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Abstract—Goal-seeking and information-seeking are canonical
problems in mobile agent swarms. We study the problem of
collaborative goal-approaching under uncertain agent position
information. We propose a framework that establishes location-
aware formations, resulting in a controller that accounts for agent
position uncertainty with a realistic ranging model. Simulation
results confirm that, as the outcome of the controller, the swarm
moves towards its goal, while emerging formations conducive to
high-quality localization.

I. I NTRODUCTION

Swarms of mobile agents, such as robots and drones, can be
utilized to accomplish a wide variety of tasks, including goal-
seeking and forming formation [1], based on collaboration.
For instance, moving a swarm towards a goal position, while
maintaining precise position information of each agent relies
on explicit coordination, both to improve the global position
estimate of each agent, and to reduce the risk of collisions with
known obstacles. Accomplishing these tasks relies on accurate
and timely position information, which is often overlooked
in the technical literature. Existing approaches, such as [2]–
[6], assume perfect position information, which may not be
available in practical scenarios.

The objectives of goal-approaching and precise localization
generally rely on some form of range-based distance estimate.
Distance estimation can be performed with anchor nodes, but
also collaboratively by the agents inside the swarm, reducing
the need of adding many anchors on the path towards the
goal. Therefore, the limited coverage of the anchor signals
is compensated by integrating cooperative range estimates
between close-by agents to determine the position of all
mobile agents. Cooperative positioning with radio nodes based
on belief propagation algorithms was presented in [7] and
extended in [8] to account for accessing the radio channel by
a time-division multiple access protocol using an orthogonal-
frequency division multiplexing (OFDM) signal. Cramér-Rao
bound (CRB) introduced in [9] provides the fundamental limits
of the cooperative positioning accuracy.

In [10], the authors indicated that the localization errors
must be considered for formation control, e.g., flocking.
Complementary, in [11], [12] the authors have the explicit
aim to control agents to improve or maintain the positioning
quality through information-seeking. The information quality

is closely linked to the ranging model, which can be charac-
terized through bounding techniques, such as the CRB and the
Ziv-Zakai bound (ZZB) [13], or with a knowledge of ranging
variance.

In this work, we combine goal approaching and information-
seeking through an alternating optimization formulation with
a realistic distance-dependent ranging model. The goal ap-
proaching objective forces agents to move to their goal, while
the information seeking objective forces agents to form con-
figurations that are conducive for high-precision localization.
We provide a description of the two objective functions as
well as a gradient descent controller based on positioning
CRB. Simulation results confirm that a realistic ranging model
is essential for generating an effective swarm controller.The
swarm moves in a way such that it reaches the goals, while
cooperatively maintaining good localization performance.

II. SYSTEM AND PROBLEM FORMULATION

A. Dynamic System Formulation

We consider a network comprisingB base stations (BSs)
and M agents (AGs). The set of BSs and AGs will be
denoted byB and M, respectively, and letK = B ∪ M. A
nodev is considered as the neighbor of AGu if AG u can
communicate and range withv. The neighboring node set of
AG u at time stepk is denoted asK(k)

u , allowing us to define
M

(k)
u = M ∩ K

(k)
u andB

(k)
u = B ∩ K

(k)
u . Finally, we denote

the set of connected node pairs at time stepk by P
(k).

For a generic nodeu, the state space corresponds to the
two-dimensional position, i.e.,p(k)

u = [xu, yu]
T. The positions

of BSs are assumed to be known and fixed. The positions
of agents are controlled as follows: agentu moves step-wise
with a control commandu(k)

u and Gaussian transition noise
ǫ
(k)
u ∼ N (0,Qu):

p(k)
u = p(k−1)

u + u(k)
u + ǫ

(k)
u , u ∈ M. (1)

The global statep(k) of all AGs is obtained by stacking the
states of the individual agents into a vector, and can thus be
expressed as

p(k) = p(k−1) + u(k) + ǫ
(k), (2)

where ǫ
(k) ∼ N (0,Q) is the global transition noise with

covarianceQ = diag[. . . ,Qu, . . .].



B. Localization

At each step, agents acquire radio-based observations from
their neighboring nodes:

z(k)u,v = hu,v(p
(k)
u ,p(k)

v , ω(k)
u,v) (u, v) ∈ P

(k), (3)

wherehu,v is an observation function, which depends on the
measurement method andω(k)

u,v is observation noise. Without
loss of generality, we assume the observations are the inde-
pendent propagation time-based inter-node distance estimates
with

E
[ (

z(k)u,v − d(k)u,v

)2 ]
=
(

σ(k)
u,v

)2

, (4)

wheredu,v is the distance between AGu and nodev. The
ranging variance(σ(k)

u,v)2 is, in general, distance dependent
by the radio propagation model [8]. The global observation
z(k) is obtained by stacking all the observations into a global
vector. With an associated likelihood function the observation
likelihood is written as:

p(z(k)|p(k)) =
∏

(u,v)∈P(k)

p(z(k)u,v|p
(k)
u ,p(k)

v ). (5)

The positions of the AGs can be estimated in either snapshot
or Bayesian fashion. In this work, our focus is on the snapshot
estimation case, where positions are estimated independently
at each step, for example, by a maximum likelihood (ML)
estimator

p̂(k) = argmax
p(k)

p(z(k)|p(k)). (6)

We assume that all nodes are perfectly synchronized.

C. Problem Formulation

At each time stepk, a global control commandu(k) must
be generated so that the swarm navigates itself from the initial
positionsp(0) to a pre-defined destinationq ∈ R

2. Meanwhile
the localization error of all AGs is minimized. The goal of this
paper is to design such a controller.

A swarm system with three AGs and two BSs is illustrated
in Fig. 1. Three AGs move from time stepk − 1 to time step
k towards the BSs. Solid lines indicate the connections among
nodes. dash lines with arrows show the control command for
AG 1, u(k)

1 , and the distortion on that controllerǫ(k)1 .

III. C ONTROLLER DESIGN

A. High-level Description

The global control commandu(k) is generated based on
the objectives of the application and the position estimates at
previous stepp̂(k−1) to decide where to go next. We con-
sider an alternating optimization approach, where the swarm
alternately solves two problems:

ProblemPα: minimize
u

(k)
α

‖p(k) − 1M×1 ⊗ q‖ (7)

subject tou(k)
α ∈ Uα

Figure 1. A swarm navigation system with three AGs and two BSs

to move all agents towards the destinationq, and

ProblemPβ : minimize
u

(k)
β

‖p̂(k) − p(k)‖ (8)

subject tou(k)
β ∈ Uβ

to minimize the swarm localization error.
The symbol⊗ denotes the Kronecker product. The term

1M×1⊗q stacks the goal position into a vector with the same
size asp(k). Note that the dependence on the optimization
variableu(k)

α in ProblemPα is implicitly given by the incor-
poration of (2), and similarly forPβ. The set of admissible
controls is defined asUα = {u ∈ R

2M | ‖u‖ = µα} and
similarly for Uβ . Solving ProblemPα andPβ in an alternating
manner thus aims at moving the AGs towards the goalq and
minimizing the AGs position uncertainty.

The solution of ProblemPα (i.e., the control command
u
(k)
α ) is easily generated from the differences between position

estimates and the destination:

u(k)
α = −µα

p̂(k−1) − 1M×1 ⊗ q

‖p̂(k−1) − 1M×1 ⊗ q‖
, (9)

whereµα is the step size. Therefore, in the next section, we
focus on solving ProblemPβ.

B. Localization Driven Formation Optimization

To solvePβ , we will rely on the theory of Fisher informa-
tion and the CRB. The CRB is a lower bound on the estimation
error variance of any unbiased estimator, and is expressed as

E
[
‖p̂(k) − p(k)‖2

]
≥ CRB[p(k)] = tr

(
(F(k)

p )−1
)
, (10)

whereF(k)
p is the position Fisher information matrix (FIM),

defined as

F(k)
p = H(k)

E
[
−∆

d(k)

d(k) ln p(z
(k)|d(k))

]

︸ ︷︷ ︸

=F
(k)
d

(H(k))T, (11)

in which d(k) is the vector of true distances for links inP(k),
∇a is the gradient operation with respect toa and ∆b

a ,



∇a∇
T
b is the Hessian matrix with respect toa and b, and

H(k) is the geometry matrix, expressing the effect from the
geometry relation among the nodes:

H(k) = ∇p(k)(d(k))T. (12)

Given the model from Section II-B,F(k)
d is the diagonal

ranging FIM, with the entries along the diagonal being the
inverse of the ranging CRB for every link.F(k)

d shows the
impact from the distance estimate accuracy. For simplicity,
we will omit the superscript(k) if there is no ambiguity.

We can reformulatePβ with the position FIM as

minimize
u

β
∈Uβ

tr
(
F−1

p

)
. (13)

Note that, the ranging model is in general non-Gaussian.
However, it has been proved in [14] that, with a fixed variance,
the CRB gets its largest value under the Gaussian assumption.
This allows us to replaceFd with the diagonal FIMF̃d

of a distance-dependent Gaussian ranging model to simplify
the problem in (13). Under such a conservative Gaussian
assumption, thel-th diagonal entry iñFd, which corresponds
to link (u, v), can be derived as in [15, eq. (3.31)]

λ−2
u,v ,

(

F̃d

)

l,l
= σ−2

u,v +
1

2

(

∂σ2
u,v

∂du,v

)2

/σ4
u,v. (14)

The modified problem becomes

minimize
u

β
∈Uβ

tr
(

F̃−1
p

)

, (15)

where

F̃p = HF̃dH
T. (16)

The solution of (15) is also valid for the problem in (13)
because it can be considered as the worst case and the solution
will be the min-max solution for (13). We will now proceed
to solve the modified problem in (15), which is a highly non-
convex problem. We propose a gradient approach to find the
locally optimal solution similar to the scheme in [5]. In [5],
F̃d is assumed to be a scaled identity matrix, i.e.,F̃d = σ−2I,
indicating every link has the same distance-independent rang-
ing varianceσ2. Here, we extend the formation optimization
approach in [5] with a more realistic radio ranging model,
whereF̃d is a diagonal matrix with entries given by (14).

The gradientc ∈ R
2M of the objective function is

c =
[
cT1 , . . . , c

T
u , . . . , c

T
M

]T
= ∇ptr

(

F̃−1
p

)

, (17)

wherecu ∈ R
2 is the gradient component of AGu, defined in

Theorem III.1. The steepest descent gradient controller solving
Pβ with a step sizeµβ can be expressed as

uβ = −µβ

c

‖c‖
. (18)

Theorem III.1 (Gradient of CRB). WhenF̃d is a diagonal
matrix with entriesλ−2

u,v, in whichλ−2
u,v may be a function of

the distancedu,v, then theu-th entrycu ∈ R
2 of the gradient

c = ∇ptr
(

F̃−1
p

)

is given by

cu =−
∑

v∈Ku

2

(
I− eu,ve

T
u,v

)
Yu,veu,v

λ2
u,vdu,v

+
∂λ−2

u,v

∂du,v
eu,ve

T
u,vYu,veu,v, (19)

whereeu,v = (pu − pv)/‖pu − pv‖ and Yu,v is defined in
(26)–(27).

Proof. See Appendix A.

Since the true positions of the AGs are unknown, the
gradientc from (19) is evaluated in the position estimatesp̂

and then utilized to generate the control commanduβ through
(18).

IV. N UMERICAL RESULTS

A. Setup and Evaluation Metrics

Ranging Model:We conduct numerical simulations to as-
sess the performance of the proposed formation controller.
The distance estimate is acquired from a radio-based ranging
signal. The signal is OFDM modulated, attenuated with a
free-space pathloss model, and distorted with additive white
Gaussian noise (AWGN). At a reference distanced0 = 20 m,
the ranging variance isσ2

0 = 0.01 m2. In order to analytically
calculate (19), the distance dependent ranging variance ofa
generic link(u, v) is approximated as

σ−2
u,v =

d20
σ2
0d

2
u,v

exp

(

−

(

σ2
0d

2
u,v

d20
+ (1 − σ2

di)

)γ)

+
1

σ2
∞

,

(20)

in whichσ2
di = 0.16 m2 is the ranging variance where distance

estimate starts diverging from the ranging CRB,γ = 30
controls the slope of the divergence, andσ2

∞ = 1.225 ×107m2

is the maximum ranging variance defined by the a-priori
knowledge of the true distance [13]. The analytical model
proposed in (20) is designed to fit the performance of a
correlation-based estimator, as in [8]. The analytical model,
the estimation result and the ranging CRB are shown in Fig. 2.
The model captures the main features of radio-based ranging:
For short distances, the ranging variance is quadraticallypro-
portional to the distance. After a certain distance, the ranging
variance rapidly increases to the maximum ranging variance
due to the low signal-to-noise ratio (SNR). In this paper, we
use the model in (20) to emulate the ranging performance in
all SNR regions. We found that under the model (20), the first
term in (14) dominates the second term, and approximateλ−2

u,v

by σ−2
u,v.

Simulation Scenario:The simulation scenario is illustrated
in Fig. 3, where 25 AGs, shown as red dots, need to move
from regionA to regionB based on their position estimates.
As initialization, AGs are uniformly deployed in an area of
10 m× 10 m at regionA.
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Figure 2. Modeling of the ranging error variance with distance: the CRB
leads to overly optimistic errors at large distances. The proposed analytical
model (20) can capture the behavior of practical estimatorsat both large and
small distances.

In each region three BSs, shown as red triangles, are
deployed. The gray shaded background is the value of the
non-cooperative position CRB (i.e., obtained by performing
measurements only with the anchors). There is a blind region
betweenx = 100 m andx = 200 m, in which none of the AGs
can effectively connect to any BS due to low SNR. The step
sizes are set toµα = 6.25 m andµβ = 12.5 m. Hence at each
step, an AG moves, on average,0.25 m for the α objective
(solvingPα) and then0.5 m for theβ objective (solvingPβ),
if applied. Transition noise variance for a single AG at each
dimension is set to0.01 m2, i.e., Qu = diag[0.01, 0.01].
Three control strategies are compared, namely (i) onlyα ob-
jectives, (ii) alternatingα andβ objectives, assuming ranging
FIM is a scaled identity matrix, i.e. approach in [5], and (iii)
our proposed alternatingα andβ objectives scheme with the
realistic ranging assumption, i.e. based on (14), (19) and (20).
Simulations are repeated 100 times to obtain statistical results.

Performance Metrics:We introduce two metrics to eval-
uate the performance, namely the remaining distance and
the expected position root mean-square error (RMSE). The
remaining distance is defined as the difference between an
AG’s position and the destination, showing the accomplish-
ment of theα objective. The expected position RMSE is
calculated from the square root of the trace of positioning
CRB, indicating theβ objective performance.

B. Discussion

We first evaluate the snapshot formations for one realization
at time stepk = 150. Fig. 3(a) shows the result when AGs
move with strategy (i), while Fig. 3(b) shows the result when
AGs move with strategy (iii). Green circles show the expected
position estimates generated from the cooperative positioning
CRB. When only theα objective is used, all AGs are in a
blind region (Fig. 3(a)), so that no effective reception from any

(a) strategy (i)

(b) strategy (iii)

Figure 3. Formation at stepk = 150, red triangles are the positions of BSs,
red dots are the positions of AGs, green circles show the expected formation
estimates generated from the cooperative positioning CRB.The gray shaded
background is the value of the non-cooperative position CRB(i.e., obtained
by performing measurements only with the anchors).

of the BSs is possible. Therefore, the position estimates are
heavily biased, too far to be illustrated in the plot. Based on the
biased position estimates, an effective control command cannot
be generated. Hence, theα objective is not accomplished.
When the proposed strategy (iii) is applied (Fig. 3(b)), the
swarm automatically emerges to some chains along thex
dimension, to propagate high localization accuracy into the
blind region. The chains are distanced, but yet connected, in
they dimension to gain a good geometric dilution of precision
(GDOP). With this formation, the swarm collaboratively forms
a virtual bridge through the blind region in order to reach the
goal, while maintaining precise localization.

In Fig. 4, the overall mean (lines), maximal (upper end
of the bars) and minimal (lower end of the bars) remaining
distances to the goal position for all three strategies are plotted.
When strategies (i) and (ii) are employed, the remaining
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Figure 5. Expected position RMSE comparison for all three strategies,
generated from the global position CRB.

distances after 400 time steps are large (up to 150 m from
the destination). At the beginning (the first 100 steps), the
AGs move towards the destination. When they all step in
the blind region, the remaining distances start diverging due
to the localization imprecision. When the proposed strategy
(iii) is applied, the AGs first spread out and then all reach
the destination. While moving towards the destination, AGs
span into a larger area to exploit the spatial diversity. Some
AGs arrive at the destination within 200 steps, with precise
localization supported by the AGs left behind. Then the AGs,
who have arrived at the goal, support the others to pass the
blind region. After less than 300 steps, the remaining distances
converge to a small value, hence all AGs reach the goal

position.
The expected position RMSE comparison for all three

strategies is shown in Fig. 5. For the (i) and (ii) strategies,
the position RMSE quickly rises to above 1000 m due to
the loss of BS reception and remains high for the rest of the
steps. Strategy (ii) slightly outperforms (i). However, due to a
overlooking of the ranging model, strategy (ii) fails to generate
effective control as well. For the proposed strategy (iii),the
position RMSE slowly increases to around two meters. After
100 steps, the curve slightly drops to 1.5 m and rises back to
two meters again. It shows a handover process, in which the
swarm switches the BSs connection from the areaA to the
areaB. During this process, the swarm maintains effective
connection to the BSs in both area. After 150 steps, the curve
drops down with some spikes up to five meters. The spikes do
not show a significant impact to the performance and can even
be eliminated with a Bayesian estimator in a real application.
The position RMSE curve is stabilized to a centimeter level
after less than 300 steps, which coincides with the remaining
distance curve in Fig. 4, indicating the swarm successfully
reaches the goal position with precise localization.

V. CONCLUSION

We have presented a framework that combines goal-
approaching with localization-driven formation control for a
swarm migration application, with a distance-dependent radio-
based ranging model. The resulting controller accounts for
position uncertainty and, while agents move towards goals,
emerges formations that lead to high-precision localization
performance. From the numerical results we can conclude that,
a realistic ranging model is essential for generating an effec-
tive controller. Overlooking either geometry or radio ranging
characteristic leads to a failure of swam navigation. The swarm
migration is accomplished by controlling the formation with
the goal-approaching and the localization-orientated objectives
together, under a realistic ranging model assumption.

APPENDIX A
PROOF OFTHEOREM III.1

We defines = (pu)d as thed-th dimension of AGu’s state.
The derivative of the objective function in (15) with respect
to s is stated as

∂tr
(

F̃−1
p

)

∂s
= −tr(F̃−1

p F̃−1
p

︸ ︷︷ ︸

,X

∂F̃p

∂s
). (21)

We further define Xm,n ∈ R
2×2 as the sub-matrix

X2m−1:2m,2n−1:2n, and Fm,n ∈ R
2×2 as the sub-matrix

(

F̃p

)

2m−1:2m,2n−1:2n
, expressed as

Fm,m =
∑

n∈Km

1

λ2
m,n

em,ne
T
m,n, (22)

Fm,n = −
1

λ2
m,n

em,ne
T
m,n, n ∈ Km. (23)



Noticing the following propertiesXm,n = XT
n,m andFm,n =

FT
m,n = Fn,m, (21) can be rewritten as

∂tr
(

F̃−1
p

)

∂s
=− tr

∑

(m,n)∈P

Xm,n

∂Fm,n

∂s
(24)

=− tr
∑

v∈Ku

Yu,v

∂λ−2
u,veu,ve

T
u,v

∂s
, (25)

where we have introduced

Yu,v = Xu,u −Xu,v −Xv,u v ∈ Mu (26)

Yu,v = Xu,u v ∈ Bu. (27)

Considering the dependence ofλ2
u,v on du,v, (24) becomes

∂tr
(

F̃−1
p

)

∂s

= −
∑

v∈Ku

2
1

λ2
u,v

∂eTu,v
∂s

Yu,veu,v +
∂λ−2

u,v

∂s
eTu,vYu,veu,v.

(28)

Finally, we can express the gradient ofF̃−1
p with respect to

the state of AGu by (19), which completes the proof.

ACKNOWLEDGMENT

This work was partially supported by the European Com-
mission, under EU FP7 Marie Curie Initial Training Network
MULTI-POS (Multi-technology Positioning Professionals)un-
der grant nr. 316528, the European Research Council, under
grant nr. 258418 (COOPNET), the EU project HIGHTS (High
precision positioning for cooperative ITS applications) MG-
3.5a-2014-636537 and the DLR project Dependable Naviga-
tion.

REFERENCES

[1] J. S. Shamma,Cooperative control of distributed multi-agent systems.
Wiley Online Library, 2007.

[2] R. Olfati-Saber, “Flocking for Multi-Agent Dynamic Systems: Algo-
rithms and Theory,”Automatic Control, IEEE Transactions on, vol. 51,
no. 3, pp. 401–420, 2006.

[3] N. M. M. de Abreu, “Old and new results on algebraic connectivity of
graphs,”Linear algebra and its applications, vol. 423, no. 1, pp. 53–73,
2007.

[4] Y. Kim and M. Mesbahi, “On maximizing the second smallesteigenvalue
of a state-dependent graph Laplacian,”IEEE Transactions on Automatic
Control, vol. 51, no. 1, pp. 116–120, 2006.

[5] Y. Kim, G. Zhu, and J. Hu, “Optimizing formation rigidityunder
connectivity constraints,” inIEEE Conference on Decision and Control
(CDC), 2010, pp. 6590–6595.

[6] M. Zavlanos, M. Egerstedt, and G. Pappas, “Graph-theoretic connectiv-
ity control of mobile robot networks,”Proceedings of the IEEE, vol. 99,
no. 9, pp. 1525–1540, 2011.

[7] H. Wymeersch, J. Lien, and M. Win, “Cooperative Localization in
Wireless Networks,”Proceedings of the IEEE, vol. 97, no. 2, pp. 427
–450, Feb. 2009.

[8] S. Zhang, R. Raulefs, A. Dammann, and S. Sand, “System-Level Per-
formance Analysis for Bayesian Cooperative Positioning: From Global
to Local,” in Proceeedings of 2013 International Conference on Indoor
Position and Indoor Navigation (IPIN), 2013.

[9] Y. Shen, H. Wymeersch, and M. Win, “Fundamental limits ofwideband
localization - part ii: Cooperative networks,”Information Theory, IEEE
Transactions on, vol. 56, no. 10, pp. 4981 –5000, oct. 2010.

[10] S. Zhang and R. Raulefs, “Multi-agent flocking with noisy anchor-free
localization,” in 11th International Symposium on Wireless Communi-
cations Systems (ISWCS), 2014, pp. 927–933.

[11] F. Morbidi and G. L. Mariottini, “Active target tracking and cooperative
localization for teams of aerial vehicles,”IEEE Trans. Control Syst.
Technol., vol. 21, no. 5, pp. 1694–1707, 2013.

[12] F. Meyer, H. Wymeersch, M. Frohle, and F. Hlawatsch, “Distributed
estimation with information-seeking control in agent networks,” Selected
Areas in Communications, IEEE Journal on (accepted), 2015.

[13] D. Dardari, A. Conti, U. Ferner, A. Giorgetti, and M. Win, “Ranging
with Ultrawide Bandwidth Signals in Multipath Environments,” Pro-
ceedings of the IEEE, vol. 97, no. 2, pp. 404–426, 2009.

[14] P. Stoica and P. Babu, “The Gaussian data assumption leads to the largest
Cramér-Rao bound [lecture notes],”Signal Processing Magazine, IEEE,
vol. 28, no. 3, pp. 132–133, May 2011.

[15] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1993.


	Introduction
	System and Problem Formulation
	Dynamic System Formulation
	Localization
	Problem Formulation

	Controller Design
	High-level Description
	Localization Driven Formation Optimization

	Numerical Results
	Setup and Evaluation Metrics
	Discussion

	Conclusion
	Appendix A: Proof of Theorem III.1
	References

