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Abstract—Goal-seeking and information-seeking are canonical is closely linked to the ranging model, which can be charac-
problems in mobile agent swarms. We study the problem of terized through bounding techniques, such as the CRB and the

collaborative goal-approaching under uncertain agent pogion N ; ; ;
information. We propose a framework that establishes locabn- 5;;?5:' bound (ZZB) [13], or with a knowledge of ranging

aware formations, resulting in a controller that accounts br agent - . . . .
position uncertainty with a realistic ranging model. Simulation In this work, we combine goal approaching and information-
results confirm that, as the outcome of the controller, the sarm  seeking through an alternating optimization formulatioithw
moves towards its goal, while emerging formations conduce/to g realistic distance-dependent ranging model. The goal ap-
high-quality localization. proaching objective forces agents to move to their goallevhi
the information seeking objective forces agents to form-con
figurations that are conducive for high-precision locdlaa

Swarms of mobile agents, such as robots and drones, care provide a description of the two objective functions as
utilized to accomplish a wide variety of tasks, includingago well as a gradient descent controller based on positioning
seeking and forming formation [1], based on collaboratio®©RB. Simulation results confirm that a realistic ranging elod
For instance, moving a swarm towards a goal position, while essential for generating an effective swarm controlite
maintaining precise position information of each agenesel swarm moves in a way such that it reaches the goals, while
on explicit coordination, both to improve the global pasiti cooperatively maintaining good localization performance
estimate of each agent, and to reduce the risk of collisiatis w
known obstacles. Accomplishing these tasks relies on ateur i i
and timely position information, which is often overlooked®: Dynamic System Formulation
in the technical literature. Existing approaches, such2as [ We consider a network comprising base stations (BSs)
[6], assume perfect position information, which may not bend M agents (AGs). The set of BSs and AGs will be
available in practical scenarios. denoted byB and M, respectively, and leK = B U M. A

The objectives of goal-approaching and precise locatimatinodev is considered as the neighbor of AGif AG « can
generally rely on some form of range-based distance estimatommunicate and range withh The neighboring node set of
Distance estimation can be performed with anchor nodes, i@ « at time stept is denoted aKSf), allowing us to define
also collaboratively by the agents inside the swarm, rengcngk) =MnKY andB® =BnKP. Finally, we denote
the need of adding many anchors on the path towards the set of connected node pairs at time steipy P(*).
goal. Therefore, the limited coverage of the anchor signalsFor a generic node, the state space corresponds to the
is compensated by integrating cooperative range estimat@s-dimensional position, i.epSf) = 24,94 The positions
between close-by agents to determine the position of all BSs are assumed to be known and fixed. The positions
mobile agents. Cooperative positioning with radio nodesea of agents are controlled as follows: agenmoves step-wise
on belief propagation algorithms was presented in [7] andth a control command:” and Gaussian transition noise
extended in [8] to account for accessing the radio channel by) ~N(0,Q,):
a time-division multiple access protocol using an orthageon
frequency division multiplexing (OFDM) signal. Craméa®
bound (CRB) introduced in [9] provides the fundamentaligmi The global statep*) of all AGs is obtained by stacking the

I. INTRODUCTION

Il. SYSTEM AND PROBLEM FORMULATION

pV =pF ) +ul® + €, u € M. 1)

of the cooperative positioning accuracy. states of the individual agents into a vector, and can thus be
In [10], the authors indicated that the localization errorsxpressed as
must be considered for formation control, e.g., flocking. (k)

— plk—1) (k) ¢ (k)
Complementary, in [11], [12] the authors have the explicit P =p tu e, (2)
aim to control agents to improve or maintain the positioninghere e*) ~ A(0,Q) is the global transition noise with
quality through information-seeking. The information titya covarianceQ = diag. .., Q.,.. ..



B. Localization
At each step, agents acquire radio-based observations fromr
their neighboring nodes:

2 = by (PP, P, W) (u,v) € PH, (3)

v

whereh,, ,, is an observation function, which depends on the
measurement method ami’f?, is observation noise. Without

loss of generality, we assume the observations are the inde- [ Pi
pendent propagation time-based inter-node distance &stm
with ) )
(k) _ <k>) — ( <k>)
E[ (Zu,'u du,v } Uu,v ) (4) ugk)

whered,, , is the distance between A@ and nodev. The
ranging variance(o—gf%)z is, in general, distance dependent
by the radio propagation model [8]. The global observation Figyre 1. A swarm navigation system with three AGs and two BSs
z(%) is obtained by stacking all the observations into a global

vector. With an associated likelihood function the obstova
likelihood is written as: to move all agents towards the destinatipnand

e = T pEEpO P ) ProblemPs: - minimize [p™ —p @
B

(u,v)€Pk) (k)
subject tou;” € U

The positions of the AGs can be estimated in either snapshot
or Bayesian fashion. In this work, our focus is on the snapsHe minimize the swarm localization error.
estimation case, where positions are estimated indeptipden The symbol® denotes the Kronecker product. The term
at each step, for example, by a maximum likelihood (ML} x1®q stacks the goal position into a vector with the same
estimator size asp®). Note that the dependence on the optimization
O k)1 () variat_)leuff) in Probler_n??a is implicitly given by the i_ncpr-
p = argg}axp(z p'™). (6) poration of (2), and similarly forPs. The set of admissible
P controls is defined a&/, = {u € R?| ||u| = u.} and
We assume that all nodes are perfectly synchronized. similarly for . Solving Problen®, andPs in an alternating
manner thus aims at moving the AGs towards the gpahd
C. Problem Formulation minimizing the AGs position uncertainty.

At each time stepk, a g|oba| control command® must The solution of Problenp,, (i.e., the control command
be generated so that the swarm navigates itself from thialinitia ) is easily generated from the differences between position
positionsp(®) to a pre-defined destinatiape R2. Meanwhile estimates and the destination:
the Ioc_alization error of all AGs is minimized. The goal oisth ® prD 11 ®q 9
paper is to design such a controller. Uo " = ~Ha P* D —1yx1 @4 ©)

A swarm system with three AGs and two BSs is illustrated

in Fig. 1. Three AGs move from time stdp— 1 to time step where 1, is the step size. Therefore, in the next section, we
f%us on solving Probler®s.

k towards the BSs. Solid lines indicate the connections amo
nodes. dash lines with arrows show the control command fBr Localization Driven Formation Optimization

) - )
AG 1, u}", and the distortion on that controllef"’. To solvePs, we will rely on the theory of Fisher informa-

tion and the CRB. The CRB is a lower bound on the estimation
error variance of any unbiased estimator, and is expressed a

E[[p™ —p™|?] > CRBp™)] = tr((F{))71),  (10)

IIl. CONTROLLER DESIGN
A. High-level Description

The global control command® is generated based on
the objectives of the application and the position estismaie whereFf;,k) is the position Fisher information matrix (FIM),
previous stepp*~1 to decide where to go next. We con-defined as
sider an alternating optimization approach, where the swar ®) _ (k) aw () 1.30k) ()\T
alternately solves two problems: F,'=H E[ — Agu Inp(z™|d )] (H™)5, (A1)

Problem?,;: mini(|;r)1ize||p(k> —Lyna®d| @) =Fy’

He in which d® is the vector of true distances for links ),

H k
subject tou(l" € Uy, V. is the gradient operation with respect 4oand AP £



vavg is the Hessian matrix with respect toand b, and the distancel,, ,, then theu-th entryc,, € R? of the gradient
H®) is the geometry matrix, expressing the effect from thg — Vplr (i;\;l) is given by
geometry relation among the nodes:

I — €y vegv Yu,veu,v
H® =V 0 (@™)T. (12) Cu=— Y. o v vd)
veK, u,v Y
Given the model from Section II-BFff) is the diagonal IN—2
ranging FIM, with the entries along the diagonal being the + Bdw eu,v€y » Yu,v€uu; (19)

inverse of the ranging CRB for every IinIEff) shows the
impact from the distance estimate accuracy. For simplicitwheree, , = (pu — P»)/||Pu — Pv|| @nd Y., is defined in
we will omit the superscriptk) if there is no ambiguity. (26)—(27).
We can reformulaté®s with the position FIM as Proof. See Appendix A. .
inimize tr (FJ1). 13 . »
mlllglerglﬁze r( P ) (13) Since the true positions of the AGs are unknown, the

adientc from (19) is evaluated in the position estimafes

. . . gr
Note that! the ranging mod_el IS _In gen_eral non-Gaqssmg“hd then utilized to generate the control commapdhrough
However, it has been proved in [14] that, with a fixed varianc 8)

the CRB gets its largest value under the Gaussian assumption

This allows us to replac&; with the diagonal FIM]?‘d IV. NUMERICAL RESULTS
of a distance-dependent Gaussian ranging model to simpli
the problem in (13). Under such a conservative Gaussia
assumption, thé-th diagonal entry irF;, which corresponds ~ Ranging Model:We conduct numerical simulations to as-

Setup and Evaluation Metrics

to link (u,v), can be derived as in [15, eq. (3.31)] sess the performance of the proposed formation controller.
) The distance estimate is acquired from a radio-based rgngin
9 a [z ., 1 (0802, 4 signal. The signal is OFDM modulated, attenuated with a
A = (Fd)u ~%up Ty <aduv> /O (14) free-space pathloss model, and distorted with additivetevhi
’ Gaussian noise (AWGN). At a reference distadge= 20 m,
The modified problem becomes the ranging variance is? = 0.01 m2. In order to analytically
. - calculate (19), the distance dependent ranging variance of
mllgler?{Lze tr (Fp ) ) (15)  generic link (u, v) is approximated as
where d2 oad? | ! 1
- - T U;%:GQdOQ exp <_< 0d27 +(1_U§i)> >+0__2’
F,=HF4H". (16) 0 u,v 0 oo
(20)

The solution of (15) is also valid for the problem in (13) L, 5 ) ) ]
because it can be considered as the worst case and the soldflg?hich og; = 0.16 m* is the ranging variance where distance
will be the min-max solution for (13). We will now proceedeStimate starts diverging from the ranging CRB,:7 3(2)

to solve the modified problem in (15), which is a highly nonSontrols the slope of the divergence, arid = 1.225 x10'm*
convex problem. We propose a gradient approach to find #feth® maximum ranging variance defined by the a-priori
locally optimal solution similar to the scheme in [5]. In [5] knowledge of the true distance [13]. The analytical model
F, is assumed to be a scaled identity matrix, iRy, — o 2I, propose_d in (20) is _de5|gned t_o fit the performance of a
indicating every link has the same distance-independexy-ra COrrelation-based estimator, as in [8]. The analytical etod
ing variances?. Here, we extend the formation optimizatioﬁhe estimation result and thg ranging CRB are shown in Flg.. 2.
approach in [5] with a more realistic radio ranging modelfhe model captures the main featur_es of r_ad|o—base_d ranging
whereFy is a diagonal matrix with entries given by (14). For short distances, the ranging variance is quadratigaty

The gradientc € R?M of the objective function is por_tional to the d_istance. After a certai_n distance,_ th@i@
variance rapidly increases to the maximum ranging variance

c = [C1T7 . .,c;f, . ,70}4]T = Vplr (F;l) , (17) due to the low signal-to-noise ratio (SNR). In this paper, we

use the model in (20) to emulate the ranging performance in

wherec, € R? is the gradient component of AG, defined in all SNR regions. We found that under the model (20), the first
Theorem II1.1. The steepest descent gradient controllegp term in (14) dominates the second term, and approxiate

Ps with a step sizeug can be expressed as by a;%.
c Simulation ScenarioThe simulation scenario is illustrated
usg = —Hﬁw- (18) in Fig. 3, where 25 AGs, shown as red dots, need to move

} from region A to region B based on their position estimates.
Theorem Ill.1 (Gradient of CRB) WhenFg4 is a diagonal As initialization, AGs are uniformly deployed in an area of
matrix with entries\; 2, in which ;2 may be a function of 10 m x 10 m at regionA.

U,V K3



10* : : : : : 1ogL0(CRB [m])
——estimator : 150
—analytical model v

—-—CRB

4

H H
250 300 350

w

)

L

o

ranging error [m]

50 0 50 100 150 200
2L ‘ ‘ ‘ ‘ x [m]

20 40 60 80 100 120 140 160
distance [m]

(a) strategy (i)

Figure 2. Modeling of the ranging error variance with disginthe CRB

leads to overly optimistic errors at large distances. Trappsed analytical 150
model (20) can capture the behavior of practical estimatbtsoth large and

small distances.

logl0(CRB [m])

In each region three BSs, shown as red triangles, ai
deployed. The gray shaded background is the value of tf
non-cooperative position CRB (i.e., obtained by perfognin
measurements only with the anchors). There is a blind regic
betweenr = 100 m andz = 200 m, in which none of the AGs
can effectively connect to any BS due to low SNR. The ste|
sizes are set tp, = 6.25 m andug = 12.5 m. Hence at each
step, an AG moves, on averade25 m for the o objective i B!
(solving P,) and then0.5 m for the 5 objective (solvingPg), -0 0 50 100 X‘[Slg] 200 250 300 350
if applied. Transition noise variance for a single AG at eacl
dimension is set td.01 m?, i.e., Q, = diag[0.01,0.01].
Three control strategies are compared, namely (i) enlyb-
jectives, (ii) alternatingy and 3 objectives, assuming ranglngFigure 3. Formation at step = 150, red triangles are the positions of BSs,

FIM is a scaled identif[y matrix, i-e_- ap_pmaCh in [5], and) (il red dots are the positions of AGs, green circles show theatagdormation
our proposed alternating and 3 objectives scheme with the estimates generated from the cooperative positioning CRB. gray shaded

realistic ranging assumption, i.e. based on (14), (19) 20l ( EaCkgrrf(())Lrlr?]cijniS g‘sa‘éﬁ'riiqgfmtgir?lon\;\ﬁglofﬁéagr‘]’cehg?g“o“ @RB, obtained
Simulations are repeated 100 times to obtain statisticalli® P 9 Y '
Performance Metrics:We introduce two metrics to eval-

uate the performance, namely the remaining distance agfdthe BSs is possible. Therefore, the position estimates ar
the expected position root mean-square error (RMSE). TReavily biased, too far to be illustrated in the plot. Basedhe
remaining distance is defined as the difference between Isiised position estimates, an effective control commandaa
AG's position and the destination, showing the accompliske generated. Hence, the objective is not accomplished.
ment of thea objective. The expected position RMSE isyhen the proposed strategy (iii) is applied (Fig. 3(b)), the
calculated from the square root of the trace of positioninvarm automatically emerges to some chains alongathe
CRB, indicating the3 objective performance. dimension, to propagate high localization accuracy int® th
blind region. The chains are distanced, but yet connected, i
they dimension to gain a good geometric dilution of precision
We first evaluate the snapshot formations for one realimatiGDOP). With this formation, the swarm collaborativelyrts
at time stepk = 150. Fig. 3(a) shows the result when AGsa virtual bridge through the blind region in order to reacé th
move with strategy (i), while Fig. 3(b) shows the result whegoal, while maintaining precise localization.
AGs move with strategy (iii). Green circles show the expécte In Fig. 4, the overall mean (lines), maximal (upper end
position estimates generated from the cooperative pasgitip of the bars) and minimal (lower end of the bars) remaining
CRB. When only then objective is used, all AGs are in adistances to the goal position for all three strategies kntbegl.
blind region (Fig. 3(a)), so that no effective receptiomfrany When strategies (i) and (ii) are employed, the remaining

(b) strategy (iii)

B. Discussion
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Figure 5. Expected position RMSE comparison for all threetegies,

generated from the global position CRB.

position.

The expected position RMSE comparison for all three
strategies is shown in Fig. 5. For the (i) and (ii) strategies
the position RMSE quickly rises to above 1000 m due to
the loss of BS reception and remains high for the rest of the
steps. Strategy (i) slightly outperforms (i). Howeveredo a
overlooking of the ranging model, strategy (ii) fails to geate
effective control as well. For the proposed strategy (iig
position RMSE slowly increases to around two meters. After
100 steps, the curve slightly drops to 1.5 m and rises back to
two meters again. It shows a handover process, in which the
swarm switches the BSs connection from the adeto the
area B. During this process, the swarm maintains effective
connection to the BSs in both area. After 150 steps, the curve
drops down with some spikes up to five meters. The spikes do
not show a significant impact to the performance and can even
be eliminated with a Bayesian estimator in a real applicatio
The position RMSE curve is stabilized to a centimeter level
after less than 300 steps, which coincides with the remginin
distance curve in Fig. 4, indicating the swarm successfully
reaches the goal position with precise localization.

V. CONCLUSION

We have presented a framework that combines goal-
approaching with localization-driven formation contralr fa
swarm migration application, with a distance-dependetibra
based ranging model. The resulting controller accounts for
position uncertainty and, while agents move towards goals,
emerges formations that lead to high-precision localirati
performance. From the numerical results we can conclude tha
a realistic ranging model is essential for generating aeceff
tive controller. Overlooking either geometry or radio rang
characteristic leads to a failure of swam navigation. Tharaw
migration is accomplished by controlling the formation twit
the goal-approaching and the localization-orientatedahjes
together, under a realistic ranging model assumption.

APPENDIXA
PROOF OFTHEOREMIII.1

We defines = (p.), as thed-th dimension of AGu’s state.
The derivative of the objective function in (15) with respec
to s is stated as

distances after 400 time steps are large (up to 150 m from otr (f‘;l) o 8Fp
the destination). At the beginning (the first 100 steps), the —y = UEF, ). (21)
AGs move towards the destination. When they all step in N\

the blind region, the remaining distances start divergiog d X

to the localization imprecision. When the proposed strateyVe further define X,,, € R?*? as the sub-matrix
(iii) is applied, the AGs first spread out and then all reacKz2m—1:2m,2n—1:2n, @and Fp, , € R?*2 as the sub-matrix

the destination. While moving towards the destination, AGSE , expressed as

span into a larger area to exploit the spatial diversity. Som 2m—1:2m,2n—1:2n

AGs arrive at the destination within 200 steps, with precise 1 T

localization supported by the AGs left behind. Then the AGs, mn = D 33— Cmn€n (22)
who have arrived at the goal, support the others to pass the €Ky T

blind region. After less than 300 steps, the remaining dista F,.,= —Lemyne?mn, n € K. (23)

converge to a small value, hence all AGs reach the goal ' m,n



Noticing the following propertieX,, , = X}, ,,, andF,, , = [10]

F} ., = Fpnm, (21) can be rewritten as
= [11]
otr (F1
7( ') —r Y x,,, B (24)
0s (m,m)€P 0s [12]
X 2e, e
-t o U,V sV, 7
ry Y, —E(25) g
veK,
where we have introduced [14]
Yu,v = Xu,u - Xu,u - ij,u v E Mu (26)
Yoo = Xo veB, @7 ™

Considering the dependence )niv ond, ., (24) becomes

atr(Fgl)
0s
=— Z2—aeE’UY euv + ;’%eT Y, ..€e
N ol A2, Os Ty Os Wy Ty
(28)

Finally, we can express the gradient Egl with respect to
the state of AGu by (19), which completes the proof.
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