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Abstract

Cloud computing has gained popularity due to the growth of internet and the number of
devices. Although outsourcing computation tasks to the remote cloud come with great
convenience, there are increasing concerns regarding data privacy and computation in-
tegrity since the cloud providers are external third parties. Verifiable computation (VC)
is a mechanism to let the client verify the computation result returned by the cloud as
an integrity guarantee, which can be widely applied in various scenarios of computation
outsourcing. In this thesis work we focus specifically on the setting of biometric au-
thentication systems, where a user is granted access to some service based on biometric
templates matching. It is very important to preserve the privacy of these templates as
they contain many private information. Privacy-preserving can be achieved by homomor-
phic encryption, where the computation server only stores and performs computations
on encrypted templates. Yasuda et al. proposed a biometric authentication scheme
based on such mechanism [3]. However, a template recovery attack was discovered in
the scheme as a result of malicious computation server and lack of integrity check [4].

The goal of this theory-oriented thesis is to choose a suitable VC scheme and inte-
grate it into the biometric authentication scheme by Yasuda et al. in order to counter
the aforementioned attack. The outcome is a new scheme BVC that allows the client to
verify the correctness of the result returned by the computation server while preserving
the authentication functionalities and templates privacy. We provided a general scheme
description, a protocol description showing the interaction of different parties, and more
importantly the actual construction of BVC with security and correctness analyses. In
addition, we reflected on the template recovery attack and showed that the order combin-
ing a VC and homomorphic encryption is very critical. We presented an attack algorithm
for malicious cloud to comprise the privacy of the computation outcome if the order is
done in a wrong way.
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1
Introduction

1.1 Motivation

N
owadays the rapid growth of internet has resulted in changes in the working and
living patterns of a great number of people. A clear trend is that more and more
tasks are connected by networks of various sizes and among them internet is the

largest and most powerful one. If we look back to ten, twenty years ago, the number
of digital devices per person was limited and the access to the internet was way less
convenient and slower. In consequence, most commonly computation tasks were accom-
plished locally. To increase computing power or storage space, updating hardware would
be the most realistic approach. However, today there are many blooming web services
and applications covering areas of office-ware, education, finance, public/personal health,
entertainment, environment, etc. For example, we have a private user Bob, who can now
store all his photos in a remote file hosting server (such as Dropbox) and access them
readily from his laptop, mobile phone and tablet as long as there is internet connection.
Another example is web-based office software (such as Google Docs) which allows Bob
to collaborate with other users in editing a document in real time.

The examples mentioned above provided us with a glimpse of the “cloud” technology,
which has become a popular term not only for computer scientists but also private inter-
net users. Essentially, cloud computing indicates an internet-based computing paradigm
which allows private users or organizations to outsource services, data storage or soft-
ware to a remote server [1] (a more detailed definition can be found in Chapter 2). This
infrastructure enables devices with limited computational power, e.g. mobile phones, to
off-load expensive data processing to a remote server by a “pay-per-use” manner using
the shared resources, and hence achieve flexibility, scalability and cost-efficiency.

However, The cloud model also raises privacy and security concerns as the remote
servers are in essence external third parties. If Bob is outsourcing private data to a
remote server such as his health data recorded daily from his smart watch, he definitely
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CHAPTER 1. INTRODUCTION

will not want the cloud to disclose this information or misuse it in anyway. Moreover, if
some calculation is required (e.g. average blood pressure of a year), Bob might want to
be sure the result returned is actually correct and trustworthy.

Regarding the security aspect of cloud computing, two significant challenges are how
to guarantee data/computation integrity and privacy. The former property integrity
addresses the correctness of the computation. Given that the external servers can be
malicious, wrong computation results could be returned for the incentive of e.g. saving
computational power or in a worse case to initiate some specific attacks. The clients will
therefore need some mechanisms to verify the correctness of the delegated computations
on the outsourced data. One relevant mechanism to achieve this requirement is verifiable
computation (described more in Chapter 2). The second property, privacy, addresses
the confidentiality issue where the clients may want to hide the sensitive data through
encryption and under certain circumstances even hide the computational functions from
the server in order to preserve privacy.

Now we shift our focus to a different area of security: user authentication, which is
seen as the “primary line of defence” in the context of computer security [28]. In essence
this is the step when a user can confirm his or her claimed identity. Password-based
authentication is a widely used approach by mainstream web service and organizations
where the client needs to provide both an ID and a secret pass phrase in order to login
or be granted certain authorities. A common risk associated with this approach is the
password being too simple and thus easily guessed or cracked as it is subject to brute
force attack. On the other hand, long and complex passwords are cumbersome to be
remembered and deemed inconvenient for certain user groups.

An alternative approach for user authentication is biometric authentication that a
user is authenticated through his or her unique phisical characteristic, such as finger
prints or retinal pattern. An example flow goes as the following: the user Bob first regis-
ters his fingerprint in the database. Then upon authentication, he provides his identity
and a fresh fingerprint template, which shall be compared with the reference template
stored in the database. If the similarity passes a threshold level, the authentication is
successful. A more detailed description of biometric authentication systems can be found
in Chapter 3.

Secure storage of the reference template is a key concern in any biometric authenti-
cation system [2]. Due to the irrevocable nature, leaked templates can cause even more
serious consequences compared to cracked passwords.

Now we relate biometric authentication systems back to cloud computing. In order
to benefit from the flexibility and other conveniences, the database that stores biometric
templates as well as the component responsible for templates comparision can also be
outsourced to a cloud service provider. We need to revisit the two security challenges:
integrity and privacy. One way to preserve privacy is to encrypt the stored templates
[3]. Nevertheless a template recovery attack has been proven possible [4] even under the
encryption technique. The main reason is the lack of integrity check, where the malicious
entities in the biometric authentication system are capable to deviate from the protocol
and perform incorrect computations. In this special setting integrity is a more trivial
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CHAPTER 1. INTRODUCTION

property compared to data privacy. The direct result is the leak of the stored templates.

1.2 Aim

We have argued in the motivation why it is crucial to preserve both integrity and privacy
in a biometric authentication system. The aim for the thesis work is to integrate a
verifiable computation scheme with a chosen privacy-preserving biometric authentication
scheme [3]. The new scheme should maintain the privacy-preserving property of the
original protocol and add integrity check for malicious computing entities. The main
contribution is that it counters the template recovery attack discovered by Abidin and
Mitrokotsa [4].

Another goal of the work is to reflect on the bit-flipping attack [4] for privacy-
preserving biometric authentication and study if a similar attack can be exploited in
cloud computing generally. The attack should demonstrate that encryption and verifi-
able computation cannot be simply combined in a näıve approach.

1.3 Scope and limitations

This thesis work focuses on the theory study. The outcome shall include a generic scheme,
a protocol, and the scheme construction with appropriate correctness and scrutiny anal-
ysis. The new scheme is designed specifically for the Yasuda biometric authentication
scheme [3] to counter a specific attack.

Therefore, implementations or any actual prototyping are not in the scope of the
thesis. The new scheme in combining the explicitly chosen VC scheme and homomorphic
encryption might be extended to be applied on a more generic level, e.g., covering a wider
class of VC schemes and homomorphic encryption schemes.

1.4 Notations

Some common mathematical notations used through out this report are listed below:

• Z is the ring of integers. Zp = Z/pZ and Zd = Z/dZ are respectively rings of
integers modulo p and rings of integers modulo d.

• The set of n-dimensional vectors with components in Zp is donated by Znp .

• For two integers x and d, [x]d denotes the reduction of x modulo d in the range of
[−d/2,d/2].

• Vectors are denoted with bold letters. For example, σ denotes a vector of tags
and σ denotes one single tag. Moreover, the i-th component of a vector v ∈ Znp is
referred to as vi ∈ Zp.

• x $←− X denotes selecting x uniformly at random from the range X.
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CHAPTER 1. INTRODUCTION

1.5 Thesis structure

The report is organized as follows. Chapter 2 describes the background and related work
of cloud computing and verifiable computation. Chapter 3 presents the notions and re-
lated work of privacy-preserving biometric authentication, where we focus on one specific
scheme by Yasuda et al. [3] and one attack detected in this scheme. Chapter 4 describes
some mathematical tools that will be used in the scheme construction. In chapter 5 we
present the results of the thesis: a new scheme combining verifiable computation with
the biometric authentication protocol [3]. We present in turns the generic scheme, the
protocol execution and the detailed construction. Moreover, we show a flawed approach
combining verifiable computation and privacy-preserving in a näıve way. Then we wrap
up chapter 4 with a discussion. Last but not least, chapter 6 concludes this thesis and
outlines some future work directions.
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2
Verifiable computation

V
erifiable computation (VC) is a mechanism that enables clients to outsource
the computation of certain functions to remote servers and gives the possibility
to check the operations performed by the servers. This chapter introduces the

background of verifiable computation, some formal definitions and current main solu-
tions.

2.1 Background

2.1.1 An overview of cloud computing

Nowadays there is a climbing trend to deliver hosted services over the internet rather than
isolating data storage and processing on a local device. The word “cloud computing” is
growing popularity rapidly, even among non-computer specialists. A formal definition of
cloud computing is that it is a model that enables ubiquitous on-demand network access
to a shared pool of configurable computing resources (including storage, processing,
memory and network bandwidth) which can be conveniently provided and released with
low management effort [5]. It is a promising and adaptive paradigm that grows its
influence on both large scale business and private users.

The cloud model is composed of three different service models, including Software as
a Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS)
[5]. The capability provided to the client increases in the aforementioned order. In
SaaS, the applications are owned and run by the cloud service provider and can be
accessible from the devices owned by the client. PaaS allows the client to deploy self-
created applications onto the cloud infrastructure and configure the environment for the
hosted application. Finally, IaaS grants the highest capability that the client could even
manage the operating systems, the environment for arbitrary software and probably
selected network components (e.g. firewall) [5].
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CHAPTER 2. VERIFIABLE COMPUTATION

Besides, the cloud model can be categorized into four deployment models: private,
community, public and hybrid. Private cloud is provided exclusively to a single orga-
nization. Community cloud is provisioned for a certain community or different parties
sharing similar concerns. Public cloud, as the name suggests, is provided open to the
public. Lastly, hybrid cloud could be a combination of distinct cloud infrastructures.

Cloud computing has a list of essential characteristics. Rather than making invest-
ments in purchasing new hardware and managing all the data storage and computation
in-house, the client can purchase computation power in desired amount from a cloud ser-
vice provider (SP). Thus the client is greatly relieved from the effort of hardware/software
infrastructure maintenance. Moreover, the size of the client platform (which could be
workstations, PC, laptops, mobile phones, tablets, wearable devices etc.) is no longer
a constrain for the service it can provide since the heavy data storage and complex
computation is outsourced to much more powerful machines. This is very useful as
nowadays the amount of digital devices is increasing dramatically and the trend is that
the devices form a common network to promote information flow and knowledge sharing.
Lastly, the outsourcing capabilities are very dynamic. The computing resource can be
very elastically provided and released, which allows the client to cope better with the
rapidly scaling market demand. From a service provider’s point of view, the resource
can be managed in a “pool” manner and dynamically assigned and re-assigned to multi-
ple clients to suit their various levels of demands regardless the physical location of the
clients. Hardware maintenance can also be carried out in a centralized way.

Having mentioned some major advantages of cloud computing, this paradigm also
comes with risk. As the name “cloud” suggests, the SPs are complex “black boxes”
operating distantly from the client. Thus, it is usually more difficult to detect any
misconfigurations, corruptions in data storage and transition, and in worse situations
even malicious computations that intentionally bring harm to the interests of the clients.
The SPs do not always have the strongest incentive to provide integrity guarantee.
This raises the concern of the client: we need a mechanism to know that the cloud
is trustworthy and performing correct tasks. This is the motivation behind the area
verifiable computation.

2.1.2 Background notions

This section explains some cryptographic terms that will help the readers get a better
understand of the schemes/protocols to be described.

Public-key encryption

All the encryption in this thesis refer to public-key encryption, which is also called asym-
metric encryption. The algorithm requires two separate keys: one public key and one
private key, and encryption and decryption rely on different keys. If the goal to use
public-key encryption is to ensure confidentiality so that only the appointed receiver
can read the message, the plain text shall be encrypted with the receiver’s public key
and the cipher text shall be decrypted with the receiver’s secret key. This scenario is
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CHAPTER 2. VERIFIABLE COMPUTATION

the most relevant one to the thesis. In addition, public-key encryption is also the back-
bone of digital signature (private signing key, public verification key), which guarantees
authenticity of the message that the sender cannot deny having sent the message.

Public-key encryption is based on hard to solve mathematical problems such as factor-
ization of large integers or computing a discrete logarithm in a large group [6]. It should
be computationally infeasible for an adversary to determine the private key knowing the
public key, or to recover the plaintext knowing the public key and the corresponding
ciphertext [7].

Homomorphic encryption

Homomorphic encryption is a type of encryption schemes that allows computations to
be performed on cipher text. In normal encryption scheme, if the receiver wants to
process the message, he or she will need to decrypt the data first. However, this leads
to privacy concern, especially in cloud computing where the server is an external party
from which the client may wish to hide the sensitive data. For example, homomorphic
encryption will allow a cloud service provider to process financial transactions directly
on the cipher text level and return the result in encrypted format too. We provide a
more formal definition for homomorphic encryption in below [6].

Definition 1 (Homomorphic encryption). Let M denote the space of plantexts and C
denote the space of ciphertexts and there is operator �. An encryption scheme is said
to be homomorphic if for a given key k the encryption function E satisfies:

∀m1,m2 ∈M, E(m1 �m2)← E(m1)� E(m2),

where ← means directly computed from without transitional decryption. Moreover, if the
operation is “addition”, we say the scheme is additively homomorphic. Similarly, if the
operation is “multiplication”, we say the scheme is multiplicatively homomorphic.

Somewhat/Fully homomorphic encryption (SHE, FHE)

A homomorphic encryption scheme can also be categorized into somewhat homomorphic
or fully homomorphic based on the range of functions it can be applied to. Somwhat
homomorphic encryption schemes (SHE) only support a limited number of homomorphic
operations, e.g., only additive homomorphism, or multiplication up till a certain degree.
On the other hand, fully homomorphic encryption (FHE) does not have any constraint
regarding the circuit depth and can evaluate arbitrary functions. This property should
make FHE a powerful tool in constructing various privacy-preserving systems. However,
in reality FHE comes with a heavy overhead and its poor practicality becomes its draw-
back. With regard to the efficiency aspect, SHE, if used appropriately, can be much
faster and more compact than FHE [8].

7



CHAPTER 2. VERIFIABLE COMPUTATION

Verifiable computation in a nutshell

The notion of verifiable computation is first defined and formalized by Gennaro et al. [9].
A verifiable computation scheme (VC) on a general level is a two-party protocol between
a client and a server. The client chooses a function and delegate the function with the
corresponding inputs to the server. The server is required to evaluate the function based
on the inputs and respond with an output, which in the next step can be verified by the
client to ensure it is indeed the correct result of the given function and inputs.

Verifiable computation is the core topic of this chapter. In below we present the
related work in this area on a more detailed level and then show one specific scheme,
which will be used as a building backbone in our scheme construction in Chapter 5.

2.2 Related Work

2.2.1 Proof-based approaches

The theoretical community has vastly investigated in the topic of verification computa-
tion. One fundamental area is proof-based approaches. Namely, it involves two parties:
a prover and a verifier. The goal of the prover is to convince the verifier of some mathe-
matical assertions (called the proof ) [10]. On the other hand, the verifier should be able
to check the proof. The verification procedure is very crucial in defining a proof systems
[11]. Probabilistic proof systems are the most relevant in the area of verifiable com-
putation, which include e.g. interactive proofs (IPs) and probabilistic checkable proofs
(PCPs).

Figure 2.1 illustrates a theoretical framework where a verifier can check whether the
result y returned by the prover is correct for a computation p and specified input x.
The figure is a modified version from [10]. There are four important steps as marked
in the figure. Step(1) is to compile and express the computation p into a Boolean
circuit from a high-level language. In step(2), the prover performs the computation
and obtains a transcript, which is essentially an assignment of the input values to the
circuit. In step(3), the transcript is encoded to a larger string to assist the verifier in
issuing efficient querying/testing. In step (4) the verifier probabilistically send queries
regarding the encoded transcript and the actual structure of this step varies in different
protocols.

First there are interactive proofs (IPs). The verification procedures for IP systems
are randomized and interactive [12]. The proof is probablistic in nature. If the input
statement has length n, the proof might be faultily accepted with a small probability of
1/2n. On the other hand the legal correctness shall be approved by the verifier with a
comparatively much larger probability (1− 1/2n). Note that randomness is very crucial
in IPs. If the verifier is deterministic (e.g. ask predictable questions), the prover can
simply supply a pre-determined sequence of answers that known for sure the verifier will
be convinced about [11]. The second property interactivity implies that in order for
the verifier to efficiently verify the proof, the verifier must actively ask questions and
receive replies from the prover. So these protocols typically run in rounds. Goldwasser et
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CHAPTER 2. VERIFIABLE COMPUTATION

Figure 2.1: A theoretical framework for solving prove-based verifiable computations [10].

al. in [12] gave a computational complexity measurement and also proposed to classify
languages depending on the amount of additional information that must be released.
However, one drawback of IPs is that it demands a powerful prover (super-polynomial)
[9] which takes exponential-time and might be prohibitive [10]. Also it is not saving
much work for the verifier.

The work of IPs further on leads to the concept development of probabilistically
checkable proofs(PCPs), which is another crucial candidate in the probabilistic proof
systems. It works by the prover first preparing and committing to the complete content of
the encoded transcript serving as the proof. Then the verifier can choose specific locations
in the proof and only requests the value contained in these chosen locations. The prover is
expected to answer according to the pre-commited transcript [10]. However, PCPs suffer
from the impracticality that the proof could be too long and heavy for the verifier to
process [9]. To cope with this problem, Kllian proposed the usage of efficient arguments
[13]. An argument in this context means a computationally sound proof, in which the
prover is assumed to be computationally bounded. Thus the prover sends the verifier a
short commitment of the proof using a Merkle hash tree rather then the complete proof
content [9]. The prover will follow PCP theorem and opens up bits at the requested
places by the verifier. Applying PCP machinery, Goldwasser et al. in their influential
paper built an IP to verify polynomial-time computation in approximately linear time
[11]. In the same paper they also contributed on non-interative argument for a confined
class of functions.

While the early work depends on PCP, recent proof-based schemes rely on SNARKS
(Succinct non-interactive arguments of knowledge), where the length of the proof is
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greatly shortened im comparison to the length of the statement [14]. Considering the suc-
cinctness of the arguments, the verification step can be carried out efficiently. However,
SNARKS would require either the random oracle model or non standard, non-falsifiable
assumptions [15]. There have been systems implemented such as Pinocchio [16] and
ADSNARK [17] for verifiable computation based on SNARKS that demonstrates its
practicality.

2.2.2 FHE as a tool

In 2009 Gentry published his break-through work on the first plausible fully homomor-
phic encryption (FHE) scheme using lattice as the underlying tool [18]. The scheme
supports optional amount of addition and multiplication operations on the ciphertext so
that it is possible to process any arbitrary functions. This leads to new constructions
for verifiable computation based on FHE.

Gennaro et al. proposed a non-interactive scheme for verifying arbitrary functions
based on Yao’s garbled circuit and FHE [9]. The whole scheme comprises three stages:
pre-processing, input preparation and output computation/verification. The client first
garbles the circuit using Yao’s construction in the preprocessing stage. After that the
client will reveal the random labels affiliated with the inputs x to the worker in input-
preparation. The server will then calculate accordingly the output labels (adequately
long and random), which allows the client to reconstruct the function f and perform
verification check. The role of FHE is to allow the same garbled circuit to be safely reused
for different inputs x for the same function. Rather than revealing the input labels in
plain text, the labels are encrypted with a FHE scheme. Thanks to the homomorphic
properties, the server performs the calculation on the cipher text instead and returns the
output labels in encrypted format, which needs to be decrypted by the client to construct
the function. Note that a new public key will be generated for different inputs so that
the server does not learn any information from the input labels in the case of function-
reuse. Regarding efficiency, this scheme uses “amortized notion of complexity” which
indicates that the preprocessing is a one-time offline stage which will take time similar
to computing the function from scratch. The important requirement is that the next two
online stages (which will be repeated ) for the client should be more efficient (verified in
O(m·poly(λ)) time where m is the output bit-length and λ the security parameter). This
efficiency requirement lets clients with constrained computation power verifies efficiently
the result returned by the powerful server in an amortized sense. Furthermore, another
great contribution of this paper is that it first defines and formalizes the notion of
Verifiable Computation [9].

Following the work by Gennaro et al. [9], Chung et al. designed two constructions
that improved the verifiable computation scheme based on FHE [19]. The first con-
struction eradicates the large public key from Gennaro et al. scheme. Their second
construction improves the efficiency of the offline stage for the client at the price of
having a fixed-size 4 message interaction between the client and the server.

Nevertheless, FHE-based schemes are very expensive due to the complexity of FHE
[10]. This line of work is more theoretical then practical.

10
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2.2.3 Homomorphic authenticators

Another direction of investigation is to extend message authentication primitives with ho-
momorphic properties. A primitive is that every data item in the input space is attached
with an authenticator. Then for every operation in a computation taking authenticated
data as inputs will produce the corresponding output and a new valid authenticator.
There are two types of homomorphic authenticators: Homomorphic MACs are adopted
in a symmetric setting and homomorphic signatures are used in an asymmetric set-
ting. Essentially the former supports private verification and the latter supports public
verification [20].

Gennaro and Wichs introduced homomorphic MACs and provided a fully homomor-
phic construction that supports arbitrary computation [20]. In this scheme a short tag,
independent of the authenticated input, can be generated to authenticate the result of
the computation over previously authenticated data. The client can use this tag to ver-
ify the correctness of the claimed output of the computation returned by the untrusted
server using a secret key. There is no need for the client to keep track of the underlying
data (which is outsourced to the “cloud”). Furthermore, this scheme is proven secure in a
weaker model where the adversaries are not allowed to issue verification queries. Another
homomorphic MACs scheme was later proposed by Catalano and Fiore which supports
a limited set of functions (i.e., polynomially-bounded arithmetic circuits) rather than
arbitrary functions. [21]. However, as it is not dependent on FHE, this scheme is much
more efficient and straightforward to implement and it can tolerate verification queries.
Then Backes et al. further built on the scheme and introduced a first practical realiza-
tion of homomorphic MACs with efficient verification [15], which works for quadratic
polynomial over a large number of polynomials. Namely, the verification should take
less time to process rather than being proportional to the description of the function.
The efficiency is achieved in “amortized closed-form” by having an offline stage (pre-
processing) and an online stage. The online stage is when the same function is evaluated
on different inputs and it takes constant time. This scheme also introduces the notion of
multi-labels that consist of a dataset identifier and an input identifier, which is a crucial
component in realizing the amortized closed-form efficiency.

Homomorphic signatures were first proposed by Johnson et al. in 2002 [22]. It is the
public-key variant of the homomorphic authenticators, which means that the verification
step requires only the public key and thus allows public verification. There have been
many homomorphic signature schemes proposed for linear functions both in the random
oracle model and in the standard model [15]. But linear functions are very restric-
tive in verifiable computation. The first construction targeting non-linear multivariant
polynomials of constant degree was proposed by Boneh and Freeman [23]. Then Cata-
lano proposed an alternative scheme that improved Boneh and Freeman’s scheme from
three perspectives [14]: not relying on the random oracle assumption, proven secure in
a stronger adaptive model and achieves efficient verification in an amortized sense(same
primitive as in [15] described in the previous paragraph).
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2.2.4 Privacy-preserving verifiable computations

Fiore et al. pointed out that in the state-of-the art-research of verifiable computation,
there is very few work that addresses on data privacy in a restricted model [24]. In many
schemes the data is exposed in the clear.

The protocol in [9] was claimed to achieve input/output privacy since it is based on
FHE, but it is not secure against verification queries, i.e., if the malicious cloud learns
whether the verifier accepts/rejects the result, it can obtain information of the input.

One other scheme that addresses both integrity and privacy was proposed in [25],
which uses a functional encryption (FE) scheme to construct a VC scheme. It claims
that the scheme operates on encrypted data as inputs and the computation is publicly
verifiable. Nevertheless, Fiore et al. pointed out that the security motivation in [25] is
not reinforced with any formal definition or proof. Furthermore, They found a number
of other issues of the scheme such as unclear adaptivity and inherently bit-based [24].

Meanwhile, Fiore et al. proposed a generic protocol of VC based on FHE. The idea is
to encrypt the input x with FHE and the VC scheme is run on the encrypted function [24].
Thus, the acceptance bit is determined before the outcome is decrypted. Besides the
theoretical contribution, in their work they also proposed practical constructions suitable
for a wide class of functions based on somewhat homomorphic encryption, in specific a
simplified version of the BGV encryption [26]. For integrity, homomorphic MAC is
used. One other key contribution of the paper is homomorphic hash functions, which
compresses a multi-component BGV ciphertex into a single component in a predefined
field. This improvement boots the performance of the scheme to a great extent by
avoiding a 104 overhead [24].

2.2.5 Other approaches

The security community also designed alternative solutions to achieve different aims as
the above mentioned ones. One branch is audit-based solutions. In this context, the
client is required to check a small portion of the computation returned by the remote
server. Belenkiy et al. [27] considered a scenario with one client (the boss) distributing
computational tasks to a number of workers (the contracters), some of which might be
malicious. The main contribution in [27] is a credit system that sets incentives/fines for
rational/malicious contractors. the strategies analyzed are random double-checking by
the boss and tasks replication and deployment to multiple contractors. However, the
audit-based solutions usually require the clients to redo some parts of the calculations,
which is not very feasible for resource-constrained clients [9]. Moreover, audit-based
solutions could focus on the scenario with a pool of contributors (multi-party protocols)
and the accuracy of the cloud depends on having a threshold value for the fraction of
honest contractors. This fault tolerance technique, which is similar to the “Byzantine
approach”, is not suitable when the remote server is viewed as one whole entity.

12
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2.3 A homomorphic MAC-based VC scheme

Out of all the approaches to realize verifiable computation, we present here the general
scheme by Backes et al. [15] based on homomorphic MAC, one of the authenticators men-
tioned in the related work. This scheme will be the fundamental backbone of our scheme
construction in chapter 5. Note that the original name of the scheme is HomMAC−ML,
which is a shortened for“homomorphic message authentication codes for multi-label pro-
grams”. In this thesis report we rename the scheme as VC for the purpose of simplicity
and consistency in describing the new scheme.

The VC scheme [15] comprises a number of algorithms: VC = (KeyGen,Auth,Ver,Eval).
We first explain some specific terms used in the scheme (which shall be re-used in the
new scheme construction). Then we describe each of the algorithms more precisely.

Multi-label

Multi-labels essentially are useful identifiers for the variables. The term“multi-” indicates
there are more than one components in one label. In the particular context, a multi-
label is defined in two parts as L = (∆, τ), where ∆ is a dataset identifier and τ is an
input identifier. The splitting is useful in identifying both the concrete data items and
the variable inputs of a programs [15]. We need a complete pair (∆, τ) to identify a
particular input item. Thus we say a message m can be authenticated with respect to a
multi-label L. The label is unique for each message m. In other words, no two different
messages m1,m2 can share the same multi-label.

We provide one example of multi-labels applied in practice. Suppose we are recording
the hourly temperature of a city for a whole year. To identify a specific entry such as
“The temperature at 15:00 on Jan 1, 2015”, we can use a multi-label L = (∆, τ) where
∆ = “Jan 1, 2015” and τ = “15:00”. The label loses its uniqueness if any of the two parts
is missing.

Multi-label program

A Multi-label program is defined as P = ((f, τ1, . . . ,τn),∆), which is essentially a function
f :Mn →M defined on the rangeM that takes in n variables and a set of multi-labels.
Each variable is associated a multi-label. The labels in the same program all share the
same ∆, the dataset identifier, and they vary in τ , the input identifier. Thus the i-th
variable in f has the label structure Li = (∆, τi).

An example in practice could be P = ((favg, τ1, . . . ,τ24),∆ where favg calculates the
average hourly temperature of a certain date. The date is specified as ∆ (e.g. “Jan 1,
2015”) and the τs represent every sharp hour.

The general scheme

Finally we present the algorithms in the VC = (KeyGen,Auth,Ver,Eval) scheme. Note
that here we only present the general schemes focusing on the input and output of each
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algorithm. In chapter 5 we show how the actual construction of VC contributes in build-
ing the new scheme (integrated with privacy-preserving biometric authentication). The
details of the complete construction of VC by itself can be found in the original paper [15].

KeyGen(λ)→ (ek,sk) : Given the security parameter λ, this algorithm randomly gen-
erates a secret sk and a public evaluation key ek.

Auth(sk, L,m) → σ : Given the secret key sk, a multi-label L = (∆, τ) and a message
m in the valid input range, this algorithm should output an authentication tag σ .

Ver(sk,P∆,m, σ)→ acc: Given the secret key sk, a multi-label program
P = ((f, τ1, . . . ,τn),∆), a message m in the valid input range and an authentication tag
σ, this verification algorithm returns an acceptance bit acc: “0” for rejection and “1” for
acceptance.

Eval (ek, f,σ)→ σ: Given the public evaluation key ek, a circuit f and a vector of tags
σ = (σ1, . . . , σn), this evaluation algorithm produces a new tag σ.

The scheme satisfies a number of properties [15]. First of all, authentication/evaluation
correctness requires that the tag σ produced by the Auth or Eval algorithms are legiti-
mate, with regard to a message m with its multi-label L, or in the later case a circuit f
and a vector of authentication tags σ . In other words, if this tag σ is tested in a V er
algorithm with the corresponding m and multi-label program P, the result should always
be “accept”. The next property is succinctness, which specifies that the size of the tag
σ is bounded in the security parameter and does not depend on the number of variables
n. Finally the scheme has to follow the notion of security, where the authentication tags
should be unforgeable for any PPT Adversary.
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3
Biometric authentication

T
his chapter introduces the reader to the area of biometric authentication with
the focus on the privacy-preserving property. In the background we provide an
overview to this area, present some definitions to better readers understanding

and provide a summary of some existing biometric authentication protocols in the cur-
rent state of research. Finally we focus on one specific scheme and present an attack
discovered in this scheme, which is countered in the result section of this thesis.

3.1 Background

Biometric authentication is a way to identify and verify an individual user by examining
his or her physical characteristics. Nowadays we see this technology being implemented
more and more widely into personal devices. One example is the fingerprint login func-
tionality which is fairly common in touch screen mobile devices. Besides finger prints,
other typical traits used in biometric authentication include facial characteristics, hand
geometry, retina/iris patterns and voices recognition [28]. The greatest advantage of
biometric authentication is that the users do not have to provide extra passwords, which
increasingly become a target for attackers to steal or crack. Moreover, whilst short pass-
words are subject to brute force attack, remembering long and cumbersome passwords
is not very user-friendly. Biometric features are unforgeable and unforgettable and the
chances are extremely low that they are stolen.

The operation of a biometric authentication system on a generic level is described
below and illustrated in Figure 3.1. First the user who is going to be included in the
authorized group will be enrolled in the database. This step would require a user iden-
tifier and a sensor that captures the biometric characteristic. The output of the sensor
will be processed and digitalized into a numerical template and stored in a database.
Depends on the type of system, user authentication can be carried out in two ways:
identification and verification. In an identification system, the user only supplies fresh
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biometric data through a sensor with no extra information. The outcoming template
is compared against a set of entries in the database to check whether there is any suc-
cessful matching. In a verification system, the user uses the sensor to capture his or her
fresh biometric data and supplies an identifier (ID, PIN, etc). The system will extract a
feature template and compare it with the corresponding stored template in the database
for this specific user. The user is authenticated successfully if a match is found [28].
Note that we focus on the verification system type in this thesis. Essentially biometric
authentication is based on pattern recognition [28].

Figure 3.1: The general operation flow of a biometric authentication system.

One concern of biometric authentication is its accuracy. The biometric characteristics
are processed into a digital representation and the complexity of the physical traits
makes it impossible to find a perfect match [28]. The systems use different algorithms to
generate a “matching score” that will be compared against a threshold value to measure
the similarity between two templates quantitatively. Nevertheless, sensor noises, aging,
injuries and user training can all cause false matches or false non-matches. Thus it
is crucial to define an appropriate threshold value. In general, a high-security system
demands a very low false match rate. On the contrary, a forensic system will require low
false non-match rate to not miss any possible candidates.

Another concern of biometric systems is security and privacy of the biometric tem-
plates, which is a problem in focus in this thesis project. Leaked biometric templates,
essentially the stored reference data, can reveal sensitive information such as genetic
structure or special diseases. To make things worse, whilst compromised passwords can
be reset, compromised biometric templates can neither be revoked nor replaced due to
its inherent nature [3]. Hence protecting the stored templates and hiding them from
the server is a very crucial mechanism in preserving user privacy, especially when the
operation is outsourced to a cloud service provider.
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3.1.1 Background notations

This section explains some technical terms that will help the readers get a better under-
stand of the schemes/protocols to be described.

Authentication

User authentication is usually considered as the primary line of defence in system security,
resource management and access control [28]. In principle authentication can be further
divided into two sub-steps: presenting an identity and verifying the identity (binding
between the claimed identity and the actual entity).

There are three known means in authenticating an acclaimed identity regarding an
individual [28]. First, there is something the individual knows, which includes the most
common password-based authentication or answering pre-registered questions. Then
there is something the individual has (referred to as “token”), such as access cards, smart
cards or physical keys. Lastly, there is something the individual is, which biometric
authentication belongs to (e.g., fingerprint, retina, etc). Each of these means has its ad-
vantages and disadvantages. As mentioned earlier, passwords can be forgotten/cracked,
tokens can be stolen and biometric authenticators might suffer from high cost, privacy
and accuracy issues. While all these means can be used alone, a more common approach
is to combine two or more of them to obtain so-called multi-factor authentication to
compensate for the shortages of each method, and hence achieves better security.

Hamming distance

When comparing whether there is a match between a stored biometric template and
a fresh biometric template, it usually involves computing some sort of distance. The
Hamming distance is one very common metric used in this context (e.g., adopted by
the Yasuda scheme [3], which we will elaborate on in this thesis). The principle is to
measure the similarity of two equal-lengthed strings (or vectors) by counting how many
positions are different. In other words, the Hamming distance between a string A to a
string B is the minimum substitutions of bits in string A required to achieve A = B.
For example, the Hamming distance between A = 111000 and B = 110001 is 2 (flipping
the third bit and the last bit of A).

Besides Hamming distance, other types of straightforward distances in templates
comparison include e.g., the normalized Hamming distance and the Euclidean distance
[29].

3.2 Related work

3.2.1 Privacy-preserving Biometric Authentication

As we have described the severe impacts of leaked biometric templates, the privacy-
preserving property has been given very high priority in the current state of research
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of biometric authentication. In below we present several main approaches for privacy-
preserving biometric authentication protocol [3]:

Feature transformation

The essence of this approach is to hide the original biometric data by transforming the
data into a random representation in another domain. It usually requires a secret key
only known by the client or some sort of pass phrases. One typical example is the
cancelable biometrics technique, which was first proposed by Ratha et al. in [30]. This
technique relies on repeatable distortion of biometric signals following a chosen transform
method. Since every enrollment istance can follow different transform methods, this
technique achieves unlinkability, i.e., the templates cannot be associated to the right
clients. Further more, even if one transform variant is compromised, the transform
function will allow a new transform variant to be performed to “re-enroll” the client into
the system [30]. One crucial requirement is that the biometric transformation is always
a one-way function, so it is computationally hard to trace back and recover the original
biometric data from a distorted representation.

Another example of feature transformation approach is called BioHashing, which ap-
plies two-factor authentication by incorporating two elements: a psydorandom number
and the biometric data [31]. A BioCode is generated from feeding these two elements
into a one-way hashing function. The general mechanism works as follows: in the en-
rollment phase, the server stores the BioCode and the psydo-random number; in the
authentication phase, the server generates a fresh BioCode using the stored number and
the fresh biometric data provided upon authentication, which is compared against the
stored BioCode (e.g. by computing the Hamming distance) to determine if the authen-
tication is successful. In general, privacy-preserving realized by feature transformation
achieves ideal practicality performance-wise, but the security is questioned if the client
secret is compromised [3].

Biometric cryptosystems

This approach is based on secure sketch and error tolerance. Secure sketch in the context
of biometric authentication requires recovering a template b from any adequately-close
template b′ and some extra data D. Meanwhile, D is forbidden to disclose too much
information of the original template b [31]. The pioneer work of secure sketch was
proposed by Juels et al. in [32] named fuzzy commitment. This scheme uses error-
correcting codes and the application in biometric authentication system is as follows [31]:
in the enrollment phase, the client records her biometric b and the server computes and
stores the sketch D = c⊗ b as well as H(c), where c is a randomly chosen codeword and
H is a hash function; in the authentication phase, the client provides a fresh biometric
b′, the server computes and decodes c′ = D⊗b′, checks whether H(c) = H(c′) and makes
authentication judgement.

Another approach is called fuzzy vault [33], which is also based on secure sketch but
with a different mechanism. The secret value is “locked”by one party in the vault using a
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set of elements A from a public domain. Another party can only retrieve this secret and
“unlock” the vault with a set B of the same length as A and overlaps with A extensively
[33]. Juels et al. also pointed out in the paper that fuzzy vault is suitable in the setting
of biometric authentication as it provides resistance to a certain amount of errors/noises
as a result of signal processing.

Homomorphic encryption

This approach protects the biometric templates by cryptographic encryption techniques.
We have mentioned the definition of homomorphic encryption in Chapter 2 and we
provide a brief revision here: this property allows the similarity of two templates(stored
and fresh) to be compared in the encrypted formats using common metrics such as
Hamming distances [3]. Thus the original templates are never exposed in public. Only
the trusted parties who possess the secret key have the rights to decrypt the cipher text.

The performance/rfficiency of the biometric authentication systems are subject to
which specific homomorphic encryption method is applied (e.g., somewhat homomorphic
(SHE) or fully homomorphic(FHE)). The heavy overhead of the computation and the
size of the ciphertext are considered as the main issues in this approach [3]. This is also
the approach that we will focus on in this thesis work.

3.2.2 Outsourced Biometric Authentication

In the last section of the related work, we will focus on the keyword “outsourcing” in the
context of biometric authentication, which is the most relevant to the goal of this thesis
work. Sedenka et al. recently published a paper and proposed the first efficient privacy-
preserving protocols for outsourcable authentication using scaled Manhattan and scaled
Euclidean verifiers [34]. The outsourced authentication is visualized as two-parties: the
client holding a device, and the outsourced authentication server. The scenario Sedenka
et al. considered was malicious client and honest-but-curious authentication server.
Their construction is based on garbled circuit and additive homomorphic encryption. In
addition, they also evaluated the performance of the scheme by conducting experiments
with smartphones and demonstrated accuracy and usability of the protocol.

3.3 The Yasuda scheme

Now we shift our focus to one specific biometric authentication scheme which is relevant
to this thesis work. Yasuda et al. proposed an efficient scheme by computing the Ham-
ming distance with homomorphic encryption based on ideal lattices [3]. They adopted
somewhat homomorphic encryption to achieve faster computation, which was adapted
from the work by Gentry and Halevi [35]. Their main contributions comprise the pro-
posal of new packing methods to pack a feature vector into a single ciphertext rather
than running the encryption bit-by-bit, and the proposal of a new privacy-preserving
authentication protocol applying SHE. We will introduce the SHE construction and the
protocol in below.
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3.3.1 Construction

Now we present the algorithms in the construction SHE = (KeyGen,Enc,Dec). Here we
only show a brief version. In chapter 5 we will expand the explanation of each variable
and show how the actual construction of SHE contributes in building the new scheme
(integrated with verifiable computation). The details of the complete construction of
SHE and the details of ideal lattices can be found in the original paper [3].

KeyGen(λ)→ (pk,sk) : Given the security parameter λ, this algorithm randomly gener-
ates a secret sk and a public key pk for the homomorphic encryption. The keys returned
have the format pk = (d, r, n, s) ∈ Z4 and sk = ω ∈ Z. A valid key pair must obey the
following conditions: gcd(ω, s) = 1, gcd(ω, s) = 1, and rn ≡ −1 mod d [4].

Enc(m, pk)→ ct : This algorithm encrypts a message in the valid message space m ∈ Zs
with the public key pk = (d, r, n, s) and ouputs a ciphertext ct. we first need to generate
a “noise vector”, whose purpose is to introduce randomness and makes the encryption
scheme indeterministic. The random vector is chosen as u = (u0,u1, . . . ,un−1) with
ui ∈ {0,± 1}. ui has q probability being 0, (1− q)/2 probability being 1 and (1− q)/2
probability being -1. The corresponding cipher text of m is defined as

ct =

[
m+ s

n−1∑
i=0

uir
i

]
d

∈ Zd.

Dec(ct, sk) → m : This algorithm decrypts the ciphertext ct = Enc(m, pk) with the
secret key sk = ω and recovers the plaintext message m. The computation is:

m = [ctHD · ω]d · ω−1 mod s.

The packing methods

In the Yasuda scheme they assume the feature vectors are 2048-bit binary vectors. If a
vector is encrypted bit-by-bit, the resulting ciphertext will be very lengthy. Therefore,
the packing methods were proposed to pack the feature vector into one single ciphertext.
More specifically, the procedure transforms a binary vector into a polynomial bounded
by a ring and then the polynomial is encrypted. There are two types of packing methods
which are asymmetric in structure. In addition, in the protocol section we will describe
which type of packing methods shall be applied at which stage of the protocol run. The
two packing methods are defined as follows:

Definition 2 (packing methods vEnci). [3]

• Type 1. Given a binary vector A and the public key pk = (d, r, n, s), we let

F1 : A = (A0, . . . , A2047) 7→
2047∑
i=0

Aix
i ∈ R = Z[x]/(fn(x)). Then the type 1 packed

cipher text is computed as:
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ct(A) = vEnc1(A) = [F1(A)(r) + su1(r)]d =

[
2047∑
i=0

Air
i + su1(r)

]
d

∈ Zd.

• Type 2. Given a binary vector B and the public key pk = (d, r, n, s), we let

F2 : B = (B0, . . . , B2047) 7→ −
2047∑
i=0

Bix
n−i ∈ R = Z[x]/(fn(x)). Then the type 2

packed cipher text is computed as:

ct(B) = vEnc2(B) = [F2(B)(r) + su2(r)]d =

[
−

2047∑
i=0

Bir
n−i + su2(r)

]
d

∈ Zd.

Note that u1(x) and u2(x) denote noise polynomials as described in the encryption
scheme.

Secure Hamming distance computation

Yasuda et al. have proven that the two types of packing methods allow efficient compu-
tation of the secure Hamming distance. Here we describe in brief how the computation of
secure Hamming distance is performed. The whole proof can be referred in Proposition
2 in [3].

We let two vectors A = (A0, A1,..., An) ∈ Zn2 and B = (B0, B1,..., Bn) ∈ Zn2 represent
two biometric templates, each of length n. The Hamming distance between A and B in
plain text is:

HD(A,B) =
n−1∑
i=0

Ai ⊗Bi =
n−1∑
i=0

(Ai +Bi − 2AiBi) (3.1)

With the somewhat homomorphic encryption based on ideal lattices, the secure Ham-
ming distance is calculated as follows:

ctHD = C2 ∗ vEnc1(A) + C1 ∗ vEnc2(B) + (−2 ∗ vEnc1(A) ∗ vEnc2(B)) ∈ Zd (3.2)

C1 and C2 are two integers defined below and constructing them would require extracting
the value r and d from pk:

C1 :=

[
n−1∑
i=0

ri
]
d

and C2 := [−C1 + 2]d.

Note that if we decrypt ctHD with the proper secret key, we will obtain HD(A,B).

Secure inner product computation

The two packing methods can also lead to efficient computation of the inner product
between two templates. Again, we let two vectors A = (A0, A1,..., An) ∈ Zn2 and B =
(B0, B1,..., Bn) ∈ Zn2 represent two biometric templates, each of length n. The inner
product between A and B in plain text is:

P (A,B) =

n−1∑
i=0

AiBi (3.3)
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The encrypted inner product is:

ctP = vEnc1(A) · vEnc2(B). (3.4)

The complete proof of Equation 3.2 can be referred in Proposition 3 in [3].

3.3.2 The protocol

Besides the SHE construction, Yasuda et al. also proposed a biometric authentication
protocol employing the SHE scheme [3] that targets one-to-one authentication (with re-
spect to a specific userID). The protocol uses a distributed setting with three parties:
a client server C, a computation server CS attached to a database DB, and an authenti-
cation server AS. In addition, AS is assumed to be a trusted party that is responsible
for key generations. The protocol is divided into three phrases:

Setup Phase: The authentication server AS runs KeyGen(λ) and generates the public
key pk and the secret key sk of the somewhat homomorphic encryption (SHE) scheme.
AS keeps the sk to itself and distributes pk to both the client server C and the compu-
tation server CS.

Enrollment Phase.

1. Upon client registration, the client server C generates a 2048-bit feature vector
A from the client’s biometric data (e.g., fingerprints), runs Enc(A, pk) using the
type 1 packing method (see Definition 2), and outputs the encrypted feature vector
vEnc1(A).

2. The computation server CS stores the tuple (ID, vEnc1(A)) in the database DB.
This tuple serves as the reference biometric template for the specific client with
ID.

Authentication Phase.

1. The client provides fresh biometric data and the ID upon an authentication request,
from which The client server C generates a feature vector B of 2048 bit. C runs
Enc(B, pk) and encrypts the feature vector B with the type 2 packing method
(note that it is asymmetric to the type 1 packing method, see Definition 2) and
outputs vEnc2(B). Then C sends (ID, vEnc2(B)) to the computation server CS.

2. The computation server CS extracts the tuple (ID, vEnc1(A)) from the database
DB corresponding to the client to be authenticated (use ID as the search key). It
calculates the encrypted Hamming distance ctHD and sends ctHD to the authenti-
cation server AS.

3. The authentication server decrypts ctHD and retrieves the actual Hamming distance
HD(A,B) = Dec(ctHD, sk). Finally, the server AS returns ‘AUTHENTICATION
SUCCESS’ ifHD(A,B) ≤ κ or ‘AUTHENTICATION FAILURE’ ifHD(A,B) > κ,
where κ is a predefined threshold.
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3.4 A template recovery attack

Abidin and Mitrokots [4] discovered a simple yet powerful attack in Yasuda et al.’s
protocol [3] given the computation server CS is malicious and does incorrect computation.
The attack leads to violation of data integrity and the consequence is severe: the reference
biometric template will be leaked in plain text format if the attack is successful. The
attack algorithm is shown in below as Algorithm 1.

input : vEnc1(A) (the stored encrypted template)
output : A = A1,...,AN (the reference template)
initialize: A = 0102...0N
for i = 0 to N − κ do

Set A′ = 11...1κ+i0κ+i+1...0N ;
Compute ctP = vEnc2(A′);
Send vEnc1(A) · vEnc2(A′) to AS;
if rejected then

break
end
if i=N then

return centerSearch(A);
end
Set i′ = κ+ i;
Set Ai′ = 1;

end
for i = 1 to i′ − 1 do

Set A′ = 11...1i−10i1i+1...1i′0i′+1...0N ;
Compute vEnc2(A′);
Send vEnc1(A) · vEnc2(A′) to AS;
if accepted then

Ai = 1;
end

end
for i = i′ + 1 to N do

Set A′ = 11...1i′−10i′ ...0i−11i0i+1...0N ;
Compute vEnc2(A′);
Send vEnc1(A) · vEnc2(A′) to AS;
if rejected then

Ai = 1;
end

end
return A;

Algorithm 1: The template recovery attack algorithm [4].

The attack takes place in the authentication phase where the compromised compu-
tation server CS constructs a specially tailored trial vector A′. CS computes the inner
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product ctP = vEnc1(A) · vEnc2(A′) rather than the hamming distance ctHD as it is
supposed to. The goal of this attack is to recover A from vEnc1(A) and it takes advan-
tage of the homomorphic property that the decryption of ctP will be A · A′, the inner
product of vector A and A′. To be more precise, A′ is initialized as a vector of the same
length as A with the first κ bits set to 1 and the rest bits set to 0. Recall that κ is
the threshold value to compare the similarity between two biometric vectors. CS sends
ctP to the authentication server AS. If AS accepts the outcome after decrypting ctP , it
implies that

∑κ
i=1Ai 6 κ, i.e., the first κ bits in the vector A consist of both 0s and 1s.

Then CS can flip the κ+ 1 bit of A′ from 0 to 1 and send vEnc1(A) · vEnc2(A′) to AS.
If the result is accepted again, CS flips the κ + 2 bit of A′ and repeats the procedure
until AS returns a rejection. At this stage CS has recovered a portion of the vector A
that contains exactly κ number of 1s, i.e.

∑κ+k
i=1 Ai = κ where k is the number of trials.

The steps mentioned previously correspond to the first for loops in the algorithm and is
also visualized in Figure 3.2. Note that under a special case where the loop ends without
being rejected, it implies that the reference template A has a Hamming weight less than
κ. Abidin and Mitrokotsa pointed out that a center search attack can be mounted at
this stage [4], which is depicted in Algorithm 2.

Figure 3.2: An example of the first loop of the template recovery attack.
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input : B = B1,...,BN (a fresh but matching template)
output: A = A1,...,AN (the reference template)
for i = 1 to N do

Set B′ = B̄1,...,B̄i,Bi+1,...,BN ;
/* The "bar" means flipping the bit, e.g., B1 = 0, B̄1 = 1. */

Send vEnc2(B′) to CS;
if rejected then

break
end

end
for i = 1 to N do

Send vEnc2(B′1,...,B̄
′
i,B
′
i+1,...,B

′
N ) to CS;

if accepted then
Ai = Bi;

end
else

Ai = B̄i;
end

end
return A;

Algorithm 2: The center search attack [4].

We have determined one bit of A. Then the recovery can be divided into two halves:
the left hand side and the right hand side of the determined bit. The two halves cor-
respond to the second and third for loop in the algorithm and can be visualized in
Figure 3.3 and Figure 3.4.

The cause of the Abidin attack is that the authentication server AS in Yasuda
et al’s protocol is not equipped with any mechanism to verify the correctness of the
computation. It only decrypts the received output (not differentiating ctHD or cP ),
compares the decrypted value with κ and announces AUTHENTICATION SUCCESS
or AUTHENTICATION FAILURE. Such check in theory can be repeated arbitrary
amount of times with different input value. The authentication server AS is therefore
exploited as a decrypting oracle. If these steps are repeated, the complete biometric
data A can be learnt in at most 2N − κ steps, where N is the bit-length of the feature
vector A and κ is the threshold value.

The attack will not be possible to execute if the authentication server AS detects
that the incorrect function is computed. Because once AS detects that it is not the
legitimate encrypted hamming distance that is sent over by the computation server, it
will terminate the loop of trials.

25



CHAPTER 3. BIOMETRIC AUTHENTICATION

Figure 3.3: An example of the second loop of the template recovery attack.

Figure 3.4: An example of the third loop of the template recovery attack.
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4
Utilities

T
HIS chapter provides some mathematical tools that will be used in the instan-
tiation of the verifiable privacy-preserving biometric authentication scheme to
be presented in the result chapter.

4.1 Arithmetic circuits

Arithmetic circuits are very widely used algebraic tools for symbolizing polynomial com-
putations. It is very useful in determining the most efficient way for computing a specific
polynomial f .

The fundamental elements of arithmetic circuits include a set of variables X =
{x1, ..., xn} defined over a field F, constant values and operators (+,×), and they form
a directed acyclic graph. The notes in the graph are called gates. There are three types
of gates: input gates where in-degree is 0; output gates where out-degree is 0, and last
but not least internal gates with in-degree and out-degree greater than 0. An input
gate could be either a variable or a constant. A variable is represented by a string and
can hold any arbitrary value in the range of the pre-defined field F, whilst a constant
can only hold a fixed value c ∈ F. Internal gates, on the other hand, are labelled with
arithmetic operators either + or ×. Gates marked by a + sign are called the sum gates,
which sum up the polynomials from the input wires. Similarly, gates marked by a ×
are called the product gates that calculate the products of polynomials from the input
wires. The output of the whole arithmetic circuit (which corresponds to the evaluation
of a polynomial) is obtained through the outgoing wire of the output gate. The degree
of a gate is defined as the entire degree of the polynomials outputted by the gate.

After introducing the specific gate properties, we now describe some other definitions
of an arithmetic circuit as a whole. The size of an arithmetic circuit is the total number
of gates. The depth of the circuit is the length of the longest path from an input gate to
an output gate. The degree of the circuit is the maximal degree of all gates in the entire
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circuit [15]. Note that in the setting of the thesis, we will only consider circuits with
single output gate and in-degree of each internal gate bounded by 2. In other words,
we will only look at circuits that correspond to quadratic polynomials in the scheme
instantiation.

4.2 Bilinear maps

The notion of bilinear maps are used in evaluating the authentication tags in the verifiable
computation (VC) scheme. Generally speaking, a bilinear map is a function that takes
elements from two spaces and then outputs a element in a new third vector space.
Furthur more, an important requirement is that it is linear in each of its element.

Now we provide a more formal definition. Given two isomorphic groups G and GT

of order p where p is a large prime, there exists a map e : G×G = GT . We say such a
map e is bilinear if the following properties are satisfied [36]:

1. Bilinear : the condition e(aP, bQ) = e(P,Q)ab must hold for all P,Q ∈ G and all
a, b ∈ Z.

2. Non-degenerate: the map e cannot be a trivial map that sends all pairs in G×G
to the identity in GT. This property implies that if the generator of group G is g,
then the generator for GT will be e(g,g).

3. Computable: There exists an efficient algorithm to compute e(P,Q) for any P,Q
in G.

Note that an extra requirement for the bilinear map e in the setting of VC is that
is should be cryptographically secure. Roughly speaking, this map works over groups
where the discrete logarithm problem is assumed to be hard, and the function e(, ) is
one-way, i.e., hard to invert.

Homomorphic Evaluation over Bilinear Groups

In this subsection we show how to perform homomorphic evaluation of arithmetic circuits
bounded by degree 2 with bilinear maps. The construction of homomorphic MACs is
based on this algorithm [15]. We first define a description of bilinear groups bgpp =
(p,G,GT , e, g) where p is a large prime, G and GT are two groups of order p, e is a
bilinear map and g is the generator for G. We see that G is isomorphic to the additive
group (Zp,+) if we consider φg(x) = gx for all x ∈ Zp. For similar reason GT is also
isomorphic to (Zp,+) if we consider φgT (x) = e(g,g)x for all x ∈ Zp. In theory there
exist the inverses φ−1

g : G→ Zp and φ−1
gT : GT → Zp, but according to the cryptographic

constraints these should not be efficiently computable.
As defined in [15], given an arithmetic circuit f : Znp → Zp, there is an algorithm

GroupEval(f,X1,...,Xn) which homomorphically evaluates f from G to GT . It holds:

GroupEval(f,X1,...,Xn) = φgT (f(φ−1
g (X1),...,φ−1

g (Xn))). (4.1)
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Under the constraint that f has maximal degree 2 and (X1,...,Xn) ∈ Gn, GroupEval
proceeds in a gate-by-gate manner through the arithmetic circuit. We show the various
scenarios how the algorithm works as it passes through either an addition gate or a
product gate as follows.

For an addition gate (f,+) there are four cases:

• X1 ∈ G, X2 ∈ G, output X = X1 ·X2 = gx1 · gx2 = gx1+x2 ∈ G.

• X̂1 ∈ GT , X̂2 ∈ GT , output X̂ = X̂1 · X̂2 = e(g, g)x1 ·e(g, g)x2 = e(g, g)x1+x2 ∈ GT .

• X̂1 ∈ GT , X2 ∈ G, output X̂ = X̂1 · e(X2, g) = e(g, g)x1+x2 ∈ GT .

• X1 ∈ G, X̂2 ∈ GT , output X̂ = e(X1, g) · X̂2 = e(g, g)x1+x2 ∈ GT .

For a product gate (f,×) with two variable inputs there is only one single case
where X1, X2 ∈ G. It is because doing a multiplication will ascend the computation
from G to GT . Given the maximal degree of the circuit is 2, we can only take in
two degree 1 variables as inputs, i.e., from group G. Thus X1 ∈ G, X2 ∈ G, output
X̂ = e(X1, X2) = e(g, g)x1x2 ∈ GT .

For a product gate (f,×) with one variable and a constant, there is also only one
single case regardless whether the variable is in G or GT : X1 ∈ G ∪GT , output
X = (X1)c = e(g, g)x1c ∈ GT .

The ultimate output of the GroupEval algorithm is the output of the last gate of the
arithmetic circuit.

Backe et al. has proven the homomorphic property of the GroupEval algorithm by
induction over the gates of f . The details can be referred to in Theorem 1 in [15].

29



5
Results

I
n this section we present the results of this thesis, which start with a generic scheme
for verifiable privacy-preserving biometric authentication followed by its applica-
tion in a protocol. Then we describe the actual construction of the scheme with
correctness and security analysis. We also present a flawed approach in combing

integity and privacy guarantees in a naive way. Finally we round up this chapter with a
discussion.

5.1 The generic scheme

Let SHE = (SHE.KeyGen, SHE.Enc, SHE.Dec) be the somewhat homomorphic scheme
used by Yasuda et al [3]. Moreover, let VC = (VC.KeyGen, VC.Auth, VC.Ver, VC.Eval)
be the homomorphic message authenticator scheme by Backes et al. [15]. We describe a
new scheme BVC= (KeyGen, Enc, Auth, Comp, Eval, Ver) in the following that
is built upon the two schemes mentioned above (SHE and VC). BVC is tailored for
the scenario of privacy-preserving biometric authentication system supporting verifiable
computation.

In addition, because of the particular setting of biometric authentication, the circuit
to be evaluated/computed is fixed, which is always the function f that computes the
encrypted Hamming distance given two packed ciphetext of type 1 and type 2 respec-
tively. Any other circuits will be treated as invalid computations. Thus, the circuit f is
not passed in exclusively as parameters in the algorithms of the scheme. On the other
hand, the public key pk for the encryption scheme appears in the parameter list for the
last three algorithms, and the reason is that pk contains some parameters needed to
complete defining the circuit (more specifically, to compute C1 and C2). The details can
be found in the scheme construction.
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KeyGenSHE(λ)→ (pk, sk) : Run SHE.KeyGen(λ) to generate the public key and the
private key (pk, sk) for somewhat homomorphic encryption.

KeyGenVC(λ2) → (skvc, ek) : Run VC.KeyGen(λ) to generate the secret key and the
evaluation key(skvc, ek) for verifiable computation.

Enc(A, pk, phase) → ct(A) : Compute ct(A) = SHE.Enc(A, pk) with the appropriate
packing method. So ct(A) = vEnc1(A) (when phase = 0, “enrollment”) or ct(A) =
vEnc2(A) (when phase = 1, “authentication”).

Auth(skvc, L, ct(A))→ σ : Run VC.Auth(skvc, L, ct(A)) to authenticate ct(A) given the
secret key skvc and a label L = (∆, τ) (explained in Chapter 2). The authentication
algorithm outputs a tag σ.

Comp(vEnc1(A), vEnc2(B), pk) → (ctHD, `d) : Compute the encrypted Hamming dis-
tance ctHD and a parameter `d given the two packed cipher texts and the circuit f .

Eval(ek, σA, σB, pk) → σHD: Given the input of the evaluation key ek , the two tags
σA, σB and f implicitly, the evaluation algorithm outputs a new tag σHD for the en-
crypted Hamming distance.

Ver(skvc, sk,P∆, ct
′
HD, σHD, pk)→ accvc, acchd :

– Run VC.Ver(skvc,P∆,ct
′
HD, σHD) given the secret key skvc, a multi-labelled pro-

gram P∆ = ((f,τA,τB),∆), the received result of encrypted Hamming distance
ct′HD and a tag σHD. The accvc bit is set to either 0 (reject) or 1 (accept) indi-
cating if the computation is performed correctly. If accvc = 1 (so ct′HD = ctHD),
the algorithm proceeds to the next step. Otherwise, the scheme terminates and
outputs (0, 0) and a message ‘INVALID COMPUTATION’.

– Compute HD(A,B) = SHE.Dec(ctHD, sk). The acchd bit is set to either 0 (reject)
or 1 (accept) indicating the authentication result of the biometric data. The scheme
terminates and outputs either (1, 1) for ‘AUTHENTICATION SUCCESS’ or (1,
0) for ‘AUTHENTICATION FAILURE’.

5.2 The protocol

The protocol serves as an improvement to the original protocol using SHE scheme based
on ideal lattices by Yasuda et al. [3]. The new protocol incorporates the feature of
computation verification. It comprises four distributed parties: a client server C, a com-
putation server CS, an authentication server AS, and a database DB. In the original
protocol, the authentication server AS is assumed to be a trusted party who manages
the secret key for SHE. In this protocol we preserve this assumption and furthermore
assume the client server C and the database DB are also trusted parties. C is responsible
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Figure 5.1: Modified Yasuda et al. biometric authentication scheme including verifiable
computation [4].

to manage the secret key skvc for verifiable computation and DB stores the encrypted
reference biometric templates with the pseudonyms of the corresponding clients. On the
other hand, the computation server CS can be malicious and cheat with flawed computa-
tion. We describe the improved protocol in the following and illustrate the main phases
in Figure 5.1. Moreover, we show which parties generate the various keys required in
the protocol as well as the distribution of the keys in Table 5.1.
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Key Name Generated by Owned by

pk (for SHE) AS AS, C, CS
sk (for SHE) AS AS
ek C C, CS
skvc C C, AS

Table 5.1: Keys Generation and Ownership.

Setup Phase.
The authentication server AS runs KeyGenSHE(λ) to generate the public key pk and
the secret key sk of the somewhat homomorphic encryption (SHE) scheme. AS keeps
the sk to itself and distributes pk to both the client server C and the computation server
CS.

Enrollment Phase.

1. Upon client registration, the client server C runs KeyGenVC(λ2) to generate the
evaluation key ek and the secret key skvc for verifiable delegation of computation.
C distributes ek to the computation server CS and skvc to the authentication server
AS (e.g., through a sensor).

2. The client server C generates a 2048-bit feature vector A from the client’s biometric
data (e.g., fingerprints), runs Enc(A, pk, 0) using the type 1 packing method (see
Definition 2), and outputs the encrypted feature vector vEnc1(A).

3. The client server C authenticates vEnc1(A) by running Auth(skvc, LA, vEnc1(A))
and outputs a tag σA. Then C sends the three-tuple (IDpse, vEnc1(A), σA) to the
database DB. IDpse is a pseudonym for the client to be enrolled. This three-tuple
serves as the reference biometric template for the specific client with IDpse.

Authentication Phase.

1. The client provides fresh biometric data upon an authentication request, from which
The client server C generates a feature vector B of 2048 bit. C runs Enc(B, pk, 1)
and encrypts the feature vector B with the type 2 packing method (note that it is
asymmetric to the type 1 packing method, see Definition 2) and outputs vEnc2(B).

2. The client server C authenticates vEnc2(B) by running Auth(skvc, LB, vEnc2(B))
and outputs a tag σB. Then C sends (IDpse, vEnc2(B), σB) to the computation
server CS.

3. The computation server CS extracts the tuple (IDpse, vEnc1(A), σA) from the
database DB corresponding to the client to be authenticated (use IDpse as the
search key). It calculates the encrypted Hamming distance ctHD by running
Comp(vEnc1(A), vEnc2(B), pk) and generates an authentication tag σHD by run-
ning Eval(ek, σA, σB,pk). Then CS sends (IDpse, ctHD, σHD) to the authentication
server AS.
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4. The authentication server AS runs Ver(skvc, sk,P∆, ct
′
HD, σHD, sk) to perform

verification. First it verifies if the computation done by the computation server
CS is legitimate, i.e. the correct encrypted Hamming distance is returned. If the
computation verification fails, the result ‘INVALID COMPUTATION’ is returned
(indicated by the acceptance bits (0, 0)) . Otherwise, AS proceeds to decrypt ctHD
and retrieves the actual Hamming distance HD(A,B). Finally, the server AS re-
turns ‘AUTHENTICATION SUCCESS’ if HD(A,B) ≤ κ or ‘AUTHENTICATION
FAILURE’ if HD(A,B) > κ, where κ is a predefined threshold. The acceptance
bits to be returned are (1, 1) respectively (1, 0).

5.3 Construction

This section gives the detailed construction of our BVC scheme. For the ease of reading,
the output of each algorithm is underlined.

KeyGenSHE(λ)→ (pk,sk) :

– The first step is to generate the public key and the secret key (pk,sk) for the
somewhat homomorphic encryption (SHE) scheme. From the security parameter
λ, we generate three parameters (n,s,t). n = 2m is a 2-power integer for m ∈ Z
denoting the dimension of lattice L. s is the plain text space size. Then we define
R := Z[x]/(fn(x)) denoting a polynomial ring modulo fn(x) := xn + 1 and choose
an n-dimensional vector v = (v0, v1,..., vn−1) ∈ Zn where vi is chosen randomly

and satisfies |vi| ≤ 2t. We set v(x) =
n−1∑
i=0

vix
i ∈ R as a generating polynomial and

the parameter t is the bit length of the coefficients of v(x).

– Using the extended Euclidean greatest common divisor (gcd) algorithm for polyno-
mials, we calculate w(x), the scaled inverse of v(x) modulo fn(x) and the following
equation should be satisfied:

w(x)× v(x) ≡ d mod fn(x)

d is the resultant of v(x) and fn(x), which also equals to the determinant of the
lattice L.

– We need to check two conditions to ensure that the vector v is qualified. Note that
both conditions should be fulfilled.

Condition I: d and s must be relatively prime, i.e. gcd(d,s) = 1. If not, the cipher
text can be decrypted without the secret key.

Condition II: Given w(x) =
∑n

i=1wix
i, we check that r := (w1 ∗ w−1

0 ) mod d
should satisfy rn ≡ −1 mod d. If so, the lattice L generated by v(x) will contain
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a vector of the form (−r,1,0, . . . ,0). The details can be referred in Definition 1
in [3].

If both conditions are fulfilled, we proceed to the next step. Otherwise a new vector
v shall be generated and the test for checking both conditions is rerun.

– We set pk = (d, r, n, s) and sk = ŵ, where ŵ is chosen among the coefficients of
w(x) satisfying gcd(ŵ, s) = 1.

KeyGenVC(λ2)→ (skvc, ek) :

– Next we generate the keys (skvc, ek) for verifiable computation (VC). Given the
security parameter λ2, we generate the description of bilinear groups bgpp =
(p,G,GT, e, g). Let the message space M be Zp.

– We select a random value θ uniformly from Zp, run a key generation to obtain
random (K, pp), where K is the seed of a pseudo-random function (PRF) FK :
{0,1}∗ × {0,1}∗ → G and pp is some public parameters that specify the domain X
and the range R of the PRF.
We set skvc = (bgpp, pp,K, θ) and ek = (bgpp, pp).

Enc(A, pk, phase)→ ct(A) :

– Given the assumption that the plain text A to be encrypted is a 2048-bit feature
vector of biometric data, we shall apply the appropriate packing method to first
transform the vector into a polynomial and then proceed with the encryption.
Recall there are two types of packing methods (see Definition 2):

i. If A is provided in the enrollment phase as a reference template (indicated
by phase = 0), then the type 1 packing method should be applied. We
compute

F1 : A = (A0, . . . ,A2047) 7→
2047∑
i=0

Aix
i ∈ R = Z[x]/(fn(x)).

ct(A) = vEnc1(A) = [F1(A)(r) + su1(r)]d =

[
2047∑
i=0

Air
i + su1(r)

]
d

∈ Zd.

ii. If A is provided in the authentication phase as a fresh biometric feature
vector to be compared with a stored template (indicated by phase = 1), then
the type 2 packing method should be applied. We compute

F2 : A = (A0, . . . ,A2047) 7→ −
2047∑
i=0

Aix
n−i ∈ R = Z[x]/(fn(x)).

ct(A) = vEnc2(A) = [F2(A)(r) + su2(r)]d =

[
−

2047∑
i=0

Air
n−i + su2(r)

]
d

∈ Zd.

Note that u1(x) and u2(x) denote noise polynomials. The coefficients of the poly-
nomail can be seen as a random vector constructed as u = (u0,u1, . . . ,un−1) with
ui ∈ {0, ± 1}. ui has q probability being 0, (1 − q)/2 probability being 1 and
(1− q)/2 probability being -1.
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– Finally we output the encrypted packed cipher text ct(A).

Auth(skvc, L, ct(A))→ σ :

– ct(A) is the message to be authenticated and L = (∆, τ) is the corresponding multi-
label, in which ∆ is the data set identifier (e.g., the client’s pseudonym) and τ is the
input identifier (e.g., “stored biometric template” or “fresh biometric template”).
Regarding data ranges, ∆ and τ can be two arbitrary strings, i.e.,∆ ∈ {0, 1}λ and
τ ∈ {0, 1}λ.

– Given skvc = (bgpp, pp,K, θ), we compute R = FK(∆, τ) and (y0, Y1) ∈ Zp × G,
where we set

y0 = ct(A) and Y1 = (R · g−ct(A))1/θ.

And then we output the authentication tag σ = (y0, Yi).

Comp(vEnc1(A), vEnc2(B), pk)→ (ctHD, `d) :

– Recall Equation 3.2, the encrypted Hamming distance is calculated as:

ctHD = C2 ∗ vEnc1(A) + C1 ∗ vEnc2(B) + (−2 ∗ vEnc1(A) ∗ vEnc2(B)) ∈ Zd,

where C1 and C2 are two integers defined below and constructing them would
require extracting the value r and d from pk:

C1 :=

[
n−1∑
i=0

ri
]
d

and C2 := [−C1 + 2]d.

– The purpose of this step is to solve the range problem, which is described in detail
in Section 5.4. Let c be the result of the Hamming distance without the final
modulo d. Given

c′ = c mod p and c = lp+ c′,
where c′ is a component in the authentication tag and l is a dividend.

We compute `d = l mod d = (c− [c mod p])/p mod d.

– If the computation is performed correctly, the encrypted Hamming distance ctHD
and `d shall be returned.

Eval(ek, σA, σB, pk)→ σHD :

– The evaluation is performed homomorphically. The inputs include the evaluation
key ek = (bgpp, pp), the two tags σA and σB, and implicitly the arithmetic circuit
f for calculating the encrypted Hamming distance (require public parameters from
pk).

– The circuit is evaluated gate-by-gate. Every input gate accepts either two tags σA,
σB ∈ (Zp×G×GT )2, or one tag and a constant σ, c ∈ ((Zp×G×GT )×Zp). The
output of a gate is a new tag σ′ ∈ (Zp ×G×GT ), which will be fed into the next
gate in the circuit as one of the two inputs. The operation stops when the final
gate of f is reached and the resulting tag σHD shall be returned.
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– We let a tag has the format σ(i) = (y
(i)
0 , Y

(i)
1 , Ŷ

(i)
2 ) ∈ Zp × G × GT for i = 1, 2

(indicating the two input tags), which correspond respectively to the coefficients

of (x0,x1,x2) in a polynomial. If Ŷ
(i)

2 is not defined, it is assumed that it has value
1 ∈ GT . Note that the two tags σA and σB fall under the case because they have
degree up to 1. Next we define the specific operation for different types of gates:

• Addition. The output tag σ′ = (y0,Y1,Ŷ2) is calculated as:

y0 = y
(1)
0 + y

(2)
0 , Y1 = Y

(1)
1 · Y (2)

1 , Ŷ2 = Ŷ
(1)

2 · Ŷ (2)
2 .

• Multiplication. The output tag σ′ = (y0,Y1,Ŷ2) is calculated as:

y0 = y
(1)
0 · y

(2)
0 , Y1 = Y

(1)
1 · Y (2)

1 , Ŷ2 = e(Ŷ
(1)

1 ,Ŷ
(2)

1 ).

Note that since the circuit f has maximum degree 2, The two input tags to a

multiplication gate can only have maximum degree 1 each. i.e. Ŷ
(1)

2 = Ŷ
(2)

2 =
1.

• Multiplication with constant.The two inputs are one tag σ and one con-
stant c ∈ Zp.The output tag σ′ = (y0,Y1,Ŷ2) is calculated as:

y0 = c · y(1)
0 , Y1 = (Y

(1)
1 )c, Ŷ2 = (Ŷ

(1)
2 )c.

We output the final tag σHD = (y0, Y1, Ŷ2).

Ver(skvc, sk,P∆, ct
′
HD, σHD, `d, pk)→ (accvc, acchd) :

– The first step is to verify computation integrity check, i.e. the encrypted
Hamming distance has been calculated correctly. P∆ is a multi-labeled program
defined by Backes et al. [15]. ∆ is the data set identifier and in P = (f,τA, τB),
f is the arithmetic circuit for calculating ctHD and τ is the input identifier . We
have ct′HD as the “claimed to-be” encrypted Hamming distance to be verified and

σHD = (y0,Y1,Ŷ2) is the corresponding tag. We compute:

RA = FK(∆, τA); RB = FK(∆, τB).
W = GroupEval(f,R1,R2) ∈ GT

Note that GroupEval (see Equation 4.1) is an algorithm that homomorphically
evaluates a circuit f over bilinear maps.
We can then check the following two conditions. If both checks are passed, the accvc
bit is set to 1 and the scheme proceeds to the next step. Otherwise the algorithm
returns (accvc, acchd) = (0, 0) and message ‘INVALID COMPUTATION’.

ctHD = y0 mod d+ `d (5.1)

W = e(g,g)y0 · e(Y1,g)θ · (Ŷ2)θ
2

(5.2)

Note that in the original VC scheme in [15], the first checking equation is ctHD = y0

rather than equation (5.1). The reason of this modification is the different ring
ranges of ctHD and y0. A detailed explanation and the definition of `d can be found
in Section 5.4 Ring range problem.
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– The next step is to perform the biometric authentication check. The actual
Hamming distance HD(A,B) is recovered from decrypting ct′HD (which is equal
to ctHD since the computation has passed the check). We compute:

HD(A,B) = [ctHD · sk]d mod s.

Let κ be the pre-defined threshold for authenticating biometric data.

i. If HD(A,B) ≤ κ, the message ‘AUTHENTICATION SUCCESS’ is returned,
indicated by (accvc, acchd) = (1, 1).

ii. If HD(A,B) > κ, the message ‘AUTHENTICATION FAILURE’ is returned,
indicated by (accvc, acchd) = (1, 0).

5.4 Ring range problem

The most significant challenge in combining the VC scheme based on homomorphic MAC
with the SHE scheme is the range of the base rings. Even though the function types
match perfectly (quadratic polynomials), the base ring ranges chosen in these schemes
are different. While the VC scheme proposed by Backes et al. [15] handles all operations
in Zp where p is a prime, the operations in Yasuda et al.’s SHE scheme are handled in
Zd where d is the resultant of two polynomials. Moreover, the VC scheme defines the
reduction of z modulo p in the interval [0,p) and the SHE scheme defines the reduction
of z modulo d in the interval [−d/2, d/2). Therefore in our BVC we need to tweak the
input data if there is a mismatch in the ranges. Similarly, the range factor should be
taken into consideration in performing final verification.

First we show how to tweak the input data. In the formula for calculating the
Hamming distance, there is a constant term -2, which lives in [−d/2,d/2) but not in
[0, p). In order to verify and generate proper tags, we can write -2 as D = (d − 2)
mod p. Note that the -2 will be re-written as D in the proof of correctness.

Then we need to check the impact of the range difference to the verification carried
out by the client. The first equation the client needs to check in the scheme of Backes
et al. [15] is

ctHD = y
(HD)
0 , where ctHD ∈ Zd and y

(HD)
0 ∈ Zp.

ctHD is the encrypted Hamming distance calculated by the computation server CS and

y
(HD)
0 is a component of the final authentication tag. If d = p, this check will succeed

as long as CS performs the correct computation. But the case of d = p is very unlikely,
and the difference in the reduction has a direct impact on the equality of the verification
equation (e.g., (10 mod 5 = 0) 6= (10 mod 7 = 3)).

The actual value of p and d depends on the implementation. We present a solution
on a general level regardless of implementation and specific value of p and d. Thus we
assume that p < d (as the tag size should be ideally small). Nevertheless, the solution
also applies when p > d and it would require swapping the place of p and d.

The solution relies on keeping track of the dividend. Given we have the encrypted
stored template α ∈ Zd and encrypted fresh template β ∈ Zd, we have
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α = α′ +mp,α′ = α mod p ∈ Zp.
Similarly, β = β′ + kp, β′ = β mod p ∈ Zp

Assume SWHD(x,y) is the arithmetic circuit for calculating the encrypted Hamming
distance without the final modulo d. Let c = SWHD(α, β) and c′ = SWHD(α′, β′) We
can derive

SWHD(α, β) mod p = SWHD(α′, β′) mod p;
c = l ∗ p+ c′.

The value l is the dividend. However, in order to perform the comparison we would
track l mod d instead of tracking l directly. The reason is that l contains more infor-

mation. Relating back to comparing ctHD and y
(HD)
0 , we have:

ctHD = c mod d ∈ Zd;
y

(HD)
0 = c′ ∈ Zp

Given c = l ∗ p+ c′,

ctHD = c mod d

= (l ∗ p+ c′) mod d

= c′ mod d+ (l mod d) ∗ (p mod d)

= y
(HD)
0 mod d+ (l mod d) ∗ (p mod d)

(5.3)

Thus, if we define `d = (l mod d) ∗ (p mod d), the verification equation will be

ctHD = y
(HD)
0 mod d+ `d

5.5 Correctness analysis

Backes et al.[15] proved the correctness of the VC scheme in a general way using proofs by
induction. However, in our case of study, the scheme (BVC) makes use of a deterministic
quadratic function and is described by only two variables. This relative simple setting
allows us to write the correctness proof by walking through the arithmetic circuit step
by step.

Figure 5.2 depicts the arithmetic circuit for calculating the encrypted Hamming dis-
tance. A and B denote the encrypted stored and fresh biometric templates respectively.
C1 and C2 are the constants in the function as defined in the Comp algorithm. D
should indicate the −2 in the function, but since −2 is not in the valid range Zp re-
quired by the original VC scheme, we need to have an intermediate transformation of
D = d − 2. All A,B,C1 and C2 are in Zd. Finally, the σs are the outcome tags of

the form σ(i) = (y
(i)
0 , Y

(i)
1 , Ŷ

(i)
2 ) ∈ Zp × G × GT after each gate operation, and the Rs

are values in either G or GT, which are used for homomorphic evaluation over bilinear
groups (The GroupEval algorithm in [15]) (see Equation 4.1).
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Figure 5.2: The arithmetic circuit for calculting the encrypted Hamming distance.

For the simplicity to show the calculation, we let α and β be vEnc1(A) and vEnc1(B)

and they each has a tag where σα = (y
(A)
0 , Y

(A)
1 , 1) and σβ = (y

(B)
0 , Y

(B)
1 , 1). These

two tags are generated by the Auth algorithm, which specifies that y
(A)
0 = α and

Y
(A)

1 = (Rα · g−α)1/θ. Similarly, we have y
(B)
0 = β and Y

(B)
1 = (Rβ · g−β)1/θ.

To verify the correctness of our BVC scheme, we need to check that the two equa-
tions specified in the Ver algorithm (5.1) and (5.2) are satisfied if the computation is

performed correctly. Let σHD = (y
(HD)
0 , Y

(HD)
1 , Ŷ

(HD)
2 ) be the final tag (which is equiv-

alent to σ6 in the arithmetic circuit depicted in Figure 5.2). To recall, the verification
equations (5.1) and (5.2) are:

ctHD = y0 mod d+ `d;

W = GroupEval(f,Rα, Rβ) = e(g,g)y
HD
0 · e(Y HD

1 ,g)θ · (Ŷ (HD)
2 )θ

2
.

The first step is to derive the tags for the intermediate calculation and eventually
the final tag. If we run the Eval algorithm homomorphically through the circuit, we
will get the following outcome tags σ1, . . . , σ6.

σ1 = (C2 · y(A)
0 , (Y

(A)
1 )C2 ,1);

σ2 = (C1 · y(B)
0 , (Y

(B)
1 )C1 ,1);

σ3 = (y
(A)
0 · y(B)

0 , (Y
(A)

1 )y
(B)
0 · (Y (B)

1 )y
(A)
0 ,e(Y

(A)
1 ,Y

(B)
1 ));

σ4 = (D · y(A)
0 · y(B)

0 , (Y
(A)

1 )y
(B)
0 ·D · (Y (B)

1 )y
(A)
0 ·D,e(Y

(A)
1 ,Y

(B)
1 ))D;
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σ5 = (C2 · y(A)
0 + C1 · y(B)

0 ,(Y
(A)

1 )C2 · (Y (B)
1 )C1 ,1);

σ6 = (C2 ·y(A)
0 +C1 ·y(B)

0 +D ·y(A)
0 ·y(B)

0 ,(Y
(A)

1 )y
(B)
0 ·D+C2 ·(Y (B)

1 )y
(A)
0 ·D+C1 , e(Y

(A)
1 ,Y

(B)
1 )D);

We let σHD denote the final authentication tag. Thus we have

σHD = (y
(HD)
0 , Y

(HD)
1 , Ŷ

(HD)
2 ) = σ6. For reading simplicity, we can write down each

component of σHD separately as follows:

y
(HD)
0 = C2 · y(A)

0 + C1 · y(B)
0 +D · y(A)

0 · y(B)
0 ;

Y
(HD)

1 = (Y
(A)

1 )y
(B)
0 ·D+C2 · (Y (B)

1 )y
(A)
0 ·D+C1 ;

Ŷ
(HD)

2 = e(Y
(A)

1 ,Y
(B)

1 )D.

The next step is to run GroupEval(f,Rα, Rβ) and execute the bilinear gate oper-
ations. Recall that Rα and Rβ correspond to RA and RB in the notation used in the
construction, which are the results of the pseudo-random function in the V er algorithm.
Similar to the tag derivation, we show the intermediate calculations and the final result
of the R value, as depicted in Figure 5.2.

R1 = RC2
α ;

R2 = RC1
β ;

R3 = e(Rα, Rβ);

R4 = e(Rα, Rβ)D;

R5 = RC2
α ·R

C1
β ;

R6 = e(RC2
α ·R

C1
β , g) · e(Rα, Rβ)D.

R6 is the final result of running GroupEval over the arithmetic circuit. By the
definition of W given in equation (5.2), we have:

W = R6 = e(RC2
α ·R

C1
β , g) · e(Rα, Rβ)D.

Now we show the proofs for the two verification equations. First we need to prove
Equation (5.1) : ctHD = y0 mod d + `d. This equation has been proved in section 5.4
Ring range problem with equation (5.3). The end result is

ctHD = y
(HD)
0 mod d+ (l mod d) ∗ (p mod d).

As we define `d = (l mod d) ∗ (p mod d), we can derive equation (5.1).

Then we prove Equation (5.2) : W = GroupEval(f,Rα, Rβ) = e(g, g)y
HD
0 · e(Y HD

1 , g)θ ·
(Ŷ

(HD)
2 )θ

2
. The approach is to start with the righthand side of the equation. There are

41



CHAPTER 5. RESULTS

in total three factors. We in turn expand each one of the factors and finally compute
the product of the results, evaluating it against W .

The first factor can be expanded as:

e(g, g)y
HD
0 = e(g, g)C2·y(A)

0 +C1·y(B)
0 +D·y(A)

0 ·y(B)
0

= e(g, g)C2α+C1β+αβD.
(5.4)

The second factor is expanded as:

e(Y HD
1 , g)θ = e((Y

(A)
1 )y

(B)
0 ·D+C2 · (Y (B)

1 )y
(A)
0 ·D+C1 , g)θ

= e((Rα · g−α)(βD+C2)/θ · (Rβ · g−β)(αD+C1)/θ, g)θ

= e((Rα · g−α)βD+C2 · (Rβ · g−β)αD+C1 , g)

= e(RβD+C2
α ·RαD+C1

β · g−2αβD−αC2−βC1 , g)

= e(Rα, g)βD+C2 · e(Rβ, g)αD+C1 · e(g, g)−2αβD−αC2−βC1 .

(5.5)

The third factor is expanded as:

(Ŷ
(HD)

2 )θ
2

= e(Y
(A)

1 ,Y
(B)

1 )Dθ
2

= e((Rα · g−α)1/θ,(Rβ · g−β)1/θ)Dθ
2

= e(Rα · g−α,Rβ · g−β)D

= e(Rα, Rβ · g−β)D · e(g−α,Rβ · g−β)D

= e(Rα,Rβ)D · e(Rα, g)−βD · e(RB, g)−αD · e(g, g)αβD.

(5.6)

Finally we calculate the product of the three factors by using the freshly derived
equations (5.4), (5.5) and (5.6). To simplify the visualization of the equation, we create

a temporary variable and let P = e(g, g)y
HD
0 · e(Y HD

1 , g)θ · (Ŷ (HD)
2 )θ

2
. The last equality

sign in equation (5.7) proves the correctness of the second verification equation (5.2).
Thus by far we have proved the correctness of the BVC scheme.

P = e(g, g)C2·α+C1·β+D·α·β · e(Rα, g)βD+C2 · e(Rβ, g)αD+C1 · e(g, g)−2αβD−αC2−βC1 ·
e(Rα,Rβ)D · e(Rα, g)−βD · e(RB, g)−αD · e(g, g)αβD

= e(g, g)C2α+C1β+αβD−2αβD−αC2−βC1+αβD · e(Rα, g)βD+C2−βD · e(Rβ, g)αD+C1−αD · e(Rα,Rβ)D

= e(g, g)0 · e(Rα, g)C2 · e(Rβ, g)C1 · e(Ra,Rb)D

= e(RC2
α , g) · e(RC1

β , g) · e(Ra,Rb)D

= e(RC2
α ·R

C1
β , g) · e(Ra,Rb)D

= W.
(5.7)
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5.6 Security analysis

In this section we analyse the security of the new BVC scheme. We first show that after
integrating a VC scheme into the privacy-preserving biometric authentication scheme by
Yasuda et al. [3], the template recovery attack discovered in [4] is countered. Then we
analyse other types of threats in specific security models.

5.6.1 Countering the template recovery attack

We define the view of a malicious computation server CS (the Adversary) who tries to
recover the stored biometric template of a client in the following. Note that the malicious
property implies the Adversary does not need to follow the protocol steps faithfully (in
contrast to honest-but-curious, details in below). Furthermore, it is assumed that all
other participants (AS, C and DB) are trusted parties (e.g., no key leakage or data cor-
ruption). We show that a probabilistic polynomial-time (PPT) Adversary has negligible
probability to achieve the goals with the listed input and output.

Input: the client’s pseudonym IDpse, The public key for SHE pk, the public evaluation
key for VC ek, the encrypted stored template vEnc1(A) and the authentication tag σA,
the encrypted fresh template vEnc2(B) and the authentication tag σB.

Output: the inner product ctP = vEnc1(A) ∗ vEnc2(A′) and the final authentication
tag σ′HD.

Goals: let the authentication server AS accept the inner product computation and
return V er(skvc, sk,P∆, ctP , σHD′ , `d, pk) = (1,0) or (1,1).
Eventually, the ultimate goal is to recover the stored biometric template A ∈ Z1024

2 .

We show that the malicious computation server CS cannot forge a tag σHD′ that lets
AS pass the check for both Equation (5.1) and Equation (5.2) in the verification step. If
we look at these two equations as separate checks, it is possible for the Adversary to cheat
on Equation (5.1). As this check only verifies that the returned computation result (ctHD
or ctP ) aligns with the arithmetic circuit used to generate the tag (σHD or σHD′), CS can
cheat by substituting the arithmetic circuit of Hamming distance with the inner product.
However, to check Equation (5.2), AS needs to calculate W = GroupEval(f,Rα, Rβ).
Given AS is a trusted party, the arithmentic circuit in the argument will be the one to
calculate the Hamming distance. If the computation server CS calculates other functions
(such as the inner product), the equation check will fail. Moreover, the template recovery
attack is a type of hill-climbing attack where multiple trails are required (to adjust the
trail vector A′). Since AS checks the circuit, all the trails will be denied and CS in
consequence can no longer learn any information of the stored biometric template A.
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5.6.2 Other threat models

In this section we go beyond the assumptions made previously and analyse different kinds
of threats the BVC protocol is facing if the involved entities are malicious. We use the
biometric privacy/security analysis framework proposed by Simoens et al. [37] (which is
also used in the security analysis in [4]). We consider only the internal adversaries, which
are corrupted components in the scope of the system. External adversaries, defined
in [37] as those who only have access to the communication channel, are not in the
scope of the analysis. Furthermore, we differentiate the capabilities of the adversaries:
honest − but − curious and malicious. The former type only allows the Adversary to
eavesdropp the communication that concerns itself without deviating from the protocol
specification, i.e., modify, remove or generate new information. dmalicious Adversary
has more power and can modify existing communication involving itself and disobeys
the protocol execution. In this security analysis we consider malicious adversaries. The
following threats to privacy in a biometric authentication system are in focus [4]:

• Biometric reference privacy: The Adversary should not be able to recover the
stored biometric template A.

• Biometric sample privacy: The Adversary should not be able to recover the
fresh biometric template B.

• Identity privacy: The Adversary should not be able to associate a biometric
template to a specific user ID.

• Intractability: The Adversary should not be able to distinguish whether two
authentication attempts are from the same user.

First we make analysis that are relevant for all the entities (C, CS, AS and DB). One
update of BVC compared to the original Yasuda protocol [3] is substituting user ID with
a user pseudonym IDpse. One way to implement it will be to hash the original ID and
use the outcome digest. Since the user identifier needs to be accessed by all the entities
and it is linked to certain biometric templates (stored or fresh), exposing it in plain text
violates identity privacy. The use of pseudonym can alleviate this issue. Nevertheless, we
still fail to achieve intractability as the pseudonym is deterministic, which implies that
two authentication requests from the same user can be distinguished by all the entities.

Next we analyse the security of the BVC protocol from the perspective of each entity:
what shall go wrong if any of them shows malicious behaviours. We use A to denote the
reference template and B to denote the fresh template.

• The client server C: C is responsible to capture the reference template A in
the enrolment phase and the fresh template in the authentication phase. C also
performs the corresponding encryption. If C turns malicious, in the worst case A
and B will be leaked directly. When Abidin and Mitrokotsa performed the security
analysis of the Yasuda protocol in [4], they assumed the client server C knew the
user ID and B. C can thus initiate a center search attack (see Algorithm 2 in
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Chapter 3) and recover the stored template A by simulating the computation server
CS. The attack procedure in brief is that the Adversary iteratively flips the bits
of B until the Hamming distance of A and B is right above the threshold and the
result ctHD is rejected. Then the Adversary changes the newly rejected vector bit-
by-bit, observes the acceptance result and eventually recover all the bits of A. This
attack has been discovered in the Yasuda et al.’s protocol by [4]. Unfortunately,
the same attack is still possible in the new BVC protocol. Since the malicious
client server C is not cheating with the actual computation, this attack cannot be
detected by the verifiable computation (VC) scheme. In fact, the attack is not
dependent on the encryption method but the choice of using Hamming distance to
measure the similarity of two templates [4]. This argument applies in the security
analysis of BVC too.

A new concern with BVC is the key generation for VC. In the protocol we let
the client server C generate the private key pkvc, the evaluation key ekvc and the
authentication tags because we assume C is a trusted party. If C turns malicious,
it could give fake skvc to the authentication server AS and initiates the tem-
plate recovery attack with the inner product by simulating the computation server
CS. Since the Adversary controls skvc, the computation verification step becomes
meaningless and the false computation will no longer be detected.

• The computation server CS: the significant improvement of BVC over the
original Yasuda protocol [3] is to counter the malicious computation server CS.
Unlike the client server C, CS only has access to the encrypted templates vEnc1(A)
and vEnc2(B) and the user pseudonym. Moreover, CS cannot modify the secret
key of the VC scheme. We have analysed in the beginning of this chapter how the
template recovery attack conducted by CS can be countered and hence we shorten
the discussion here.

In contrast to the original protocol, CS needs to calculate an extra value `d to solve
the range issue after integrating VC. However, `d is still operated on the ciphertext
level and is not involved in the second equation (5.2). Thus learning `d will not
give advantage to the Adversary in learning A or B.

• The database DB: another update in BVC is to let DB be a separate entity
as opposed to be controlled by CS. The motivation behind is to distribute the
responsibilities even more. Once the client server C generates a tag for a reference
template A in the enrolment phase, it could update the entry in the database with-
out involving the computation server CS. A malicious database DB in theory could
simulate the computation server CS and launches a template recovery attack with
the inner product, but again this attack will be circumvented by the VC scheme.
In consequence, a malicious database that returns wrong entries (e.g., invalid en-
crypted templates or authentication tags) will interfere the functionality of the
biometric authentication system but from a solely privacy-preserving perspective
there is no obvious negative consequence.
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• The authentication server AS: a malicious AS will completely break down
the templates privacy of the system since it controls the secret key to the some-
what homomorphic encryption scheme (SHE). If AS successfully eavesdrops the
communication between C and DB (or C and CS) and obtains the encrypted tem-
plates vEnc1(A) or vEnc2(B) with a user pseudonym, it can recover the biometric
templates in plain text.

5.7 A flawed approach

Privacy and integrity are the two significant properties we are trying to achieve in a
privacy-preserving biometric system. A common way to provide privacy is through a
(fully) homomorphic encryption scheme ((F)HE) and integrity is guaranteed through a
verifiable computation scheme (VC). The motivation of obtaining both of these prop-
erties in one system leads to the trials of combining a FHE and a VC. Fiore et al. in
[24] stressed on this problem in the setting of cloud computing. Our privacy-preserving
biometric scheme is also reliable on this scheme combination.

Simply put, there are two general ways to combine a VC scheme and a FHE scheme.
The first way is to run VC on top of FHE conveying that the original message is first
encrypted to preserve privacy and then encoded to generate an authentication proof.
Our construction of BVC follows this principle. The second way is to reverse the order
and running FHE on top of VC. Namely, this approach will encode the original message
first and then encrypt the encoded data. Succinctly, the difference is as follows:

The first approach: Encrypt(Encode(x));
The second approach: Encode(Encrypt(x)).

We can raise a questoin from here: are the two approaches equally secure? We have
studied Abidin and Mitrokotsa’s template recovery attack [4]. The attacker (the mali-
cious computation server CS) takes advantage of the homomorphic properties and abuses
the authentication server AS as a decrypting oracle by sending verification queries. In-
spired by this attack present in the field of biometric authentication systems, we could
try to see if this can be correlated back to cloud computing - is there a “naive” way of
combining a VC scheme and a FHE scheme that can be exploited by an attacker to leak
privacy? The answer is “yes” and the order we combine them is indeed a determining
factor. In below we will show that the second approach: Encode(Encrypt(x)) is a
flawed approach. This problem has also been mentioned in [9] in brief and it is claimed
in the paper that their scheme is not chosen cipher text attack (CCA) secure because of
this flaw.

Attack scenario

We first provide a general definition of the attack. The privacy-preserving property is
defined as the following in this context:
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• Input privacy. The malicious cloud should not be able to recover any input
entries of a computation outsourced by the client in plaintext (either encoded or
the original message).

• Output privacy. The malicious cloud should not be able to recover the output
of a computation in plaintext (either encoded or the original message).

In other words, the cloud should only have access to and should perform operations
on the ciphertext level. The scheme is not privacy-preserving if the Adversary breaks
any of the two rules mentioned above.

In this attack, we show that the malicious cloud (Adversary) has non-neligible ad-
vantage in recovering a computation result in encoded format, hence violating the output
privacy property.

For example, a specific scenario could be that the cloud is supposed to calculate
the average blood pressure over a year of a patient and it stores the daily value in a
database in encrypted formats. To preserve output privacy, the cloud should return
the computation result encrypted, whose validity is verifiable by the client. With this
attack, the malicious cloud will have the advantage to recover the patient’s average blood
pressure in encoded format.

Attack description

We will describe in detail how the flawed scheme is not resistant against the attack
mentioned above conducted by a malicious cloud. We first describe the flawed scheme
and then the attack algorithm.

Assume we have:

FHE scheme - (KeyGenFHE , Enc,Dec,Eval);
VC scheme - (KeyGenV C , P robGen,Compute, V er).

The FHE scheme has been introduced in Chapter 2. It allows computations be to
performed on ciphertexts for arbitrary functions. Here a short explanation of the VC
algorithms is provided below. KeyGenV C outputs the private key skvc and public key
pkvc for the VC scheme; ProbGen takes skvc and the plain text x as input and outputs
the encoded value σx; Compute takes the circuit f , the encrypted encoded input and
outputs the encoded version of the output; last but not least, V er is performed by the
Verifier to verify the correctness of the computation given the secret key skvc and the
encoded output σy.

The main idea of the flawed approach is to first encode the data in plain text and
then encrypt the encoded data. It can be represented by:

x̂ = Enc(ProbGen(x)),
where x̂ is what the cloud server gets access to.

The flawed approach can be written as an algorithm FHEVC-FLAWED between a
Verifier and an Adversary (the malicious cloud) as depicted in Figure 5.3. The compu-
tation could be an arbitrarily chosen arithmetic circuit f . The goal of the Adversary is
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to recover every bit of σy, i.e., the encoded version of the result of the computation f .
More formally speaking, FHEVC-FLAWED is privacy-preserving for all PPT Adversary
A if:

Adv[FHEVC−FLAWED,A] = |Prob(σ′y = Dec(skFHE , Enc(σy)))| is negligible.

After we describe all the phases of the algorithm, we will show that the privacy-preserving
property is broken if q ≥ n, where q is the number of repetitions of the learning phase
execution and n is the length of encoded result σy.

Figure 5.3: The algorithm FHEVC-FLAWED, a flawed approach combining verifiable com-
putation and homomorphic encryption. The details of how to construct A′ and how the
Adversary can crack one bit of σy at the end of each loop is described in the “Learning
phase” text as well as illustrated in Figure 5.4.

The algorithm FHEVC-FLAWED is composed of several phases and goes as follows:

Setup phase. The Verifier generates the public and private keys pkvc, skvc, pkFHE , pkFHE
and gives pkvc, pkFHE to the Adversary.

Challenge phase. The Verifier determines the challenge by generating the encoded
version σx for the input x, which is uniformly selected at random from the input range
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X. Then the Verifier encrypts the encoded input and sends Enc(σx) to the Adversary
(the malicious cloud).

Learning phase. In the learning phase the Adversary can use the Verifier as a de-
cryption oracle by sending verification queries, which can be further divided into the
following steps:

1. The Adversary performs honest computation on the cipher text level and derives
the encrypted result Enc(σy).

2. The Adversary constructs a vector A′ ∈ Zn2 of the same length as σy. It is plausible
because the length of the tag is known. A′ is initialized with the last bit set
to 0 and the rest of the bits set to 1 (the 1st trial). For the ith trial, we set
A′ = (11,12, . . . ,0i,1i+1, . . . ,1n−1,1n), i.e., set the ith bit to 0 and the rest bits to 1.
(The construction of A′ is illustrated in Figure 5.4).

3. The Adversary encrypts the specially tailored vector A′ and reuses the encrypted
honest result Enc(σy) calculated from step 1. Then he performs the following
computation according to Definition 3 and sends the result σy′ back to the Verifier
for verification.

Enc(σy′) = Enc(A′) � Enc(σy).

4. The Verifier decrypts Enc(σ′y). Thanks to the homomorphic properties that op-
eration performed on the cipher text will match the operation performed on the
plain text, the Verifier can derive:

Dec(Enc(σy′)) = Dec(Enc(A′)) �Dec(Enc(σy));
σy′ = A′ � σy.

The Verifier checks the computation based on the encoded result (after decryption)
σy′ and sends either accept if V er(sk, σy′) = 1 or reject if V er(sk, σy′) = 0 to the
Adversary.

5. Finally the Adversary obtains the acceptance bit from the Verifier. Essentially A′

is acting as a “mask”. It copies all the bit values of σy into σy′ except for the ith

bit, which is always set to zero. Consequently, if the output of the verification
is accept, the Adversary will learn that σy = σy′ as well as Enc(σy) = Enc(σy′),
which reveals that the ith bit of σy equals to 0. Similarly, if the output of the
verification is reject, the Adversary learns that the ith bit of σy is 1. In both cases,
one bit of σy is leaked.

Output phase. Assume that the length of σy is n. The Adversary sends q verification
queries and cracks one bit of σy from each query. After q ≥ n trials, the Adversary
learns every bit of σy, outputs the complete σ′y = σy that passes the verification check
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V er(sk,σ′y) = 1 and hence achieves the attack goal. In other words, the advantage
of the Adversary: Adv[FHEVC−FLAWED,A] = |Prob(σ′y = Dec(skFHE , Enc(σy)))| is NOT
negligible and the security of the scheme FHEVC-FLAWED is broken if q ≥ n.

Definition 3 (Hadamard product for binary vectors). We define the operation Hadamard
product for binary vectors (one dimension matrix) as � : Zn2 �Zn2 → Zn2 . Given two equal-
sized binary strings denoting the stored and the fresh biometric templates: A and B ∈ Zn2 ,
we compute A�B = C ∈ Zn2 as Ci = Ai ∗Bi ∈ Z2 for i = 1,2, . . . ,n. It means multiplying
each bit of A with the corresponding bit of B and the output is a new vector C of size n.
This operation is similar to calculating the inner product, but it outputs a vector rather
than an integer.

Figure 5.4: The hill climbing attack of the flawed approach combining verifiable compu-
tation and homomorphic encryption.

In summary, the attack procedure proceeds in a hill climbing fashion similar to the
biometric template recovery attack (see Figure 5.4). The cloud sets to zero one by one
each bit of A′, computes Enc(A′) and Enc(σy′), waits for the client to decrypt Enc(σy′)
and send back the acceptance bit. One verification result implies the recovery of one bit
in σy and the complete σy is recovered after n trails, given n is the length of σy.
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The attack demonstrates that the order of combining a VC and a (F)HE is very
crucial. Since in FHEVC-FLAWED we first perform the encoding and then encryption, the
client must decrypt the received result before it can determine whether the computation
is accepted or not. The client is therefore exploited as a decrypting oracle and allows
the malicious cloud to send verification queries. Privacy is therefore broken. In other
words, the procedure is not chosen-cipher text attack (CCA) secure as the Adversary
learns information of the plain text (σy) from the cipher text (Enc(σy)). If the data
stored in the cloud (and the operations performed on them) are sensitive, e.g. average
blood pressure value of a patient or some transaction records, the attack can lead to
devastating result.

On the other hand, the opposite ordering where VC is run on top of the encryption
scheme does not suffer from the attack. In this approach, the Verifier can make the
judgement whether the computation is correct or not BEFORE decrypting the received
result from the Adversary. Both the verifiable computation scheme on encrypted data
by Fiore et al. [24] and our BVC scheme follow this ordering. We will come back to this
problem in the discussion section.

Last but not least, we could make a brief analysis what shall go wrong if the flawed
approach is used in our BVC scheme. In our case the compromised σy value corresponds
to the encoded Hamming distance between a fresh template and a reference template.
At first sight it is not directly related to the actual templates leakage. However, Pagnin
et al. in [29] proves that biometric authentication schemes based on Hamming distance
suffer from leakage of information, where a centre search attack can be mounted to
recover the stored reference template (defined in Znq , q = 2). On the other hand, from
a practical point of view it is inherently difficult to combine the flawed approach with
the Yasuda scheme because of the packing methods, where the template vectors are first
compacted into one element and then encrypted. The two types of packed ciphertexts are
crucial intermediate steps that contribute to the computation and efficient decryption
of Hamming distance. Applying the flawed approach will imply generating the tags on
the original template vectors and thus affects the application of the packing methods.
In order to have a correct scheme, a lot of changes must be adapted.

5.8 Discussion

In this section we will discuss the motivation behind the BVC scheme. We explain why
the Backer’s homomorphic MAC scheme [15] is the chosen candidate as the fundamental
building block. We will also consider some issues that are not addressed in the previous
sections, such as the efficiency property and the problems of using pseudonyms as user
IDs.

The choice of the VC scheme

In the theory study phase of the project we looked at many different verifiable com-
putation (VC) schemes ranging from purely proof-based to message authenticators (see
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the details Chapter 2). They differ in the fundamental mechanism, the complexity level
(both theoretical and practical) and target function groups. Some schemes, such as the
ones based on fully homomorphic encryption (FHE), are very powerful from a theoreti-
cal point of view and suit arbitrary functions. But the drawback is the high complexity.
On the other hand, some schemes are designed for a smaller set of function types but
the construction is in comparison much easier to understand. We need to make proper
trade-offs in choosing the best-fit VC scheme for the Yasuda et al. SHE biometric scheme
[3].

We choose the homomorphic MAC scheme by Beckers et al. [15] as the building
block because the paper was published rather recently, the construction is relatively
simple to follow and it matches the desired function type. The computation in the
biometric authentication scenario is not considerably demanding compared to general
cloud-computing tasks. In our context the computation function is fixed (Hamming dis-
tance calculation) so no function secrecy is required, and the number of variables is also
limited. In this sense FHE-based schemes are too heavy to be applied. The homomor-
phic MAC scheme can be applied to class of computations of quadratic polynomials over
a large number of variables [15], which is seen as a good candidate as we need only to
handle computation up-to degree 2.

We have also considered developing the BVC scheme based on the work in [24].
This is a recently published paper that properly addresses on verifiable computation on
encrypted data. Their approach is to combine a FHE scheme with homomorphic MAC
and appears to be the most relevant to our biometric context where privacy-preserving
is the highest priority. Moreover, their scheme also supports multi-variate polynomials
of degree 2. Nevertheless, the main reason we did not follow Fiore et al.’s construction
was its high complexity. As mentioned in the previous paragraph, FHE may be an over-
powerful tool to apply. For example, the specific FHE scheme chosen in [24] is a variant of
the BGV homomorphic encryption [38], where the ciphertext lives in a ring of polynomial
and is composed of several entries. Fiore et al. [24] developed a homomorphic hashing
technique that compresses the ciphertext into a single entry in Zp. In our scenario, the
ciphertext outcome from the somewhat homomorphic encryption by Yasuda et al. [3]
is already a single entry in Zd. Even though our candidate VC scheme by Backes et
al. [15] did not focus on privacy-preserving, we got the inspiration from [24] and run
the homomorphic MAC scheme on top of the SHE scheme described in [3], and hence
preserves data privacy. The biggest challenge encountered in bridging the schemes was
the data range problem, but we have provided a solution for it.

Lastly, the BVC scheme does not suffer from the output privacy leakage described
previously in the “encode-then-encrypt” flawed approach. The reason is that in BVC
we do the opposite: “encrypt-then-encode”, same as in [24], and the verifier (in our
context the authentication server AS) can check the integrity of the computation before
decrypting the computed result (the Hamming distance). If the VC check fails, AS will
not even proceed with the decryption. Thus the Adversary cannot benefit from sending
verification queries as in the flawed game and abuses the AS as a decrypting oracle.
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Efficiency

Efficiency is a crucial property that verifiable computation schemes try to improve in
the cloud computing realm. Even the VC scheme we adopted in this thesis provides
alternative algorithms to improve the efficiency of the verifier to perform the check. The
mechanism is to use multi-labels and achieve amortized closed-form efficiency. We did
not use these algorithms considering the computation function in our context is relatively
simple. The verification will run in time O(|f |) and the computation power overhead
should be bearable.

In the context of biometric authentication, we prioritized security/privacy over effi-
ciency. Due to the limited time of the project, we chose to eliminate efficiency analysis
from the main result. However, the current definition of the multi-labels where the
client pseudonym is the dataset identifier and the “reference” / “fresh” label is the input
identifier, should support the addition of amortized closed-form efficiency. If this is the
case, the authentication will require one single VC secret key skvc to manage ALL the
biometric registered users since the registered user records will be treated as different
data sets outsourced by one single client. If this secret key sk is leaked, the function
verification functionality will collapse for all the users. In the current version of BVC
we generate one VC secret key per registered user. If some of the keys are leaked, only
a portion of the users will be affected. However, the trade-off will be the key and re-
source management when the user database increases in size. To conclude, we leave out
efficiency as an requirement in the scope of this project but a proper efficiency analysis
and improvement strategy could be a direction for future work.

Using pseudonym

One update from the original Yasuda et al. protocol is substituting user ID with
pseudonyms. In the security analysis we mentioned that this improvement could to a
certain extend protect identity privacy by increasing the difficulty of linking a template
to the right template owner. Further more, another use of the pseudonym is to construct
the multi-label required in the VC scheme. However, the introduction of pseudonyms
does not contribute in preserving intractability. Abidin and Mitrokotsa in [4] proposed to
add private information retrieval (PIR) technique as a countermeasure. It will typically
require the registered user to send an index and encrypted queries for the database to
search for the right entry. We did not integrate a PIR in the current BVC but this can
be another branch of the future work.
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6
Conclusion and Future Work

I
n this thesis work we covered two main areas which do not seem very related at first
sight: verifiable computation and biometric authentication systems. Thanks to the
rapid growth of internet and the proliferation of digital devices, the demand for
cloud computing has also risen tremendously. Verifiable computation (VC) enables

clients to perform integrity checks for the outsourced computing tasks given the possibil-
ity that the cloud server could be malicious. In the other area, biometric authentication
has also gained popularity nowdays compared to the traditional passwords based au-
thentication. preserving the privacy of the biometric templates is highly prioritized due
to its irrevocable nature. While there are many existing works that focus on privacy,
the integrity property is in comparison easier to be ignored. A template recovery attack
[4] has been discovered in a privacy-preserving biometric authentication protocol based
on somewhat homomorphic encyrption (SHE) [3]. The enabling factor of this attack is
the presence of malicious computation server that on purpose performs incorrect com-
putation. If this service is outsourced, this issue is equivalent to malicious cloud. The
main research question of this thesis was therefore how to employ a suitable verifiable
computation technique to counter the attack due to malicious entities.

The main contribution of this theoretical thesis work is a new scheme named BVC
which adds the verifiable computation (VC) feature based on homomorphic message au-
thenticators [15] to the biometric authentication scheme based on SHE [3]. We presented
a general scheme description which gave an overview of the algorithms, a detailed con-
struction and an improved distributed biometric authentication protocol supporting VC.
We complemented the scheme with a correctness analysis and a security analysis and
showed that the template recovery attack is successfully countered in the BVC scheme.
In addition, we got inspired by the attack mechanism and conducted a parallel study,
whether a similar attack can be achieved in the setting of cloud computing where data
privacy is required. The finding revealed that the order combining a VC and a homo-
morphic encryption scheme was very crucial. If the wrong order is adopted, the bridging
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process will become a naive approach and allows the malicious cloud to break the in-
put/output privacy. Last but not least, we discussed several design motivations behind
the BVCscheme, in which we explained why Backes et al’s VC scheme [15] was chosen
to be applied. The main reasons were the matching function types of the two schemes
(quadratic polynomials) and its ease to replicate.

This thesis topic can be further developed in several directions, some of which we
have touched upon briefly in the discussion section. First of all, some implementation
and prototyping of the new BVC scheme could be made. We more or less excluded ef-
ficiency analysis due to the prioritizing of security and the simplicity of the Hamming
distance function. A proof-of-concept prototype will be a great support to the existing
theories. For example, from the implementation we could analyse quantitatively how
much computation power is saved if we apply the online/offline stages and amorized
efficiency paradigm. Second of all, we can study the feasibility of introducing a privacy-
information-retrieval (PIR) layer to the current scheme to replace the user pseudonyms.
This improvement will preserve identity privacy. If the study continues towards a the-
oretical direction, we could make a more generic scheme that is not constrained to the
bridging of specific VC and FHE/SHE schemes (e.g., a specific key generation algorithm),
but rather can be adapted to a more general level. Last but not least, another direction
in the theory field will be to make formal security proofs in proper cryptographic game
notation to measure the accurate security of the new scheme (such as the impact to the
security of the scheme by introducing `d to solve the range problem).
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