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Target Tracking in Confined Environments with
Uncertain Sensor Positions

Vladimir Savic, Henk Wymeersch, and Erik G. Larsson

Abstract—To ensure safety in confined environments such as
mines or subway tunnels, a (wireless) sensor network can be
deployed to monitor various environmental conditions. One of
its most important applications is to track personnel, mobile
equipment and vehicles. However, the state-of-the-art algorithms
assume that the positions of the sensors are perfectly known,
which is not necessarily true due to imprecise placement and/or
dropping of sensors. Therefore, we propose an automatic ap-
proach for simultaneous refinement of sensors’ positions and
target tracking. We divide the considered area in a finite number
of cells, define dynamic and measurement models, and apply
a discrete variant of belief propagation which can efficiently
solve this high-dimensional problem, and handle all non-Gaussian
uncertainties expected in this kind of environments. Finally, we
use ray-tracing simulation to generate an artificial mine-like envi-
ronment and generate synthetic measurement data. According to
our extensive simulation study, the proposed approach performs
significantly better than standard Bayesian target tracking and
localization algorithms, and provides robustness against outliers.

Index Terms—confined environments, tunnels, sensor network,
simultaneous localization and tracking, belief propagation, hid-
den Markov model, ray tracing, time of arrival.

I. INTRODUCTION

A. Background and Motivation

A confined environment represents a constrained and
irregularly-shaped area, consisting of a series of tunnels or pas-
sages that connect different rooms or halls. Typical examples
are underground mines, caves, steel factories and subways. In
these environments, the working conditions may be hazardous
due to the possibilities of traffic accidents, machine collisions,
wall collapses, fires and explosions. These environments re-
quire continuous monitoring using sensors deployed all over
the area. The sensors may be wired and connected to control
rooms, but to improve the safety and reduce operational costs,
recently the industry is developing robust wireless communi-
cation systems for this kind of environments [2]–[4].

A wireless sensor network (WSN) can be deployed across
the area to monitor the environmental conditions such as

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

V. Savic and E. G. Larsson are with the Dept. of Electrical Engineer-
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stability, temperature and gas levels. The information obtained
from the sensors can be used to control the ventilation system,
and determine the unsafe areas and rescue paths. Beyond this
ability, a WSN can be used to track the personnel, mobile
equipment and vehicles. The problem is very challenging due
to the unavailability of GPS signals and the characteristics
of the propagation environment. The knowledge of the last
location of an employee is especially important in the af-
termath of accidents such as a wall collapse, explosion, or
water inundation, but can be also used for task optimization,
production monitoring and traffic management. For instance,
according to the MINER act [5], created in response to the
many mine tragedies in the United States during 2006, the
emergency response plan “shall provide for above-ground
personnel to determine the current or immediately pre-accident
location of all underground personnel”. This problem, that
also exists in many other confined environments, is the main
motivation behind the work reported in this paper.

B. Related Work

Contemporary techniques for localization and tracking in
confined environments are very basic. They are typically based
on manual reporting of the employee’s location using paging
phones or video surveillance [6], [7]. Moreover, there are few
proposals in the literature, based on fingerprinting [8]–[11],
trilateration [6], [12], centroid [13] and Bayesian filtering [14],
[15].

More specifically, in [8], a fingerprinting technique was
proposed, in which seven relevant parameters (including mean
excess delay, total received power, and delay spread) were
learned offline from wideband impulse responses measured
at hundreds of locations. Then, these 7D vectors were used
as the input to an artificial neural network pattern-matching
algorithm. The measurements were conducted in a gallery of
the CANMET mine, a former gold mine located in Quebec,
Canada. This method was then improved in [9] by using more
receivers with known positions. The fingerprinting techniques
[10], [11], based on WiFi signals, have been also applied
in subway tunnels in Seoul, S. Korea. The main problem of
these algorithms is that they are not well suited for dynamic
propagation environments (e.g., caused by movement of heavy
machinery) in which the fingerprints have to be updated very
frequently.

In [6], [12], ultra-wideband (UWB) measurements were
used for positioning. They were motivated by a high ranging
accuracy in cluttered environments and low-cost implementa-
tion of the communication system. To solve the trilateration
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problem, many types of algorithms have been applied, in-
cluding linearized least-squares, Gauss-Newton and bounding-
box methods. The measurements were performed in the same
environment as the one studied in [8]. The main drawbacks of
these algorithms are that the sensor nodes have to be precisely
deployed and maintained, and that the algorithms are sensitive
to outliers.

In [13], a centroid algorithm was proposed, in which the
miner’s location was found by averaging the coordinates of
the detected anchors. The algorithm is a part of a structure-
aware self-adapting (SASA) WSN, which is capable of detect-
ing structure variations caused by mine collapses. The main
problem of this approach is that it requires a high density of
uniformly deployed sensor nodes.

In [14], Bayesian point-mass (grid-based) filtering was
applied to track mine vehicles. The main goal was monitoring
and control of ore extraction from the draw points in a mine in
Australia. Since the draw points are very close to each other,
high tracking accuracy is required. The main problem of this
approach is that it requires many grid points in order to obtain
sufficiently accurate estimates.

Finally, the results of the measurement campaign [15],
carried out in a basement tunnel of Linköping university and
an iron-ore mine in Kiruna, Sweden, indicated that UWB time-
of-arrival (TOA) allows very accurate ranging in line-of-sight
(LOS) and non-LOS (NLOS) scenarios caused by thin obsta-
cles. However, if the direct path is blocked by a thick tunnel
wall, the TOA-based ranging leads to a relatively large bias.
Moreover, the analysis showed that NLOS conditions can-
not be accurately discriminated from LOS conditions, which
means that (Bayesian) soft-decision algorithms are required
for accurate ranging and positioning in these environments.

The previously described state-of-the-art algorithms assume
that the positions of the sensors are perfectly known, which is
not necessarily the case due to imprecise placement and/or sen-
sor drops caused by vibrations or wall collapses.1 One possible
solution to this problem is to manually and periodically verify
that the sensors positions are correct. However, this approach
may be too costly and even infeasible in some areas due to
the on-going activities.

C. Technical Contributions

In this paper we propose an automatic approach for target
tracking with uncertain sensor positions, which involves both
simultaneous refinement of the sensors position estimates (lo-
calization) and target tracking (SLAT). Our specific technical
contributions are as follows:
• We divide the considered area into a finite number of

cells, and define appropriate dynamic and TOA mea-
surement models that take into account the quantization
effects associated with this division.

• We formulate the localization and target tracking problem
in a Bayesian setting and apply a discrete variant of
belief propagation (BP). The resulting proposed algorithm

1Although probably not available in confined environments nowadays, we
also envision that uncertain sensors’ positions can be an outcome of some
(cooperative) sensor network localization algorithm [16], [17].

(referred to as SLAT-BP) can efficiently handle the high
dimensionality of the problem and the non-Gaussian
uncertainties.

• To demonstrate the performance of our SLAT-BP algo-
rithm, we perform an extensive simulation study using
synthetic impulse responses obtained from ray-tracing
simulation of a mine-like environment. Our results show
that SLAT-BP performs significantly better than standard
Bayesian target tracking and localization algorithms, and
provides robustness against outliers.

D. Paper organization

The remainder of this paper is organized as follows. In
Section II, we formulate the problem and define the dynamic
and measurement models. In Section III, we propose the
algorithm for simultaneous localization and tracking, based
on real-time belief propagation. TOA error modelling using
ray-tracing simulation and performance analysis are provided
in Section IV. Finally, conclusions and proposals for future
work are provided in Section V.

II. SYSTEM MODEL

A. Problem formulation

We consider Ns sensors with fixed 3D positions zn =
(zn,1, zn,2, zn,3), n = 1, 2, . . . , Ns, and one target, with 3D
position xt = (xt,1, xt,2, xt,3), at time t, t = 1, 2, . . . , NT ,
moving through the confined area. Fig. 1a illustrates the
scenario. The sensors are usually placed on the walls or
the ceiling, but their positions are not perfectly known. A
moving target periodically emits a signal (including a unique
identifier)2 that can be detected by a subset of the sensors, with
a sampling interval Ts. The target is equipped with an inertial
measurement unit (IMU), so it periodically communicates its
measured velocity. We also assume that there are one or more
fusion centers (FCs) (e.g., a computer in a control room or a
target itself), which have available the priors of the sensors’
and target’s positions, and periodically collect measurements
from the sensors and the target.

A confined environment is naturally a continuous 3D space,
but typically it is irregular and it is impossible to analytically
describe the shape of its borders. On the other hand, using
an unrestricted 3D continuous space would lead to decreased
computational efficiency, and more importantly, significant
loss of performance in that position estimates could end up,
for example, behind a wall. Therefore, we propose to use
a discrete 3D space, in which the environment is divided
into a finite number of cells. The 3D position of the cell
lc = (lc,1, lc,2, lc,3) (c = 1, ..., Nc, where Nc is the number
of cells) is represented, in Cartesian coordinates, by the
approximation of its geometrical center. It is thereby assumed
that the FCs have available a detailed floor plan of the whole
area. The cell size must be chosen based on a trade-off
between computational complexity and performance, and it is

2That means that our algorithm can be also used for multi-target tracking,
simply by running the same algorithm multiple times. Otherwise, different
algorithms, e.g., with data association [18], would be necessary.
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Fig. 1: Illustration of target tracking in a confined environment: (a) deployment
of the sensors and a target track, (b) division of the area into 20 cells.

preferable that all the cells have approximately the same size.
With this model, in which zn and xt are discrete variables,
our goal is to identify in which cells the target and sensors
are located. This approach also facilitates the application of
belief propagation (see Section III-B) without applying Monte
Carlo or other approximations. Fig. 1b illustrates a confined
environment divided into cells.

Finally, we assume that the prior knowledge of the sensors
and the target positions is defined by probability mass func-
tions (PMFs) pn,0(zn,0), and p0(x0). While the target’s prior
represents information about its initial position, the priors of
the sensors’ positions represent the available information on
the real positions of the sensors. In practice, this information
may be provided by the deployment team, and may be
imperfect due to imprecise deployment or drops of sensors.

B. Dynamic Model based on IMUs

We assume that the target is equipped by an IMU, consisting
of a 3-axis accelerometer, and a 3-axis gyroscope, that aids
the tracking. IMUs are relatively insensitive to environmental
conditions, and a good choice in the motivating applications.
The IMU periodically provides (each Ts second) a velocity es-
timate in all 3 directions vt = (vt,1, vt,2, vt,3). The coordinate
in the κ-th dimension (κ = 1, 2, 3) of the measured velocity
at time t can be written as a function of the target’s positions
as:

vt,κ =
xt,κ − xt−1,κ

Ts
+ uqt,κ + umt,κ, (1)

uqt,κ ∼ pq(uq) = Unif(uq;−D
Ts
,
D

Ts
),

umt,κ ∼ pm(um) = N (um; 0, σ2
u),

where uqt,κ and umt,κ are samples (at time t, and dimension
κ) of the quantization and measurement noise, drawn from
the uniform Unif(·), and the Gaussian distribution N (·),
respectively. The parameter σ2

u represents the variance of the
measurement noise of the IMU, and −D/Ts, D/Ts represent
the boundaries of the uniform distribution. The quantization
noise is introduced into the model here because we have to
relate the continuous quantity vt,κ with the discrete quantity
(xt,κ−xt−1,κ). Since the boundaries of the irregularly-shaped
cell are difficult to compute, we approximated the cell with
a circumscribed cube with length D (D = max

c,κ
Dκ,c, where

Dκ,c is the maximum possible distance over dimension κ in
cell c). Note that as the cell size D decreases, the quantization
noise will eventually vanish.

The distribution of the total IMU noise u = uq + um is
given by following convolution:

pu(u) =

∫
pm(u− uq)pq(uq)duq (2)

∝ Φ(u+
D

Ts
)− Φ(u− D

Ts
),

where Φ(u) = 0.5
(
1 + erf(u/(σu

√
2)
)

is the cumulative
Gaussian distribution. Now, we can model the dynamics3 of
the target as:

p(vt,xt|xt−1) = p(vt|xt,xt−1)p(xt|xt−1) (3)
∝ p(vt|xt,xt−1)

=
∏

κ=1,2,3

p(vt,κ|xt,κ, xt−1,κ)

=
∏

κ=1,2,3

pu(vt,κ − (xt,κ − xt−1,κ)/Ts),

where we assumed independence between the coordinates, and
that the target’s mobility model is unknown (i.e., p(xt|xt−1) ∝
1).4 Recall also that xt is discrete, so (3) gives us information
about the cell of the target at time t, given the cell of the target
at time t− 1, and the measured velocity vt.

For our framework (see Section III-A), it is convenient to
formally define the “dynamics” of the sensors:

p(zn,t|zn,t−1) = δ(zn,t − zn,t−1), (4)

where δ(·) is the Dirac delta impulse, which enforces that the
sensors are static (zn,t = zn,t−1 = zn).

Finally, we note that, if p0(x0) is very informative (e.g., the
target’s initial cell is given), the target’s dynamic model (given
by (3)) already constitutes sufficient information for a tracking
algorithm known as dead reckoning [19], but this approach
would suffer from error accumulation over time. Therefore, we
need to use a WSN which will provide periodic measurements
w.r.t. their positions.

3In some of the literature, the quantity p(vt,xt|xt−1) is denoted by
p(xt|xt−1). We prefer to write out the measured velocity explicitly.

4Even without this assumption, the IMU typically provides much more pre-
cise information than the mobility model, so p(vt|xt,xt−1)p(xt|xt−1) ≈
p(vt|xt,xt−1).
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C. TOA Measurement Model

We assume that round-trip TOA (RT-TOA) measurements
are obtained, at each time slot, by a subset of the sensors in
proximity to the target. We decided to use RT-TOA (instead
of one-way TOA), in order to avoid the need for clock
synchronization between the sensors and the target. We did
not consider received signal strength (RSS) since the distance
estimates will be highly erroneous, due to the severe multipath
in confined environments, as shown in [12], [20], [21]. RT-
TOA can be obtained using many techniques [22], but we
assume that a simple thresholding is performed. More exactly,
the RT-TOA is taken to be the arrival time of the first multipath
component in the measured impulse response that exceeds
a predefined threshold. Note that a signal should have very
large bandwidth (WB or UWB), in order to provide high TOA
resolution [23].

The measured distance between sensor n and the target at
time t, can be written as:

dt,n = cτt,n − dPT = ‖xt − zn,t‖+ wqt,n + wmt,n, (5)

wqt,n ∼ pq(wq) = Unif(wq; 0, D
√

3), wmt,n ∼ pm(wm),

where dPT is a known bias caused by processing time on a
target, τt,n is measured TOA, c = 3 · 108 m/s is the speed
of light, and wqt,n, wmt,n are samples of the quantization noise,
and measurement noise, respectively. The distribution of the
quantization noise is not available in a parametric form, so
we choose the least informative (i.e., a uniform) distribution
to keep the algorithm tractable.

While the measurement noise depends on many factors
(such as thermal noise, bandwidth, and the quality of the
sensors), the bias arising from multipath propagation in NLOS
conditions is usually the most critical source of error. The most
common approach [24], [25] is to identify NLOS measure-
ments, and discard them, or alternatively mitigate the effect
of the multipath bias. However, these techniques require an
identification of NLOS conditions, which cannot be always
accurately done (see, for example, [15], [24]). Therefore, we
prefer a model that does not require NLOS identification, but
only knowledge of the probability of having NLOS.

According to previous results [6], we can roughly model
line-of-sight (LOS) measurement noise with a Gaussian dis-
tribution, and NLOS noise (in which the walls block the
direct path) with a Weibull or an exponential distribution.
However, in severe multi-path environments, it is expected
that NLOS noise has multiple modes (see also Section IV-A).
Therefore, we use a Gaussian mixture (GM), which is capable
of approximating arbitrary probability distributions. Moreover,
we also need to take into account other sources of NLOS,
such as vehicles and machinery. Since these objects are usually
dynamic, made of different materials, and have different sizes
and thicknesses, it is difficult to model their effect. Therefore,
we assume that this error is uniformly distributed [14], but
that it appears with very small probability. In total, the model

for pw(wm) is then given by the following mixture:

pm(wm) = PLOS · N (wm; 0, σ2
w,0) + (6)

PNLOS ·
∑

i=1,...,NM

ρw,iN (wm;µw,i, σ
2
w,i) +

POBS ·Unif(wm; 0, Dmax),

where σw,0 is the standard deviation of the LOS component of
the noise; ρw,i, µw,i, σw,i are the weights, means and standard
deviations of the NLOS noise caused by tunnel walls; NM is
the number of GM components; and Dmax is the maximum
distance error. PLOS, PNLOS and POBS are the probabilities
of LOS, NLOS caused by tunnel walls, and NLOS caused by
other obstacles, respectively (with PLOS = 1−PNLOS−POBS).
While PNLOS and POBS can be approximately estimated by
examining the floor plan of the deployment area, the GM
parameters (ρw,i, µw,i and σw,i) can be estimated by applying
the expectation-maximization (EM), generalized EM, or the k-
means algorithm [26, Chapter 9] on training samples.

The distribution of the total noise w = wm + wq is given
by the following convolution:

pw(w) =

∫
pm(w − wq)pq(wq)dwq (7)

=
PLOS

D
√

3

(
Φ0(w)− Φ0(w −D

√
3)
)

+

PNLOS

D
√

3

∑
i=1,...,NM

ρw,i

(
Φi(w)− Φi(w −D

√
3)
)

+

g(w)POBS,

where Φi(·) is the shorthand notation for Φ(·;µw,i, σ2
w,i), and

the distribution g(w) is found by convolution of two uniform
distributions:

g(w) =


w/(DmaxD

√
3), 0 < w < D

√
3

1/Dmax , D
√

3 < w < Dmax

(D
′

max − w)/(DmaxD
√

3), Dmax < w < D
′

max

0 , otherwise
(8)

where D
′

max = D
√

3 +Dmax. Finally, the likelihood function
is given by:

p(dn,t|xt, zn,t) = pw(dn,t − ‖xt − zn,t‖). (9)

The likelihood functions can be computed for all sensors
which detect the target. However, we assume that the sensors
can perform measurements with the target if and only if dn,t <
dTH where dTH is a predefined sensing radius. The set of
sensors that perform measurements at time t is denoted by Gst .
The sensing radius is chosen so as to ensure that a sufficient
number of sensors can detect the target, but should be small
enough that the model in (6) remains valid.

III. SIMULTANEOUS SENSOR LOCALIZATION AND TARGET
TRACKING

Our goal is to obtain the posterior marginal PMFs (referred
to as the beliefs), p(xt|e1:t) and p(zn,t|e1:t), of the following
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Fig. 2: An example of a MRF, with three sensors (n, p, and r) and a target
at three time instants (t−1, t, and t+1). The messages are represented with
arrows.

joint distribution:

p(x0, ...,xt, z1,0, ..., zNs,t|e1:t) ∝ (10)
p0(x0)

∏
n=1...Ns

pn,0(zn,0)
∏

t′=1...t
∀n∈Gs

t

p(dn,t|xt′ , zn,t′)·

∏
t′=1...t

p(vt′ ,xt′ |xt′−1)
∏

t′=1...t
n=1...Ns

p(zn,t′ |zn,t′−1),

where e1:t is all available evidence up to time t (i.e., measured
TOAs and velocities). The previous factorization is obtained
using Bayes’ rule and standard assumptions [27], such as
independence of the measurements/priors and memoryless
movement. Since the marginalization of (10) is intractable,
we resort to message-passing on a graphical model.

A. Graphical model

We use an undirected graphical model [28], also known as
a Markov random field (MRF),5 to represent the factorization
in (10). In a MRF, each vertex represents a random variable
with an associated single-node potential (a local evidence),
and each edge represents a pairwise potential (a likelihood
function). An example is shown in Fig. 2. Using the models
defined in Sections II-B and II-C, the potentials are given by:

ψt(xt) =

{
p0(x0), if t = 0
1, otherwise

, (11)

ψn,t(zn,t) =

{
pn,0(zn,0), if t = 0
1, otherwise

, (12)

ψt,(n,t)(xt, zn,t) = p(dn,t|xt, zn,t), (13)

ψt−1,t(xt−1,xt) = p(vt,xt|xt−1), (14)

ψ(n,t−1),(n,t)(zn,t−1, zn,t) = p(zn,t|zn,t−1). (15)

5An equivalent algorithm can be derived using the forward phase of the
forward-backward algorithm (also known as BCJR) in a hidden Markov model
[29]. However, we prefer to use a much more flexible framework, valid for
discrete, continuous and mixed variables.

Note that these potentials, as well as all messages and beliefs
(defined in further text), are not necessarily normalized.

B. SLAT via Real-Time Belief Propagation (BP)

We adapt the standard BP (see [30, eqs. (8)-(9)]) for our
real-time and discrete problem. To ensure real-time execution,
we do not send the messages backward in time (see also Fig.
2), and since the variables are discrete, we replace integra-
tion with summation. The beliefs (denoted with Mn,t(zn,t)
and Mt(xt), respectively) are initialized with Mn,0(zn,0) =
ψn,0(zn,0) and M0(x0) = ψ0(x0). The algorithm (for time
slot t, t > 0) is summarized below:

Step 1. Compute the sensor-to-target and target-to-target
messages:

m(n,t)→t(xt) =
∑
zn,t

ψt,(n,t)(xt, zn,t)Mn,t−1(zn,t), (16)

mt−1→t(xt) =
∑
xt−1

ψt−1,t(xt−1,xt)Mt−1(xt−1). (17)

Step 2. Update the target’s belief:

Mt(xt) = mt−1→t(xt)
∏
n∈Gs

t

m(n,t)→t(xt). (18)

Step 3. Compute the target-to-sensor and sensor-to-sensor
messages:

mt→(n,t)(zn,t) =
∑
xt

ψt,(n,t)(xt, zn,t)
Mt(xt)

m(n,t)→t(xt)
, (19)

m(n,t−1)→(n,t)(zn,t) = Mn,t−1(zn,t). (20)

Step 4. Update the beliefs of the sensors:

Mn,t(zn,t) =

{
Mn,t−1(zn,t)mt→(n,t)(zn,t), if n ∈ Gst
Mn,t−1(zn,t), otherwise

(21)
Step 5. (optional) Compute the estimates using the k-

nearest neighbour (kNN) approach [31]:

ẑn,t =

∑
zn,t∈Ck

zn,t

zn,tMn,t(zn,t)∑
zn,t∈Ck

zn,t

Mn,t(zn,t)
, (22)

x̂t =

∑
xt∈Ck

xt

xtMt(xt)∑
xt∈Ck

xt

Mt(xt)
, (23)

where Ckzn,t
and Ckxt

are the set of k cells with highest beliefs,
Mn,t(zn,t) and Mt(xt), respectively. The special cases k =
1 and k = Nc, correspond to MAP and MMSE estimates,
respectively. Note that this phase is optional, since the main
output of this algorithm (beliefs) have been already computed
in steps 2 and 4.

For comparison purposes, we also consider two specific
instances of the proposed SLAT algorithm: i) Bayesian point-
mass target tracking (by excluding all target-to-sensor mes-
sages, i.e., mt→(n,t)(zn,t) = 1), and ii) Bayesian point-
mass target localization (by excluding all target-to-sensor



6

and target-to-target messages, i.e., mt→(n,t)(zn,t) = 1 and
mt−1→t(xt) = 1). The former one uses the sensors’ priors to
track the target, while the latter one uses the sensors’ priors to
locate the target independently in each time slot (i.e., without
a dynamic model). Note that the target tracking algorithm in
[14] can be considered as a special case of SLAT-BP (although
their measurement and dynamic models are different).

C. Implementation Issues

In this section, we discuss some important issues that can
arise during the implementation of the proposed SLAT-BP
algorithm.
• Complexity of the algorithm: The complexity of the

SLAT-BP algorithm at time t is O(|Gst |N2
c ), since the

message computations dominates the cost. This complex-
ity is significantly less than that of naive marginalization
of (10) which would require O(NNs+t−1

c ) operations at
time instant t. Although this is a significant reduction,
the complexity is still high if there are many cells. The
complexity can be further reduced by considering only
beliefs with a probability larger than a predefined belief
threshold εM (εM < 1). For example, in (16), only cells
c, which satisfy the following constraint:

Mn,t−1(lc)/
∑

c′=1...Nc

Mn,t−1(lc′) > εM/Nc, (24)

should be considered for summation. An analog con-
straint is then used for (17) and (19). Denoting the
number of these cells by N ε

zn,t
and N ε

xt
, and N ε

t =
max(maxn∈Gs

t
(N ε

zn,t
), N ε

xt
), the complexity at time t is

reduced to O(|Gst |NcN ε
t ).

• Non-synchronized measurements: In Section II-B, we
assumed that the IMU is configured to operate at the
same rate as the sensors (reporting every Ts second).
In practice, the rate of the IMU may be much higher
than that of the sensors. The proposed message-passing
algorithm can be easily adapted to a situation where the
rates are different. Assuming that the algorithm operates
at the IMU rate and that we do not know the rate of the
sensors’ measurements, we just need to do following at
each time slot: i) if the sensors’ measurements are avail-
able, we run the algorithm in Section III-B, and ii) if the
sensors’ measurements are unavailable, simply exclude
all sensor-to-target messages (i.e., m(n,t)→t(xt) = 1).
In other words, we run simultaneous localization and
dead reckoning in all time slots in which only the IMU
measurements are available.

• Routing data to the FCs: All collected measurements
should be routed to the FCs as soon as they become
available. Although there are many well-known routing
protocols [32], we recommend a hybrid system based
on a leaky-feeder system (LFS) and a wireless mesh
network (WMN), similar to one installed at a coal mine
in West Virginia, US [7]. LFS consists of a coaxial-
type cable, which emits and receives radio waves (i.e,
it behaves as a distributed antenna). It has many power
supplies, and a backup battery in an explosion-proof

enclosure. Therefore, all data transmitted by the sensors
or the target, will be available to FCs using a one-hop
communication link and without any routing protocol.
Since LFS typically cannot provide coverage all over
the deployment area, it should be complemented with a
WMN, which should consist of the subset of WSN not
in the vicinity of the LFS cables. In the WMN, sensors
communicate in a multi-hop fashion using an optimal
path, computed in real-time. If one or a few sensors fails,
the system simply recomputes the path. Therefore, this
system is capable of routing the data as long as there is
one path between a sensor and a FC or LFS cable.

• Online calibration: Although the measurement model in
(6) provides robustness against dynamic obstacles, it will
not be good enough if a permanent change is made to
the environment (e.g., new pillars are formed, or the
tunnels are extended). In that case, it would be necessary
to repeat the calibration (especially, to re-estimate the
GM parameters for the NLOS error model), which is a
cumbersome task. An alternative, and preferable option,
is to update the measurement model online using already
deployed sensors. This is feasible since the fusion center
knows the current estimates of the sensors’ positions, and
consequently all inter-sensor distances. The additional
requirement is that the sensors are randomly deployed
so that they can provide sufficient statistics for parameter
estimation. This calibration should be done periodically
(e.g., once per day), or manually triggered once some
change in the deployment area is reported.

IV. NUMERICAL RESULTS

In this section, we analyze the accuracy and the robustness
of the proposed approach using ray-tracing simulation.

A. TOA error modelling using ray-tracing

For TOA error modelling, we decided to use REMCOM’s
Wireless InSite ray-tracing simulator [33], [34]. Wireless
InSite is a flexible, powerful tool for accurately predicting
the effects of the environment on the propagation of electro-
magnetic waves. It models the physical characteristics of the
environment (including the effects of terrain, urban buildings
and tunnel features), performs the electromagnetic calcula-
tions, and evaluates the signal propagation characteristics. The
calculations are made by shooting rays from the transmitters,
and propagating them through the environment, until they
arrive at the receivers. The rays interact with environmental
features via: reflections at object faces, diffraction around ob-
jects, and transmission (penetration) through objects. Wireless
InSite can provide quantities such as electric and magnetic
field strength, received signal strength, time of arrival, path-
loss, delay spread, direction of arrival, impulse response and
power delay profile.

We designed an artificial mine tunnel using Wireless InSite
(see Fig. 3a), by creating many small pieces, and connecting
them together. The dimensions of the tunnel are similar to
a real mine tunnel [8], and each piece contains expected
irregularities. We chose concrete as material for the tunnel
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(a)

(b)

Fig. 3: Illustrations of the designed tunnel in Wireless InSite: (a) 3D illustration, and (b) deployment of Tx/Rx through the tunnel. The dimensions of the
tunnel are approx. 110m (length) x 5m (width) x 5m (height) (corresponding to example in Fig. 1a).

walls, which corresponds to the areas in the mine reinforced
to increase stability. Then, we deployed transmitters (Tx) and
receivers (Rx) routes along the tunnel, as shown in Fig. 3b.
Our goal is to obtain TOA at each receiver, which has NLOS
to the transmitter caused by the tunnel walls. LOS links are
not considered since they provide ground-true estimates (the
TOA estimates from Wireless InSite do not include other
sources of errors, such as thermal noise, or limited bandwidth).
Finally, we set the parameters6 as shown in Table I. We
chose the Full-3D Shooting and Bouncing Ray (SBR) method,
which includes the effect of reflections, transmissions, and
diffractions on the electric field in 3D environment, without
any restriction on the object shapes (more details about this
method, and possible alternatives can be found in [34, Chapter
15]). Regarding maximum number of reflections, transmis-
sions, and diffractions, taking into account the analyses in [21],
we chose the values which provide a good trade-off between
the performance and complexity (i.e., any further increase of
these values would lead to a negligible difference in the results,
while the computational time would grow dramatically). We
used short-dipole antennas with vertical polarization in order
to ensure a near-omni-directional radiation pattern. Finally, the
values for input power, transmission line loss, and received
power threshold were chosen to ensure sufficient range for
ray propagation.

From the simulation, we collected 1130 impulse responses,

6Many other parameters (see [34]), not shown in Table I, are kept to default
values since they are irrelevant for this analysis.

TABLE I: Main parameters used for Wireless InSite simulations

Ray-tracing method Full-3D SBR
Antenna (Tx/Rx) short dipole
Polarization (Tx/Rx) vertical
Relative permittivity of the wall 7
Conductivity of the wall 0.015 m−1Ω−1

Waveform (Tx/Rx) sinusoidal
Central frequency 2.4 GHz
Input power (Tx) 15 dBm
Received Power Threshold (Rx) -110 dBm
Transmission line loss (Tx/Rx) 0 dB
Altitude of antenna (Tx/Rx) 1.3 m
Maximum number of reflections 8
Maximum number of transmissions 1
Maximum number of diffractions 1

and obtained the same number of TOA samples (in the absence
of noise, the threshold for TOA estimation is set to zero).
The samples were used to find the distance estimates, and the
samples of the ranging error (the difference between the true
and the estimated distance), in order to create a GM model.
Observing the histogram in Fig. 4, we can see that the error
is positive (as expected in the absence of the other noise), and
that it can be well approximated with 5 modes. Moreover, we
can see that the error is not exponentially distributed, which
stands in contrast to results [35], [36] for other environments.
Therefore, we set the number of GM components to NM = 5,
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Fig. 4: Histogram of the NLOS ranging error, and corresponding Gaussian
mixture model.

and run the k-means algorithm to obtain its parameters.7

According to Fig. 4, this model provides a good (but not
perfect) approximation of the real PDF. We did not include
other error sources in the NLOS model, since they typically
are negligible compared to the multipath error (recall that the
signal-to-noise-ratio is very high for short-range sensing, and
that we target WB/UWB signals). For the LOS error model,
we did not analyze the precise impact of the transmit power,
bandwidth and other sources of the error. We simply assumed
that it can be well approximated with a zero-mean Gaussian
distribution with a sufficiently large standard deviation σw,0 =
c · 3.33 ns = 1 m.

Finally, we considered a scenario with the same deployment
as in Fig. 3b, but with different types of the obstacles (objects
created of metal, water, sand, etc.) placed in front of the
transmitters. We found that the bias caused by these obstacles
is very uncertain, so our assumption that it is uniformly dis-
tributed (as a least informative option) is reasonable. Assuming
that these obstacles will block the LOS path in 3% of the
cases, we increased the size of the NLOS database to 1164
samples by adding (randomly chosen) samples from the NLOS
scenarios with obstacles. This database, along with the GM
model, will be used in the next sections as an input to the
performance analysis simulations.

B. Simulation Setup

We considered the tunnel in Fig. 3a divided in Nc = 44
cells, and with Ns = 25 sensors randomly deployed in
these cells. The sensors’ priors were given by pn,0(zn,0) =
N (zn,0; ln,ΣS) where ln (n = 1, . . . , Ns) is the reported
location provided by the deployment team, and ΣS =
diag(σ2

S , σ
2
S , σ

2
S ) (σS = 6 m) is the empirical measure of

the precision of the sensor placement. We assume that we
know the initial cell of the target, i.e., p0(x0) = δ(x0 − l1).
There are NT = 40 time slots, and the sampling interval is

7The obtained parameters are not provided since they are valid only for
this, artificially generated, tunnel. For other environments, the error modelling
should be repeated.

TABLE II: Summary of parameters used in simulations

Parameter Value
number of cells (Nc) 44
number of sensors (Ns) 25
number of time slots (NT ) 40
sampling interval (Ts) 1 s
std. deviation of sensors’ positions (σS) 6 m
prob. of NLOS (tunnel wall) (PNLOS) 0.17
prob. of NLOS (obstacle) (POBS) 0.03
std. deviation of IMU noise (σu) 0.5 m/s
std. deviation of LOS noise (σw,0) 1 m
sensing radius (dTH) 30 m
maximum distance error (Dmax) dTH

quantization noise (D) 5 m
kNN parameter (k) 2
belief threshold (εM ) 0.05
number of Monte Carlo runs (NMC) 100

Ts = 1 s. The target position at time t is generated using the
following mobility model:

xt =

{
l2t+η , for 1 ≤ t ≤ NT /2 + 1,
l2(Nc−1−t)+η , for NT /2 + 2 ≤ t ≤ NT

, (25)

where η is a random integer between −1 and 1 (i.e., η ∼
Unif{−1, 0, 1}), which adds uncertainty to the mobility of the
target. This model assumes that the target is moving forward
through the tunnel during the first half of the time, and then
going backward until the end of the period. Recall that this
model is not known to our algorithm, but the target’s velocity
is measured by the IMU.

We set the remaining parameters for the measurement noise
as follows: PNLOS = 0.17, POBS = 0.03, and σu = 0.5
m/s. The measurements are generated using these models,
except in the NLOS case, in which we pick a randomly-
chosen sample from the ray-tracing database. To take into
account the cell size, we set the quantization noise parameter
to D = 5 m. Moreover, the sensing radius was set to dTH = 30
m, the maximum distance error to Dmax = dTH = 30 m,
the parameter for kNN estimation to k = 2, and the belief
threshold to εM = 0.05. All results were averaged over at
least NMC = 100 Monte Carlo runs. In each run, we generated
different observations, target tracks and sensor positions.

All parameters, summarized in Table II, were used unless
otherwise stated in the following text.

C. Performance Analysis

Our goal is to analyze the accuracy of the proposed SLAT
and compare it with corresponding tracking and localization
algorithms (defined in Section III-B). The target’s (sensor’s)
position error is defined as the Euclidean distance between
the position of the true and the estimated cell of the target
(sensor).

We first analyze the root-mean-square error (RMSE) as
a function of time, as shown in Fig. 5. Regarding the
estimates of the target positions (Fig. 5a), SLAT provides
the best performance, followed by tracking, and localization
which provides the worst performance. The difference between
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Fig. 5: RMSE as a function of time for (a) the target’s position error, and (b) the sensors’ position error. For the sensors, there is an additional averaging over
all sensors’ position errors.
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Fig. 6: CDF of (a) the target’s position error, and (b) the sensors’ position error.

tracking and localization is caused by information from the
IMU. The SLAT performs better than tracking because the
target uses the information from improved sensors’ PMFs,
while only the information from initial sensors’ PMFs in
the tracking algorithm. We also note that the performance of
all algorithms is the worst when the target is close to the
tunnel edges (t = 1, 21, 22, 40). This behavior is caused by
the small number of the sensors in proximity of the target.
Regarding the estimates of the sensors’ positions (Fig. 5b), the
SLAT consistently improves their estimates comparing with
localization/tracking which do not update the sensors’ PMFs.
This can be explained by the fact that the state of the same
variable (in contrast to tracking) is estimated in each time
slot. However, the RMSE will not converge to zero because
the NLOS measurement model is not fully consistent with the
measurements (see Fig. 4).

To draw more precise conclusions, we analyze the cumu-
lative distribution function (CDF)8 of the target’s and the
sensors’ position error in Fig. 6. We can see in Fig. 6a
that the localization, tracking and SLAT algorithms correctly
estimate the target’s cell in about 42%, 46%, and 53% of
the considered tests, respectively. Regarding the sensor posi-
tion estimates (Fig. 6b), the localization/tracking algorithms
correctly estimate the sensors’ cells in only 18% of the
tests, while SLAT does so in about 45% of the tests. More
importantly, the 95th percentile error of the SLAT (for both
the sensors’ and target’s RMSE) is at most the half of the
corresponding localization/tracking algorithms. Therefore, we
can conclude that SLAT outperforms tracking/localization in
terms of both the target’s and the sensors’ error. In both cases,

8The CDF contains discrete steps due to the finite number of possible error
values.
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Fig. 7: RMSE as a function of: (a), (d) sensing radius, (b), (e) number of sensors, and (c), (f) standard deviation of the sensors position. Plots with RMSE
of the target’s position error are shown in the first row, while plots with RMSE of the sensors’ positions error are shown in the second row.

SLAT is consistently (at any percentile), better than the other
two algorithms. It is worth noting that these conclusions are
consistent with our previous results [1] based on models from
the CANMET mine.

We now analyze the effect of the different parameters on
the performance. The results are shown in Fig. 7. We make
the following observations:
• Effect of varying the sensing radius (Figs. 7a and 7d):

Increasing the sensing radius consistently leads to lower
RMSE of the target position estimates (for any of the con-
sidered algorithms), and of the sensor position estimates
(only for SLAT). This behavior is expected since a higher
radius allows more sensors to perform measurements,
which are then used to update both the target’s and
the sensors’ positions. However, recall that the sensing
radius can be only increased up to a limit defined by the
maximum sensing threshold for which the measurement
model is valid. We also note that the difference between
the tracking and localization algorithms is decreasing
with an increasing sensing radius. This can be explained
by the fact that the IMU provides a smaller proportion
of the total information when more sensors provide
measurements.

• Effect of varying the number of sensors (Figs. 7b and 7e):
Increasing the number of deployed sensors will obviously
lead to better performance of all considered algorithms.
Thanks to the measurements from the IMU, the sensitivity

is not significant for the target position estimates of the
tracking and SLAT algorithms. Regarding the sensors’
SLAT estimates, the sensitivity is extremely low because
each sensor receives the same number of messages from
the target regardless of the number of sensors (see Fig. 2).
Nevertheless, these messages are more informative since
they are functions of improved target’s beliefs. Finally, we
can conclude that the SLAT algorithm can be used with a
lower density of deployed sensors than the corresponding
localization/tracking algorithms (e.g., if an RMSE of 3 m
is acceptable, we need 10 sensors in case of SLAT, 15
sensors in case of tracking, and 22 sensors in case of
localization). This is especially important if the sensors
are expensive.

• Effect of varying the standard deviation of the sensors’
positions (Figs. 7c Fig. 7f): In all analyzed cases, the
RMSE is nearly a linear function of σs. However, the
most important difference between the algorithms is the
slope of the curve, which is the lowest in case of SLAT
for both the sensor and the target position estimates. That
basically means that SLAT is the most useful in scenarios
in which the sensors are very imprecisely deployed, or if
most of the sensors drop far from their original positions
(which may happen in the aftermaths of accidents).

Finally, we analyze the robustness of the SLAT algorithm
against outliers in the distance measurements. Therefore, we
assume that the measured distance is contaminated with an
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Fig. 8: RMSE of the SLAT algorithm as a function of parameters of the contamination noise for (a) the target’s position error, and (b) the sensors’ position
error.

outlier do, with weight Po. In other words, the contaminated
measured distance is given by do,t,n = dt,n + no where no is
contamination noise distributed as:

no ∼ (1− Po)δ(no) + Poδ(no − do). (26)

Note that the presence of these outliers is unknown to the
SLAT algorithm, so it is not part of the model in (5). These
outliers may be caused by additional NLOS conditions, inter-
ference, or other sources of errors. According to the results,
shown in Fig. 8, we find the following: i) higher values of
Po and/or do would lead to increased RMSE, ii) small value
of Po would not lead to performance degradation regardless
of the value of do, iii) the sensor position estimates are less
sensitive to outliers than the target position estimates, and iv)
for Po > 0.4 and large values of do, the sensor position esti-
mates are worse than the corresponding tracking/localization
estimates, in which the RMSE is equal to 5.9 m (see Fig. 7e)
even in the presence of outliers. In principle, the algorithm is
very robust against outliers, especially for small weights Po,
and this is achieved thanks to the uniformly distributed tail in
the distribution of the measurement noise (see (6)). The unique
problem is that SLAT should not be used if these weights are
large, but this situation should not be expected in reality. If
the most of the links are contaminated with an outlier (this
situation can be detected by comparing tracking and SLAT), it
is necessary to perform re-calibration, as explained in Section
III-C.

D. Experimental Example

We consider a small part of the CANMET mine [6]
to test the performance of our algorithm. The tunnel is
divided into Nc = 14 (non-equal) cells, and in each of
them there is one sensor (i.e., Ns = Nc). The sensors’
priors are given by pn,0(zn,0) = N (zn,0; ln,ΣS) where ln
(n = 1, . . . , Ns) is the expected location of the sensors, and
ΣS = diag(25 m2, 25 m2, 0 ). There are NT = 30 time slots,

the sampling interval is Ts = 1 s, and the quantization noise
parameter is D = 6 m. Taking the results from [6], the
measurement noise follows a Gaussian distribution for LOS,
and a Weibull distribution for NLOS. More details about the
considered scenario, and all other parameters, are available in
[1].

We analyze the CDF of the target’s and the sensors’ position
error, shown in Fig. 9. As we can see, SLAT is consistently (at
any percentile) more accurate than corresponding tracking and
localization algorithms, which is consistent with our results
based on ray-tracing (Fig. 6). One minor difference is that
CDF is smoother than in Fig. 6, which is caused by variable
cell sizes.

E. Other solutions in literature

Although not for the same type of the environment, there
are other solutions in literature that try to address a similar
problem. They are mainly based on fingerprinting techniques
[8], [37], [38], and SLAT algorithms over continuous space
[39]–[41]. In general, fingerprinting is able to outperform our
proposed SLAT method, assuming that enough fingerprints
are available. However, this approach would require an
exhaustive calibration that sometimes may be infeasible. An
additional problem of fingerprinting is that sensors may fall
from the walls during the training phase (which have to be
repeated very frequently), making a subset of the fingerprints
invalid. Regarding other SLAT algorithms, to the best of
our knowledge, none of them are adapted to non-Gaussian
measurement models and for confined areas. For example, the
SLAT methods in [39]–[41] provide the posterior in Gaussian
form, and use an unrestricted continuous space. Consequently,
they would either fail in the presence of high levels of NLOS
bias or provide invalid estimates (e.g., behind the walls).
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Fig. 9: CDF of (a) the target’s position error, and (b) the sensors’ position error. The results are based on models from the CANMET mine.

V. CONCLUSIONS AND FUTURE WORK

We presented a novel approach to target tracking in confined
environments in the presence of uncertain sensors positions. It
is based on a SLAT-BP algorithm, which can simultaneously,
and in real-time, refine the sensors’ positions and track the
target. This algorithm can: i) efficiently solve high-dimensional
problems, ii) handle all non-Gaussian uncertainties, and iii)
provide only valid position estimates thanks to the use of cells
with predefined positions. According to our simulation results,
both the sensor and the target position estimates are improved
even after a very short tracking period. Moreover, SLAT-BP
can be used with a very low density of deployed sensors, and
can keep performing well even if most of the sensors drop far
from their original position. Finally, the algorithm is also very
robust against outliers as long as they appear with reasonable
probabilities.

By no means the study in this paper provides the solutions
for all problems in confined environments. There remain
many open directions for future work. First, it would be
useful to provide a method that learns and adapts the ranging
distribution online. As a result, the SLAT algorithm can be re-
used for a wide variety of environments. Second, a distributed
implementation of the SLAT algorithm, in which the sensors
estimate the target’s position by cooperating only with the
neighboring sensors, may be useful to increase the scalability
and robustness. Finally, cooperative infrastructure-free self-
localization algorithm would be of high interest for search-
and-rescue operations.
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