1145/992200.992206.

L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. MPFR: A multiple-precision
binary floating-point library with correct rounding. ACM Transactions on Mathematical Software,
33(2):13:1–13:15, June 2007. URL http://doi.acm.org/10.1145/1236463.1236468.

T. Granlund and the GMP development team. GNU MP: The GNU Multiple Precision Arithmetic
Library, 6.0.0 edition, 2014. URL http://gmplib.org/.

G. Guennebaud, B. Jacob, et al. Eigen v3, 2015. URL http://eigen.tuxfamily.org.

P. Hénon, P. Ramet, and J. Roman. PaStiX: A High-Performance Parallel Direct Solver for Sparse
Symmetric Definite Systems. Parallel Computing, 28(2):301–321, Jan. 2002. URL http://dx.
doi.org/10.1016/S0167-8191(01)00141-7.

V. Hernandez, J. E. Roman, and V. Vidal. SLEPc: A scalable and flexible toolkit for the solution
of eigenvalue problems. ACM Trans. Math. Software, 31(3):351–362, 2005. URL http://dx.doi.
org/10.1145/1089014.1089019.

M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq,
K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro,
J. M. Willenbring, A. Williams, and K. S. Stanley. An overview of the Trilinos project. ACM
Trans. Math. Softw., 31(3):397–423, 2005. ISSN 0098-3500. URL http://doi.acm.org/10.1145/
1089014.1089021.

A. Johansson, M. G. Larson, and A. Logg. High order cut finite element methods for the stokes
problem. Advanced Modeling and Simulation in Engineering Sciences, 2(24), 2015. doi: 10.1186/
s40323-015-0043-7.

G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM J. Sci. Comput., 20(1):359–392, Dec. 1998. ISSN 1064-8275. URL http://dx.doi.
org/10.1137/S1064827595287997.

A. Plaza and G. Carey. Local refinement of simplicial grids based on the skeleton. Applied Numerical
Mathematics, 32:195–218, 2000. URL http://dx.doi.org/10.1016/S0168-9274(99)00022-7.

C. N. Richardson and G. N. Wells. Parallel scaling of DOLFIN on ARCHER. figshare.com,
http://figshare.com/articles/Parallel_scaling_of_DOLFIN_on_ARCHER/1304537, 2015.
URL http://dx.doi.org/10.6084/m9.figshare.1304537.

S. Rush and H. Larsen. A practical algorithm for solving dynamic membrane equations. IEEE Trans
Biomed Eng, 25(4):389–392, Jul 1978. URL http://dx.doi.org/10.1109/TBME.1978.326270.

B. Schling. The Boost C++ Libraries. XML Press, 2011. ISBN 0982219199, 9780982219195.

H. Si. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw., 41
(2):11:1–11:36, Feb. 2015. ISSN 0098-3500. URL http://doi.acm.org/10.1145/2629697.

Archive of Numerical Software 3(100), 2015 c© by the authors, 2015

http://dx.doi.org/10.1016/j.advwatres.2011.04.013
http://dx.doi.org/10.1016/j.advwatres.2011.04.013
http://doi.acm.org/10.1145/992200.992206
http://doi.acm.org/10.1145/992200.992206
http://doi.acm.org/10.1145/1236463.1236468
http://gmplib.org/
http://eigen.tuxfamily.org
http://dx.doi.org/10.1016/S0167-8191(01)00141-7
http://dx.doi.org/10.1016/S0167-8191(01)00141-7
http://dx.doi.org/10.1145/1089014.1089019
http://dx.doi.org/10.1145/1089014.1089019
http://doi.acm.org/10.1145/1089014.1089021
http://doi.acm.org/10.1145/1089014.1089021
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1016/S0168-9274(99)00022-7
http://dx.doi.org/10.6084/m9.figshare.1304537
http://dx.doi.org/10.1109/TBME.1978.326270
http://doi.acm.org/10.1145/2629697


The FEniCS Project Version 1.5 23

J. Sundnes, R. Artebrant, O. Skavhaug, and A. Tveito. A second-order algorithm for solving
dynamic cell membrane equations. IEEE Trans Biomed Eng, 56(10):2546–2548, Oct 2009. URL
http://dx.doi.org/10.1109/TBME.2009.2014739.

SymPy Development Team. SymPy: Python library for symbolic mathematics, 2014. URL http:
//www.sympy.org.

The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board, 4.6 edition, 2015.
URL http://doc.cgal.org/4.6/Manual/packages.html.

The HDF Group. Hierarchical data format, version 5, 2015. URL http://www.hdfgroup.org/
HDF5/.

S. van der Walt, S. Colbert, and G. Varoquaux. The NumPy Array: A structure for efficient
numerical computation. Computing in Science Engineering, 13(2):22–30, March 2011. ISSN 1521-
9615. URL http://dx.doi.org/10.1109/MCSE.2011.37.

c© by the authors, 2015 Archive of Numerical Software 3(100), 2015

http://dx.doi.org/10.1109/TBME.2009.2014739
http://www.sympy.org
http://www.sympy.org
http://doc.cgal.org/4.6/Manual/packages.html
http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/
http://dx.doi.org/10.1109/MCSE.2011.37

	Overview
	New features
	Parallel computing
	New mesh refinement strategy
	Mesh generation: the new mshr component
	Multimesh finite element methods
	Assembly of point integrals
	Point integral solvers and Rush–Larsen schemes
	Redesign of core symbolic representation and algorithms
	Notation from Periodic Table of the Finite Elements
	Changes in degree-of-freedom map construction
	Linear algebra interface
	Use of C++ 11
	Python versions
	Packaging and installation

	New demo programs
	Interface changes
	Dependencies
	How to cite FEniCS 1.5
	Acknowledgments

