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Abstract— Numerical aspects of least squares estimation have
not been sufficiently studied in the literature. In particular,
information matrix has a large condition number for systems
with harmonic regressor in the initial steps of RLS (Recursive
Least Squares) estimation. A large condition number indicates
invertibility problems and necessitates the development of new
algorithms with improved accuracy of estimation. Symmetric
and positive definite information matrix is presented in a
block diagonal form in this paper using transformation, which
involves the Schur complement. Block diagonal sub-matrices
have significantly smaller condition numbers and therefore
can be easily inverted, forming a preconditioner for a large
scale system. High order algorithms with controllable accuracy
are used for solving least squares estimation problem. The
second part of the paper is devoted to the performance
improvement in classical RLS algorithm, which represents a
feedforward estimation procedure with error accumulation.
Two correction feedback terms originated from combined high
order algorithms are introduced for performance improvement
in classical RLS algorithms. Simulation results show significant
performance improvement of modified algorithm compared to
classical RLS algorithm in the presence of roundoff errors.

Keywords: Recursive Least-Squares Estimation with High Accu-
racy, Persistence of Excitation & Positive Definite Matrices

I. INTRODUCTION

RLS (Recursive Least Squares) algorithms are widely used
in many applications such as adaptive control, signal pro-
cessing, system identification and many others [1], [2].
Round-off and truncation errors have a direct impact on the
accuracy of RLS estimation. This is a main obstacle to real-
time implementation of RLS algorithms and motivation to
use methods from matrix analysis [3] for solving algebraic
equations in order to improve the performance of estimation.
This necessitates also the development of modified RLS
algorithm, where the estimates are corrected using correction
terms originated from solution of algebraic equations for
preventing error propagation.
This paper is divided in two large parts, where the first
part is devoted to the solution of algebraic equations with
positive definite information matrix. Classical RLS algorithm
is modified for performance improvement in the second part
of the paper.
RLS algorithm is a recursive realization of the solution of
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the algebraic equation (1) which is defined as follows:

Hiθi = bi (1)

Hi = λ0

[ i−1∑
j=1

φj φT
j

]
+ φi φ

T
i (2)

bi = λ0

[ i−1∑
j=1

φj yj

]
+ φi yi (3)

where symmetric matrix Hi is called information matrix, bi
is the vector that contains measured signal yi, and 0 < λ0 <
1 is a forgetting factor, i = 1, 2, ... is the step number.
Harmonic regressor φi [4] contains trigonometric func-
tions at different frequencies qp, p = 1, 2, ..., r : φT

i =
[1 cos(q1i) sin(q1i) cos(q2i) sin(q2i) ... cos(qri) sin(qri)].
Equation (1) can be solved with respect to the vector of
estimated parameters θi in each step i with pre-specified
accuracy. For solving equation (1) different algorithms can
be used, depending on the properties of the information
matrix Hi. These properties depend, in turn on a step number
i. For a certain step number the matrix becomes a full
rank matrix and invertible. This matrix is a positive definite
matrix in all subsequent steps since harmonic regressor is
persistently exciting [1], [2], [4], [5]. For a sufficiently large i
this matrix becomes an SDD (Strictly Diagonally Dominant)
matrix [6]. This case is studied sufficiently in [7]. This
paper is devoted to the case where the information matrix
Hi is a positive definite, but not an SDD matrix. All the
properties of information matrix Hi are used in this paper:
symmetry, positive definiteness (persistence of excitation)
and the structure (2).
Notice that the condition of persistence of excitation is
utilized in this paper via application of suitable methods
from matrix analysis to positive definite matrices. This is an
alternative to the classical way of utilization the excitation
property in RLS estimation [1], [2], [8].
Information matrix has a large condition number1 for systems
with harmonic regressor in the initial steps of estimation.
A large condition number indicates possible problems with
invertibility of this matrix, especially for a large number of
frequencies. Therefore the development of new algorithms
for solution of the equation (1) in the initial steps of
estimation is required.
Information matrix is presented in a block diagonal form in
this paper using transformation, which involves the Schur

1Condition number is the ratio, where the largest singular value of the
matrix is divided by the smallest one. The condition number is a measure
of sensitivity of the matrix to numerical operations.
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Fig. 1. Condition numbers of the matrices H , P and S are plotted
with blue, black and red lines respectively for the case of three
frequencies, and the size of the matrix H is 7 × 7, where the
condition number of matrix H was divided by 105. The condition
numbers are plotted as a function of the window size.

complement. Block diagonal sub-matrices have significantly
smaller condition numbers and therefore can be easily in-
verted. Combined high order algorithms proposed in [7]
are used for solving equation (1) as soon as a suitable
preconditioner is found.
Algorithms proposed in this paper for positive definite infor-
mation matrix Hi together with algorithms developed in [7]
for SDD information matrix provide a complete solution of
least squares estimation problem with controllable accuracy
for systems with harmonic regressor.
The second part of the paper is devoted to the performance
improvement in classical RLS algorithm. This algorithm is a
recursive realization of (1) and represents a feedforward esti-
mation procedure, which is initialized once. This feedforward
procedure suffers from the error propagation problem. Notice
that equation (1) provides information about deviations of
estimated parameters from their true values. This information
is not accounted in classical RLS algorithm that necessitates
modification for preventing error propagation. Two correc-
tion terms originated from combined high order algorithms
[7] are introduced in classical algorithm for performance
improvement. The gain matrix calculated in RLS algorithms
is used as preconditioner (a priori estimate) in the term that
corrects estimate of the inverse of the information matrix Hi.
The second correction term uses recursive estimate provided
by RLS algorithm as a starting point (again as a priori esti-
mate) and provides a high order feedback loop driven by the
deviation in the equation (1). Two parameters (the orders of
high order algorithm) can be used to control the accuracy of
modified RLS algorithm. Simulation results show significant
performance improvement of modified algorithm compared
to classical RLS in the presence of roundoff errors.

II. HIGH ORDER ALGORITHMS FOR INVERSION OF
SYMMETRIC AND POSITIVE DEFINITE MATRIX

High order algorithms previously developed for inversion of
SDD information matrix [7] are modified in this Section for
inversion of symmetric positive definite matrices. A positive
definite matrix is scaled first so that the spectral radius of
the scaled matrix is less than one. High order algorithms
described in [7] are applied to scaled matrix for inversion.
This procedure is associated with two Lemmas presented
below. The first Lemma is a simple modification of Lemma
5.1.1 in [9] (see also the initial ideas in [10]) for systems
with harmonic regressor.

Lemma 1. For a given symmetric positive definite matrix
H the spectral radius ρ of the matrix I−H/α, where I is the
identity matrix, is less than one, ρ(I −H/α) < 1 provided
that α = ∥H∥∞/2+ϵ, where ∥·∥∞ is the maximum absolute
row sum norm, and ϵ is a small positive number.

Proof. All the eigenvalues of the matrix H/α are positive
and less than two according to the Gershgorin circle theorem.
Therefore all the eigenvalues of the matrix I − H/α are
located in the open interval between minus one and one, and
the spectral radius of this matrix is less than one.

The second Lemma represents a modification of high order
algorithms [7] for symmetric positive definite matrices.

Lemma 2. The following algorithm of order m = 2, 3, ...

Lm =

m−2∑
d=0

F d
k−1 (4)

Gk = Gk−1 + Fk−1LmGk−1, G0 = I (5)

Fk = I −GkH̃, H̃ =
H

α
(6)

provides an estimate of the inverse of a positive definite

and symmetric matrix H , i.e. lim
k→∞

Gk

α
→ H−1, where α

is defined in Lemma 1.
Proof. The matrix Lm can be presented in the following

form Lm = (Gk−1H̃)−1 − (Gk−1H̃)−1Fm−1
k−1 . Substitution

of Lm in (5) yields Fk = Fm
k−1 and Fk = Fmk

0 , where k =
1, 2, 3, ... . According to Lemma 1 there exists α > 0 such

that ρ(F0) < 1, where F0 = I − H̃ and H̃ =
H

α
. Moreover,

the 2-norm of F0 is also less than one, ∥F0∥2 < 1. Then the
error Fk converges to zero, lim

k→∞
Fk → 0 and therefore the

matrix
Gk

α
provides an estimate of H−1.

III. ACCURACY IMPROVEMENT OF THE INVERSION OF
THE POSITIVE DEFINITE MATRIX VIA PARTITIONING

METHOD

Information matrix is presented in a block diagonal form in
this Section using transformation, which involves the Schur
complement, aiming for reduction of large condition number
in the initial steps of estimation. Block diagonal sub-matrices
have significantly smaller condition numbers and therefore
can be easily inverted. Symmetric and positive definite matrix
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H can be partitioned as follows [3]:

H =

[
P B
BT C

]
where P and C are square. This matrix can be transformed
to block-diagonal form using the following transformation
matrix

T =

[
I 0

XT I

]
where X = −P−1B and I is identity matrix, and

HT = T H TT =

[
P 0
0 S

]
where S = C −BTP−1B > 0 is the Schur complement of
P > 0. Approximate inverse matrix of the positive definite
and symmetric matrix H can be used as a preconditioner.

Minimal eigenvalue of the matrix
H

α
, where α is chosen

according to Lemma 1 is too close to zero in the initial

steps of estimation. Therefore the spectral radius of I − H

α
is too close to one, that has direct impact on the convergence
rate. Block diagonal decomposition shown above can be
used for the convergence rate and accuracy improvement. In
other words the condition number of the matrix H is large
for a small window size, which means that the matrix is
almost non-invertible. However, this matrix can be inverted
with a very low accuracy. Transformation of this matrix
to two matrices of the reduced sizes results also in the
reduction of the condition numbers of these matrices [11].
Condition numbers of the matrices H , P and S are plotted
in Figure 1 for the case of three frequencies, where the con-
dition number of matrix H was divided by 105. The Figure
shows a significant reduction of the condition number due to
the block diagonal decomposition. This implies significant
improvement in the accuracy and convergence rate of the
matrix inversion algorithm. Approximate inverse Ĥ−1 as a
preconditioner G0 is calculated as follows:

G0 = Ĥ−1 =

[
I X̂
0 I

] [
P̂−1 0

0 Ŝ−1

] [
I 0

X̂T I

]
where X̂ = −P̂−1B, Ŝ = C − BT P̂−1B, and P̂−1 is an
estimate of the inverse of the matrix P = PT > 0.

A. Two Stage Preconditioning

Preconditioner G0 is calculated in two stages via sequential
application of the matrix inversion algorithm described in
Lemma 2. Estimate P̂−1 of the inverse of matrix P is
calculated in the first stage with a reasonable accuracy.
Estimate of the inverse of the Schur complement S and the
preconditioning matrix G0 are calculated in the second stage
and the norm ∥I −G0H∥2 is used as an output variable.
Efficiency of the proposed method is illustrated in Figure 2,
where two error norms ∥I − G0H∥2 for different G0 as
functions of the order of the inversion algorithm and the step
number are compared. The norm plotted in the right subplot
shows direct application of the matrix inversion algorithm
described in Lemma 2 to inversion of matrix H . The left

subplot shows the case where matrix G0 is calculated using
two stage preconditioning method with the same order and
the number of steps for calculation of P̂−1 and Ŝ−1.
Two stage preconditioning method provides better perfor-
mance with approximately the same computational burden.
This method can be extended to multilevel preconditioning
method, where the matrices P and S are decomposed further
using the same technique [9],[12],[13]. However, accuracy of
multilevel method is limited by the inversion accuracy at the
initial level.
Two stage preconditioning method proposed above can also
be applied for the case where matrices H , P and S are SDD
matrices [14]. The performance of the method is illustrated in
Figure 3 for SDD matrices. Two error norms ∥I −G0H∥∞
for different G0 as functions of the order of the inversion
algorithm and the step number are compared. The matrix
G0 is calculated in the same ways as for positive definite
matrices. Diagonal matrices (with inverses of the diagonal
elements of each SDD matrix on diagonals) are used as
preconditioners instead of the parameter α as it is described
in [7]. Figure 3 shows that the difference in performance for
the case of partitioning and straightforward calculation of the
inverse of SDD matrix H is not significant. Comparison of
Figure 2 and Figure 3 shows that strict diagonal dominance
of information matrix is stronger property than the positive
definiteness. The diagonal matrix with inverted diagonal
elements of information matrix on the diagonal is better
preconditioning than the method described in Lemma 1 for
positive definite matrices.

IV. HIGH ORDER ALGORITHMS FOR CALCULATION OF
THE PARAMETER VECTOR

Lemma 3. The following combined algorithm of orders m =
2, 3, ... and n = 1, 2, ...

Fk−1 = I −Gk−1H (7)

Lm =
m−2∑
d=0

F d
k−1 (8)

Gk = Gk−1 + Fk−1LmGk−1 (9)
Fk = I −GkH (10)

Γn =
n−1∑
d=0

F d
k (11)

ϑk = ϑk−1 − Γn Gk

{
Hϑk−1 − b

}
(12)

provides an estimate ϑk of the parameter vector θi such
that lim

k→∞
ϑk → θi, if ∥I − G0H∥ < 1, and G0 is chosen

in Section III-A. The index i is dropped in H and b for
simplicity. The proof of this Lemma is presented in [7].

Remark. The order n should be chosen higher than the
order m. The matrix Γn in (11) can be partitioned in this

case as follows: Γn =

n−1∑
d=0

F d
k = Qk +

n−1∑
d=m−1

F d
k , where

Qk =
m−2∑
d=0

F d
k is the part of the matrix Γn associated with

the gain matrix Lm defined in (8), and k = 1, 2, ... . The
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Fig. 2. The 2-norm ∥I −G0H∥2 where matrix G0 is calculated using two stage preconditioning method with the same order and the number of steps
for calculation of P̂−1 and Ŝ−1 is plotted in Subplot (a).
The norm plotted in the Subplot (b) shows direct application of the matrix inversion algorithm described in Lemma 2 to inversion of matrix H .
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Fig. 3. The norm ∥I −G0H∥∞ where matrix G0 is calculated using two stage preconditioning method with the same order and the number of steps
for calculation of P̂−1 and Ŝ−1 is plotted in Subplot (a). The matrices P and S are SDD matrices.
The norm plotted in the Subplot (b) shows direct application of the matrix inversion algorithm described in [7] to inversion of SDD matrix H .

gain matrix Lm is equal to Qk−1, Lm = Qk−1 =

m−2∑
d=0

F d
k−1

and Q0 =
m−2∑
d=0

F d
0 . The computational burden is reduced in

this case since the common part is calculated once for both
matrices Γn and Lm.

The performance of the algorithm (7) - (12) is illustrated in
Figure 4, where the error norm ∥ϑk − θi∥ is plotted as a
function of order n and step number k = 1, 2, ... for fixed
order m. The matrix H is the matrix with large condition
number and the preconditioning matrix G0 is chosen so that
∥I −G0H∥2 is sufficiently close to one.

V. MODIFICATION OF CLASSICAL RLS ALGORITHM:
PREVENTING ERROR PROPAGATION

Preconditioning methods described above use symmetry
and positive definiteness of the information matrix only.
Structural property (2) can also be used for calculating
preconditioner using matrix inversion relation. This idea
was implemented in the RLS estimation (see [1], [2] and
references therein). RLS solution of (1) with Ri = H−1

i can
be written as follows:

θ̂i = θ̂i−1 +
Ri−1φi

λ0 + φT
i Ri−1φi

(yi − θ̂Ti−1φi) (13)
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Fig. 4. The error norm ∥ϑk−θi∥ is plotted as a function of order n
and step number k = 1, 2, ... for fixed order m = 10. The matrix H
is the matrix with a large condition number and the preconditioning
matrix G0 is chosen so that ∥I − G0H∥2 is sufficiently close to
one.

Ri =
1

λ0

[
Ri−1 −

Ri−1φiφ
T
i Ri−1

(λ0 + φT
i Ri−1φi)

]
(14)

where θ̂i is an estimate of the vector of true parameters θi,
i = 1, 2, ... . The gain matrix is initialized to the inverse
matrix Ĥ−1

0 , R0 = Ĥ−1
0 , where i = 0 is referred to a step,

where information matrix gets a full rank. The inverse matrix
Ĥ−1

0 is calculated using matrix inversion algorithm described
in Lemma 1 with preconditioning technique proposed in Sec-
tion III, and θ̂0 = R0b0. The matrix R0 should be calculated
with a very high accuracy since accuracy deteriorates in the
subsequent steps. Direct application of RLS algorithms (13)
- (14) has the following obstacles: (1) slow convergence of
matrix inversion algorithm for calculation of Ĥ−1

0 due to
high condition number and (2) slow convergence of estimated
parameters and accuracy deterioration in the presence of
roundoff errors.

A. RLS and High Order Algorithms: Win to Win Combina-
tion

Algorithms (13) - ( 14) and (7) - (12) can be combined
aiming to improve convergence rate and robustness with
respect to roundoff errors. Estimate of the parameter vector
θ̂i can be used as initial condition for (12) and the matrix Ri

can be used as a preconditioner. Combined algorithms can
be written in the following form:

δi−1 = θ̂i−1 +
Ri−1φi

λ0 + φT
i Ri−1φi

(yi − θ̂Ti−1φi)︸ ︷︷ ︸
RLS algorithm

(15)

Gi−1 =
1

λ0

[
Ri−1 −

Ri−1φiφ
T
i Ri−1

(λ0 + φT
i Ri−1φi)

]
︸ ︷︷ ︸

RLS algorithm

(16)

Fi−1 = I −Gi−1Hi︸ ︷︷ ︸
initial inversion error

(17)

Lm =

m−2∑
d=0

F d
i−1 (18)

Gi = Gi−1 + Fi−1LmGi−1 (19)
Fi = I −GiHi︸ ︷︷ ︸

final inversion error

(20)

Γn =
n−1∑
d=0

F d
i (21)

δi = δi−1 − Γn Gi

{
Hiδi−1 − bi

}︸ ︷︷ ︸
estimation error

(22)

θ̂i = δi (23)
Ri = Gi (24)

Algorithm is initialized in the same way as the algorithm
(13) - ( 14).
Equations (15) and (16) represent classical RLS algorithm
with such intermediate variables as the matrix Gi−1 and
the vector δi−1. Equations (17) - (22) represent the correc-
tion term (for further processing of intermediate variables)
originated from combined high order algorithm (7) - (12)
with one step. Algorithm (15) - (24) has two outputs: the
vector of estimated parameters θ̂i and improved estimate
Gi of the inverse of matrix Hi. Two feedback loops driven
by the inversion error I − GiHi and parameter estimation
error Hiδi−1 − bi were incorporated into the classical RLS
algorithm for stopping errors from propagating to the next
step. The orders n and m, which control the accuracy
may vary with step number, providing different estimation
performance. Accuracy of the matrix inversion algorithm
can be estimated using the error model Fi = Fm

i−1, where
∥Fi−1∥ < 1 and ∥Fi∥ << ∥Fi−1∥ for a sufficiently
high order m. Accuracy of the parameter estimation can
be evaluated using the error model δ̃i = Fn

i δ̃i−1, where
δ̃i = δi − θi, δ̃i−1 = δi−1 − θi, and θi = H−1

i bi. Output
variable δi provides better estimate of θi than intermediate
variable δi−1, which is calculated using classical RLS in
(15) i.e., ∥δ̃i∥ << ∥δ̃i−1∥ for a sufficiently high order n.
Estimation performance provided initially by classical RLS
algorithm is improved by high order algorithm, which makes
RLS algorithm more robust.
Performance of the algorithm (15) - (24) is illustrated in
Figure 5 for the system with three frequencies in the presence
of roundoff errors, where all the variables were rounded to
two digits. The first subplot shows three estimated parameters
of classical RLS algorithm (13) - (14), plotted with dashdot
lines and modified algorithm (15) - (24) plotted with solid
lines of the same colors. Actual parameters are plotted with
dotted lines. The norm ∥I − RiHi∥∞ is plotted with a
solid black line for classical RLS algorithm (13) - (14)
in the second subplot of Figure 5. Inversion errors were
introduced in initialization of the algorithms. Notice that
this norm exceeds one very quickly due to roundoff errors
in equation (14), which represents evolution of the gain
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matrix. Roundoff errors have impact on this matrix in the
first hand. Nevertheless the parameters converge slowly to
their true values in the classical RLS algorithm due to
the fact that the algorithm is stable, if the matrix R−1

i

is positive definite (see RLS stability Lemma in [8]). The
properties of RLS algorithm are similar to the properties of
Kaczmarz projection algorithm in this case. Convergence rate
improvement of modified algorithms (15) - (24) is significant
as it is shown in the first subplot of Figure 5. The correction
terms (17) - (22) make the algorithm closer to classical RLS
algorithm, where the parameters converge in one step when
information matrix becomes a full rank matrix.
The norm ∥I−GiHi∥∞ is plotted with dashed green line in
the second subplot, and shows performance improvement due
to the correction term (17) - (20), which prevents propagation
of the inversion error in the presence of significant roundoff
errors since ∥Fi∥∞ << ∥Fi−1∥∞.
The norm ∥I−GiHi∥∞ which is plotted with dashed green
line in the second subplot can be compared to the norm ∥I−
D−1

i Hi∥∞ plotted with dashdot blue line, where the diagonal
matrix Di contains diagonal elements of matrix Hi aiming to
find the best preconditioner for the case where Hi is an SDD
matrix. The matrix Hi becomes an SDD matrix, when blue
line crosses red line. The matrix Gi is better preconditioner
in the initial steps of estimation, and Di (which can easily
be calculated) can be used as a preconditioner when the
information matrix becomes an SDD matrix for reduction of
the computational burden. Notice that reduction of forgetting
factor λ0 makes the norm ∥I − GiHi∥∞ significantly less
than the norm ∥I −D−1

i Hi∥∞.
Finally, the number of steps in the high order part (17) -
(22) of the algorithm (15) - (24) can be easily increased to
further improve accuracy of estimation.

VI. CONCLUSION

This paper shows that the accuracy of RLS estimation can be
improved using methods from matrix analysis [3]. Positive
definiteness of information matrix associated with persis-
tently exciting harmonic regressor [1], [2], [4], [5] is used
in this paper for design of new two stage preconditioning
method. Moreover, classical RLS algorithms [1], [2] are
modified for prevention of error propagation via introduction
of feedback terms originated from combined high order
algorithms [7].
The results are especially relevant for processing of periodic
sequences with non-stationary parameters estimated in mov-
ing windows of small sizes. The results are also applicable
for other types of regressors.
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