

The Path Model of Intensional Type Theory
Master of Science Thesis in Computer Science – Algorithms, Languages
and Logic

FABIAN RUCH

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Gothenburg, Sweden, October 2015

The Author grants to Chalmers University of Technology and University of Gothenburg the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make it
accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does not
contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a publisher or
a company), acknowledge the third party about this agreement. If the Author has signed a copyright
agreement with a third party regarding the Work, the Author warrants hereby that he/she has
obtained any necessary permission from this third party to let Chalmers University of Technology and
University of Gothenburg store the Work electronically and make it accessible on the Internet.

The Path Model of Intensional Type Theory
FABIAN RUCH

© FABIAN RUCH, October 2015.

Examiner: BENGT NORDSTRÖM

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Gothenburg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Gothenburg, Sweden, October 2015

Abstract

The groupoid interpretation of Martin-Löf type theory not only shows the independence of uniqueness
of identity proofs from the axioms of intensional type theory but is also constructive and validates the
computation rules as definitional equalities. The groupoid semantics are very clear when interpreting
dependent types and in particular the identity types but less so when defining equality preservation for
terms, interpreting context extension or constructing the transport for identity proofs. The indirections
stem from the fact that paths over paths is a derived notion in the groupoid interpretation. The notion
is, however, a primitive in so called relational models which have been employed to prove abstraction
theorems for type theories. We generalise the groupoid interpretation to a refined relational interpretation
of intensional type theory and show that it is a model in the sense of categories with families. The refined
relations support a concatenation operator that has identities and inverses; hence a model of paths.

Contents

1 Introduction 1

2 Preliminaries 5
2.1 Dependent Type Theory . 5
2.2 Models . 9
2.3 Categories with Families . 10

3 Relational Model 13

4 Path Model 17
4.1 Category with Families . 18
4.2 Dependent Function Space . 21
4.3 Identity Types . 28
4.4 Universe . 33
4.5 Propositional Truncation . 36

5 Morphoid Model 41

6 Conclusion 46

A Proofs 49

i

Chapter 1

Introduction

Type theory is a formal system for programming, logic and mathematics. It can be used to write
functional programs, prove propositions in predicate logic or construct mathematical objects. When
working in type theory, one derives judgments of the form

Γ ⊢ 𝑎 ∶ 𝐴

which is read as ”𝑎 is a term of type 𝐴 in context Γ”. The term 𝑎 can be interpreted as a program
producing a value of the data type 𝐴 or as a proof of the proposition 𝐴 or as an element of the structure
𝐴. A common data type is 𝙱𝚘𝚘𝚕 (the Boolean data type having two constructors 𝚝𝚛𝚞𝚎 and 𝚏𝚊𝚕𝚜𝚎), a
common proposition is ⊤ (the formula having truth value true) and a common structure is that of a
semigroup (sets equipped with an associative binary operation).

An important logical type is the identity type 𝖨𝖽. For instance, the semigroup structure is expressed
as the type

Σ𝑆∶𝑆𝑒𝑡,·∶𝑆×𝑆→𝑆Π𝑠,𝑡,𝑢∶𝑆𝖨𝖽𝑆(𝑠 · (𝑡 · 𝑢), (𝑠 · 𝑡) · 𝑢)

and consists not only of a set and a binary operation but also contains a proof of associativity, whose
statement makes reference to equality. The other types involved here are Σ and Π which denote the
types of tuples and functions but also correspond to existential and universal quantification respectively.

The crucial feature of type theory that makes it a programming language is its computational content.
For instance, any term 𝑎 of type 𝙱𝚘𝚘𝚕 is definitionally equal (as opposed to propositionally equal via a
term of type 𝖨𝖽) to either 𝚝𝚛𝚞𝚎 or 𝚏𝚊𝚕𝚜𝚎

⊢ 𝑎 = 𝚝𝚛𝚞𝚎 ∶ 𝙱𝚘𝚘𝚕 or ⊢ 𝑎 = 𝚏𝚊𝚕𝚜𝚎 ∶ 𝙱𝚘𝚘𝚕,

even though it might be expressed using abstractions like addition and comparison on natural numbers.

We present a constructive set-theoretic model of intensional type theory (ITT) with extensional
dependent function spaces and an extensional universe as well as propositional truncation. The function
spaces and universe are extensional in the sense that the types

Π𝑓,𝑔∶Π𝐴𝐵(Π𝑎∶𝐴𝖨𝖽𝐵(𝖺𝗉𝗉(𝑓, 𝑎), 𝖺𝗉𝗉(𝑔, 𝑎))) → 𝖨𝖽Π𝐴𝐵(𝑓, 𝑔) (1.1)

and

Π𝐴,𝐵∶𝑈(Σ𝑓∶𝐸𝑙(𝐴)→𝐸𝑙(𝐵),𝑔∶𝐸𝑙(𝐵)→𝐸𝑙(𝐴)𝖨𝖽(𝑔 ∘ 𝑓, 𝗂𝖽) × 𝖨𝖽(𝑓 ∘ 𝑔, 𝗂𝖽)) → 𝖨𝖽𝑈(𝐴, 𝐵) (1.2)

are inhabited. Equation (1.1) says that functions are equal if they are point-wise equal and eq. (1.2)
says that isomorphisms prove small types equal. These two axioms are close to mathematical practice,
although only function extensionality holds in set theory. Propositional truncation turns any type 𝐴 into
a type ‖𝐴‖ such that

Π𝑥,𝑦∶‖𝐴‖𝖨𝖽‖𝐴‖(𝑥, 𝑦) (1.3)

1

is inhabited. Equation (1.3) says that the truncation of a type identifies all its terms. Propositional
truncation can be seen as part of an axiomatisation of the quotient ‖𝐴‖ of a type 𝐴 by the equivalence
relation that relates all terms of type 𝐴. In this sense, ‖𝐴‖ is comprised of a single equivalence class ‖𝑎‖
every 𝑎 ∶ 𝐴 is a representative of. A recursion principle to define functions from the quotient completes
the axiomatisation of ‖𝐴‖

𝑓 ∶ 𝐴 → 𝑃, ℎ ∶ Π𝑝,𝑞∶𝑃 𝖨𝖽𝑃 (𝑝, 𝑞) ⊢ ‖𝑓‖ ∶ ‖𝐴‖ → 𝑃 and 𝖺𝗉𝗉(‖𝑓‖, ‖𝑎‖) = 𝖺𝗉𝗉(𝑓, 𝑎).

In order to apply the recursion principle the co-domain must be a ”proposition”, that is every two
elements of 𝑃 are equal as witnessed by the hypothesis variable ℎ. This ensures that the definition of
𝑓 maps representatives of the same equivalence class to equal elements in 𝑃 and, hence, that ‖𝑓‖ is
well-defined.

Extending the type theory by axioms of type 1.1, 1.2 and 1.3 respectively is problematic for two
reasons. Firstly, such an extension introduces non-canonical constants at the types Π𝐴𝐵, 𝑈 and ‖𝐴‖,
while the computation rule for identity elimination

𝐽𝐶,𝑑[𝑎, 𝑎, 𝗋𝖾𝖿𝗅𝑎] = 𝑑[𝑎]

only reduces on canonical ones, that is reflexivity proofs. The ensuing problem can be phrased as either
computation getting stuck or proofs being based on non-evident axioms. Secondly, identity induction

𝐽𝐶 ∶ (𝑑 ∶ Π𝑎∶𝐴𝐶[𝑎, 𝑎, 𝗋𝖾𝖿𝗅𝑎]) → (𝑎, 𝑏 ∶ 𝐴)(𝑝 ∶ 𝖨𝖽𝐴(𝑎, 𝑏)) → 𝐶[𝑎, 𝑏, 𝑝]

only requires a proof of the reflexivity case to conclude. Then, it is not clear how the induction conclusion
soundly follows in the non-canonical cases introduced by the axioms corresponding to 1.1, 1.2 and 1.3 or
whether the type theory remains consistent as a logic.

The two issues are not independent. Having a computational justification of the new constants will
re-establish the consistency of the theory. (Relative) consistency can also be established by devising a
model. However, devising a model is weaker than giving computation rules. Still it is a step in the right
direction.

The model we present is a combination of the constructive set-theoretic groupoid model [HS98] and
the type-theoretic relational model [Ton13] [BJP12] [AGJ14]. The groupoid model models ITT with
extensional function spaces and an extensional universe, and the relational model models ITT without
the extensionality principles. We briefly recap how types are interpreted in the groupoid and the relational
model respectively to motivate the interpretation of types in our model of ITT with the extensionality
principles.

The groupoid model interprets contexts as groupoids and dependent types as families of groupoids
and functors. More formally, a type 𝐴 in context Γ consists of a groupoid 𝐴(𝛾) for every 𝛾 ∶ Γ and a
functor 𝐴(𝑔) ∶ 𝐴(𝛾) → 𝐴(𝛾′) for every 𝑔 ∈ ℎ𝑜𝑚Γ(𝛾, 𝛾′). In particular, the identity type 𝖨𝖽𝐴(𝑎, 𝑏) is
interpreted by the discrete groupoid whose objects are the morphisms ℎ𝑜𝑚𝐴(𝑎, 𝑏). There are several
morphisms going from 𝑎 to 𝑏 in general and the groupoid model thus invalidates uniqueness of identity
proofs (UIP), that is the type

Π𝑎,𝑏∶𝐴Π𝑝,𝑞∶𝖨𝖽𝐴(𝑎,𝑏)𝖨𝖽𝖨𝖽𝐴(𝑎,𝑏)(𝑝, 𝑞)

is not inhabited for all types 𝐴. A term 𝑎 of type 𝐴 is a family of objects 𝑎(𝛾) ∶ 𝐴(𝛾) for every 𝛾 ∶ Γ
such that equality is preserved. Since equality corresponds to morphisms there must be a morphism
𝑎(𝑔) for every 𝑔 ∈ ℎ𝑜𝑚Γ(𝛾, 𝛾′). However, the objects 𝑎(𝛾) and 𝑎(𝛾′) do not necessarily lie in the same
groupoid and are thus not connected by morphisms. The solution of Hofmann and Streicher [HS98] is
to define morphisms between 𝑎(𝛾) and 𝑎(𝛾′) as the 𝐴(𝛾′)-homset of 𝐴(𝑔)(𝑎(𝛾)) and 𝑎(𝛾′). However,
preservation of equality also demands that the morphism 𝑎(𝑔 · 𝑔′) is the composite of 𝑎(𝑔) and 𝑎(𝑔′),
which do not share co-domain and domain by the definition just given. Similar problems arise when
defining component-wise composition in the groupoid corresponding to context extension of Γ by 𝐴, and
when generalising the transport of equality proofs by symmetry and transitivity in the non-dependent
to the dependent case.

In contrast, the equality proofs between the term components 𝑎(𝛾) ∶ 𝐴(𝛾) and 𝑎(𝛾′) ∶ 𝐴(𝛾′) are given
as primitives by the relational interpretation of the term’s type. The type 𝐴 in the relational model

is interpreted by a meta-theoretic type 𝐴(𝛾) for every term 𝛾 ∶ Γ of the semantic context and a type
𝐴(𝑔, 𝑎, 𝑎′) for all terms 𝑔 ∶ Γ(𝛾, 𝛾′), 𝑎 ∶ 𝐴(𝛾), 𝑎′ ∶ 𝐴(𝛾′). The dependent relations do not only simplify
the definition of terms in the relational model but also the construction of the extended context Γ.𝐴.
The reason is that the equality proofs between terms ⟨𝛾, 𝑎⟩ ∶ Γ.𝐴 and ⟨𝛾′, 𝑎′⟩ ∶ Γ.𝐴 can simply be taken
as the pairs of proofs between 𝛾 and 𝛾′ and 𝑎 and 𝑎′ respectively.

Types in the relational model do not carry any of the extra structure of the groupoid model like
composition of equality proofs and mapping of terms over equalities in the context. However, these
operations and others inducing reflexivity and symmetry proofs are needed to interpret the identity
types 𝖨𝖽𝐴(𝑎, 𝑏) by the semantic equality proofs or internalise the semantic equality relations by 𝖨𝖽𝐴.
Actually, because additional structure is required for the relations in the relational model to be equality
relations it is incorrect to refer to their inhabitants as equality proofs but it suggests the connection we
are about the make.

The present work combines the groupoid model with the relational model. To this end, we generalise
the morphisms in the groupoid model to (dependent) paths. The notion of paths corresponds to the
elements of the types 𝐴(𝑔, 𝑎, 𝑎′) in the relational model. Thereby, we do not rely on the transport function
to define equality preservation and composition. The model we obtain can be seen as a truncated version
of the cubical set model [BCH13] [Hub15].

Organisation
The thesis is organised as follows. Chapter 2 introduces a common presentation of a specific flavour of
dependent type theory as a formal system, the notion of model that will be used in the remainder of
the thesis and how it relates to the syntax, because the result will not be an interpretation function.
Then, chapter 3 establishes what exactly the data of a relational interpretation consists of. The main
part of the thesis is a proof of the model axioms for a refined relational interpretation, which is presented
in chapter 4. Before the thesis concludes, chapter 5 gives an alternative axiomatisation of the refined
interpretation. Some straightforward and lengthy proofs are included in appendix A.

We apply very elementary reasoning to highlight the fact that we are working with a refinement on
relations. Using the fact that we are actually working with categories and fibrations would give us a
richer meta-theory and more direct proofs but also cloud the relational view, which is not restricted to
the binary case.

Contributions
The contributions of this thesis are

1. a complete proof of the model axioms for the so-called groupoid interpretation of intensional type
theory. Interpreting types as groupoids with transport and terms as functors gives a model of
dependent type theory with extensional Π, Id, extensional U, and ‖ · ‖ types. The groupoid in-
terpretation was conceived, albeit in a different formulation, more than 20 years ago and is an
outstanding result still relevant today. The paper left some verifications to the reader that we have
the space for to include,

2. a previously unidentified relationship between morphoid type theory and intensional type theory.
Namely, that they share a common model which led to the formulation of morphoid type theory and
seems to coincide with the groupoid interpretation. If paths form a morphoid, then the connected
points form a groupoid and vice versa.

Notation
Throughout the thesis, the following conventions of notation are made. The capital Greek letters Γ, Δ, …
denote type-theoretical contexts, either semantic or syntactical depending on the context. When talking
about semantic contexts, the corresponding small Greek letters denote its elements (members of the set
Γ𝑆 and the corresponding small Latin letters proofs of their relatedness (members of the set Γ𝑅). For
instance, the elements of a semantic context Γ are denoted by 𝛾, 𝛾′, 𝛾″, … and 𝑔, 𝑔′ denote proofs that

𝛾 (𝛾′) and 𝛾′ (𝛾″) are related by Γ. There are special proofs 𝗂𝖽𝛾 and 𝑔−1 which borrow their notation
from category theory. The capital Latin letters 𝐴, 𝐵, … are used to refer to types, both semantic and
syntactical. Semantic types are families of sets and relations indexed by the respective semantic context,
which are denoted by 𝐴𝛾 and 𝐴𝑔 respectively. The small Latin letters 𝑎, 𝑏, … can denote terms of the
corresponding type but are usually used when talking about the elements of the corresponding semantic
type. The context situation is flipped for types and the corresponding small Greek letters 𝛼, 𝛽, … refer to
relatedness proofs between elements of semantic types. For the sake of clarity or simply to increase the
number of available symbols, the context symbols are used as subscripts like 𝑎𝛾, 𝛼𝛾 or 𝛼𝑔 to say that a
type element belongs to the set 𝐴𝛾 and a type proof belongs to the relation 𝐴𝗂𝖽𝛾

or 𝐴𝑔. So far, we have
introduced common symbols for sets and members thereof. The membership relation is usually denoted
by ∈ but can occasionally be referred to as ∶, especially when the right-hand side is a structure that
involves a set and it is clear which set the left-hand side is meant to be a member of. To refer to equality
in the meta-theory the symbol ≡ is used, whereas the symbol = refers to (definitional) equality in the
object theory. The object theory also possesses an internal notion of equality (propositional equality)
which is a type and will be denoted as such (𝖨𝖽) to distinguish it clearly from the other two.

Thanks
The author wants to thank his supervisor for the introduction to the research of categorical models of
type theory as well as his examiner and opponent for their patience.

Chapter 2

Preliminaries

2.1 Dependent Type Theory
Martin-Löf type theory or more generally intensional type theory is a particular flavour of dependent
type theory. Dependent type theory is a formal system, that is a relation on a set of formulas generated
by a number of schematic inference rules. Not all formulas are meaningful and the rules define exactly
when a formula is well-formed. The syntax of dependent type theory is defined in terms of the three
classes of terms

1. contexts

2. types

3. terms (sub-class variables)

and the six classes of formulas or so called judgments (two for each class of terms)

1. ⊢ Γ ctx

2. Γ ⊢ 𝐴 type

3. Γ ⊢ 𝑎 ∶ 𝐴
4. ⊢ Γ = Δ ctx

5. Γ ⊢ 𝐴 = 𝐵 type

6. Γ ⊢ 𝑎 = 𝑏 ∶ 𝐴

where Γ, Δ; 𝐴, 𝐵; 𝑎, 𝑏 are non-terminals of class context, type and term respectively. What justifies
the adjective dependent over simple type theory is the fact that the syntax of types refers to the syntax
of terms and both must be defined simultaneously. The rules of dependent type theory are organised in
groups of rules for contexts, types and terms.

5

⊢ Γ ctx
⊢ Γ = Γ ctx

⊢ Γ = Δ ctx
⊢ Δ = Γ ctx

⊢ Γ = Δ ctx ⊢ Δ = Θ
⊢ Γ = Θ ctx

⊢ [] ctx Empty context

⊢ Γ ctx Γ ⊢ 𝐴 type
⊢ Γ, 𝑥 ∶ 𝐴 ctx

Context extension
⊢ Γ = Δ ctx Γ ⊢ 𝐴 = 𝐴′ type

⊢ Γ, 𝑥 ∶ 𝐴 = Δ, 𝑥 ∶ 𝐴′ ctx

Γ ⊢ 𝐴 type
Γ ⊢ 𝐴 = 𝐴 ctx

Γ ⊢ 𝐴 = 𝐵 type
Γ ⊢ 𝐵 = 𝐴 type

Γ ⊢ 𝐴 = 𝐵 type Γ ⊢ 𝐵 = 𝐶 type
Γ ⊢ 𝐴 = 𝐶 type

Γ ⊢ 𝐴 type ⊢ Γ = Δ
Δ ⊢ 𝐴 type

Γ ⊢ 𝑎 ∶ 𝐴
Γ ⊢ 𝑎 = 𝑎 ∶ 𝐴

Γ ⊢ 𝑎 = 𝑏 ∶ 𝐴
Γ ⊢ 𝑏 = 𝑎 ∶ 𝐴

Γ ⊢ 𝑎 = 𝑏 ∶ 𝐴 Γ ⊢ 𝑏 = 𝑐 ∶ 𝐴
Γ ⊢ 𝑎 = 𝑐 ∶ 𝐴

Γ ⊢ 𝑎 ∶ 𝐴 Γ ⊢ 𝐴 = 𝐵
Γ ⊢ 𝑎 ∶ 𝐵 Type conversion

⊢ Γ ctx Γ ⊢ 𝐴 type
Γ, 𝑥 ∶ 𝐴 ⊢ 𝑥 ∶ 𝐴 Variable introduction

Starting from the dependent type theory presented so far, type theories like Martin-Löf type theory
extend the set of structural rules with logical rules. In addition to formation and introduction rules,
the axiomatisation of a logical type also consists of elimination and computation rules. Common types
include functions in the style of the lambda calculus and simple type theory
Definition 2.1.1 (Π type former).

Γ ⊢ 𝐴 type Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵[𝑥] type
Γ ⊢ Π𝐴𝐵 type

Pi
Γ ⊢ 𝐴 = 𝐴′ type Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 = 𝐵′ type

Γ ⊢ Π𝐴𝐵 = Π𝐴′𝐵′ type

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑏[𝑥] ∶ 𝐵[𝑥]
Γ ⊢ 𝜆𝑥.𝑏 ∶ Π𝐴𝐵 Pi-Intro

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑏 = 𝑏′ ∶ 𝐵
Γ ⊢ 𝜆𝑥.𝑏 = 𝜆𝑥.𝑏′ ∶ Π𝐴𝐵

Γ ⊢ 𝑓 ∶ Π𝐴𝐵 Γ ⊢ 𝑎 ∶ 𝐴
Γ ⊢ 𝑓𝑎 ∶ 𝐵[𝑎/𝑥] Pi-Elim

Γ ⊢ 𝑓 = 𝑓′ ∶ Π𝐴𝐵 Γ ⊢ 𝑎 = 𝑎′ ∶ 𝐴
Γ ⊢ 𝑓𝑎 = 𝑓′𝑎′ ∶ 𝐵[𝑎/𝑥]

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑏[𝑥] ∶ 𝐵[𝑥] Γ ⊢ 𝑎 ∶ 𝐴
Γ ⊢ (𝜆𝑥.𝑏)𝑎 = 𝑏[𝑎/𝑥] ∶ 𝐵[𝑎/𝑥] Pi-𝛽

Γ ⊢ 𝑓 ∶ Π𝐴𝐵
Γ ⊢ 𝜆𝑥.𝑓𝑥 = 𝑓 ∶ Π𝐴𝐵 Pi-𝜂

■
as well as proofs of identity and substitution of equals in the object language

Definition 2.1.2 (Id type former).

Γ ⊢ 𝐴 type
Γ, 𝑥1 ∶ 𝐴, 𝑥2 ∶ 𝐴 ⊢ 𝖨𝖽𝐴 type

Id
Γ ⊢ 𝐴 = 𝐴′ type

Γ, 𝑥1 ∶ 𝐴, 𝑥2 ∶ 𝐴 ⊢ 𝖨𝖽𝐴 = 𝖨𝖽𝐴′ type

Γ ⊢ 𝐴 type
Γ, 𝑥 ∶ 𝐴 ⊢ 𝗋𝖾𝖿𝗅𝐴 ∶ 𝖨𝖽𝐴[𝑥/𝑥1, 𝑥/𝑥2] Id-Intro

Γ ⊢ 𝐴 = 𝐴′ type Γ ⊢ 𝑎 = 𝑎′ ∶ 𝐴
Γ, 𝑥 ∶ 𝐴 ⊢ 𝗋𝖾𝖿𝗅𝐴 = 𝗋𝖾𝖿𝗅𝐴′ ∶ 𝖨𝖽𝐴

Γ ⊢ 𝐴 type
Γ, 𝑥1 ∶ 𝐴, 𝑥2 ∶ 𝐴, 𝑝 ∶ 𝖨𝖽𝐴 ⊢ 𝐶[𝑥1, 𝑥2, 𝑝] type Γ, 𝑥 ∶ 𝐴 ⊢ 𝑑 ∶ 𝐶[𝑥/𝑥1, 𝑥/𝑥2, 𝗋𝖾𝖿𝗅𝐴/𝑝]

Γ, 𝑥1 ∶ 𝐴, 𝑥2 ∶ 𝐴, 𝑝 ∶ 𝖨𝖽𝐴 ⊢ 𝐽𝐶,𝑑 ∶ 𝐶 Id-Elim

Γ ⊢ 𝐴 type
Γ, 𝑥1 ∶ 𝐴, 𝑥2 ∶ 𝐴, 𝑝 ∶ 𝖨𝖽𝐴 ⊢ 𝐶[𝑥1, 𝑥2, 𝑝] type Γ, 𝑥 ∶ 𝐴 ⊢ 𝑑 ∶ 𝐶[𝑥/𝑥1, 𝑥/𝑥2, 𝗋𝖾𝖿𝗅𝐴/𝑝]

Γ, 𝑥 ∶ 𝐴 ⊢ 𝐽𝐶,𝑑[𝑥/𝑥1, 𝑥/𝑥2, 𝗋𝖾𝖿𝗅𝐴/𝑝] ≡ 𝑑 ∶ 𝐶[𝑥/𝑥1, 𝑥/𝑥2, 𝗋𝖾𝖿𝗅𝐴/𝑝] Id-𝜂

■
and a type for quantification over types and introduction of new types within the theory

Definition 2.1.3 (U type former).

Γ ⊢ 𝖴 type U

Γ ⊢ 𝐴 ∶ 𝖴
Γ ⊢ |𝐴| type

U-Elim
Γ ⊢ 𝐴 = 𝐴′ ∶ 𝖴

Γ ⊢ |𝐴| = |𝐴′| type

■
This set of common types were introduced to have a formal intuitionistic predicate logic of types. In

recent years further extensions to the novel identity types were proposed.
Per Martin-Löf’s identity type is defined for every type, including the identity types themselves.

Every two proofs of equality can thereby be compared for equality adding a dimension of distinguishable
elements. Together with the groupoid structure induced by the identity types this suggests an infinite-
dimensional groupoid structure of types in ITT. Vladimir Voevodsky proposed to organise types in ITT
according to their dimension.

Types of dimension −2 are exactly the ones that are inhabited and every two elements are equal. A
type is −1-dimensional if for every element pair the corresponding identity type is of dimension −2, that
is every two elements are equal but the type can be the empty type. The hierarchy continues with the
level 0 types whose identity types are level −1 types. The elements of level 0 types need not be equal
but if they are there is only proof up to propositional equality. The hierarchy we obtain by defining
(𝑛 + 1)-types to be exactly those with 𝑛-level identity types may or may not collapse.

Voevodsky’s stratification of types can be defined in MLTT internally (contractible types are defined
using Σ and all other levels in terms of the previous level and Π). Imposing a specific level on a type,
that is forming a new type with the same elements but additional equalities at the respective dimension,
needs further axioms. [Uni13] axiomatises the propositional truncation of a type 𝐴 which coerces all
elements 𝑎, 𝑏 ∶ 𝐴 into being uniquely equal syntactically as follows.

Definition 2.1.4 (‖ · ‖ type former).

Γ ⊢ 𝐴 type
Γ ⊢ ‖𝐴‖ type

Trunc
Γ ⊢ 𝐴 = 𝐴′ type

Γ ⊢ ‖𝐴‖ = ‖𝐴′‖ type

Γ ⊢ 𝐴 type Γ ⊢ 𝑎 ∶ 𝐴
Γ ⊢ ‖𝑎‖ ∶ ‖𝐴‖ Trunc-Intro

Γ ⊢ 𝐴 type Γ ⊢ 𝑎 = 𝑎′ ∶ 𝐴
Γ ⊢ ‖𝑎‖ = ‖𝑎′‖ ∶ ‖𝐴‖

Γ ⊢ 𝐴 type
Γ ⊢ 𝑖𝑠𝑃 𝑟𝑜𝑝(‖𝐴‖) ∶ Π‖𝐴‖Π‖𝐴‖𝖨𝖽‖𝐴‖

Γ ⊢ 𝐴 type Γ ⊢ 𝐵 type Γ ⊢ 𝑖𝑠𝑃 𝑟𝑜𝑝(𝐵) ∶ Π𝐵Π𝐵𝖨𝖽𝐵 Γ ⊢ 𝑓 ∶ Π𝐴𝐵
Γ ⊢ ‖𝑓‖ ∶ Π‖𝐴‖𝐵

Γ ⊢ 𝐴 type Γ ⊢ 𝐵 type Γ ⊢ 𝑖𝑠𝑃𝑟𝑜𝑝(𝐵) ∶ Π𝐵Π𝐵𝖨𝖽𝐵 Γ ⊢ 𝑓 = 𝑓′ ∶ Π𝐴𝐵
Γ ⊢ ‖𝑓‖ = ‖𝑓′‖ ∶ Π‖𝐴‖𝐵

Γ ⊢ 𝐴 type Γ ⊢ 𝐵 type Γ ⊢ 𝑖𝑠𝑃𝑟𝑜𝑝(𝐵) ∶ Π𝐵Π𝐵𝖨𝖽𝐵 Γ ⊢ 𝑓 ∶ Π𝐴𝐵 Γ ⊢ 𝑎 ∶ 𝐴
Γ ⊢ ‖𝑓‖‖𝑎‖ = 𝑓𝑎 ∶ 𝐵

■
The Trunc type former 2.1.4 does not follow the intro-elim pattern. Also note that the codomain

type does not depend on the domain as otherwise Π‖𝐴‖𝐵 would not be well-typed/well-scoped.
Actually, [Uni13] also gives the following induction principle for propositional truncation

Γ, 𝑥 ∶ ‖𝐴‖ ⊢ 𝐶 type
Γ, 𝑥 ∶ ‖𝐴‖ ⊢ 𝑖𝑠𝑃𝑟𝑜𝑝(𝐶(𝑥)) ∶ Π𝑐1∶𝐶,𝑐2∶𝐶𝖨𝖽𝐶[𝑐1/𝑥1, 𝑐2/𝑥2] Γ ⊢ 𝑖 ∶ Π𝑎∶𝐴𝐶[‖𝑎‖/𝑥]

Γ ⊢ ‖𝑖‖ ∶ Π‖𝐴‖𝐶
but immediately shows that it is implied by the recursion principle and the fact that truncating a

type forces all its elements into equality. More concretely, given a witness 𝑎 ∶ 𝐴 that 𝐴 is non-empty,
𝐶[𝑥] can be proved inhabited by transporting 𝑖(‖𝑎‖) along the equality 𝖨𝖽‖𝐴‖[‖𝑎‖/𝑥1, 𝑥/𝑥2]. Hence, we
can construct a term of type Π𝐴Π‖𝐴‖𝐶. The last step is to realise that the function space between two
propositions is a proposition and apply truncation recursion. The resulting term of type Π‖𝐴‖Π‖𝐴‖𝐶
then proves the conclusion.

It is a theorem that 𝑖𝑠𝑃𝑟𝑜𝑝(‖𝐴‖) implies that ‖𝐴‖ is a mere proposition. As is, the axiom only says
that all elements are equal but not that all identity types are contractible.

Even if 𝐴 is higher than −1 in the hierarchy, the proof that 𝐴 implies a mere proposition 𝐵 cannot
depend on the extra structure but must be constant on even unrelated equality proofs. Hence, making
all elements equal does not erase relevant information about the map.

Propositional truncation can be understood as a special case of the more general concept of higher
inductive types. Higher inductive types are inductive types with constructors for both the type itself
and its identity types. Propositional truncation not only introduces the elements ‖𝑎‖ but also proofs
of the equalities 𝖨𝖽‖𝐴‖[‖𝑎‖/𝑥1, ‖𝑎′‖/𝑥2]. In the general case, many constructors for an identity type can
be defined, constructors of the identity types of identities can be defined, the identity constructors can
depend on the type context or the element constructors. Other higher inductive types include proposi-
tional truncation with non-contractible identity types or truncation to higher levels in the hierarchy, for
instance.

Further logical rules include

dependent sum type

Γ, 𝐴 type, 𝐵 type ⊢ Σ𝐴𝐵 type

with introduction

Γ, 𝑎 ∶ 𝐴, 𝑏 ∶ 𝐵 ⊢ ⟨𝑎, 𝑏⟩ ∶ Σ𝐴𝐵

and eliminations

Γ, 𝑝 ∶ Σ𝐴𝐵 ⊢ 𝑝1 ∶ 𝐴, 𝑝2 ∶ 𝐵[𝑝1/𝑎]

inductive definitions empty type, void, natural numbers, vectors are axiomatised by their constructors
and structural recursion principles

univalence the axioms says that the identity type of two small types is equivalent to the type of
isomorphisms between the two small types

universe of propositions this universe is axiomatised with an additional axiom saying that the iden-
tity types of its small types are contractible

universes closed under type formers closure for universes allows for not eliminating of but also
introducing types to the universe of small types like functions, products and sums

Some of the rules make use of capture-free substitution which can be generalised to context morphisms
that replace all free variables simultaneously. Rather than concentrating on which variables to replace, we
look at how the context in which the term can be typed changes. We are not interested on how the term
changes syntactically but which are the free variables and how to assign a term to one. The abstract view
characterises generalised substitutions as a category because they can be composed and the composition
is both associative and has units. This is only a good abstraction because it subsumes capture-free
substitution, weakening and the rule set can be expressed with at most one context morphism per rule.

Instead of generating substituted terms, context morphisms can be added as a fourth class of terms
and further rules. The new rules axiomatise substitution as an operation adhering to the derived com-
position laws.

We take a leap and mention that variables can be replaced by a canonical context morphism 𝐩 that
removes the last variable from the context and a canonical term 𝐪 to refer to the last variable in the
context.

2.2 Models
The variable-free dependent type theory with context morphisms and definitional equality inherited from
the meta-theory can be presented as a generalised algebraic theory.

A generalised algebraic theory (gat) consists of sort and operator symbols, introduction rules for
the sorts and operators as well as equality axioms for the sorts and operators. [Car86] Operators define
the elements of sorts. The introduction rules of both sorts and operators may depend on elements of
other sorts. The induced equality relation is reflexive, symmetric, transitive and a congruence. What
distinguishes generalised algebraic theories from dependent type theories is the lack of dependency and
variables in formulas.

As already said, the theory we end up with by removing variables and adding explicit substitutions
has a gat presentation. Contexts, context morphisms, types and terms are presented as the sorts and the
operators are empty and extended context; composite, identity, projection (𝐩, into the empty context)
and extension context morphism; application of context morphisms to types and terms (substitution) as
well as the projection term (𝐪). Lastly, the equations characterise extended contexts as lists of types,
context morphisms by their composition laws and substitution such that it respects the structure of
context morphisms, that is composites correspond to successive substitutions and identities correspond
to the do-nothing substitution.

The original theory is not a gat because the axiomatisation of well-formed terms needs to take variable
bindings into consideration, f.i. given [] ⊢ 𝐴 type

𝑥 ∶ 𝐴 ⊢ 𝑦 ∶ 𝐴

is not well-formed while

𝑥 ∶ 𝐴 ⊢ 𝑥 ∶ 𝐴

is, as well as capture-free substitution, f.i.

𝑥 ∶ 𝐴, 𝑦 ∶ 𝐴 ⊢ (𝜆𝑧.𝑦)[𝑥/𝑦] = 𝜆𝑧.𝑦[𝑥/𝑦]

is not well-formed unless 𝑧 and 𝑥 are distinct. Such cases are handled by side-conditions in the
inference rule system but cannot be expressed in a gat directly. The switch to the variable-free formulation
gives us a straightforward gat presentation (in every non-empty context 𝐪 refers to the last variable in the
context and under a binder this index gets incremented) but it is not clear whether the two presentations
are equivalent.

The importance of the gat presentation for modelling type theory is that there is a mathematical
notion of model that has a term model instance which is initial among all instances. Via the initiality
of the term model an interpretation function of the syntax can be defined for an arbitrary instance in a
uniform way. Moreover, a once and for all interpretation of variables and substitutions into combinators
and context morphisms should be extendible to an interpretation function from the syntax of type theory
into the instances of the gat model notion.

2.3 Categories with Families
Several equivalent notions of models of type theory as a gat exist. Categories with families [Dyb95][Hof97b]
is a particular one that reformulates the gat axioms using categorical language. The operations on the
collection of contexts turn it into a category with a terminal object, the equations for substitution char-
acterise it as a functor from the category of contexts to the collection of families of sets, which together
with re-indexing functions forms a category. The only equations of the gat that are not condensed
into categorical language are the equations governing the combinators 𝐩 and 𝐪. We recall the complete
definition of categories with families here.
Definition 2.3.1 (Category with families). A category with families (cwf) consists of the following data.

• A category 𝒞𝑡𝑥 with a terminal object [] ∶ 𝒞𝑡𝑥, that is

– a set 𝑂𝑏𝑗(𝒞𝑡𝑥) of objects (sometimes denoted as just 𝒞𝑡𝑥)
– a set ℎ𝑜𝑚𝒞𝑡𝑥(Γ, Δ) of morphisms (sometimes written without the index and also referred to

as Γ →𝒞𝑡𝑥 Δ or Γ → Δ respectively) for every pair of objects Γ, Δ ∈ 𝑂𝑏𝑗(𝒞𝑡𝑥)
– a member [] ∈ 𝑂𝑏𝑗(𝒞𝑡𝑥)
– a member !Γ ∈ ℎ𝑜𝑚𝒞𝑡𝑥(Γ, []) for every object Γ ∈ 𝑂𝑏𝑗(𝒞𝑡𝑥)
– a member 𝗂𝖽Γ ∈ ℎ𝑜𝑚𝒞𝑡𝑥(Γ, Γ) for every object Γ ∈ 𝑂𝑏𝑗(𝒞𝑡𝑥)
– a family of functions ∘𝒞𝑡𝑥 ∶ {Γ, Δ, Ε ∈ 𝑂𝑏𝑗(𝒞𝑡𝑥)} ℎ𝑜𝑚𝒞𝑡𝑥(Δ, Ε) → ℎ𝑜𝑚𝒞𝑡𝑥(Γ, Δ) → ℎ𝑜𝑚𝒞𝑡𝑥(Γ, Ε)

such that

– ! ∈ ℎ𝑜𝑚(Γ, []) is unique for every object Γ ∈ 𝑂𝑏𝑗(𝒞𝑡𝑥)
– 𝗂𝖽∆ ∘ 𝑠 ≡ 𝑠 ≡ 𝑠 ∘ 𝗂𝖽Γ for all morphisms 𝑠 ∈ ℎ𝑜𝑚(Γ, Δ)
– 𝑢 ∘ (𝑡 ∘ 𝑠) ≡ (𝑢 ∘ 𝑡) ∘ 𝑠 for all morphisms 𝑠 ∈ ℎ𝑜𝑚(Γ, Δ), 𝑡 ∈ ℎ𝑜𝑚(Δ, Ε), 𝑢 ∈ ℎ𝑜𝑚(Ε, Φ)

• A functor 𝑇 ∶ 𝒞𝑡𝑥𝗈𝗉 → ℱ𝑎𝑚, that is

– a family of sets 𝖳𝗆Γ(𝐴) indexed by the members 𝐴 of a set 𝖳𝗒(Γ) for every object Γ ∈
𝑂𝑏𝑗(𝒞𝑡𝑥)

– functions ·{𝑠} ∶ 𝖳𝗒(Γ) → 𝖳𝗒(Δ) and ·{𝑠} ∶ 𝖳𝗆Γ(𝐴) → 𝖳𝗆∆(𝐴{𝑠}) for every morphism
𝑠 ∈ ℎ𝑜𝑚𝒞𝑡𝑥(Δ, Γ)

such that

– ·{𝗂𝖽Γ} are the identity functions on 𝖳𝗒(Γ) and 𝖳𝗆Γ(𝐴) for every object Γ ∈ 𝑂𝑏𝑗(𝒞𝑡𝑥)
– ·{𝑠 ∘ 𝑡} are the composites ·{𝑡} ∘ ·{𝑠} from 𝖳𝗒(Γ) and 𝖳𝗆Γ(𝐴) to 𝖳𝗒(Ε) and 𝖳𝗆Ε(𝐴{𝑠}{𝑡})

respectively for all morphisms 𝑠 ∈ ℎ𝑜𝑚𝒞𝑡𝑥(Δ, Γ), 𝑡 ∈ ℎ𝑜𝑚𝒞𝑡𝑥(Ε, Δ)

• For every object Γ ∈ 𝑂𝑏𝑗(𝒞𝑡𝑥) and element 𝐴 ∈ 𝖳𝗒(Γ) an object Γ.𝐴 ∈ 𝑂𝑏𝑗(𝒞𝑡𝑥) as well as a
morphism 𝐩Γ.𝐴 ∈ ℎ𝑜𝑚𝒞𝑡𝑥(Γ.𝐴, Γ) and an element 𝐪Γ.𝐴 ∈ 𝖳𝗆Γ.𝐴(𝐴{𝐩Γ.𝐴})
such that
for every morphism 𝑠 ∈ ℎ𝑜𝑚𝒞𝑡𝑥(Δ, Γ) and element 𝑡 ∈ 𝖳𝗆∆(𝐴{𝜎}) there is a unique morphism
⟨𝜎, 𝑡⟩ ∈ ℎ𝑜𝑚𝒞𝑡𝑥(Δ, Γ.𝐴) satisfying the equations 𝐩Γ.𝐴 ∘ ⟨𝜎, 𝑡⟩ ≡ 𝜎 and 𝐪Γ.𝐴{⟨𝜎, 𝑡⟩} ≡ 𝑡

■
The sets 𝖳𝗒(Γ) and 𝖳𝗆Γ(𝐴) correspond to the types 𝐴 in context Γ and the terms of type 𝐴

respectively. 𝐩 and 𝐪 behave like a first and second projection of Γ.𝐴 respectively when we think of it as
a Cartesian product of unnamed variables. Substitution corresponds to the operations ·{·} on the sets
of types and terms. Categories with families are therefore close to the syntax of type theory, which will
also show in the definition of type formers.

To get an idea of how to work with substitutions in cwfs, we define a shorthand for the common
operation of replacing the last variable in the extended context Γ.𝐴 with a term of type 𝐴.
Definition 2.3.2 (Variable elimination as context morphism). Given a cwf, a context Γ ∶ 𝒞𝑡𝑥, a type
𝐴 ∈ 𝖳𝗒(Γ) and a term 𝑎 ∈ 𝖳𝗆Γ(𝐴), write [𝑎] for the substitution ⟨𝗂𝖽Γ, 𝑎⟩ ∶ Γ → Γ.𝐴. ■

Every cwf is a model of the structural rules of a dependent type theory. The subsequent definitions
say what structure is needed on a particular cwf such that it also models the logical rules Π, Id, U and
‖ · ‖.
Definition 2.3.3 (Π structure). For every Γ ∶ 𝒞𝑡𝑥, 𝐴 ∈ 𝖳𝗒(Γ) and 𝐵 ∈ 𝖳𝗒(Γ.𝐴) there is a Π𝐴𝐵 ∈ 𝖳𝗒(Γ).

For every 𝑏 ∈ 𝖳𝗆Γ.𝐴(𝐵) there is 𝜆𝑏 ∈ 𝖳𝗆Γ(Π𝐴𝐵).
For every 𝜆 ∈ 𝖳𝗆Γ(Π𝐴𝐵) and 𝑎 ∈ 𝖳𝗆Γ(𝐴) there is 𝖺𝗉𝗉(𝜆, 𝑎) ∈ 𝖳𝗆Γ(𝐵[𝑎]).
We have 𝜆𝖺𝗉𝗉(𝜆𝐩, 𝐪) ≡ 𝜆 and 𝖺𝗉𝗉(𝜆𝑏, 𝑎) ≡ 𝑏[𝑎].
For every 𝜎 ∶ Δ → Γ we have

• Π𝐴𝐵𝜎 ≡ Π𝐴𝜎(𝐵⟨𝜎 ∘ 𝐩, 𝐪⟩)
• 𝜆𝑏𝜎 ≡ 𝜆(𝑏⟨𝜎 ∘ 𝐩, 𝐪⟩)
• 𝖺𝗉𝗉(𝜆, 𝑎)𝜎 ≡ 𝖺𝗉𝗉(𝜆𝜎, 𝑎𝜎)

■
Definition 2.3.4 (Id structure). For every Γ ∶ 𝒞𝑡𝑥 and 𝐴 ∈ 𝖳𝗒(Γ) there is a 𝖨𝖽𝐴 ∈ 𝖳𝗒(Γ.𝐴.𝐴𝐩).

There is a 𝗋𝖾𝖿𝗅𝐴 ∈ 𝖳𝗆Γ.𝐴(𝖨𝖽𝐴[𝐪]).
For every 𝐶 ∈ 𝖳𝗒(Γ.𝐴.𝐴𝐩.𝖨𝖽𝐴) and 𝑑 ∈ 𝖳𝗆Γ.𝐴(𝐶[𝗋𝖾𝖿𝗅𝐴]) there is 𝐽𝐶,𝑑 ∈ 𝖳𝗆Γ.𝐴.𝐴𝐩.𝖨𝖽𝐴

(𝐶).
We have 𝐽𝐶,𝑑[𝗋𝖾𝖿𝗅𝐴𝐩] ≡ 𝑑.
For every 𝜎 ∶ Δ → Γ we have

• 𝖨𝖽𝐴⟨⟨𝜎 ∘ 𝐩, 𝐪⟩ ∘ 𝐩, 𝐪⟩ ≡ 𝖨𝖽𝐴𝜎

• 𝗋𝖾𝖿𝗅𝐴⟨𝜎 ∘ 𝐩, 𝐪⟩ ≡ 𝗋𝖾𝖿𝗅𝐴𝜎

• 𝐽𝐶,𝑑⟨⟨⟨𝜎 ∘ 𝐩, 𝐪⟩ ∘ 𝐩, 𝐪⟩ ∘ 𝐩, 𝐪⟩ ≡ 𝐽𝐶⟨⟨⟨𝜎∘𝐩,𝐪⟩∘𝐩,𝐪⟩∘𝐩,𝐪⟩,𝑑⟨𝜎∘𝐩,𝐪⟩

■
Definition 2.3.5 (U structure). There is 𝖴 ∈ 𝖳𝗒([]).

For every 𝐴 ∈ 𝖳𝗆[](𝖴) there is |𝐴| ∈ 𝖳𝗒([]). ■
Definition 2.3.6 (‖ · ‖ structure). For every Γ ∶ 𝒞𝑡𝑥 and 𝐴 ∈ 𝖳𝗒(Γ) there is a ‖𝐴‖ ∈ 𝖳𝗒(Γ).

For every 𝑎 ∈ 𝖳𝗆Γ(𝐴) there is ‖𝑎‖ ∈ 𝖳𝗆Γ(‖𝐴‖).
There is 𝑝𝑟𝑜𝑝(𝐴) ∈ 𝖳𝗆Γ(Π‖𝐴‖Π‖𝐴‖𝐩𝖨𝖽‖𝐴‖).
For every 𝐵 ∈ 𝖳𝗒(Γ), 𝑝𝑟𝑜𝑝(𝐵) ∈ 𝖳𝗆Γ(Π𝐵Π𝐵𝐩𝖨𝖽𝐵) and 𝑓 ∈ 𝖳𝗆Γ(Π𝐴(𝐵𝐩)) there is ‖𝑓‖ ∈ 𝖳𝗆Γ(Π‖𝐴‖(𝐵𝐩)).
We have 𝖺𝗉𝗉(‖𝑓‖, ‖𝑎‖) ≡ 𝖺𝗉𝗉(𝑓, 𝑎).
For every 𝜎 ∶ Δ → Γ we have

• ‖𝐴‖𝜎 ≡ ‖𝐴𝜎‖
• ‖𝑎‖𝜎 ≡ ‖𝑎𝜎‖

• ‖𝑓‖𝜎 ≡ ‖𝑓𝜎‖

■
This presentation of the logical cwf structure is based on [Hof97b]. In general, the cwf structure

corresponding to a given type can be derived systematically from the inference rules of a dependent type
theory, f.i. the one presented in section 2.1. Particular attention only needs to be paid to stability under
substitution.

Chapter 3

Relational Model

This chapter presents the general relational model of dependent type theory. It is not the most general
notion of relational model since the involved relations are all binary relations. Still, it is general enough
to have the relational models mentioned in the introduction as refinements.

The general relational model can also be seen as a first example of a cwf and what a proof of the cwf
axioms usually consists of. Hence, the basic structure of contexts, types and terms is the only part of
the theory that we are concerned with here. In particular, we will not look at the interpretation of any
logical rules like function spaces for the general relational model.

Let’s begin with the interpretation of contexts.
Definition 3.0.1 (Relational contexts). Let the contexts be sets with proof-relevant binary relations
defined on them, that is tuples

⟨Γ𝑆 ∶ 𝒮𝑒𝑡, Γ𝑅 ∶ Γ𝑆 × Γ𝑆 → 𝒮𝑒𝑡⟩.
Here, 𝒮𝑒𝑡 denotes the class of all sets and the type of Γ𝑅 should be understood as the type of a

mapping or family that assigns a set to every pair of members of the set Γ𝑆.
A morphism between two contexts Δ and Γ is defined to be a pair of a function

𝜎0 ∶ Δ𝑆 → Γ𝑆

and a family of functions

𝜎1 ∶ {𝛿, 𝛿′ ∈ Δ𝑆} → Δ𝑅(𝛿, 𝛿′) → Γ𝑅(𝜎0(𝛿), 𝜎0(𝛿′)).
The type of 𝜎1 says that it denotes a family of functions which is indexed by the set comprehension

in curly braces. We will often omit the indices and apply 𝜎1 directly as a function if the indices can be
inferred from its argument.

Lastly, we pick out a particular context as interpretation for the empty context. Define the empty
context as the singleton set {∙} with the total relation ⟨∙, ∙⟩ ↦ {∙}. The bullet point ∙ is some arbitrary
but fixed object, for instance the empty set ∅.

■
The tuples of sets and relations together with the component-wise mappings form a category (cf.

lemma A.0.1) with the empty context as the terminal object (cf. lemma A.0.3), the category of contexts.
The proof-irrelevant binary relations are subsumed by this definition. One possible way of embedding

the proof-irrelevant relations is by restriction to singletons in the domain of Γ𝑅. It is also possible to
restrict ourselves to transitive relations by assuming a family of functions

𝑡𝑟𝑎𝑛𝑠 ∶ {𝛾, 𝛾′, 𝛾″ ∈ Γ𝑆} → Γ𝑅(𝛾, 𝛾′) × Γ𝑅(𝛾′, 𝛾″) → Γ𝑅(𝛾, 𝛾″).
Similarly, the non-emptiness of specific sets can force the context relations to be reflexive

𝑟𝑒𝑓𝑙 ∶ {𝛾 ∈ Γ𝑆} → Γ𝑅(𝛾, 𝛾)
or symmetric

𝑠𝑦𝑚 ∶ {𝛾, 𝛾′ ∈ Γ𝑆} → Γ𝑅(𝛾, 𝛾′) → Γ𝑅(𝛾′, 𝛾).
We continue with the interpretation of types.

13

Definition 3.0.2 (Relational types). Let a type 𝐴 in a context Γ be a pair of a family of sets

(𝐴𝛾 ∶ 𝒮𝑒𝑡)𝛾∈Γ𝑆

indexed by the members of Γ𝑆 and a family of relations

(𝐴𝑔 ∶ 𝐴𝛾 × 𝐴𝛾′ → 𝒮𝑒𝑡)𝛾,𝛾′∈Γ𝑆,𝑔∈Γ𝑅(𝛾,𝛾′)

indexed by the proofs of Γ𝑅.
■

The relations 𝐴𝑔 are very general. As for contexts, transitivity can also be imposed on types by
assuming a family of functions with the following signature.

𝑡𝑟𝑎𝑛𝑠 ∶{𝛾, 𝛾′, 𝛾″ ∈ Γ𝑆}{𝑔 ∈ Γ𝑅(𝛾, 𝛾′)}{𝑔′ ∈ Γ𝑅(𝛾′, 𝛾″)}{𝑎𝛾 ∈ 𝐴𝛾}{𝑎𝛾′ ∈ 𝐴𝛾′}{𝑎𝛾″ ∈ 𝐴𝛾″}
→ 𝐴𝑔(𝑎𝛾, 𝑎𝛾′) × 𝐴𝑔′(𝑎𝛾′ , 𝑎𝛾″)
→ 𝐴𝑔·Γ𝑔′(𝑎𝛾, 𝑎𝛾″)

The restriction to reflexive and symmetric types follows by similar generalisations of the respective
restrictions on contexts.

In fact, the only feature that distinguishes types from contexts is the dependency. We remark that
closed types are in 1-to-1 correspondence with contexts.
Remark 3.0.3 (Closed types are contexts). A closed type is a type over the empty context, which has
exactly one member and one proof that the unique member is related to itself. Hence, there is exactly
one set and one relation associated with a closed semantic type.

Given a semantic context, its set and relation can be regarded as a family over the singleton set that
is the empty context. This construction turns a context into a type in the empty context.

Next, we interpret terms in the general relational model.
Definition 3.0.4 (Relational terms). Let a term 𝑎 of type 𝐴 in a context Γ be a context-indexed family
of elements

(𝑎𝛾 ∈ 𝐴𝛾)𝛾∈Γ𝑆

and proofs

(𝑎𝑔 ∈ 𝐴𝑔(𝑎𝛾, 𝑎𝛾′))𝛾,𝛾′∈Γ𝑆,𝑔∈Γ𝑅(𝛾,𝛾′).

■
In other words, terms choose for every context member 𝛾 ∈ Γ a member of the respective type subset

𝐴𝛾 such that the choices are related whenever the context members are related.
An interpretation of contexts, types and terms is not a model without a semantic substitution oper-

ation, that is a way to apply context morphisms to types and terms in the semantics. This is necessary
because the definitions of types and terms are given with respect to a fixed context while dependent type
theory allows context changes that retain the meaning of types and terms.
Definition 3.0.5 (Relational substitution). Given a type 𝐴 and a term 𝑎 ∶ 𝐴 in a context Γ, then
applying a substitution 𝜎 ∶ Δ → Γ yields the type

⟨(𝐴𝜎(𝛿))𝛿∈∆𝑆
, (⟨𝑎, 𝑎′⟩ ↦ 𝐴𝜎(𝑑)(𝑎, 𝑎′))𝛿,𝛿′∈∆𝑆,𝑑∈∆𝑅(𝛿,𝛿′)⟩

and the term

⟨(𝑎𝜎(𝛿))𝛿∈∆𝑆
, (𝑎𝜎(𝑑))𝛿,𝛿′∈∆𝑆,𝑑∈∆𝑅(𝛿,𝛿′)⟩.

These are well-defined because 𝜎 preserves relatedness. Since 𝜎(𝑑) is a witness that 𝜎(𝛿) and 𝜎(𝛿′)
are related, 𝐴𝜎(𝑑) indeed denotes a family of sets and 𝑎𝜎(𝑑) proves that 𝑎𝜎(𝛿) is related to 𝑎𝜎(𝛿′).

■

Substitutions must be functorial with respect to composition and identity in the context category.
Both facts are proved in A.0.2.

We indicated above how to axiomatise common properties of relations for contexts and types. In
order to obtain closure of reflexive, symmetric or transitive relations under type substitution, the context
morphisms need to preserve the respective proofs.

𝜎(𝑟𝑒𝑓𝑙(𝛿)) ≡ 𝑟𝑒𝑓𝑙(𝜎(𝛿))
𝜎(𝑠𝑦𝑚(𝑑)) ≡ 𝑠𝑦𝑚(𝜎(𝑑))

𝜎(𝑡𝑟𝑎𝑛𝑠(𝑑, 𝑑′)) ≡ 𝑡𝑟𝑎𝑛𝑠(𝜎(𝑑), 𝜎(𝑑′))
In the case of reflexivity for instance, a priori 𝐴𝜎(𝑟𝑒𝑓𝑙(𝛿))(𝑎, 𝑎) will only be inhabited if 𝜎(𝑟𝑒𝑓𝑙(𝛿)) is

the reflexivity of some member of Γ𝑆. Similar assumptions must be made when proving symmetry and
transitivity for the substituted type 𝐴{𝜎}.

The interpretation of context extension by types is straightforward in the relational model because
the type relations are indexed over the context relations.
Definition 3.0.6 (Relational context comprehension). The extension of a context Γ by a type 𝐴 in
context Γ is the set of tuples

{⟨𝛾, 𝑎𝛾⟩|𝛾 ∈ Γ𝑆, 𝑎𝛾 ∈ 𝐴𝛾}
together with the family of relations

⟨⟨𝛾, 𝑎𝛾⟩, ⟨𝛾′, 𝑎𝛾′⟩⟩ ↦ {⟨𝑔, 𝛼⟩|𝑔 ∈ Γ𝑅(𝛾, 𝛾′), 𝛼 ∈ 𝐴𝑔(𝑎𝛾, 𝑎𝛾′)}
Moreover, the two projections are defined by projecting the tuples to Γ and 𝐴 respectively.

• 𝐩Γ.𝐴 ≔ ⟨⟨𝛾, 𝑎𝛾⟩ ↦ 𝛾, ⟨𝑔, 𝛼⟩ ↦ 𝑔⟩ ∶ Γ.𝐴 → Γ
• 𝐪Γ.𝐴 ≔ ⟨(𝑎𝛾)⟨𝛾,𝑎𝛾⟩, (𝛼𝑔)⟨𝑔,𝛼𝑔⟩⟩ ∈ 𝖳𝗆Γ.𝐴(𝐴{𝐩Γ.𝐴})

This is well-defined because (𝐴{𝐩Γ.𝐴})⟨𝛾,𝑎𝛾⟩ ≡ 𝐴𝐩Γ.𝐴(𝛾,𝑎𝛾) ≡ 𝐴𝛾 by definition of substitution and
𝐩Γ.𝐴. Similar for the relation part.

𝐪Γ.𝐴 is not exactly the second projection because the domain 𝐴 depends on the first component and,
hence, is not closed but open.

Given a substitution 𝜎 ∶ Δ → Γ, a type 𝐴 ∈ 𝖳𝗒(Γ) and a term 𝑠 ∈ 𝖳𝗆∆(𝐴{𝜎}), we define the lifted
substitution into the extended context by

⟨𝜎, 𝑠⟩ ≔ ⟨𝛿 ↦ ⟨𝜎(𝛿), 𝑠𝛿⟩, 𝑑 ↦ ⟨𝜎(𝑑), 𝑠𝑑⟩⟩ ∶ Δ → Γ.𝐴,
This is well-defined because (𝐴{𝜎})𝛿 ≡ 𝐴𝜎(𝛿).

■
Lemma A.0.4 proves the closure property of relational contexts under comprehension, which involves

the fact that the definition of ⟨𝜎, 𝑠⟩ is the unique solution to 𝐩Γ.𝐴 ∘ ⟨𝜎, 𝑠⟩ ≡ 𝜎 and 𝐪Γ.𝐴{⟨𝜎, 𝑠⟩} ≡ 𝑠.
Not only correspond closed types to contexts but also terms are represented in the category of

contexts. Specifically, terms are in 1-to-1 correspondence with sections of the projections 𝐩.
Remark 3.0.7 (Terms are sections of the extended context). Every semantic term 𝑡 ∈ 𝖳𝗆Γ(𝐴) defines
a context morphism

𝑡 ≔ {𝛾 ↦ ⟨𝛾, 𝑡𝛾⟩
𝑔 ↦ ⟨𝑔, 𝑡𝑔⟩ ∶ Γ → Γ.𝐴

such that

(𝐩Γ.𝐴 ∘ 𝑡)(𝛾) ≡ 𝛾 and (𝐩Γ.𝐴 ∘ 𝑡)(𝑔) ≡ 𝑔.
Conversely, every section 𝑓 ∶ Γ → Γ.𝐴 of 𝐩Γ.𝐴 defines a term 𝑓 ∈ 𝖳𝗆Γ(𝐴) because 𝐩Γ.𝐴 ∘ 𝑓 ≡ 𝗂𝖽Γ

implies

𝜋2(𝑓(𝛾)) ∈ 𝐴𝛾 and 𝜋2(𝑓(𝑔)) ∈ 𝐴𝑔(𝜋2(𝑓(𝛾)), 𝜋2(𝑓(𝛾′))).
Lastly, applying the construction twice yields again the same term and context morphism, respec-

tively.

Consequently, we can understand the context morphisms into Γ as the representations of the types
depending on Γ. Thinking along these lines, the earlier remark about the correspondence between
contexts and closed types follows immediately because from every context there is a context morphism
into the empty context, which is terminal.

We end this section with the theorem stating that the relational interpretation is a model in the sense
of cwfs.
Theorem 3.0.8 (Relational interpretation models dependent type theory). The relational interpretation
forms a cwf.

Proof. By lemmata A.0.1 through A.0.4.

In fact, the relational interpretation also models dependent products, dependent sums, intensional
identity types, the Booleans, finite sets and the natural numbers. The result is proved in Martin-Löf
type theory with inductive definitions by Tonelli [Ton13].

Chapter 4

Path Model

The model that we present in this chapter is a reformulation of the groupoid interpretation [HS98] of
intensional type theory as a relational interpretation as characterised in chapter 3. There we already
made some observations about how to define reflexivity, symmetry and transitivity for relational types.
As we know from the setoid interpretation [Hof97a], we also need transport operations

·+ ∶ {𝛾, 𝛾′ ∈ Γ𝑆}{𝑔 ∈ Γ𝑅(𝛾, 𝛾′)} → 𝐴𝛾 → 𝐴𝛾′

·↑ ∶ {𝛾, 𝛾′ ∈ Γ𝑆}{𝑔 ∈ Γ𝑅(𝛾, 𝛾′)} → (𝑎 ∈ 𝐴𝛾) → 𝐴𝑔(𝑎, 𝑎+)

in order to interpret intensional identity types by the type relations 𝐴𝑔 for all 𝑔 ∈ Γ𝑅. Impos-
ing additional coherence conditions on a proof-relevant equivalence relation turns the subsets 𝐴𝛾 into
groupoids. From the groupoid interpretation we know that such types refute uniqueness of identity
proofs and support universe extensionality. In the resulting interpretation not only the proofs of 𝐴𝗂𝖽𝛾
can be concatenated and inverted but all proofs, that is over any element of Γ𝑅. This is reminiscent of
the notion of path in topology; hence the name of the model.

Before we continue with the verification of the path model, let us observe that for every type in
the groupoid interpretation there is a path structure that coincides with the groupoid structure on the
subsets 𝐴𝛾.

Recall that a type in the groupoid interpretation is a functor 𝐴 from a groupoid Γ to the category 𝒢𝒫𝒟
of groupoids and functors. Then define a family of relations that relates two elements 𝑎 ∶ 𝐴(𝛾), 𝑎′ ∶ 𝐴(𝛾′)
over 𝑔 ∶ 𝛾 →Γ 𝛾′ if and only if there is morphism from 𝐴(𝑔)(𝑎) to 𝑎′ in 𝐴(𝛾′). More precisely, let

𝐴𝑅 ≔ (ℎ𝑜𝑚𝐴(𝛾′)(𝐴(𝑔)(𝑎), 𝑎′))𝛾,𝛾′∶Γ,𝑔∶𝛾→Γ𝛾′,𝑎∶𝐴(𝛾),𝑎′∶𝐴(𝛾′).

Relating elements by transportation to 𝐴(𝛾), that is

𝐴∗
𝑅 ≔ (ℎ𝑜𝑚𝐴(𝛾)(𝑎, 𝐴(𝑔−1)(𝑎′)))𝛾,𝛾′∶Γ,𝑔∶𝛾→Γ𝛾′,𝑎∶𝐴(𝛾),𝑎′∶𝐴(𝛾′),

is also a natural choice of relation on the disjoint union of the sets 𝑂𝑏𝑗(𝐴(𝛾)) for every 𝛾 ∶ Γ. We
remark that both relations are logically equivalent.
Remark 4.0.1 (Equivalent definitions of the equivalence relation on groupoid types). For all 𝛾, 𝛾′ ∶ Γ,
𝑔 ∶ 𝛾 →Γ 𝛾′ and 𝑎 ∶ 𝐴(𝛾), 𝑎′ ∶ 𝐴(𝛾′) it holds that 𝐴𝑅(𝑎, 𝑎′) is non-empty if and only if 𝐴∗

𝑅(𝑎, 𝑎′) is
non-empty. In fact, the restriction of the morphism part of 𝐴(𝑔) ∶ 𝐴(𝛾) →𝒢𝒫𝒟 𝐴(𝛾′) is a bijection
between 𝐴∗

𝑅(𝑔, 𝑎, 𝑎′) and 𝐴𝑅(𝑔, 𝑎, 𝑎′).
The next lemma states that the relation 𝐴𝑅 is an equivalence relation.

Lemma 4.0.2 (The relation on groupoid types is an equivalence). There are families of functions

𝑟𝑒𝑓𝑙 ∶ {𝛾 ∶ Γ} → (𝑎 ∶ 𝐴(𝛾)) → 𝐴𝑅(𝗂𝖽𝛾, 𝑎, 𝑎)
𝑠𝑦𝑚 ∶ {𝛾, 𝛾′ ∶ Γ}{𝑔 ∶ 𝛾 →Γ 𝛾′}{𝑎 ∶ 𝐴(𝛾)}{𝑎′ ∶ 𝐴(𝛾′)} → 𝐴𝑅(𝑔, 𝑎, 𝑎′) → 𝐴𝑅(𝑔−1, 𝑎′, 𝑎)

𝑡𝑟𝑎𝑛𝑠 ∶{𝛾, 𝛾′, 𝛾″ ∶ Γ}{𝑔 ∶ 𝛾 → Γ𝛾′}{𝑔′ ∶ 𝛾′ →Γ 𝛾″}{𝑎 ∶ 𝐴(𝛾)}{𝑎′ ∶ 𝐴(𝛾′)}{𝑎″ ∶ 𝐴(𝛾″)}
→ 𝐴𝑅(𝑔, 𝑎, 𝑎′) × 𝐴𝑅(𝑔′, 𝑎′, 𝑎″)
→ 𝐴𝑅(𝑔 ·Γ 𝑔′, 𝑎, 𝑎″)

17

Proof. Since 𝐴(𝑔) and 𝐴(𝑔−1) are functors and Γ is a groupoid the following membership relations and
equations hold

𝗂𝖽𝑎 ∈ ℎ𝑜𝑚𝐴(𝛾)(𝑎, 𝑎)
𝐴(𝑔−1)(𝛼−1) ∈ ℎ𝑜𝑚𝐴(𝛾)(𝐴(𝑔−1)(𝑎′), 𝐴(𝑔−1)(𝐴(𝑔)(𝑎))) ≡ ℎ𝑜𝑚𝐴(𝛾)(𝐴(𝑔−1)(𝑎′), 𝑎)

𝐴(𝑔′)(𝛼) ·𝐴(𝛾″) 𝛼′ ∈ ℎ𝑜𝑚𝐴(𝛾″)(𝐴(𝑔′)(𝐴(𝑔)(𝑎)), 𝑎″) ≡ ℎ𝑜𝑚𝐴(𝛾″)(𝐴(𝑔 ·Γ 𝑔′)(𝑎), 𝑎″)

Therefore, the following definitions are well-typed

𝑟𝑒𝑓𝑙 {𝛾} 𝑎 ≔ 𝗂𝖽𝑎
𝑠𝑦𝑚 {𝛾, 𝛾′} {𝑔} {𝑎} {𝑎′} 𝛼 ≔ 𝐴(𝑔−1)(𝛼−1)

𝑡𝑟𝑎𝑛𝑠 {𝛾, 𝛾′, 𝛾″} {𝑔} {𝑔′} {𝑎} {𝑎′} {𝑎″} 𝛼 𝛼′ ≔ 𝐴(𝑔′)(𝛼) ·𝐴(𝛾″) 𝛼′.

Besides being witnesses that 𝐴𝑅 is an equivalence relation, the terms 𝑟𝑒𝑓𝑙, 𝑠𝑦𝑚 and 𝑡𝑟𝑎𝑛𝑠 along with
the object parts of the functors 𝐴(𝑔 ∶ ℎ𝑜𝑚 Γ) as transports

𝑎+ {𝛾, 𝛾′} {𝑔} ≔ 𝐴(𝑔)(𝑎)
𝑎↑ {𝛾, 𝛾′} {𝑔} ≔ 𝗂𝖽𝐴(𝑔)(𝑎) ∈ ℎ𝑜𝑚𝐴(𝛾′)(𝐴(𝑔)(𝑎), 𝐴(𝑔)(𝑎)) ≡ 𝐴𝑅(𝑔, 𝑎, 𝑎+)

exhibit a path structure on 𝐴𝑅. The straightforward verifications can be found in the appendix (lem-
mata A.0.5 through A.0.8). For the relation associated with a closed type these observations simply
correspond to the groupoid axioms but for the relations over non-identities 𝑔 ∈ ℎ𝑜𝑚 Γ the functoriality
of 𝐴(𝑔) is crucial.

Lastly, observe that the path structure 𝐴𝑅 of a closed type 𝐴 in the groupoid interpretation coincides
with the homsets of the groupoid 𝐴 since 𝐴(𝗂𝖽𝛾) ≡ 𝖨𝖽𝐴(𝛾) and, hence,

𝐴𝑅(𝗂𝖽𝛾, 𝑎, 𝑎′) ≡ ℎ𝑜𝑚𝐴(𝛾)(𝐴(𝗂𝖽𝛾)(𝑎), 𝑎′) ≡ ℎ𝑜𝑚𝐴(𝛾)(𝑎, 𝑎′)
𝑟𝑒𝑓𝑙(𝑎) ≡ 𝗂𝖽𝑎

𝑠𝑦𝑚(𝛼𝛾) ≡ 𝐴(𝗂𝖽𝛾
−1)(𝛼𝛾

−1) ≡ 𝛼𝛾
−1

𝑡𝑟𝑎𝑛𝑠(𝛼𝛾, 𝛼′
𝛾) ≡ 𝐴(𝗂𝖽𝛾)(𝛼𝛾) ·𝐴(𝛾) 𝛼′

𝛾 ≡ 𝛼𝛾 ·𝐴(𝛾) 𝛼′
𝛾

The fact that we were able to define a path structure on an arbitrary groupoid type shows that the
set of path types will include at least the groupoid types. Whether this is a strict inclusion and whether
the cwf structure is derivable from just the path structure axioms remains to be answered.

The following sections give the complete definition of path types and show that they model Martin-Löf
type theory with function and universe extensionality as well as propositional truncation, or squashing
as it is called in [Hof97a].

4.1 Category with Families
We begin with the interpretation of contexts in the path model as a refinement of the general relational
model (cf. chapter 3).
Definition 4.1.1 (Path contexts). A context Γ in the path model is a relational context (cf. defini-
tion 3.0.1) with the additional operations

• for every 𝛾 ∈ Γ𝑆 an element 𝗂𝖽𝛾 ∈ Γ𝑅(𝛾, 𝛾) (reflexivity)

• for every 𝛾, 𝛾′ ∈ Γ𝑆 and 𝑔 ∈ Γ𝑅(𝛾, 𝛾′) an element 𝑔−1 ∈ Γ𝑅(𝛾′, 𝛾) (symmetry)

• for every 𝛾, 𝛾′, 𝛾″Γ𝑆 and 𝑔 ∈ Γ𝑅(𝛾, 𝛾′), 𝑔′ ∈ Γ𝑅(𝛾′, 𝛾″) an element 𝑔·𝑔′ ∈ Γ𝑅(𝛾, 𝛾″) (transitivity)

for which the following equations must hold

• 𝑔 · (𝑔′ · 𝑔″) ≡ (𝑔 · 𝑔′) · 𝑔″ (associativity of ·)

• 𝗂𝖽𝛾 · 𝑔 ≡ 𝑔 and 𝑔 · 𝗂𝖽𝛾′ ≡ 𝑔 (unit laws for ·)

• 𝑔−1 · 𝑔 ≡ 𝗂𝖽𝛾′ and 𝑔 · 𝑔−1 ≡ 𝗂𝖽𝛾 (inverse laws for ·)

• 𝑓1(𝗂𝖽𝛾) ≡ 𝗂𝖽𝑓0(𝛾), 𝑓1(𝑔 · 𝑔′) ≡ 𝑓1(𝑔) · 𝑓1(𝑔′) (functoriality of 𝑓)

■
The last equation says that context morphisms must commute with the context operations. Com-

mutation with the inverse operation is implied by commutation with the other two operations.
Lemma 4.1.2 (Path context morphisms preserve inverses). If a context morphism 𝑓 ∶ Δ → Γ preserves
path concatenation and identity paths, then it preserves inverses.

The path context axioms are exactly those of groupoids and functors between groupoids. We obtain
the full subcategory 𝒢𝒫𝒟 of 𝒞𝑎𝑡.

Since each context morphism preserves the context structure, so do their composites. The identity
function and the morphisms into the singleton set trivially preserve the context structure. See lemma A.0.9
for the complete proof.

We continue with the interpretation of type in the path model. Path types are both refined relational
types and setoid types.
Definition 4.1.3 (Path types). A path type 𝐴 in context Γ is relational type (cf. definition 3.0.2) with
the additional operations

• for every 𝛾 ∈ Γ and 𝑎 ∈ 𝐴𝛾 an element 𝗂𝖽𝑎 ∈ 𝐴𝗂𝖽𝛾
(𝑎, 𝑎) (reflexivity)

• for every 𝛾, 𝛾′ ∈ Γ, 𝑔 ∈ 𝑅Γ(𝛾, 𝛾′), 𝑎 ∈ 𝐴𝛾, 𝑎′ ∈ 𝐴𝛾′ and 𝛼 ∈ 𝐴𝑔(𝑎, 𝑎′) an element 𝛼−1 ∈
𝐴𝑔−1(𝑎′, 𝑎′) (symmetry)

• for every 𝛾, 𝛾′, 𝛾″ ∈ Γ, 𝑔 ∈ 𝑅Γ(𝛾, 𝛾′), 𝑔′ ∈ 𝑅Γ(𝛾′, 𝛾″), 𝑎 ∈ 𝐴𝛾, 𝑎′ ∈ 𝐴𝛾′ , 𝑎″ ∈ 𝐴𝛾″ , 𝛼 ∈ 𝐴𝑔(𝑎, 𝑎′)
and 𝛼′ ∈ 𝐴𝑔′(𝑎′, 𝑎″) an element 𝑔 · 𝑔′𝐴𝑔·𝑔′(𝑎, 𝑎″) (transitivity)

• for every 𝛾, 𝛾′ ∈ Γ, 𝑔 ∈ 𝑅Γ(𝛾, 𝛾′), 𝑎 ∈ 𝐴𝛾 elements 𝑎+
𝑔 ∈ 𝐴𝛾′ and 𝑎↑

𝑔 ∈ 𝐴𝑔(𝑎, 𝑎+).(transport)

Up to now, the type axioms coincide with those in the setoid model [Hof97a]. However, path types
must also satisfy the following coherence conditions

• 𝛼 · (𝛼′ · 𝛼″) ≡ (𝛼 · 𝛼′) · 𝛼″ (associativity of ·)
• 𝗂𝖽𝑎 · 𝛼 ≡ 𝛼 and 𝛼 · 𝗂𝖽𝑎′ ≡ 𝛼 (unit laws for ·)
• 𝛼−1 · 𝛼 ≡ 𝗂𝖽𝑎′ and 𝛼 · 𝛼−1 ≡ 𝗂𝖽𝑎 (inverse laws for ·)

• 𝑎+
𝗂𝖽𝛾

≡ 𝑎 and 𝑎↑
𝗂𝖽𝛾

≡ 𝗂𝖽𝑎 (unit preservation law for transport)

• 𝑎+
𝑔·𝑔′ ≡ 𝑎+

𝑔
+
𝑔′ and 𝑎↑

𝑔·𝑔′ ≡ 𝑎↑
𝑔 · 𝑎+↑

𝑔′ (concatenation preservation law for transport)

■
Since we require contexts to be groupoids, the 1-to-1 correspondence between types and contexts we

proved for the general model still holds in the path model.
Lemma 4.1.4 (Closed path types are contexts). Every context is a path type in the empty context and
for every 𝛾 ∈ Γ𝑆 we have that ⟨𝐴𝛾, 𝐴𝗂𝖽𝛾

⟩ is a context.

Proof. ⟨𝐴𝛾, 𝐴𝗂𝖽𝛾
⟩ is a path context because it contains the 𝗂𝖽𝑎 proofs, is closed under inverses (𝗂𝖽𝛾

−1 ≡
𝗂𝖽𝛾) and composites (𝗂𝖽𝛾 · 𝗂𝖽𝛾 ≡ 𝗂𝖽𝛾).

A path context Γ is a path type in the empty context because the empty context contains only the
identity path at the unique element ∙ ∈ []𝑆.

Now that contexts have some extra structure we can also prove some facts about open types.

Lemma 4.1.5 (Open path types are functorial). For every 𝑔 ∈ Γ𝑅(𝛾, 𝛾′), 𝑔′ ∈ Γ𝑅(𝛾′, 𝛾″) in the context
we have 𝐴𝑔·𝑔′ ≡ 𝐴𝑔 · 𝐴𝑔′ and 𝐴𝑔−1 ≡ 𝐴𝑔

−1 but not 𝐴𝗂𝖽𝛾
≡ 𝗂𝖽(𝐴𝛾).

Here, the operations on the sets 𝐴𝑔 are to be understood as being applied member-wise.

Proof. The inclusion of the right-hand side of 𝐴𝑔·𝑔′ ≡ 𝐴𝑔 · 𝐴𝑔′ holds by the type of path composition.
The opposite direction follows from transport, which connects every element of 𝐴𝛾 to an element in 𝐴𝛾′

over 𝑔 ∈ Γ𝑅(𝛾, 𝛾′). Let 𝛼 ∈ 𝐴𝑔·𝑔′ , then

𝛼 ≡ 𝑎𝛾
↑
𝑔

· (𝑎𝛾
↑
𝑔

−1 · 𝛼) ∈ 𝐴𝑔 · 𝐴𝑔′ .

Both inclusions of 𝐴𝑔−1 ≡ 𝐴𝑔
−1 hold by the definition of path inverses.

𝐴𝑔−1 ⊆ 𝐴𝑔−1
−1−1 ⊆ 𝐴𝑔

−1 ⊆ 𝐴𝑔−1

Lastly, 𝐴𝗂𝖽𝛾
may contain paths besides the reflexivity paths. Thus, 𝐴𝗂𝖽𝛾

≢ 𝗂𝖽(𝐴𝛾).

Because of the equalities 𝐴𝑔·𝑔′ ≡ 𝐴𝑔 · 𝐴𝑔′ the sets 𝐴𝗂𝖽𝛾
are units of the lifted concatenation. In that

sense, a path type 𝐴 defines a mapping that preserves composition and identities. However, the lemma
also says that the co-domain of that mapping cannot be {𝐴𝛾|𝛾 ∈ Γ𝑆} with the canonical identities
𝗂𝖽(𝐴𝛾). The co-domain should be definable independent of the mapping and, hence, its objects must
contain more information than their members. Otherwise, it is not clear what the identity morphism at
each object should be.

Moving on to the interpretation of terms in the path model.
Definition 4.1.6 (Path terms). A path term is a relational term (cf. definition 3.0.4) that preserves the
extra structure of path contexts, that is

• 𝑎𝗂𝖽𝛾
≡ 𝗂𝖽𝑎𝛾

• 𝑎𝑔·𝑔′ ≡ 𝑎𝑔 · 𝑎𝑔′

• 𝑎𝑔−1 ≡ 𝑎𝑔
−1

■
As usual, the third equation (preservation of inverses) is derivable for every path term that satisfies

the first two.
We now define the substitution operation on path terms and types. It is the same re-indexing as in

the general case (cf. definition 3.0.5) but formally the path operations have to be redefined as well.
Definition 4.1.7 (Path substitution). For every 𝑠 ∶ Δ → Γ in the category of path contexts, path type
𝐴 ∈ 𝖳𝗒(Γ) and path term 𝑡 ∈ 𝖳𝗆Γ(𝐴) define the type 𝐴{𝑠} ∈ 𝖳𝗒(Δ)

𝐴{𝑠}𝛿 ≔ 𝐴𝑠(𝛿)

𝐴{𝑠}𝑑(𝑎, 𝑎′) ≔ {𝛾 ≔ 𝑠(𝛿), 𝛾′ ≔ 𝑠(𝛿′)} 𝐴𝑠(𝑑)(𝑎, 𝑎′)
𝗂𝖽𝑎 ≔ {𝛾 ≔ 𝑠(𝛿)} 𝗂𝖽𝑎

𝛼−1 ≔ {𝛾 ≔ 𝑠(𝛿), 𝛾′ ≔ 𝑠(𝛿′), 𝑔 ≔ 𝑠(𝑑), 𝑎 ≔ 𝑎, 𝑎′ ≔ 𝑎′} 𝛼−1

𝛼 · 𝛼′ ≔ {𝛾 ≔ 𝑠(𝛿), 𝛾′ ≔ 𝑠(𝛿′), 𝛾″ ≔ 𝑠(𝛿″), 𝑔 ≔ 𝑠(𝑑), 𝑔′ ≔ 𝑠(𝑑′), 𝑎 ≔ 𝑎, 𝑎′ ≔ 𝑎′, 𝑎″ ≔ 𝑎″} 𝛼 · 𝛼′

and term 𝑡{𝑠} ∈ 𝖳𝗆∆(𝐴{𝑠})
𝑡{𝑠}𝛿 ≔ 𝑡𝑠(𝛿)

𝑡{𝑠}𝑑 ≔ {𝛾 ≔ 𝑠(𝛿), 𝛾′ ≔ 𝑠(𝛿′)} 𝑡𝑠(𝑑),

for all 𝛿, 𝛿′, 𝛿″ ∈ Δ, 𝑑 ∈ Δ(𝛿, 𝛿′), 𝑑′ ∈ Δ(𝛿′, 𝛿″), 𝑎 ∈ 𝐴{𝑠}𝛿, 𝑎′ ∈ 𝐴{𝑠}𝛿′ , 𝑎″ ∈ 𝐴{𝑠}𝛿″ , 𝛼 ∈
𝐴{𝑠}𝑑(𝑎, 𝑎′) and 𝛼′ ∈ 𝐴{𝑠}𝑑′(𝑎′, 𝑎″).

The associativity, unit, inverse and preservation laws follow directly from 𝐴 and 𝑡 and the fact that
𝑠 preserves the context structure. We conclude that indeed 𝐴{𝑠} ∈ 𝖳𝗒(Δ) and 𝑡{𝑠} ∈ 𝖳𝗆∆(𝐴{𝑠}).

■

It is crucial for the cwf notion to work that the application of several substitutions can be merged
into the application of a single substitution while maintaining the result. Definition 2.3.1 formalises this
property by the functor laws and the next lemma verifies those for the path interpretation.
Lemma 4.1.8 (Path substitution is a functor). The mapping of categories

{Γ ↦ (𝖳𝗆Γ(𝐴))𝐴∈𝖳𝗒(Γ)
𝑠 ↦ ⟨𝐴 ↦ 𝐴{𝑠}, 𝑡 ↦ 𝑡{𝑠}⟩

from path contexts to path terms indexed by path types is a functor.
A proof can be found in the appendix (lemma A.0.11).
Before we conclude with the theorem that the path interpretation forms a cwf we must adapt context

comprehension to path contexts.
Definition 4.1.9 (Path context comprehension). Given a path context Γ and a path type 𝐴 in context
Γ. Define Γ.𝐴 as in definition 3.0.6 plus the identities, inverses and composites as follows.

• 𝗂𝖽⟨𝛾,𝑎⟩ ≔ ⟨𝗂𝖽𝛾, 𝗂𝖽𝑎⟩

• ⟨𝑔, 𝛼⟩−1 ≔ ⟨𝑔−1, 𝛼−1⟩
• ⟨𝑔, 𝛼⟩ · ⟨𝑔′, 𝛼′⟩ ≔ ⟨𝑔 · 𝑔′, 𝛼 · 𝛼′⟩
The projections 𝐩Γ.𝐴 and 𝐪Γ.𝐴 and the extensions ⟨𝑠, 𝑡⟩ for substitutions 𝑠 ∶ Δ → Γ and terms

𝑡 ∈ 𝖳𝗆∆(𝐴{𝑠}) are defined exactly as before.
■

Lemma A.0.10 shows that this definition yields a path context and that 𝐩Γ.𝐴, 𝐪Γ.𝐴 and ⟨𝑠, 𝑡⟩ preserve
the extra structure. As a result, the category of path contexts supports context comprehension.

We conclude this section with the theorem that the path interpretation is indeed a model. The
subsequent sections exhibit additional logical structure that is supported by the path model.
Theorem 4.1.10 (Path interpretation models dependent type theory). The path interpretation forms
a cwf.

4.2 Dependent Function Space
This section interprets the theory of dependent functions (cf. definition 2.1.1) in the path model. More
specifically, it will be shown that the path model supports the Π structure (cf. definition 2.3.3) with
function extensionality. The section is divided into four subsections. The first interprets the type itself,
the second interprets its introduction and elimination rules and the third validates the computation rules.
The last subsection interprets the extensionality axiom for Π types.

4.2.1 Sort
First, we define a type Π𝐴𝐵 ∈ 𝖳𝗒(Γ) given types 𝐴 ∈ 𝖳𝗒(Γ) and 𝐵 ∈ 𝖳𝗒(Γ.𝐴).

If we interpret function application in the theory as function application in the model, then the 𝛽-
rule (cf. definition 2.1.1) dictates that the element (𝜆𝑏)𝛾 constructed from a term 𝑏 ∈ 𝖳𝗆Γ.𝐴(𝐵) is a
functor from 𝐴𝛾 to {𝑎 ∈ 𝐴𝛾}𝐵⟨𝛾,𝑎⟩, namely one that is equal to 𝑎𝛾 ↦ 𝑏⟨𝛾,𝑎𝛾⟩. The terms of type 𝐵
range over all functors and, hence, (Π𝐴𝐵)𝛾 must include them all.
Definition 4.2.1 (Path Π sets). For every 𝛾 ∈ Γ𝑆 set

Π𝐴𝐵𝛾 ≔ {𝑓𝛾 ∶ {𝛼𝛾 ∈ 𝐴𝗂𝖽𝛾
} → 𝐵⟨𝗂𝖽𝛾,𝛼𝛾⟩|𝑓𝛾 functor} ≡ 𝖳𝗆𝐴𝛾

(𝐵⟨𝐾𝛾, 𝗂𝖽⟨𝐴𝛾,𝐴𝗂𝖽𝛾 ⟩⟩),

where 𝐾𝛾 ≔ ⟨𝑎𝛾 ↦ 𝛾, 𝛼𝛾 ↦ 𝗂𝖽𝛾⟩ is the constant context morphism from ⟨𝐴𝛾, 𝐴𝗂𝖽𝛾
⟩ to Γ.

■
We want the equality between functions to be extensional and, since paths interpret equality, a path

between two functions must exist exactly when they map equals to equals. The coherence condition is
inspired by the natural transformation law for a monoidal composition operation of morphisms between
functors.

Definition 4.2.2 (Π paths). For every 𝑔 ∈ Γ𝑅(𝛾, 𝛾′), 𝑓𝛾 ∈ Π𝐴𝐵𝛾 and 𝑓′
𝛾′ ∈ Π𝐴𝐵𝛾′ set

Π𝐴𝐵𝑔(𝑓𝛾, 𝑓′
𝛾′) ≔{𝜑 ∶ {𝑎𝛾 ∈ 𝐴𝛾, 𝑎′

𝛾′ ∈ 𝐴𝛾′ , 𝛼 ∈ 𝐴𝑔(𝑎𝛾, 𝑎′
𝛾′)}𝐵⟨𝑔,𝛼⟩(𝑓𝛾(𝑎𝛾), 𝑓′

𝛾′(𝑎′
𝛾′))

|𝜑𝛼𝑔
· 𝑓′

𝛼′
𝛾′

≡ 𝑓𝛼𝛾
· 𝜑𝛼′𝑔

if 𝛼𝑔 · 𝛼′
𝛾′ ≡ 𝛼𝛾 · 𝛼′

𝑔}

■
In other words, given two points 𝑓𝛾 ∈ (Π𝐴𝐵)𝛾 and 𝑓′

𝛾′ ∈ (Π𝐴𝐵)𝛾′ , the path set (Π𝐴𝐵)𝑔(𝑓𝛾, 𝑓′
𝛾′)

contains exactly the families of paths 𝜑𝛼 ∈ 𝐵⟨𝑔,𝛼⟩(𝑓𝛾(𝑎𝛾), 𝑓′
𝛾′(𝑎′

𝛾′)) indexed by the paths 𝛼 ∈ 𝐴𝑔(𝑎𝛾, 𝑎′
𝛾′)

such that if 𝛼𝛾 ∈ 𝐴𝗂𝖽𝛾
(𝑎𝛾, 𝑎) and 𝛼𝑔 ∈ 𝐴𝑔(𝑎, 𝑎′

𝛾′) factorise 𝛼 via 𝑎 ∈ 𝐴𝛾, and 𝛼′
𝑔 ∈ 𝐴𝑔(𝑎𝛾, 𝑎′) and

𝛼′
𝛾′ ∈ 𝐴𝗂𝖽𝛾′ (𝑎′, 𝑎′

𝛾′) constitute a factorisation of 𝛼 via 𝑎′ ∈ 𝐴𝛾′ , then both 𝜑𝛼′𝑔
and 𝑓𝛼′

𝛾′
and 𝑓𝛼𝛾

and
𝜑𝛼𝑔

factorise 𝜑𝛼

𝜑𝛼′𝑔
· 𝑓′

𝛼′
𝛾′

≡ 𝜑𝛼 ≡ 𝑓𝛼𝛾
· 𝜑𝛼𝑔

In fact, this is a generalisation of the naturality law because for two elements 𝑓𝛾, 𝑓′
𝛾 ∈ Π𝐴𝐵𝛾 of the

same fibre and a path 𝛼𝛾 ∈ Π𝐴𝐵𝗂𝖽𝛾
(𝑎𝛾, 𝑎′

𝛾) there are several 𝛼𝑎𝛾
∈ 𝐴𝗂𝖽𝛾

(𝑎𝛾, 𝑎𝛾), 𝛼𝑎′𝛾
∈ 𝐴𝗂𝖽𝛾

(𝑎′
𝛾, 𝑎′

𝛾) in
general such that 𝛼𝛾 · 𝛼𝑎′𝛾

≡ 𝛼𝑎𝛾
· 𝛼𝛾, not just 𝗂𝖽𝑎𝛾

and 𝗂𝖽𝑎′𝛾
. Moreover, a path 𝜑 ∈ Π𝐴𝐵𝗂𝖽𝛾

(𝑓𝛾, 𝑓′
𝛾) does

not need to satisfy 𝜑𝛼𝑎𝛾
· 𝑓′

𝛼𝛾
≡ 𝑓𝛼𝛾

· 𝜑𝛼𝑎′𝛾
if 𝛼𝑎𝛾

· 𝛼𝛾 ≢ 𝛼𝛾 · 𝛼𝑎′𝛾
. Actually, requiring this gives natural

function paths even with the extra data, as the following remark shows.
Remark 4.2.3 (Characterisation of natural function paths). 𝜑𝛼𝑔

·𝑓′
𝛼𝛾′ ≡ 𝑓𝛼𝛾

·𝜑𝛼′𝑔
(regardless of whether

𝛼𝑔 · 𝛼𝛾′ ≡ 𝛼𝛾 · 𝛼′
𝑔) if and only if 𝜑𝛼𝑔

≡ 𝜑𝛼′𝑔
for all 𝛼𝑔, 𝛼′

𝑔 ∈ 𝐴𝑔(𝑎𝛾, 𝑎′
𝛾′).

A yet stronger coherence condition for function paths is the following.
Remark 4.2.4 (Constant function paths are natural function paths). 𝜑𝛼𝑔·𝐴𝛼𝛾′ ≡ 𝜑𝛼𝑔

≡ 𝜑𝛼𝛾·𝐴𝛼𝑔
for

all 𝛼𝑔, 𝛼𝛾, 𝛼𝛾′ , then 𝜑𝛼𝑔
· 𝑓′

𝛼𝛾′ ≡ 𝜑𝛼𝑔
≡ 𝑓𝛼𝛾

· 𝜑𝛼𝑔
.

However, this also means that functions are constant on related elements.
This condition can be expressed equivalently but more concisely as a condition on the equivalence

classes of a relation on 𝐴𝑔.
Remark 4.2.5 (Characterisation of constant function paths). 𝜑𝛼𝑔·𝐴𝛼𝛾′ ≡ 𝜑𝛼𝑔

≡ 𝜑𝛼𝛾·𝐴𝛼𝑔
for all

𝛼𝑔, 𝛼𝛾, 𝛼𝛾′ if and only if 𝜑𝛼𝑔
≡ 𝜑𝛼′𝑔

for all 𝛼𝑔, 𝛼′
𝑔 such that there is 𝛼 ∈ 𝐴𝑔(𝑎′

𝛾, 𝑎𝛾′).
Before we define a concatenation operation on function paths we observe that it can be well-defined

by point-wise concatenation.
Lemma 4.2.6 (Path application). For all factorisations 𝛼′

𝑔 ·𝛼′
𝑔′ ≡ 𝛼𝑔 ·𝛼𝑔′ of a path in 𝐴𝑔·𝑔′(𝑎𝛾, 𝑎𝛾″) the

paths given by 𝜑 ∈ Π𝐴𝐵𝑔(𝑓𝛾, 𝑓′
𝛾′), 𝜑′ ∈ Π𝐴𝐵𝛾′(𝑓′

𝛾′ , 𝑓″
𝛾″) between 𝑓𝛾(𝑎𝛾) and 𝑓″

𝛾″(𝑎𝛾″) are the same.

𝜑𝛼′𝑔
·𝐵 𝜑′

𝛼′
𝑔′

≡ 𝜑𝛼𝑔
·𝐵 𝜑′

𝛼𝑔′

Proof. There exist factorisations 𝛼′
𝑔 ·𝐴 𝛼𝛾′ ≡ 𝛼𝑔 and 𝛼𝑔′ ≡ 𝛼𝛾′ ·𝐴 𝛼′

𝑔′ and, hence,

𝜑𝛼𝑔
·𝐵 𝜑′

𝛼′𝑔
≡ 𝜑𝛼𝑔

·𝐵 𝑓𝛼𝛾′
−1 ·𝐵 𝑓𝛼𝛾′ ·𝐵 𝜑′

𝛼𝑔′ ≡ 𝜑𝛼′𝑔
·𝐵 𝜑′

𝛼′
𝑔′

.

We now define the composites 𝜑𝑔 ·Π𝐴𝐵 𝜑′
𝑔′ for all 𝜑𝑔 ∈ Π𝐴𝐵𝑔(𝑓, 𝑓′) and 𝜑𝑔′ ∈ Π𝐴𝐵𝑔′(𝑓′, 𝑓″).

Definition 4.2.7 (Path concatenation in Π).

𝜑𝑔 ·Π𝐴𝐵 𝜑′
𝑔′ ≔ (𝜑𝛼𝑔

·𝐵 𝜑′
𝛼𝑔′)𝑔∈Γ𝑅(𝛾,𝛾′),𝑔′∈Γ𝑅(𝛾′,𝛾″),𝛼∈𝐴𝑔·𝑔′ (𝑎,𝑎″)

This is well-defined because every path over a composite can be factorised and for every factorisation
we have 4.2.6. Moreover,

(𝜑·𝜑′)𝛼·𝐵𝑓″
𝛼𝛾″ ≡ 𝜑𝛼𝑔

·𝐵𝜑′
𝛼𝑔′ ·𝐵𝑓″

𝛼𝛾″ ≡ 𝜑𝛼𝑔
·𝐵𝑓′

𝛼𝑔−1·𝛼𝛾·𝛼′𝑔
·𝐵𝜑′

𝛼′
𝑔′

≡ 𝑓𝛼𝛾
·𝐵𝜑𝛼′𝑔

·𝐵𝜑′
𝛼′

𝑔′
≡ 𝑓𝛼𝛾

·𝐵(𝜑·𝜑′)𝛼′

for 𝛼 · 𝛼𝛾″ ≡ 𝛼𝛾 · 𝛼′ and the associativity of ·Π𝐴𝐵 is inherited from ·𝐵. ■

With the definition of function path concatenation at hand, the path application result can be ex-
pressed as

(𝜑 · 𝜑′)(𝛼𝑔 · 𝛼𝑔′) ≡ 𝜑𝛼𝑔
· 𝜑′

𝛼𝑔′ .

Instead of relying on the fact that (𝜑 · 𝜑′)𝛼 can be defined via any factorisation of 𝛼 we can define
concatenation using the transport paths, which give us canonical factorisations, directly.
Remark 4.2.8 (Function path concatenation using transport). Given two paths 𝜑 ∈ Π𝐴𝐵𝑔(𝑓, 𝑓′) and
𝜑′ ∈ Π𝐴𝐵𝑔′(𝑓′, 𝑓″), define their composite by setting

(𝜑 · 𝜑′)𝛼 ≔ 𝜑𝑎+𝑔
· 𝑓′

𝛼 · 𝜑′
𝑎″−

𝑔′

for each 𝛼 ∈ 𝐴𝑔·𝑔′(𝑎, 𝑎″). Alternatively, one might choose either 𝑎+
𝑔 · 𝛼 or 𝛼 · 𝑎″−

𝑔′−1 . Here, 𝛼 denotes
the projection of 𝛼 via the transport paths to 𝐴𝛾, 𝐴𝛾″ and 𝐴𝛾′ respectively.

This defines a function path because given any factorisation 𝛼′
1 · 𝛼′

2 ≡ 𝛼

(𝜑 · 𝜑′)𝛼
≡Definition of concatenation

𝜑𝑎+𝑔
· 𝑓′

𝛼 · 𝜑′
𝑎″−

𝑔′

≡𝑎+
𝑔 · 𝛼 · 𝑎″−

𝑔′ ≡ 𝛼 ≡ 𝛼1 · 𝛼2 ≡ 𝑎+
𝑔 · 𝛼1 · 𝑎′−

𝑔′ · 𝛼2 and factorisation of 𝜑′

𝜑𝑎+𝑔
· 𝑓′

𝛼1
· 𝜑′

𝑎′−
𝑔′ · 𝑓𝛼2

≡Definition of concatenation
(𝜑 · 𝜑′)𝛼1

· 𝑓𝛼2

The proof that 𝜑 · 𝜑′ can be factorised over factorisations via 𝐴𝛾 is symmetric.
For any three paths 𝜑 ∈ Π𝐴𝐵𝑔(𝑓, 𝑓′), 𝜑′ ∈ Π𝐴𝐵𝑔′(𝑓′, 𝑓″), 𝜑″ ∈ Π𝐴𝐵𝑔″(𝑓″, 𝑓‴) we have that their

composite can be constructed in any order (associativity).

(𝜑 · (𝜑′ · 𝜑″))𝛼
≡Definition of concatenation in Π𝐴𝐵

𝜑𝑎+𝑔
· 𝑓′

𝛼 · (𝜑′
𝑎‴−

𝑔″
−
𝑔′

· 𝑓″
𝑎‴−

𝑔′·𝑔″
· 𝜑″

𝑎‴−
𝑔″)

≡𝑎‴−
𝑔′·𝑔″ ≡ 𝗂𝖽𝑎‴−

𝑔″ and, hence, 𝑓″
𝑎‴−

𝑔′·𝑔″
≡ 𝗂𝖽𝑓″

𝑎‴−
𝑔″

𝜑𝑎+𝑔
· 𝑓′

𝛼 · (𝜑′
𝑎‴−

𝑔″
−
𝑔′

· 𝜑″
𝑎‴−

𝑔″)

≡Associativity of concatenation in 𝐵
𝜑𝑎+𝑔

· (𝑓′
𝛼 · 𝜑′

𝑎‴−
𝑔″

−
𝑔′

) · 𝜑″
𝑎‴−

𝑔″

≡𝛼 · 𝑎‴−
𝑔″

−
𝑔′ ≡ 𝑎+

𝑔
+
𝑔′ · 𝛼 and factorisation of 𝜑′

𝜑𝑎+𝑔
· (𝜑′

𝑎+𝑔
+
𝑔′

· 𝑓″
𝛼) · 𝜑″

𝑎‴−
𝑔″

≡Associativity of concatenation in 𝐵
(𝜑𝑎+𝑔

· 𝜑′
𝑎+𝑔

+
𝑔′

) · 𝑓″
𝛼 · 𝜑″

𝑎‴−
𝑔″

≡𝑎+
𝑔·𝑔′ ≡ 𝗂𝖽𝑎+𝑔

and, hence, 𝑓′
𝑎+

𝑔·𝑔′
≡ 𝗂𝖽𝑓′

𝑎+𝑔

(𝜑𝑎+𝑔
· 𝑓′

𝑎+
𝑔·𝑔′

· 𝜑′
𝑎+𝑔

+
𝑔′

) · 𝑓″
𝛼 · 𝜑″

𝑎‴−
𝑔″

≡Definition of concatenation in Π𝐴𝐵
((𝜑 · 𝜑′) · 𝜑″)𝛼

That we require the elements 𝑓 ∈ Π𝐴𝐵𝛾 to be functors can not only be explained by the Π structure
axioms. First, each 𝑓 is not just a function on elements because there are in general many paths between

𝑓(𝑎𝛾) and 𝑓(𝑎′
𝛾′) whenever 𝑎𝛾 and 𝑎′

𝛾′ are related, none of which is the identity if 𝑓(𝑎𝛾) ≢ 𝑓(𝑎′
𝛾′). Hence,

in general, 𝐵⟨𝑔,𝛼⟩(𝑓(𝑎𝛾), 𝑓(𝑎𝛾′)) contains neither a unique element nor a canonical choice and we let the
elements carry that information. The functoriality axioms for elements 𝑓 ∈ Π𝐴𝐵𝛾 can be explained by
the naturality requirement for identity paths, which implies

𝑓(𝛼𝛾1
) · 𝑓(𝛼𝛾2

) ≡ 𝑓(𝛼𝛾1
· 𝛼𝛾2

) · 𝑓(𝗂𝖽𝑎‴𝛾
) ≡ 𝑓(𝛼𝛾1

· 𝛼𝛾2
).

The next two lemmata exhibit identities and inverses of ·Π𝐴𝐵 in Π𝐴𝐵.
Lemma 4.2.9 (Π identity paths). For every 𝛾 ∈ Γ𝑆 and 𝑓 ∈ Π𝐴𝐵𝛾 set

𝗂𝖽𝑓 ≔ {𝑎𝛾, 𝑎′
𝛾 ∈ 𝐴𝛾, 𝛼𝛾 ∈ 𝐴𝗂𝖽𝛾

(𝑎𝛾, 𝑎′
𝛾)} 𝑓(𝛼𝛾)

This defines a path because given factorisations 𝛼𝛾 · 𝛼′
𝛾 ≡ 𝛼″

𝛾 · 𝛼‴
𝛾

(𝗂𝖽𝑓)𝛼𝛾
· 𝑓𝛼′𝛾

≡ 𝑓𝛼𝛾·𝛼′𝛾
≡ 𝑓𝛼″𝛾 ·𝛼‴𝛾

≡ 𝑓𝛼″𝛾
· (𝗂𝖽𝑓)𝛼‴𝛾

Let 𝜑 ∈ Π𝐴𝐵𝑔(𝑓, 𝑓′) be a path, then 𝗂𝖽𝑓 · 𝜑 ≡ 𝜑 and 𝜑 · 𝗂𝖽𝑓′ ≡ 𝜑.

(𝗂𝖽𝑓 · 𝜑)𝛼
≡Definition of concatenation in Π𝐴𝐵

𝗂𝖽𝑓𝗂𝖽𝑎𝛾
· 𝜑𝛼

≡Definition of identity in Π𝐴𝐵
𝑓𝗂𝖽𝑎𝛾

· 𝜑𝛼

≡𝑓 preserves identities
𝗂𝖽𝑓𝑎𝛾

· 𝜑𝛼

≡Identity path in 𝐵
𝜑𝛼

The proof of the right identity law is analogous.
Lemma 4.2.10 (Π inverse paths). For every 𝜑 ∈ Π𝐴𝐵𝑔(𝑓, 𝑓′) set

𝜑−1 ≔ {𝑎𝛾 ∈ 𝐴𝛾, 𝑎′
𝛾′ ∈ 𝐴𝛾′ , 𝛼 ∈ 𝐴𝑔(𝑎𝛾, 𝑎′

𝛾′)} 𝜑𝛼−1
−1

This defines a path in Π𝐴𝐵𝑔−1(𝑓′, 𝑓) because given a composite 𝛼 · 𝛼𝛾 via 𝐴𝛾

(𝜑−1)𝛼·𝛼𝛾

≡Definition of path inverse
𝜑(𝛼·𝛼𝛾)−1 −1

≡Inverse-inverse law in 𝐴
𝜑𝛼𝛾−1·𝛼−1

−1

≡Factorisation of 𝜑
(𝑓𝛼𝛾−1 · 𝜑𝛼−1)−1

≡Inverse-inverse law in 𝐵
𝜑𝛼−1

−1 · 𝑓𝛼𝛾−1
−1

≡𝑓 functor and definition of path inverse
(𝜑−1)𝛼 · 𝑓𝛼𝛾

The case 𝐴𝛾′ can be proved in an analogous way.

For every path 𝜑 ∈ Π𝐴𝐵𝑔(𝑓, 𝑓′) the paths 𝜑 and 𝜑−1 are inverses, that is 𝜑 · 𝜑−1 ≡ 𝗂𝖽𝑓 and
𝜑−1 · 𝜑 ≡ 𝗂𝖽𝑓′ .

(𝜑 · 𝜑−1)𝛼𝛾

≡Definition of concatenation in Π𝐴𝐵
𝜑𝛼𝑔

· 𝜑−1
𝛼𝑔−1·𝛼𝛾

≡Factorisation of 𝜑−1
𝛼𝑔−1·𝛼𝛾

𝜑𝛼𝑔
· 𝜑−1

𝛼𝑔−1 · 𝑓𝛼𝛾

≡Definition of inverse path in Π𝐴𝐵
𝜑𝛼𝑔

· 𝜑𝛼𝑔
−1 · 𝑓𝛼𝛾

≡Concatenation of inverse paths at 𝑓𝑎 in 𝐵
𝗂𝖽𝑓𝑎

· 𝑓𝛼𝛾

≡𝑓 functor and definition of identity path in Π𝐴𝐵
(𝗂𝖽𝑓)𝗂𝖽𝑎

· 𝑓𝛼𝛾

≡Factorisation of (𝗂𝖽𝑓)𝛼𝛾

(𝗂𝖽𝑓)𝛼𝛾

The proof of the left inverse law is analogous.
The missing ingredient for a path structure on Π𝐴𝐵 is transport, which we define next.

Definition 4.2.11 (Transport in Π). For every path 𝑔 ∈ Γ𝑅(𝛾, 𝛾′) and point 𝑓 ∈ (Π𝐴𝐵)𝛾 define a
functor in (Π𝐴𝐵)𝛾′

𝑓+
𝑔,Π𝐴𝐵 ≔

⎧{
⎨{⎩

𝑎 ∈ 𝑎 ↦ (𝑓𝑎−𝑔
)+
⟨𝑔,𝑎−𝑔 ⟩,𝐵

𝛼 ∈ 𝐴𝗂𝖽𝛾′ (𝑎, 𝑎′) ↦ (𝑓𝑎−𝑔
)↓
⟨𝑔,𝑎↓

𝑔⟩,𝐵
· 𝑓𝛼−𝑔

· (𝑓𝑎′−
𝑔
)↑
⟨𝑔,𝑎′↓

𝑔⟩,𝐵

(note, 𝑓𝛼−𝑔
∈ 𝐵⟨𝗂𝖽𝛾,𝛼−𝑔 ⟩(𝑓𝑎−𝑔

, 𝑓𝑎′−
𝑔
)) and a path from 𝑓 to 𝑓+

𝑔,Π𝐴𝐵 over 𝑔

𝑓↑
𝑔,Π𝐴𝐵 ≔ {𝑎 ∈ 𝐴𝛾, 𝑎′ ∈ 𝐴𝛾′ , 𝛼 ∈ 𝐴𝑔(𝑎, 𝑎′)} 𝑓𝛼·𝑎′↓

𝑔
· (𝑓𝑎′−

𝑔
)↑
⟨𝑔,𝑎′↓

𝑔⟩,𝐵

This indeed a path because given a composite 𝛼 · 𝛼𝛾′ we have

(𝑓𝛼·𝑎′↓
𝑔

· (𝑓𝑎′−
𝑔
)↑
⟨𝑔,𝑎′↓

𝑔⟩,𝐵
) · (𝑓𝑎′−

𝑔
)↓
⟨𝑔,𝑎′↓

𝑔⟩,𝐵
· 𝑓𝛼𝛾′ ↓

𝑔
· (𝑓𝑎″−

𝑔
)↑
⟨𝑔,𝑎″↓

𝑔⟩,𝐵

≡𝑓𝛼·𝑎′↓
𝑔

· 𝑓𝛼𝛾′ −
𝑔

· (𝑓𝑎″−
𝑔
)↑
⟨𝑔,𝑎″↓

𝑔⟩,𝐵

≡𝑓𝛼·𝑎′↓
𝑔·𝛼𝛾′ −

𝑔
· (𝑓𝑎″−

𝑔
)↑
⟨𝑔,𝑎″↓

𝑔⟩,𝐵

≡𝑓𝛼·𝛼𝛾′ ·𝑎″↓
𝑔

· (𝑓𝑎″−
𝑔
)↑
⟨𝑔,𝑎″↓

𝑔⟩,𝐵

≡(𝑓↑
𝑔)𝛼·𝛼𝛾′

and for composites via 𝐴𝛾 we have

𝑓𝛼𝛾
· 𝑓𝛼·𝑎′↓

𝑔
· (𝑓𝑎′−

𝑔
)↑
⟨𝑔,𝑎′↓

𝑔⟩,𝐵

≡𝑓𝛼𝛾·𝛼·𝑎′↓
𝑔

· (𝑓𝑎′−
𝑔
)↑
⟨𝑔,𝑎′↓

𝑔⟩,𝐵

≡(𝑓↑
𝑔)𝛼𝛾·𝛼.

■

Lemma A.0.12 and lemma A.0.13 in the appendix prove that the just defined transport preserves
identities and commutes with path composition.

We conclude the subsection on the Π sort with the lemma that substitutions can be pushed under
the type former.
Lemma 4.2.12 (Path Π types commute with substitution). For every 𝑠 ∶ Δ → Γ

Π𝐴𝐵{𝑠} ≡ Π(𝐴{𝑠})(𝐵{⟨𝑠 ∘ 𝐩, 𝐪⟩}).

See the appendix (lemma A.0.16) for the proof.

4.2.2 Operations
This subsection is dedicated to the interpretation of 𝜆-abstraction (Π introduction) and function appli-
cation (Π elimination). We begin with the former. Its interpretation basically corresponds to currying
in the index.
Definition 4.2.13 (Path 𝜆 terms). For every term 𝑏 ∈ 𝖳𝗆Γ.𝐴(𝐵) a term 𝜆𝑏 ∈ 𝖳𝗆Γ(Π𝐴𝐵) is constructed
as follows.

(𝜆𝑏)𝛾 ≔ 𝑏[·] ∈ 𝖳𝗆𝐴𝛾
(𝐵[·]), where [·] ∶ 𝐴𝛾 → Γ.𝐴 is the obvious substitution

(𝜆𝑏)𝑔 ≔ (𝑏⟨𝑔,𝛼⟩)𝛼∈𝐴𝑔(𝑎,𝑎′) ∈ Π𝐴𝐵𝑔((𝜆𝑏)𝛾, (𝜆𝑏)𝛾′)

■
See A.0.14 in the appendix for the proof that this defines a path term. We also need to verify that

substitutions can be pushed under the abstraction.
Lemma 4.2.14 (Path 𝜆 terms commute with substitution). For every context morphism 𝑠 ∶ Δ → Γ

(𝜆𝑏){𝑠} ≡ 𝜆(𝑏⟨𝑠 ∘ 𝐩, 𝐪⟩)

Again, a proof can be found in the appendix (lemma A.0.17).
We conclude this subsection with the interpretation of Π elimination or function application.

Definition 4.2.15 (Path 𝖺𝗉𝗉(·, ·) terms). For every two terms 𝜆 ∈ 𝖳𝗆Γ(Π𝐴𝐵) and 𝑎 ∈ 𝖳𝗆Γ(𝐴) a term
𝖺𝗉𝗉(𝜆, 𝑎) ∈ 𝖳𝗆Γ(𝐵[𝑎]) gets constructed as follows.

𝖺𝗉𝗉(𝜆, 𝑎)𝛾 ≔ (𝜆𝛾)𝑎𝛾
∈ 𝐵⟨𝛾,𝑎𝛾⟩

𝖺𝗉𝗉(𝜆, 𝑎)𝑔 ≔ (𝜆𝑔)𝑎𝑔
∈ 𝐵⟨𝑔,𝑎𝑔⟩(𝜆𝑎𝛾

, 𝜆𝑎𝛾′)

■
See lemma A.0.15 for the proof that this defines a path term and lemma A.0.18 for the verification

that a substitution is applied by applying it to both the function and the argument terms. Here, we only
give the statement of the commutation with substitution.
Lemma 4.2.16 (Path 𝖺𝗉𝗉(·, ·) terms commute with substitution). For every context morphism 𝑠 ∶ Δ → Γ

𝖺𝗉𝗉(𝑓, 𝑎){𝑠} ≡ 𝖺𝗉𝗉(𝑓{𝑠}, 𝑎{𝑠})

4.2.3 Equalities
The second last part of this section concerns the verification of the computation rules 𝛽 and 𝜂 for Π.
Lemma 4.2.17 (Path Π types support 𝛽-conversion). For all terms 𝑏 ∈ 𝖳𝗆Γ.𝐴(𝐵) and 𝑎 ∈ 𝖳𝗆Γ(𝐴)

𝖺𝗉𝗉(𝜆𝑏, 𝑎) ≡ 𝑏[𝑎]

Proof.

(𝖺𝗉𝗉(𝜆𝑏, 𝑎))𝛾
≡Definition of application

((𝜆𝑏)𝛾)𝑎𝛾

≡Definition of 𝜆 abstraction
𝑏⟨𝛾,𝑎𝛾⟩

≡Definition of substitution
(𝑏⟨𝗂𝖽Γ, 𝑎⟩)𝛾

≡[𝑎] ≡ ⟨𝗂𝖽Γ, 𝑎⟩ by definition
(𝑏[𝑎])𝛾

The proof on paths is symmetric.

(𝖺𝗉𝗉(𝜆𝑏, 𝑎))𝑔
≡Definition of application

((𝜆𝑏)𝑔)𝑎𝑔

≡Definition of 𝜆 abstraction
𝑏⟨𝑔,𝑎𝑔⟩

≡Definition of substitution
(𝑏⟨𝗂𝖽Γ, 𝑎⟩)𝑔

≡Definition of substitution
(𝑏[𝑎])𝑔

Lemma 4.2.18 (Path Π types support 𝜂-conversion).

𝜆(𝖺𝗉𝗉(𝑓𝐩, 𝐪)) ≡ 𝑓

Proof.

(𝜆(𝖺𝗉𝗉(𝑓𝐩, 𝐪)))𝛾
≡Definition

(𝖺𝗉𝗉(𝑓𝐩, 𝐪))[·]
≡Application and substitution commute, 𝐩 ∘ [·] ≡ 𝑐𝑜𝑛𝑠𝑡

𝖺𝗉𝗉(𝑓𝛾, 𝐪[·])
≡𝐪[·] ∈ 𝖳𝗆𝐴𝛾

(𝐴(𝐩[·])) “identity”
𝑓𝛾

(𝜆(𝖺𝗉𝗉(𝑓𝐩, 𝐪)))𝑔
≡Definition of 𝜆 abstraction

((𝖺𝗉𝗉(𝑓𝐩, 𝐪))⟨𝑔,𝛼⟩)𝛼∈𝐴𝑔(𝑎,𝑎′)

≡Definition of application
((𝑓𝑔)𝛼)𝛼∈𝐴𝑔(𝑎,𝑎′)

≡“𝜂 conversion”
𝑓𝑔

4.2.4 Function extensionality
Function extensionality says that two functions are equal if they are point-wise equal. The function
paths of definition 4.2.1 were defined with function extensionality in mind and the work in section 4.2.1
can be seen as establishing the fact the relation induced function extensionality soundly interprets the
theory of intensional identity types.
Lemma 4.2.19 (Path Π types are extensional). Given two terms 𝑓, ℎ ∈ 𝖳𝗆Γ(Π𝐴𝐵), then a proof

𝑝ℎ𝑖 ∈ 𝖳𝗆Γ(Π𝐴𝖨𝖽𝐵[𝖺𝗉𝗉(𝑓𝐩, 𝐪)𝐩][𝖺𝗉𝗉(ℎ𝐩, 𝐪)])
implies a proof 𝜑 ∈ 𝖳𝗆Γ(𝖨𝖽Π𝐴𝐵[𝑓𝐩][ℎ]).

Proof. We define function paths 𝜑𝛾 ∈ Π𝐴𝐵𝗂𝖽𝛾
(𝑓𝛾, ℎ𝛾).

𝜑𝛾𝛼
≔ 𝑝ℎ𝑖𝛾𝑎

· ℎ𝗂𝖽𝛾
(𝛼) ≡ 𝑓𝗂𝖽𝛾

(𝛼) · 𝑝ℎ𝑖𝛾′ ∈ 𝐵⟨𝗂𝖽𝛾,𝛼⟩(𝑓𝛾(𝑎), ℎ𝛾(𝑎′))
and show that 𝖨𝖽Π𝐴𝐵⟨𝑔,𝑓𝑔,ℎ𝑔⟩(𝜑𝛾, 𝜑𝛾′) is inhabited. Indeed,

𝜑𝛾 · ℎ𝑔 ≡ 𝑓𝑔 · 𝜑𝛾′

because
𝑝ℎ𝑖𝛾𝑎𝛾

· ℎ𝗂𝖽𝛾
(𝛼𝛾) · ℎ𝑔(𝛼𝑔)

≡Path application
𝑝ℎ𝑖𝛾𝑎𝛾

· ℎ𝑔(𝛼𝛾 · 𝛼𝑔)

≡𝑝ℎ𝑖𝑔𝛼𝛾·𝛼𝑔
∈ 𝖨𝖽𝐵⟨𝑔,𝛼𝛾·𝛼𝑔,𝑓𝑔(𝛼𝛾·𝛼𝑔),ℎ𝑔(𝛼𝛾·𝛼𝑔)⟩(𝑝ℎ𝑖𝛾𝑎𝛾

, 𝑝ℎ𝑖𝛾′ 𝑎𝛾′
)

𝑓𝑔(𝛼𝛾 · 𝛼𝑔) · 𝑝ℎ𝑖𝛾′ 𝑎𝛾′

≡Path application
𝑓𝑔(𝛼𝛾 · 𝛼𝑔) · 𝑓𝗂𝖽𝛾

(𝗂𝖽𝑎𝛾′) · 𝑝ℎ𝑖𝛾′ 𝑎𝛾′

The naturality condition for 𝜑𝛾 holds for the same reasons.

Every term of function paths defines a term of point-wise equalities. Hence, the converse direction
holds as well such that

𝖳𝗆Γ(Π𝐴𝖨𝖽𝐵[𝖺𝗉𝗉(𝑓𝐩, 𝐪)𝐩][𝖺𝗉𝗉(𝑔𝐩, 𝐪)]) and 𝖳𝗆Γ(𝖨𝖽Π𝐴𝐵[𝑓𝐩][𝑔])
are logically equivalent. The question whether the types are even equivalent in the theory is not

answered here.
This completes the proof of the Π structure for the path model.

Theorem 4.2.20 (The path model supports a Π structure). The path interpretation models dependent
type theory with Π types.

4.3 Identity Types
The structure of identity types in type theory governs how dependent types are interpreted in the
groupoid and the path model. It can proved within intensional type theory that every type in the
empty context has a groupoid structure (HS) and that at every dependent type 𝐶 in context Γ.𝐴
there is a conversion of terms in 𝐶𝑎 to terms in 𝐶𝑏 whenever 𝖨𝖽𝐴(𝑎, 𝑏) is inhabited (substitution of
propositionally equal terms). In fact, it is known that an equivalent axiomatisation of identity types
is given by requiring transport as a primitive operation and contractible identity types in the sense
Π𝑎∶𝐴𝑖𝑠𝐶𝑜𝑛𝑡𝑟(Σ𝑏∶𝐴𝖨𝖽𝐴(𝑎, 𝑏)).

This is exactly what we have done. Every dependent needs to be interpreted by an equivalence
relation across its fibres and a transport operation between fibres. The equivalence relation will be used
to interpret the identity sets and the transport operation to interpret the identity eliminator.

Let Γ be a context, 𝛾, 𝛾′ ∈ Γ𝑆, 𝐴 ∈ 𝖳𝗒(Γ), 𝑎, 𝑎′ ∈ 𝖳𝗆Γ(𝐴), 𝛼 ∈ 𝐴𝑔(𝑎𝛾, 𝑎′
𝛾), 𝛼′ ∈ 𝐴𝑔′(𝑎𝛾′ , 𝑎′

𝛾′) and
𝛼″ ∈ 𝐴𝑔″(𝑎𝛾″ , 𝑎′

𝛾″).

4.3.1 Sort
When a model of type theory is constructed by definition of a cwf, syntactical substitution is interpreted
by context morphisms. The elimination rule for identity types refers to substitution of propositionally
equal terms so that type and term formers that depend on terms need to be interpreted by types and
terms in contexts that include those terms. Since propositionally equality is a property between terms,
the identity type at a type 𝐴 ∈ 𝖳𝗒(Γ) must be interpreted in the context Γ.𝐴.𝐴𝐩.

The set of proofs of intensional equality between two elements of a fibre is given by their path set.
Definition 4.3.1 (Equality proofs in the path model). For every ⟨𝛾, 𝑎, 𝑎′⟩ ∈ Γ.𝐴.𝐴𝐩 set

(𝖨𝖽𝐴(𝑎, 𝑎′))𝛾 ≔ 𝐴𝗂𝖽𝛾
(𝑎𝛾, 𝑎′

𝛾))

■
There is a path between two equality proofs if and only if the path in the context transforms one

into the other. In other words, two equality proofs are connected if and only if one is the transport of
the other. In that sense we are defining the minimal possible path space.
Definition 4.3.2 (Equality paths). If ⟨𝑔, 𝛼, 𝛼′⟩ ∈ Γ.𝐴.𝐴𝐩(⟨𝛾, 𝑎, 𝑎′⟩, ⟨𝛾′, 𝑏, 𝑏′⟩) is a path, then for every
two objects 𝛼𝛾 ∈ (𝖨𝖽𝐴(𝑎, 𝑎′))𝛾 and 𝛼𝛾′ ∈ (𝖨𝖽𝐴(𝑏, 𝑏′))𝛾′ define the set

𝖨𝖽𝐴⟨𝑔,𝛼,𝛼′⟩(𝛼𝛾, 𝛼𝛾′) ≔ {∙|𝛼 · 𝛼𝛾′ ≡ 𝛼𝛾 · 𝛼′}

■
Proofs of concatenation, inverses and identities correspond exactly to the proofs of transitivity, sym-

metry and reflexivity of the proof-irrelevant relation induced by the set comprehension. Associativity is
then obvious. Indeed,

𝗂𝖽𝑎 · 𝛼 ≡ 𝛼 · 𝗂𝖽𝑎′

as well as

𝛼𝛾′ · 𝛼′−1 ≡ 𝛼−1 · 𝛼𝛾 given 𝖨𝖽𝐴⟨𝑔,𝛼,𝛼′⟩(𝛼𝛾, 𝛼𝛾′)

and

𝛼1 ·𝛼2 ·𝛼𝛾″ ≡ 𝛼1 ·𝛼𝛾′ ·𝛼′
2 ≡ 𝛼𝛾 ·𝛼′

1 ·𝛼′
2 given both 𝖨𝖽𝐴⟨𝑔,𝛼1,𝛼′

1⟩(𝛼𝛾, 𝛼𝛾′) and 𝖨𝖽𝐴⟨𝑔′,𝛼2,𝛼′
2⟩(𝛼𝛾′ , 𝛼𝛾″).

In this interpretation, the identity types are at least sets because they contain distinct elements in
general. However, from the relation sets we see that identity types in the path model are also sets
at most because there is at most one proof ∙ of equality between two elements. Hence, the model
interprets identity types as sets like the groupoid interpretation. This is a particularity of the path
model and cannot be proved within the theory because intensional type theory admits higher-dimensional
models [Str14a][BCH13].

It is tempting to generalise this to the following path sets.
Definition 4.3.3 (Generalised equality paths). If ⟨𝑔, 𝛼, 𝛼′⟩ ∈ Γ.𝐴.𝐴𝐩(⟨𝛾, 𝑎, 𝑎′⟩, ⟨𝛾′, 𝑏, 𝑏′⟩) is a path,
then for every two objects 𝛼𝛾 ∈ (𝖨𝖽𝐴(𝑎, 𝑎′))𝛾 and 𝛼𝛾′ ∈ (𝖨𝖽𝐴(𝑏, 𝑏′))𝛾′ define the set

𝖨𝖽𝐴⟨𝑔,𝛼,𝛼′⟩(𝛼𝛾, 𝛼𝛾′) ≔ {⟨𝛼𝑔, 𝛼′
𝑔⟩|𝛼𝑔 ∈ 𝐴𝑔(𝑎, 𝑏), 𝛼′

𝑔 ∈ 𝐴𝑔(𝑎′, 𝑏′), 𝛼𝑔 · 𝛼𝛾′ ≡ 𝛼𝛾 · 𝛼′
𝑔}

■
Definition 4.3.4 (Generalised equality path concatenation). For every two paths ⟨Α1, Α2⟩ ≔ Α ∶ 𝛼 →𝑔
𝛼′ and ⟨Β1, Β2⟩ ≔ Β ∶ 𝛼′ →𝑔′ 𝛼″ define the path

Α · Β ≔ ⟨Α1 · Β1, Α2 · Β2⟩

This defines a path between 𝛼 and 𝛼′ over 𝑔 because Α1 · Β1 · 𝛼″ ≡ Α1 · 𝛼′ · Β2 ≡ 𝛼 · Α2 · Β2
(concatenation is associative and Α, Β are paths). ■

Definition 4.3.5 (Generalised equality path identities). For every object 𝛼 ∈ (𝖨𝖽𝐴(𝑎, 𝑎′))𝛾 define the
path

𝗂𝖽𝛼 ≔ ⟨𝗂𝖽𝑎𝛾
, 𝗂𝖽𝑎′𝛾

⟩

This defines a path at 𝛼 because 𝗂𝖽𝑎 · 𝛼 ≡ 𝛼 · 𝗂𝖽𝑎′ . Moreover, it defines an identity element with
respect to path concatenation in identity types since given any ⟨Α1, Α2⟩ ∶ 𝛼 →𝑔 𝛼′, Α1 · 𝗂𝖽𝑎𝛾′ ≡ Α1 and
Α2 · 𝗂𝖽𝑎′

𝛾′
≡ Α2, 𝗂𝖽𝑎𝛾

· Α1 ≡ Α1 and 𝗂𝖽𝑎′𝛾
· Α2 ≡ Α2 (concatenation in 𝐴). ■

Definition 4.3.6 (Generalised equality path inverses). For every path
⟨Α1, Α2⟩ ≔ Α ∶ 𝛼 →𝑔 𝛼′ define the path

Α−1 ≔ ⟨Α1
−1, Α2

−1⟩

This defines a path between 𝛼′ and 𝛼 over 𝑔 because Α1
−1 · 𝛼 ≡ Α1

−1 · Α1 · 𝛼′ · Α2
−1 ≡ 𝛼′ · Α2

−1

(concatenation in 𝐴 is associative and has inverses). Moreover, it inverts Α because Α1
−1 · Α1 ≡ 𝗂𝖽𝑎𝛾′

and Α1 · Α1
−1 ≡ 𝗂𝖽𝑎𝛾

(the same for the second component). ■
Definition 4.3.7 (Generalised equality transport). If 𝑔 ∶ ⟨𝛾, 𝑎, 𝑎′⟩ → ⟨𝛾′, 𝑏, 𝑏′⟩ is a path, then for every
object 𝛼 ∈ (𝖨𝖽𝐴(𝑎, 𝑎′))𝛾 define the object

𝛼+
𝑔,𝖨𝖽𝐴

≔ 𝑔2
−1 · 𝛼 · 𝑔3

and the path

𝛼+
𝑔,𝖨𝖽𝐴

≔ ⟨𝑔2, 𝑔3⟩

This defines a path between 𝛼 and 𝛼+
𝑔 over g because 𝑔2 · (𝑔2

−1 · 𝛼 · 𝑔3) ≡ 𝛼 · 𝑔3 (concatenation in 𝐴
is associative and has inverses).

The definition above yields the identity map over identity morphisms

𝛼+
𝗂𝖽⟨𝛾,𝑎,𝑎′⟩

≡ 𝗂𝖽𝑎
−1 · 𝛼 · 𝗂𝖽𝑎′ ≡ 𝛼

𝛼+
𝗂𝖽⟨𝛾,𝑎,𝑎′⟩

≡ ⟨𝗂𝖽𝑎, 𝗂𝖽𝑎′⟩ ≡ 𝗂𝖽𝛼

and commutes with concatenation

𝛼+
𝑔·𝑔′ ≡ (𝑔 · 𝑔′)2

−1 · 𝛼 · (𝑔 · 𝑔′)3 ≡ 𝑔′
2

−1 · 𝑔2
−1 · 𝛼 · 𝑔3 · 𝑔′

3 ≡ 𝛼+
𝑔

+
𝑔′

𝛼+
𝑔·𝑔′ ≡ ⟨(𝑔 · 𝑔′)2, (𝑔 · 𝑔′)3⟩ ≡ ⟨𝑔2, 𝑔3⟩ · ⟨𝑔′

2, 𝑔′
3⟩ ≡ 𝛼+

𝑔 · 𝛼+
𝑔

+
𝑔′

■
However, then we will not be able to validate identity elimination.

Lemma 4.3.8 (Path Id types commute with substitution). For every substitution 𝑠 ∶ Δ → Γ, the types
𝖨𝖽𝐴{⟨⟨𝑠 ∘ 𝐩, 𝐪⟩ ∘ 𝐩, 𝐪⟩} and 𝖨𝖽𝐴{𝑠} are the same.

Proof. See A.0.19.

4.3.2 Operations
Definition 4.3.9 (Reflexivity proof in the path model). Let 𝐴 ∈ 𝖳𝗒(Γ) be a semantic type in context
Γ ∶ 𝒞𝑡𝑥. Define a semantic term 𝗋𝖾𝖿𝗅𝐴 ∈ 𝖳𝗆Γ.𝐴(𝖨𝖽𝐴[𝐪])

𝗋𝖾𝖿𝗅𝐴 ≔ {⟨𝛾, 𝑎⟩ ↦ 𝗂𝖽𝑎
⟨𝑔, 𝛼⟩ ↦ ⟨𝛼, 𝛼⟩

This is well-defined because

𝗂𝖽𝑎 ∈ 𝐴𝗂𝖽𝛾
(𝑎, 𝑎) ≡ 𝖨𝖽𝐴⟨𝛾,𝑎,𝑎⟩ ≡ 𝖨𝖽𝐴𝐪(⟨𝛾,𝑎⟩)

and

𝗂𝖽𝑎 · 𝛼 ≡ 𝛼 ≡ 𝛼 · 𝗂𝖽𝑎′

And it is a term because

⟨𝗂𝖽𝑎, 𝗂𝖽𝑎⟩ ≡ 𝗂𝖽⟨𝑎,𝑎⟩

and

⟨𝛼 · 𝛼′, 𝛼 · 𝛼′⟩ ≡ ⟨𝛼, 𝛼⟩ · ⟨𝛼′, 𝛼′⟩

■
Lemma 4.3.10 (Path reflexivity proofs commute with substitution). For every substitution 𝑠 ∶ Δ → Γ,
the terms 𝗋𝖾𝖿𝗅𝐴{𝑠} and 𝗋𝖾𝖿𝗅𝐴{𝑠} are the same.

Proof. See A.0.20.

Definition 4.3.11 (Equality elimination in the path model). For every semantic type 𝐶 ∈ 𝖳𝗒(Γ.𝐴.𝐴𝐩.𝖨𝖽𝐴)
and semantic term 𝑑 ∈ 𝖳𝗆Γ.𝐴(𝐶[𝗋𝖾𝖿𝗅𝐴]) define a semantic term 𝐽𝐶,𝑑 ∈ 𝖳𝗆Γ.𝐴.𝐴𝐩.𝖨𝖽𝐴

(𝐶)

𝐽𝐶,𝑑 ≔
⎧{
⎨{⎩

⟨𝛾, 𝑎, 𝑎′, 𝛼𝛾⟩ ↦ 𝑑⟨𝛾,𝑎⟩
+
⟨𝗂𝖽𝛾,𝗂𝖽𝑎,𝛼𝛾,∙⟩,𝐶

⟨𝑔, 𝛼, 𝛼′, ∙⟩ ↦ 𝑑⟨𝛾,𝑎⟩
↓
⟨𝗂𝖽𝛾,𝗂𝖽𝑎,𝛼𝛾,∙⟩,𝐶

· 𝑑⟨𝑔,𝛼⟩ · 𝑑⟨𝛾′,𝑏⟩
↑
⟨𝗂𝖽𝛾′ ,𝗂𝖽𝑏,𝛼𝛾′ ,∙⟩,𝐶

This is well-defined because

𝛼𝛾 ∈ 𝐴𝗂𝖽𝛾
(𝑎, 𝑎′) and 𝗂𝖽𝑎, 𝛼𝛾 ∈ 𝐴𝗂𝖽𝛾

and, hence,

⟨𝗂𝖽𝛾, 𝗂𝖽𝑎, 𝛼𝛾, ⟨𝛼𝛾, 𝗂𝖽𝑎⟩ ∈ Γ.𝐴.𝐴𝐩.𝖨𝖽𝐴𝑅(⟨𝛾, 𝑎, 𝑎, 𝗂𝖽𝑎⟩, ⟨𝛾, 𝑎, 𝑎′, 𝛼𝛾⟩)

Also,

𝑑⟨𝑔,𝛼⟩ ∈ 𝐶⟨𝑔,𝛼,𝛼,∙⟩(𝑑⟨𝛾,𝑎⟩, 𝑑⟨𝛾′,𝑏⟩)

and, hence,

𝐽𝐶,𝑑(⟨𝑔, 𝛼, 𝛼′, ∙⟩) ∈ 𝐶⟨𝗂𝖽𝛾,𝗂𝖽𝑎,𝛼𝛾,∙⟩−1·⟨𝑔,𝛼,𝛼,∙⟩·⟨𝗂𝖽𝛾′ ,𝗂𝖽𝑏,𝛼𝛾′ ,∙⟩ ≡ 𝐶⟨𝑔,𝛼,𝛼𝛾−1·𝛼·𝛼𝛾′ ,∙⟩ ≡ 𝐶⟨𝑔,𝛼,𝛼′,∙⟩

because ∙ ∈ 𝖨𝖽𝐴⟨𝑔,𝛼,𝛼′⟩(𝛼𝛾, 𝛼,𝛾′) if and only if 𝛼𝛾
+ ≡ 𝛼𝛾′ , that is 𝛼𝛾 · 𝛼′ ≡ 𝛼 · 𝛼𝛾′ .

Indeed, it defines a term because

𝗂𝖽𝑑⟨𝛾,𝑎⟩
−1 · 𝑑⟨𝗂𝖽𝛾,𝗂𝖽𝑎⟩ · 𝗂𝖽𝑑(𝛾′,𝑎′⟩

≡ 𝗂𝖽𝑑⟨𝛾,𝑎⟩
≡ 𝗂𝖽𝐽𝐶,𝑑⟨𝛾,𝑎,𝑎′,𝛼𝛾⟩

by identity preservation of transport and terms and

𝑑⟨𝛾,𝑎⟩
↓
⟨𝗂𝖽𝛾,𝗂𝖽𝑎,𝛼𝛾,∙⟩,𝐶

· 𝑑⟨𝑔·𝑔′,𝛼·𝛼″⟩ · 𝑑⟨𝛾″,𝑐⟩
↑
⟨𝗂𝖽𝛾″ ,𝗂𝖽𝑐,𝛼𝛾″ ,∙⟩,𝐶

≡ 𝐽𝐶,𝑑⟨𝑔,𝛼,𝛼′,∙⟩
· 𝐽𝐶,𝑑⟨𝑔′,𝛼″,𝛼‴,∙⟩

by composition preservation of transport and terms as well as

𝑑⟨𝛾′,𝑏⟩
↑
⟨𝗂𝖽𝛾′ ,𝗂𝖽𝑏,𝛼𝛾′ ,∙⟩,𝐶

· 𝑑⟨𝛾′,𝑏⟩
↓
⟨𝗂𝖽𝛾′ ,𝗂𝖽𝑏,𝛼𝛾′ ,∙⟩,𝐶

≡ 𝗂𝖽𝑑⟨𝛾′,𝑏⟩

■
Lemma 4.3.12 (Path equality elimination commutes with substitution). For every substitution 𝑠 ∶ Δ →
Γ, the terms 𝐽𝐶,𝑑{⟨⟨⟨𝑠 ∘ 𝐩, 𝐪⟩ ∘ 𝐩, 𝐪⟩ ∘ 𝐩, 𝐪⟩} and 𝐽𝐶⟨⟨⟨𝑠∘𝐩,𝐪⟩∘𝐩,𝐪⟩∘𝐩,𝐪⟩,𝑑{⟨𝑠∘𝐩,𝐪⟩} are the same.

Proof. See A.0.21.

4.3.3 Equations
Lemma 4.3.13 (Path equality elimination supports Id computation rule).

𝐽𝐶,𝑑[𝗋𝖾𝖿𝗅𝐴𝐩][𝐪] ≡ 𝑑

Proof. We establish the equality for the element-indexed family

𝐽𝐶,𝑑[𝗋𝖾𝖿𝗅𝐴𝐩][𝐪]
⟨𝛾,𝑎⟩

≡𝐽𝐶,𝑑⟨𝛾,𝑎,𝑎,𝗂𝖽𝐴⟩

≡𝑑⟨𝛾,𝑎⟩

and the path-indexed family

𝐽𝐶,𝑑[𝗋𝖾𝖿𝗅𝐴𝐩][𝐪]
⟨𝑔,𝛼⟩

≡𝐽𝐶,𝑑⟨𝑔,𝛼,𝛼,∙⟩

≡𝑑⟨𝛾,𝑎⟩
↓
⟨𝗂𝖽𝛾,𝗂𝖽𝑎,𝗂𝖽𝑎,∙⟩,𝐶

· 𝑑⟨𝑔,𝛼⟩ · 𝑑⟨𝛾′,𝑏⟩
↑
⟨𝗂𝖽𝛾′ ,𝗂𝖽𝑏,𝗂𝖽𝑏,∙⟩,𝐶

≡𝑑⟨𝑔,𝛼⟩

The last steps are possible because transport preserves identities, respectively.

4.3.4 Heterogeneous equality
The primitive relations 𝐴𝑔 indexed by paths 𝑔 ∈ Γ𝑅 in the context have mainly been useful in defining the
equivalence relation on dependent sums (f. i., context comprehension). For interpreting the intensional
identity types we require only the 𝐴𝗂𝖽𝛾

parts (for 𝛾 ∈ Γ𝑆). The question is whether the 𝐴𝑔 parts interpret
families of identity types indexed not only by 𝛾 but by 𝑔.

Given types 𝐴 ∈ 𝖳𝗒(Γ) and 𝐵 ∈ 𝖳𝗒(Γ.𝐴) assume a type

𝖨𝖣𝐵 ∈ 𝖳𝗒(Γ.𝐴.𝐴𝐩.𝖨𝖽𝐴.𝐵𝐩𝐩.𝐵⟨𝐩𝐩, 𝐪⟩𝐩𝐩)

with the introduction rule

𝗋𝖾𝖿𝗅𝐵 ∈ 𝖳𝗆Γ.𝐴.𝐵(𝖨𝖣𝐵[𝐪]⟨⟨[𝗋𝖾𝖿𝗅𝐴]𝐩, 𝐪⟩𝐩, 𝐪⟩⟨[𝐪]𝐩, 𝐪⟩)

and the elimination rule

𝐽𝐶,𝑑 ∈ 𝖳𝗆Γ.𝐴.𝐴𝐩.𝖨𝖽𝐴.𝐵𝐩𝐩.𝐵⟨𝐩𝐩,𝐪⟩𝐩𝐩.𝖨𝖣𝐵
(𝐶)

for

𝐶 ∈ 𝖳𝗒(Γ.𝐴.𝐴𝐩.𝖨𝖽𝐴.𝐵𝐩𝐩.𝐵⟨𝐩𝐩, 𝐪⟩𝐩𝐩.𝖨𝖣𝐵)

and

𝑑 ∈ 𝖳𝗆Γ.𝐴.𝐵(𝐶⟨[𝐪]⟨⟨[𝗋𝖾𝖿𝗅𝐴]𝐩, 𝐪⟩𝐩, 𝐪⟩⟨[𝐪]𝐩, 𝐪⟩, 𝗋𝖾𝖿𝗅𝐵⟩).

These generalised identity types make it possible to speak about the equality of the images under
dependent functions and the dependent components of tuples. They also enable the formalisation of
an extensionality principle for dependent sums, namely that two tuples are equal if and only if their
components can be proved equal.

We now give the interpretation of the sets

𝖨𝖣𝐵⟨𝛾,𝑎,𝑎′,𝛼,𝑏,𝑏′⟩ ≔ 𝐵⟨𝗂𝖽𝛾,𝛼⟩(𝑏, 𝑏′)

and the paths

𝖨𝖣𝐵⟨𝑔,𝛼,𝛼′,∙,𝛽,𝛽′⟩(Β, Β′) ≔ {∙|Β · 𝛽′ ≡ 𝛽 · Β′}

as well as reflexivity

𝗋𝖾𝖿𝗅𝐵 ≔ {⟨𝛾, 𝑎, 𝑏⟩ ↦ 𝗂𝖽𝑏
⟨𝑔, 𝛼, 𝛽⟩ ↦ ∙

The dependent 𝐽 will be definable using the transport of 𝐶 (exactly as in the non-dependent case) if
all proofs Β ∈ 𝐵⟨𝗂𝖽𝛾,𝛼⟩(𝑏, 𝑏′) are related to 𝗂𝖽𝑏 ∈ 𝐵⟨𝗂𝖽𝛾,𝗂𝖽𝑎⟩(𝑏, 𝑏).

So, 𝗂𝖽𝑏 must be equal to Β over ⟨𝗂𝖽𝛾, 𝗂𝖽𝑎, 𝛼, ∙, 𝗂𝖽𝑏, Β⟩, that is 𝗂𝖽𝑏 · Β ≡ 𝗂𝖽𝑏 · Β. This is the case indeed.
Except for the difficulties in expressing the context of 𝖨𝖣𝐵, the interpretation of 𝖨𝖣𝐵 is analogous

to the one of the non-dependent identity types. We omitted the verification that 𝖨𝖣𝐵 has transports,
identities and inverses, and commutes with substitution.

4.4 Universe
Assume a set-theoretic universe 𝒰. Specifically, assume a Grothendieck universe as in [HS14]. This
entails that 𝒰 is a set such that all transitive members 𝑒 ∈ 𝑠 ∈ 𝒰 are elements of 𝒰 and 𝒰 together with
the restricted membership relation is a model of set theory.

We define a type 𝑈 whose points are small sets 𝑀𝑆 endowed with a (small) path structure 𝑀𝑅
connected by isomorphisms.
Definition 4.4.1 (Small types in the path model). Set

𝑈𝑆 ≔ {⟨𝑀𝑆, 𝑀𝑅⟩|𝑀𝑆 ∈ 𝒰, 𝑀𝑅 ∶ 𝑀𝑆 × 𝑀𝑆 → 𝒰
, · ∶ {𝜇, 𝜇′, 𝜇″ ∈ 𝑀𝑆}𝑀𝑅(𝜇, 𝜇′) → 𝑀𝑅(𝜇′, 𝜇″) → 𝑀𝑅(𝜇, 𝜇″)}

Additionally, require that the operation is associative, that is

𝑚 · (𝑚′ · 𝑚″) ≡ (𝑚 · 𝑚′) · 𝑚″,

has neutral elements in 𝑀𝑅(𝜇, 𝜇), that is for every 𝜇 ∈ 𝑀𝑆 an element

𝗂𝖽𝜇 ∈ 𝑀𝑅(𝜇, 𝜇) s.t. 𝑚 · 𝗂𝖽𝜇′ ≡ 𝑚 ≡ 𝗂𝖽𝜇 · 𝑚

and inverses in the symmetric relations, that is for every 𝑚 ∈ 𝑀𝑅(𝜇, 𝜇′) an element

𝑚−1 ∈ 𝑀𝑅(𝜇′, 𝜇) s.t. 𝑚 · 𝑚−1 ≡ 𝗂𝖽𝜇 and 𝗂𝖽𝜇′ ≡ 𝑚−1 · 𝑚

■
Definition 4.4.2 (Paths between small types). For every two elements 𝑀, 𝑁 ∈ 𝑈𝑆 set

𝑈𝑅(𝑀, 𝑁) ≔ {⟨𝑓 ∶ 𝑀 → 𝑁, 𝑔 ∶ 𝑁 → 𝑀⟩|𝑓, 𝑔 functors, 𝑓 ∘ 𝑔 ≡ 𝗂𝖽𝑁𝑆
, 𝑔 ∘ 𝑓 ≡ 𝗂𝖽𝑀𝑆

}

■
We define path composition in 𝑈 component-wise. The composite of two functors is indeed again

a functor. And, associativity of function composition not only implies associativity for this definition
of path composition but is also needed to verify the two identity conditions for the composites. Given
⟨𝑓, 𝑔⟩ ∈ 𝑈𝑅(𝑀, 𝑁) and ⟨𝑓′, 𝑔′⟩ ∈ 𝑈𝑅(𝑁, 𝑂), we calculate

(𝑓′ ∘ 𝑓) ∘ (𝑔 ∘ 𝑔′) ≡ 𝑓′ ∘ (𝑓 ∘ 𝑔) ∘ 𝑔′ ≡ 𝑓′ ∘ 𝗂𝖽𝑁𝑆
∘ 𝑔′ ≡ 𝑓′ ∘ 𝑔′ ≡ 𝗂𝖽𝑂𝑆

The second condition ((𝑔 ∘ 𝑔′) ∘ (𝑓′ ∘ 𝑓) ≡ 𝗂𝖽𝑀𝑆
) can be shown to hold analogously.

Since paths are isomorphisms and identity functions are isomorphisms, it is straightforward to define
and verify inverse and identity paths.
Definition 4.4.3 (Identity paths at small types). Given a small type 𝑀 ∈ 𝑈𝑆 define the path

𝗂𝖽𝑀 ≔ ⟨𝗂𝖽𝑀𝑆
, 𝗂𝖽𝑀𝑆

⟩ ∈ 𝑈𝑅(𝑀, 𝑀).

■

Definition 4.4.4 (Inverse paths between small types). For every path ⟨𝑓, 𝑔⟩ ∈ 𝑈𝑅(𝑀, 𝑁) between small
types 𝑀 ∈ 𝑈𝑆 and 𝑁 ∈ 𝑈𝑆 we define the path

𝑀−1 ≔ ⟨𝑔, 𝑓⟩ ∈ 𝑈𝑅(𝑁, 𝑀).

■
Definition 4.4.5 (Small type elimination in the path model). For every semantic term 𝑀 ∈ 𝖳𝗆[](𝑈)
define the semantic type in context []

𝐸𝑙(𝑀)∙ ≔ 𝑀𝑆 and 𝐸𝑙(𝑀)∙(𝜇, 𝜇′) ≔ 𝑀𝑅(𝜇, 𝜇′)

This is indeed an element of 𝖳𝗒([]) because 𝑀𝑅 is defined as a semantic type relation.
The dependent case taking 𝑀 ∈ 𝖳𝗆Γ(𝑈𝐩) to 𝐸𝑙(𝑀) ∈ 𝖳𝗒(Γ) is more involved since the components

𝑀(𝑔) are isomorphisms and the components 𝐸𝑙(𝑀)(𝑔) must be path sets. To construct the latter from
the former we apply the same construction that we used to transform a type in the groupoid model into
a path type.

𝐸𝑙(𝑀)𝑔(𝜇, 𝜇′) ≔ 𝑀𝛾′(𝑀(𝑔)(𝜇), 𝜇′)
𝗂𝖽𝜇 ≔ 𝗂𝖽𝜇

𝑚−1 ≔ 𝑀𝑔−1(𝑚−1)
𝑚 · 𝑚′ ≔ 𝑀𝑔(𝑚) · 𝑚′

𝜇+
𝑔 ≔ 𝑀𝑔(𝜇)

𝜇↑
𝑔 ≔ 𝗂𝖽𝑀𝑔(𝜇)

𝗂𝖽𝜇, 𝑚−1 and · on the right-hand sides refer to the neutral elements, inverses and composites in 𝑀𝛾′

respectively. The proofs A.0.5 through A.0.8 can easily be adapted to show that the thus defined 𝐸𝑙(𝑀)
is a type in context Γ. Lemma A.0.22 proves that 𝐸𝑙(𝑀) is stable under substitution. ■

The type 𝑈 is basically a small groupoid version of 𝒞𝑡𝑥. A discrete version is possible as well but does
not support universe extensionality. Neither does our universe with the strict path condition 𝑓 ∘𝑔 ≡ 𝗂𝖽𝑁,
unless 𝑈 is discrete. If 𝑈 is discrete, that is all 𝑀𝑅(𝜇, 𝜇′) are empty except for 𝑀𝑅(𝜇, 𝜇) ≡ {𝗂𝖽𝜇}, then
the following extensionality principle holds.
Remark 4.4.6 (Path U type is extensional). If there are semantic functions 𝑓 ∈ 𝖳𝗆Γ(Π𝐸𝑙(𝑀)𝐸𝑙(𝑁))
and 𝑔 ∈ 𝖳𝗆Γ(Π𝐸𝑙(𝑁)𝐸𝑙(𝑀)) such that there are proofs

𝖳𝗆Γ(Π𝐸𝑙(𝑀)𝖨𝖽𝐸𝑙(𝑁)[𝖺𝗉𝗉(𝑔, 𝖺𝗉𝗉(𝑓, 𝐪))])

and

𝖳𝗆Γ(Π𝐸𝑙(𝑁)𝖨𝖽𝐸𝑙(𝑀)[𝖺𝗉𝗉(𝑓, 𝖺𝗉𝗉(𝑔, 𝐪))]),

then there is a proof 𝑢 ∈ 𝖳𝗆Γ(𝖨𝖽𝑈𝐩[𝑁𝐩][𝑀]).
Proof. First, we consider the case where Γ is empty. The functors 𝑓 ∶ 𝑀 → 𝑁 and 𝑔 ∶ 𝑁 → 𝑀 are weak
inverses, that is

𝑀𝑅(𝑔(𝑓(𝜇)), 𝜇) and 𝑁𝑅(𝑓(𝑔(𝜈)), 𝜈)

are non-empty as witnessed by the assumptions. In fact, they are strict inverses because 𝑀 and 𝑁
are discrete as elements of the universe. We conclude

⟨𝑓, 𝑔⟩ ∈ 𝑈𝑅(𝑀, 𝑁) ≡ 𝖨𝖽𝑈⟨𝑀,𝑁⟩.

This allows us to set 𝑢 ≔ ⟨𝑓, 𝑔⟩. Then, to generalise this definition to the dependent case with
𝑀, 𝑁 ∈ 𝖳𝗆Γ(𝑈𝐩) we need to verify

𝑢𝛾 · 𝑁𝑔 ≡ 𝑀𝑔 · 𝑢𝛾′

for every 𝑔 ∈ Γ𝑅(𝛾, 𝛾′) in order to obtain the element 𝑢𝑔 ∈ 𝖨𝖽𝑈𝐩⟨𝑔,𝑀𝑔,𝑁𝑔⟩
(𝑢𝛾, 𝑢𝛾′). Indeed,

𝑁𝑔(𝑢𝛾(𝜇))
≡𝑢𝛾(𝜇) ≡ 𝑓𝛾(𝜇)

𝑁𝑔(𝑓𝛾(𝜇))
≡𝗂𝖽𝜇 ∈ 𝐸𝑙(𝑀)𝑔(𝜇, 𝑀𝑔(𝜇)) and (𝑓𝑔)𝗂𝖽𝜇

∶ 𝐸𝑙(𝑁)𝑔(𝑓𝛾(𝜇), 𝑓𝛾′(𝑀𝑔(𝜇))) ⇔ 𝑁𝑔(𝑓𝛾(𝜇)) ≡ 𝑓𝛾′(𝑀𝑔(𝜇))
𝑓𝛾′(𝑀𝑔(𝜇))

≡𝑢𝛾′(𝑀𝑔(𝜇)) ≡ 𝑓𝛾′(𝑀𝑔(𝜇))
𝑢𝛾′(𝑀𝑔(𝜇))

Given that 𝖨𝖽𝑈𝐩⟨𝑔,𝑀𝑔,𝑁𝑔⟩
(𝑢𝛾, 𝑢𝛾′) are singletons, we conclude 𝑢 ∈ 𝖳𝗆Γ(𝖨𝖽𝑈𝐩[𝑁𝐩][𝑀]).

It is straightforward to show that the converse statement holds because that is how the universe path
sets are constructed. Whether the equivalence also holds within the theory is left unanswered here.

The universe is closed under function spaces if it is discrete.
Remark 4.4.7 (Path U type is closed under function spaces). For all semantic terms 𝑀 ∈ 𝖳𝗆Γ(𝑈), 𝑁 ∈
𝖳𝗆Γ.𝐸𝑙(𝑀)(𝑈) there is a semantic term 𝜋𝑀𝑁 ∈ 𝖳𝗆Γ(𝑈𝐩) such that 𝐸𝑙(𝜋𝑀𝑁) ≡ Π𝐸𝑙(𝑀)𝐸𝑙(𝑁).
Proof. It is clear that the set of terms 𝖳𝗆𝐸𝑙(𝑀)𝛾

(𝐸𝑙(𝑁)𝛾) together with identity paths is a discrete small
type, just as every small set is. We set

𝜋𝑀𝑁𝛾 ≔ 𝖳𝗆𝐸𝑙(𝑀)𝛾
(𝐸𝑙(𝑁)𝛾)

and define 𝜋𝑀𝑁𝑔 like the Π transport

𝜋𝑀𝑁𝑔(𝑓) ≔ 𝜇′ ↦ 𝑁⟨𝑔,𝗂𝖽𝜇′ ⟩(𝑓𝑀𝑔−1 (𝜇′),𝛾).

Then, 𝜋𝑀𝑁𝑔 is an isomorphism because 𝑀𝑔 and 𝑁𝑔 are. Therefore, 𝜋𝑀𝑁 ∈ 𝖳𝗆Γ(𝑈𝐩).
𝐸𝑙(𝜋𝑀𝑁) and Π𝐸𝑙(𝑀𝐸𝑙(𝑁) agree on their set components

𝐸𝑙(𝜋𝑀𝑁)𝛾 ≡ 𝜋𝑀𝑁𝛾𝖳𝗆𝐸𝑙(𝑀)𝛾
(𝐸𝑙(𝑁)𝛾) ≡ Π𝐸𝑙(𝑀)𝐸𝑙(𝑁)

𝛾
.

We show that Π𝐸𝑙(𝑀)𝐸𝑙(𝑁) ∈ 𝖳𝗒(Γ) does not contain any non-trivial paths. For every path

𝜑 ∈ Π𝐸𝑙(𝑀)𝐸𝑙(𝑁)
𝑔
(𝑓, 𝑓′)

we have

𝜑𝑚 ∈ 𝐸𝑙(𝑁)⟨𝑔,𝑚⟩(𝑓(𝜇), 𝑓′(𝜇′))

for 𝑚 ∈ 𝐸𝑙(𝑀)𝑔(𝜇, 𝜇′). Because 𝑀 and 𝑁 are discrete

𝑀𝑔(𝜇) ≡ 𝜇′ and 𝑁⟨𝑔,𝗂𝖽𝑀𝑔(𝜇)⟩(𝑓(𝜇)) ≡ 𝑓′(𝑀𝑔(𝜇))

and therefore

𝑓′ ≡ 𝜋𝑀𝑁𝑔(𝑓) and 𝜑𝑚 ≡ 𝗂𝖽𝜋𝑀𝑁𝑔(𝑓).

We conclude that Π𝐸𝑙(𝑀)𝐸𝑙(𝑁) ≡ 𝐸𝑙(𝜋𝑀𝑁).

4.5 Propositional Truncation
For types in the empty context, that is types interpreted by a groupoid, it is clear how to obtain the
truncated type. Truncation depends on the same context (Sort) and, hence, the truncated type is also
interpreted by a groupoid. The axioms governing the recursion principle for truncated types suggest
that the two groupoids have the same objects and the fact that the truncation is a level −1 type implies
that each homset consists of exactly one element. Such data trivially constitutes a unique groupoid up
to isomorphism of categories.

Given a level −1 type 𝑃 , the function space Π𝐴𝑃 (𝑃 doesn’t depend on 𝐴) is interpreted by the
groupoid of functors from 𝐴 to 𝑃 and the to be constructed functor ‖𝑓‖ for an arbitrary functor 𝑓 is
uniquely defined on objects by the equation law for propositional truncation. What is missing for a
complete interpretation is the mapping of morphisms in ‖𝐴‖ to morphisms in 𝑃 . Since both types live
on level −1 there is no room for interpretation and the unique definition yields trivially a functor.

Moving to the general case of a dependent type, truncating each fibre doesn’t yield a dependent type
because the concatenation of a path in 𝐴 over a path in Γ with the formal paths added by the construction
is undefined a priori and it’s not clear how to define it. Instead, we apply the same construction to the
path sets over paths in Γ as we did to the fibres, that is make them all singleton sets. The erasure of
multiple paths and addition of further connections is not an issue because the only axiom that relates
the paths in the type and its truncation is the computational rule for truncation recursion. And, the
terms compared there are terms of the co-domain, which is a proposition by assumption and is thus
interpreted by a semantic type with unique paths.

Let 𝐴 ∈ 𝖳𝗒(Γ) be a type, then the propositional truncation ‖𝐴‖ ∈ 𝖳𝗒(Γ) of 𝐴 is defined as follows.

4.5.1 Sort
Definition 4.5.1 (Path ‖ · ‖ sets). For every 𝛾 ∈ Γ𝑆 define the set

‖𝐴‖𝛾 ≔ 𝐴𝛾

■
Next, we define the relations such that every two elements are related. We do this using singletons

sets and because of the following result this is not an oversimplification if 𝑖𝑠𝑃𝑟𝑜𝑝 should be provable
internally.
Lemma 4.5.2 (Syntactic proofs of propositionality imply singleton path sets (I)). Let 𝑃 ∈ 𝖳𝗒(Γ) be a
semantic type, then the relations 𝑃𝗂𝖽𝛾

(𝜋𝛾, 𝜋′
𝛾) are singletons if and only if there is a term 𝑖𝑠𝑃𝑟𝑜𝑝(𝑃) ∈

𝖳𝗆Γ(Π𝑃 Π𝑃𝐩𝖨𝖽𝑃).
Proof. Fix arbitrary 𝑝, 𝑝′ ∈ 𝑃𝛾 and 𝜋, 𝜋′ ∈ 𝑃𝗂𝖽𝛾

(𝑝, 𝑝′), then

𝖨𝖽𝑃 ⟨𝗂𝖽𝑝,𝜋⟩(𝑖𝑠𝑃𝑟𝑜𝑝(𝑃)𝛾(𝑝, 𝑝), 𝑖𝑠𝑃𝑟𝑜𝑝(𝑃)𝛾(𝑝, 𝑝′))

and, hence,

𝖨𝖽𝑃 ⟨𝗂𝖽𝛾,𝗂𝖽𝑝,𝗂𝖽𝑝′ ⟩(𝑖𝑠𝑃 𝑟𝑜𝑝(𝑃)𝛾(𝑝, 𝑝)+
⟨𝗂𝖽𝑝,𝜋⟩

, 𝑖𝑠𝑃 𝑟𝑜𝑝(𝑃)𝛾(𝑝, 𝑝′))

because

𝑖𝑠𝑃𝑟𝑜𝑝(𝑃)𝛾(𝑝, 𝑝) · 𝜋 ≡ 𝗂𝖽−1
𝑝 · 𝑖𝑠𝑃𝑟𝑜𝑝(𝑃)𝛾(𝑝, 𝑝) · 𝜋 ≡ 𝑖𝑠𝑃𝑟𝑜𝑝(𝑃)𝛾(𝑝, 𝑝)+

⟨𝗂𝖽𝑝,𝜋⟩
, 𝑖𝑠𝑃𝑟𝑜𝑝(𝑃)𝛾(𝑝, 𝑝′))

which, since 𝖨𝖽𝑃 ⟨𝛾,𝑝,𝑝′⟩ is discrete, entails

𝑖𝑠𝑃𝑟𝑜𝑝(𝑃)𝛾(𝑝, 𝑝) · 𝜋 ≡ 𝑖𝑠𝑃𝑟𝑜𝑝(𝑃)𝛾(𝑝, 𝑝′)

and by composition with the inverse in 𝑃𝗂𝖽𝛾

𝜋 ≡ 𝑖𝑠𝑃𝑟𝑜𝑝(𝑃)𝛾(𝑝, 𝑝)−1 · 𝑖𝑠𝑃𝑟𝑜𝑝(𝑃)𝛾(𝑝, 𝑝′)

We observe that the right-hand side doesn’t depend on 𝜋 and that we can repeat the argument with
𝜋′ substituted for 𝜋, so

𝜋 ≡ 𝜋′

In conclusion, each 𝑃𝗂𝖽𝛾
is a graph. Now make this an assumption and show the existence of a function

that witnesses the equality of every pair of terms of type 𝑃 . Define a term of type Γ.𝑃 .𝑃𝐩 ⊢ 𝖨𝖽𝑃 as
follows

{⟨𝛾, 𝑝, 𝑝′⟩ ↦ ⋆𝗂𝖽𝛾,𝑝,𝑝′

⟨𝑔, 𝜋, 𝜋′⟩ ↦ ∙

This is well-defined because ⋆𝗂𝖽𝛾,𝑝,𝑝′ · 𝜋′ ≡ 𝜋 · ⋆𝗂𝖽𝛾′ ,𝑞,𝑞′ .
That this mapping commutes with composition in Γ.𝑃 .𝑃𝐩 and preserves identities follows directly

from the transport properties.

Lemma 4.5.3 (Syntactic proofs of propositionality imply singleton path sets (II)). Let 𝑃 ∈ 𝖳𝗒(Γ) be a
semantic type, then the relations 𝑃𝑔(𝑝𝛾, 𝑝𝛾′) are singletons if the relations 𝑃𝗂𝖽𝛾

(𝑝𝛾, 𝑝′
𝛾) are singletons.

Proof. By assumption, 𝑃𝗂𝖽𝛾′ (𝑝𝛾
+, 𝑝𝛾′) is inhabited by a unique element ⋆ and, hence, 𝑝𝛾

↑ ·⋆ ∈ 𝑃𝑔(𝑝𝛾, 𝑝𝛾′).
Moreover, this is the only such element because for any two elements 𝜋, 𝜋′ ∈ 𝑃𝑔(𝑝𝛾, 𝑝𝛾′) we have
𝜋 · 𝜋′−1 ∈ 𝑃𝗂𝖽𝛾

(𝑝𝛾, 𝑝𝛾) with the sole inhabitant 𝗂𝖽𝑝𝛾
.

Definition 4.5.4 (Path ‖ · ‖ relations). For every path 𝑔 ∈ Γ𝑅(𝛾, 𝛾′) and two elements 𝑎 ∈ ‖𝐴‖𝛾, 𝑎′ ∈
‖𝐴‖𝛾′ define the set

‖𝐴‖𝑔(𝑎, 𝑎′) ≔ {⋆},

where ⋆ is a fresh so that all relations are distinct.
■

The singleton relations force the meaning of path concatenation, identity and inverse paths.
Definition 4.5.5 (Path concatenation, identities, inverses in the ‖·‖ types). For every 𝑔 ∈ Γ𝑅(𝛾, 𝛾′), 𝑔′ ∈
Γ𝑅(𝛾′, 𝛾″) and 𝑎 ∈ ‖𝐴‖𝛾, 𝑎′ ∈ ‖𝐴‖𝛾′ , 𝑐 ∈ ‖𝐴‖𝛾″ set

⋆𝑔,𝑎,𝑎′ · ⋆𝑔′,𝑎′,𝑎″ ≔ ⋆𝑔·𝑔′,𝑎,𝑎″

and

𝗂𝖽𝑎 ≔ ⋆𝗂𝖽𝛾,𝑎,𝑎

as well as

⋆𝑔,𝑎,𝑎′
−1 ≔ ⋆𝑔−1,𝑎′,𝑎.

Concatenation is obviously associative and the definition of 𝗂𝖽𝑎 and ⋆−1 are obviously neutral and
inverses, respectively.

⋆𝑔,𝑎,𝑎′ · (⋆𝑔′,𝑎′,𝑎″ · ⋆𝑔″,𝑎″,𝑎‴) ≡ ⋆𝑔·𝑔′·𝑔″,𝑎,𝑎‴ ≡ (⋆𝑔,𝑎,𝑎′ · ⋆𝑔′,𝑎′,𝑎″) · ⋆𝑔″,𝑎″,𝑎‴

𝗂𝖽𝑎 · ⋆𝑔,𝑎,𝑎′ ≡ ⋆𝗂𝖽𝑎·𝑔,𝑎,𝑎′ ≡ ⋆𝑔,𝑎,𝑎′ ≡ ⋆𝑔,𝑎,𝑎′ · 𝗂𝖽𝑎′

⋆𝑔,𝑎,𝑎′
−1 · ⋆𝑔,𝑎,𝑎′ ≡ ⋆𝑔−1·𝑔,𝑎′,𝑎′ ≡ 𝗋𝖾𝖿𝗅𝑎′ and ⋆𝑔,𝑎,𝑎′ ·⋆𝑔,𝑎,𝑎′

−1 ≡ ⋆𝑔·𝑔−1,𝑎,𝑎 ≡ 𝗋𝖾𝖿𝗅𝑎
■

With singleton relations there is no lack of possible transport either but a constructive choice is given
by the type that gets truncated.

Definition 4.5.6 (Transport in ‖ · ‖ types). For every path 𝑔 ∈ Γ𝑅(𝛾, 𝛾′) and element 𝑎 ∈ ‖𝐴‖𝛾 define
the element

𝑎+
𝑔,‖𝐴‖ ≔ 𝑎+

𝑔,𝐴

and the connecting path

𝑎↑
𝑔,‖𝐴‖ ≔ ⋆.

These are well-defined because ‖𝐴‖ and 𝐴 share the same sets and there is exactly one path to choose
to connect any two elements in ‖𝐴‖. For the exact same reason the transport path laws follow

𝑎↑
𝗂𝖽𝛾,‖𝐴‖ ≡ ⋆ ≡ 𝗂𝖽𝑎

𝑎↑
𝑔·𝑔′,‖𝐴‖ ≡ ⋆ ≡ ⋆ · ⋆ ≡ 𝑎↑

𝑔,‖𝐴‖ · 𝑎+
𝑔

↑
𝑔′,‖𝐴‖

and remaining two transport laws for elements follow from the laws for the transport in 𝐴

𝑎+
𝗂𝖽𝛾,‖𝐴‖ ≡ 𝑎+

𝗂𝖽𝛾,𝐴 ≡ 𝑎
𝑎+

𝑔·𝑔′,‖𝐴‖ ≡ 𝑎+
𝑔·𝑔′,𝐴 ≡ 𝑎+

𝑔,𝐴
+
𝑔′,𝐴

≡ 𝑎+
𝑔,‖𝐴‖

+
𝑔′,‖𝐴‖

■
Lemma 4.5.7 (Path ‖ · ‖ types commute with substitution). For every context morphism 𝑠 ∶ Δ → Γ the
types ‖𝐴‖{𝑠} and ‖𝐴{𝑠}‖ are the same.

Proof. See A.0.23.

4.5.2 Operations
A type and its truncation have the same elements both from a theory and model point of view.
Definition 4.5.8 (Path ‖ · ‖ terms). For every term 𝑎 ∈ 𝖳𝗆Γ(𝐴) define a term ‖𝑎‖ ∈ 𝖳𝗆Γ(‖𝐴‖) by

{𝛾 ↦ 𝑎𝛾
𝑔 ↦ ⋆𝑔,𝑎𝛾,𝑎𝛾′

This is obviously a well-defined term. ■
Lemma 4.5.9 (Path ‖ · ‖ terms commute with substitution). For every context morphism 𝑠 ∶ Δ → Γ the
terms ‖𝑎‖{𝑠} and ‖𝑎{𝑠}‖ are the same.

Proof. See A.0.24.

Lemma 4.5.10 (Path ‖ · ‖ are propositions). There is a semantic term in 𝖳𝗆Γ(Π‖𝐴‖Π‖𝐴‖𝐩𝖨𝖽‖𝐴‖)
Proof. We define a term 𝑖𝑠𝑃𝑟𝑜𝑝(‖𝐴‖) ∈ 𝖳𝗆Γ.‖𝐴‖.‖𝐴‖𝐩(𝖨𝖽‖𝐴‖).

The object part is simply the unique elements of the relation sets because 𝖨𝖽‖𝐴‖⟨𝛾,𝑎,𝑎′⟩
≡ ‖𝐴‖𝗂𝖽𝛾

(𝑎, 𝑎′)

𝑖𝑠𝑃𝑟𝑜𝑝(‖𝐴‖) ∶ ⟨𝛾, 𝑎, 𝑎′⟩ ↦ ⋆𝗂𝖽𝛾,𝑎,𝑎′

For the path part we note that

⋆𝑔,𝑎,𝑏 · ⋆𝗂𝖽𝛾,𝑏,𝑏′ ≡ ⋆𝗂𝖽𝛾,𝑎,𝑎′ · ⋆𝑔,𝑎′,𝑏′

and set

𝑖𝑠𝑃𝑟𝑜𝑝(‖𝐴‖) ∶ ⟨𝑔, ⋆𝑔,𝑎,𝑏, ⋆𝑔,𝑎′,𝑏′⟩ ↦ ∙

𝖳𝗆Γ(Π‖𝐴‖Π‖𝐴‖𝐩𝖨𝖽‖𝐴‖) is then inhabited by 𝜆(𝜆𝑖𝑠𝑃𝑟𝑜𝑝(‖𝐴‖).

As a result of 4.5.3, any non-dependent map into a propositional type is necessarily constant on all
paths connecting a pair of points.
Lemma 4.5.11 (Functions into propositions are constant on paths). Let 𝑃 ∈ 𝖳𝗒(Γ) with 𝑖𝑠𝑃𝑟𝑜𝑝(𝑃) ∈
𝖳𝗆Γ(Π𝑃 Π𝑃𝐩𝖨𝖽𝑃), then for every 𝑓 ∈ 𝖳𝗆Γ(𝐴 → 𝑃) and 𝛼, 𝛼′ ∈ 𝐴𝑔(𝑎𝛾, 𝑎𝛾′)

𝑓𝑔(𝛼) ≡ 𝑓𝑔(𝛼′)

Proof. Since 𝑓 is non-dependent the paths 𝛼 and 𝛼′ are mapped into the same relation.

𝑃𝐩(⟨𝑔,𝛼⟩)(𝑓𝛾(𝑎), 𝑓𝛾′(𝑎′)) ≡ 𝑃𝑔(𝑓𝛾(𝑎), 𝑓𝛾′(𝑎′)) ≡ 𝑃𝐩(⟨𝑔,𝛼′⟩)(𝑓𝛾(𝑎), 𝑓𝛾′(𝑎′))

By assumption, 𝑃𝑔(𝑓𝛾(𝑎), 𝑓𝛾′(𝑎′)) is a singleton. We conclude

𝑓𝑔(𝛼) ≡ 𝑓𝑔(𝛼′)

Definition 4.5.12 (Path ‖ · ‖ recursion). Let 𝑃 ∈ 𝖳𝗒(Γ) with 𝑖𝑠𝑃𝑟𝑜𝑝(𝑃) ∈ 𝖳𝗆Γ(Π𝑃 Π𝑃𝐩𝖨𝖽𝑃), then
every 𝑓 ∈ 𝖳𝗆Γ(Π𝐴𝑃𝐩) from a type 𝐴 ∈ 𝖳𝗒(Γ) defines a pointwise equal function ‖𝑓‖ ∈ 𝖳𝗆Γ(Π‖𝐴‖𝑃𝐩)
on its truncation.

For every 𝛾 ∈ Γ we define the functor ‖𝑓‖𝛾 ∶ ‖𝐴‖𝛾 → 𝑃𝛾. Since this is going to be pointwise equal to
𝑓𝛾, the object part is straightforward

‖𝑓‖𝛾 ∶ 𝑎 ∈ ‖𝐴‖𝛾 ↦ 𝑓𝛾(𝑎)

This is well-defined because ‖𝐴‖𝛾 ≡ 𝐴𝛾. The path part cannot be the same as 𝑓𝛾 because ‖𝐴‖ do
not share any. However, from 4.5.11 we know that the end points of a path 𝛼𝛾 ∈ 𝐴𝗂𝖽𝛾

(𝑎𝛾, 𝑎′
𝛾) already

determine its image under 𝑓𝛾, namely the single element of 𝑃𝗂𝖽𝛾
(𝑓𝛾(𝑎𝛾), 𝑓𝛾(𝑎′

𝛾)).

‖𝑓‖𝛾 ∶ 𝛼𝛾 ∈ ‖𝐴‖𝗂𝖽𝛾
(𝑎𝛾, 𝑎′

𝛾) ↦ 𝑖𝑠𝑃𝑟𝑜𝑝(𝑃)𝛾(𝑓𝛾(𝑎𝛾), 𝑓𝛾(𝑎′
𝛾))

What is left are the paths connecting ‖𝑓‖𝛾(𝑎𝛾) and ‖𝑓‖𝛾′(𝑎𝛾′) over 𝑔 ∈ Γ𝑅(𝛾, 𝛾′) and 𝛼 ∈ 𝐴𝑔(𝑎𝛾, 𝑎𝛾′).

‖𝑓‖𝑔 ∶ 𝛼 ∈ ‖𝐴‖𝑔(𝑎𝛾, 𝑎𝛾′) ↦ 𝑓𝛾(𝑎𝛾)↑
𝑔

· 𝑖𝑠𝑃 𝑟𝑜𝑝(𝑃)𝛾′(𝑓𝛾(𝑎𝛾)+
𝑔

, 𝑓𝛾′(𝑎𝛾′))

We cannot just use 𝑓𝑔 to construct the image because we are not given a path between 𝑎 and 𝑎′ in
𝐴, neither does 𝑖𝑠𝑃𝑟𝑜𝑝(𝑃)𝑔 help us because the paths in 𝖨𝖽𝑃 carry no information about the paths in
𝑃 that connect two equality proofs.

Lastly, given factorisations 𝛼 · 𝛼𝛾′ ≡ 𝛼𝛾 · 𝛼′ we have that both composites ‖𝑓‖𝑔(𝛼) · ‖𝑓‖𝛾′(𝛼𝛾′) and
‖𝑓‖𝛾(𝛼) · ‖𝑓‖𝑔(𝛼′) yield the single path in 𝑃𝑔(‖𝑓‖𝛾(𝑎𝛾), ‖𝑓‖𝛾′(𝑎𝛾′)) and, hence, are equal.

We conclude that ‖𝑓‖ ∈ 𝖳𝗆Γ(Π‖𝐴‖𝑃𝐩).
■

Lemma 4.5.13 (Path ‖ · ‖ recursion commutates with substitution). For every context morphism 𝑠 ∶
Δ → Γ the terms ‖𝑓‖{𝑠} and ‖𝑓{𝑠}‖ are the same.

Proof. See A.0.25.

4.5.3 Equations
Lemma 4.5.14 (Path ‖ · ‖ recursion supports computation rule). Let 𝑃 ∈ 𝖳𝗒(Γ) with 𝑖𝑠𝑃𝑟𝑜𝑝(𝑃) ∈
𝖳𝗆Γ(Π𝑃 Π𝑃𝐩𝖨𝖽𝑃), then for every 𝑓 ∈ 𝖳𝗆Γ(Π𝐴𝑃𝐩) and 𝑎 ∈ 𝖳𝗆Γ(𝐴)

𝖺𝗉𝗉(‖𝑓‖, ‖𝑎‖) ≡ 𝖺𝗉𝗉(𝑓, 𝑎)

Proof.

𝖺𝗉𝗉(‖𝑓‖, ‖𝑎‖)𝛾
≡‖𝑓‖𝛾(‖𝑎‖𝛾)
≡𝑓𝛾(𝑎𝛾)
≡𝖺𝗉𝗉(𝑓, 𝑎)𝛾

𝖺𝗉𝗉(‖𝑓‖, ‖𝑎‖)𝑔
≡‖𝑓‖⟨𝑔,‖𝑎‖𝑔⟩

≡𝑓𝛾(𝑎𝛾)↑
𝑔

· 𝑖𝑠𝑃𝑟𝑜𝑝(𝑃)𝛾′(𝑓𝛾(𝑎𝛾)+
𝑔

, 𝑓𝛾′(𝑎𝛾′))
≡𝑓⟨𝑔,𝑎𝑔⟩

≡𝖺𝗉𝗉(𝑓, 𝑎)𝑔

The crucial step in the proof of the path case is sound because by 4.5.3 every two elements of
𝑃𝑔(𝑓𝛾(𝑎𝛾), 𝑓𝛾′(𝑎𝛾′)) are equal.

In general, the propositional truncation is not as straightforward to interpret. We make heavy use of
discreteness for our identity types.

Chapter 5

Morphoid Model

The morphoid [McA14] model provides an alternative axiomatisation of the relations in the path model.
As we will see, it is a refinement of the general relation model where both the contexts and the types
are groupoids. The inverse and units for the relations of a dependent type will be definable from a
local condition, the morphoid condition. Likewise, non-functorial transports are not primitives of the
definition of types but can be defined using the axiom of choice.

5.0.1 Morphoids
We recall the definition of a morphoid here.
Definition 5.0.1 (Morphoid). Let Γ be a groupoid. A morphoid Μ ⊆ Γ is a subset of ℎ𝑜𝑚(Γ) with a
restriction of ·Γ closed under composites of the form 𝑚 ·Μ 𝑛−1 ·Μ 𝑜 ∈ Μ𝑅(𝛾, 𝛾‴) for 𝑚 ∈ Μ𝑅(𝛾, 𝛾′),
𝑛 ∈ Μ𝑅(𝛾″, 𝛾′) and 𝑜 ∈ Μ𝑅(𝛾″, 𝛾‴). ■

Since every category is closed under composition and groupoids are closed under inverses, we note
the following fact.
Remark 5.0.2 (Every groupoid is a morphoid). Given a groupoid 𝐺, then the set of all morphisms
ℎ𝑜𝑚(𝐺) is a morphoid.

Morphoids are not groupoids but there are canonical groupoids associated with every morphoid.
Definition 5.0.3 (Left and right groupoids of a morphpid). Let Μ ⊆ Γ be a morphoid. We define the
groupoids 𝐿𝑒𝑓𝑡(Μ) ≔ Μ · Μ−1 and 𝑅𝑖𝑔ℎ𝑡(Μ) ≔ Μ−1 · Μ.

• 𝑂𝑏𝑗(𝐿𝑒𝑓𝑡(Μ)) ≔ {𝜇 ∈ Μ|𝜇′ ∈ Μ, 𝑚 ∈ Μ𝑅(𝜇, 𝜇′)}
• ℎ𝑜𝑚𝐿𝑒𝑓𝑡(Μ)(𝜇, 𝜇′) ≔ {𝑚 ·Γ 𝑚′−1|𝜇″ ∈ Μ, 𝑚 ∈ Μ𝑅(𝜇, 𝜇″), 𝑚′ ∈ Μ𝑅(𝜇′, 𝜇″)}

• 𝑚 ·𝐿𝑒𝑓𝑡(Μ) 𝑛 ≔ 𝑚 ·Γ 𝑚′−1 ·Γ 𝑛 ·Γ 𝑛′−1

The composite is well-defined because 𝑚 ∈ Μ𝑅(𝜇, 𝜇″) and 𝑛′ · 𝑛−1 · 𝑚′ ∈ Μ𝑅(𝜇⁗, 𝜇″).
The definition of 𝑅𝑖𝑔ℎ𝑡(Μ) follows the same pattern.
We verify that 𝐿𝑒𝑓𝑡(Μ) and 𝑅𝑖𝑔ℎ𝑡(Μ) are indeed groupoids.

Proof. For every object 𝜇 ∈ 𝐿𝑒𝑓𝑡(Μ) there is a 𝑚 ∈ Μ𝑅(𝜇, 𝜇′) and, hence, 𝗂𝖽𝜇 ∈ ℎ𝑜𝑚𝐿𝑒𝑓𝑡(Μ)(𝜇, 𝜇).
The unit laws in 𝐿𝑒𝑓𝑡(Μ) follow directly from the unit laws in Γ.

For every morphism ⟨𝑚, 𝑚′⟩ ∈ ℎ𝑜𝑚𝐿𝑒𝑓𝑡(Μ)(𝜇, 𝜇′) we have 𝑚′ · 𝑚−1 ∈ ℎ𝑜𝑚𝐿𝑒𝑓𝑡(Μ)(𝜇′, 𝜇) because
the relation induced by ℎ𝑜𝑚(𝐿𝑒𝑓𝑡(Μ)) is symmetric. The inverse laws follow from the corresponding
laws in Γ.

The proof for 𝑅𝑖𝑔ℎ𝑡(Μ) follows the same pattern. ■
■

However, if a morphoid Μ ⊆ Γ contains all identity morphisms from Γ, then it is already a groupoid.
Lemma 5.0.4 (Morphoids closed under identity morphisms (reflexive morphoids) are groupoids). Clo-
sure under identity morphisms implies closure under composition and inverses.

41

Proof. Let Μ ⊆ Γ be a reflexive morphoid. Then ·Μ is total because for every 𝑚 ∈ Μ𝑅(𝜇, 𝜇′) and
𝑛 ∈ Μ𝑅(𝜇′, 𝜇″)

𝑚 ·Γ 𝑛 ≡ 𝑚 ·Γ 𝗂𝖽−1
𝜇′ ·Γ 𝑛 ∈ Μ𝑅(𝜇, 𝜇′).

Therefore, Μ is a category. Moreover, we have that Μ is closed under inverses because

𝑚−1 ≡ 𝗂𝖽𝜇′ ·Γ 𝑚−1 ·Γ 𝗂𝖽𝜇 ∈ Μ𝑅(𝜇′, 𝜇).

We conclude that the reflexive morphoid Μ is a groupoid.

Morphoids form a category where they are morphisms between their left and right groupoid and the
composite morphoid is defined to consist of the element-wise composites.
Lemma 5.0.5 (Morphoids are closed under point-wise composition). Let Μ, Ν be morphoids with
𝑅𝑖𝑔ℎ𝑡(Μ) ≡ 𝐿𝑒𝑓𝑡(Ν), then {𝑚 · 𝑛| ∈ 𝐿𝑒𝑓𝑡(Μ), 𝜇′ ∈ 𝑅𝑖𝑔ℎ𝑡(Μ), 𝜇″ ∈ 𝑅𝑖𝑔ℎ𝑡(Ν), 𝑚 ∈ Μ𝑅(𝜇, 𝜇′), 𝑛 ∈
Ν𝑅(𝜇′, 𝜇″)} is a morphoid.

Proof. Given

𝑚 · 𝑛 · (𝑚′ · 𝑛′)−1 · 𝑚″ · 𝑛″

there exist some 𝑚𝑛′ , 𝑚𝑛 ∈ Μ𝑅 and 𝑛𝑚″ , 𝑛𝑚′ ∈ Ν𝑅 such that

𝑚𝑛′
−1 · 𝑚𝑛 ≡ 𝑛 · 𝑛′−1

and

𝑛𝑚′ · 𝑛𝑚″
−1 ≡ 𝑚′−1 · 𝑚″

because the left and right groupoids coincide. Thus, we conclude by application of the morphoid
condition

𝑚 · 𝑚𝑛′
−1 · 𝑚𝑛 · 𝑛𝑚′ · 𝑛𝑚″

−1 · 𝑛″ ∈ {𝑚 · 𝑛|𝑚 ∈ Μ𝑅, 𝑛 ∈ Ν𝑅}.

This composition is associative because the groupoid composition is. Moreover, the left and right
groupoids, which are morphoids in particular, satisfy the unit laws with respect to point-wise morphoid
composition.
Lemma 5.0.6 (Point-wise morphoid composition has identities). 𝐿𝑒𝑓𝑡(Μ) (𝑅𝑖𝑔ℎ𝑡(Μ)) is a left (right)
identity of Μ.

Proof. By the morphoid axiom.

We conclude this exhibition into morphoids with the fact that the category of morphoids is closed
under inverses.
Remark 5.0.7 (Morphoids form a groupoid). The morphoid category is closed under inverses and hence
a groupoid.

Proof. Let Μ ⊆ Γ be a morphoid, then the set of inverses Μ−1 ≡ {𝑚−1|𝑚 ∈ Μ𝑅} forms a morphoid
because

𝑚−1 · 𝑚′−1−1 · 𝑚″−1 ≡ 𝑚−1 · 𝑚′ · 𝑚″−1 ≡ (𝑚″ · 𝑚′−1 · 𝑚)−1,

which is an element of Μ−1 by the morphoid property for Μ. By the definition of morphoid identity
it follows directly that Μ and Μ−1 are inverses.

5.0.2 Morphoid types
We recall the definition of morphoid types here.
Definition 5.0.8 (Morphoid type). Let Γ and 𝐴𝑠𝑝 be groupoids. A dependent type 𝐴 in the morphoid
model is a mapping from Γ to the category of morphoids or subspaces of 𝐴𝑠𝑝 such that

𝐿𝑒𝑓𝑡(𝐴(𝑔)) ≡ 𝐴(𝛾) 𝑅𝑖𝑔ℎ𝑡(𝐴(𝑔)) ≡ 𝐴(𝛾′)

and

𝐴(𝑔 · 𝑔′) ≡ 𝐴(𝑔) · 𝐴(𝑔′)

The composite on the right-hand side is defined because 𝑅𝑖𝑔ℎ𝑡(𝐴(𝑔)) ≡ 𝐿𝑒𝑓𝑡(𝐴(𝑔′)). ■
𝐴𝑔·Γ𝑔′ ≡ 𝐴𝑔 ·𝐴𝑠𝑝

𝐴𝑔′ is not axiom in [McA14] but a property of all types they construct within the
model. Recall that the property also holds for the path interpretation but can proved directly from the
type axioms. We assume it from the beginning for our exposition of the morphoid model.

The crucial ingredient for the proof of 𝐴𝑔·Γ𝑔′ ≡ 𝐴𝑔 ·𝐴𝑠𝑝
𝐴𝑔′ in the path model is the existence of

transports, which we derive for the morphoid model now.
Lemma 5.0.9 (Elements can be transported over paths in the context). Given a morphoid type 𝐴 and
𝑔 ∈ Γ𝑅(𝛾, 𝛾′), then for every 𝑎 ∈ 𝐴(𝛾) and 𝑎′ ∈ 𝐴(𝛾′) there exist morphisms 𝑎↑ ∈ 𝐴𝑔(𝑎, 𝑎+) and
𝑎′↓ ∈ 𝐴𝑔(𝑎′−, 𝑎′).
Proof. By 𝐴(𝛾) ≡ 𝐿𝑒𝑓𝑡(𝐴(𝑔)) and 𝐴(𝛾′) ≡ 𝑅𝑖𝑔ℎ𝑡(𝐴(𝑔)) we have

𝑂𝑏𝑗(𝐴(𝛾)) ≡ {𝑑𝑜𝑚(𝑚 · 𝑛−1), 𝑐𝑜𝑑(𝑚 · 𝑛−1)|𝑚, 𝑛 ∈ 𝐴(𝑔)} ≡ {𝑑𝑜𝑚(𝑚)|𝑚, 𝑛 ∈ 𝐴(𝑔)}
𝑂𝑏𝑗(𝐴(𝛾′)) ≡ {𝑑𝑜𝑚(𝑚−1 · 𝑛), 𝑐𝑜𝑑(𝑚−1 · 𝑛)|𝑚, 𝑛 ∈ 𝐴(𝑔)} ≡ {𝑐𝑜𝑑(𝑚)|𝑚, 𝑛 ∈ 𝐴(𝑔)}

Therefore, there must exist morphisms 𝑎↑, 𝑎′↓ ∈ 𝐴(𝑔) such that 𝑑𝑜𝑚(𝑎↑) ≡ 𝑎 and 𝑐𝑜𝑑(𝑎′↓) ≡ 𝑎′, which
we can select using the axiom of choice.

Lemma 5.0.10 (Paths can be transported over morphoids). Given a morphoid type 𝐴, 𝑔 ∈ Γ𝑅(𝛾, 𝛾′)
and morphisms 𝛼𝛾 ∈ 𝐴𝗂𝖽𝛾

(𝑎𝛾, 𝑎′
𝛾), 𝛼𝛾′ ∈ 𝐴𝗂𝖽𝛾

(𝑎𝛾′ , 𝑎′
𝛾′), define the morphisms

𝛼𝛾
+ ≔ 𝑎𝛾

↑−1 ·𝐴 𝛼 ·𝐴 𝑎𝛾′
↑ ∈ 𝐴𝗂𝖽𝛾′ (𝑎𝛾

+, 𝑎′
𝛾

+)

and

𝛼𝛾′
− ≔ 𝑎𝛾′

↓ ·𝐴 𝛼𝛾′ ·𝐴 (𝑎′
𝛾′

↓)−1 ∈ 𝐴𝗂𝖽𝛾
(𝑎𝛾′

−, 𝑎′
𝛾′

−).

Then, we have

𝗂𝖽𝑎𝛾
+ ≡ 𝗂𝖽𝑎𝛾+ (𝗂𝖽𝑎𝛾′

− ≡ 𝗂𝖽𝑎𝛾′ −)

and

(𝛼𝛾 · 𝛼′
𝛾)+ ≡ 𝛼𝛾

+ · 𝛼′
𝛾

+ ((𝛼𝛾′ · 𝛼′
𝛾′)− ≡ 𝛼𝛾′

− · 𝛼′
𝛾′

−).

Morphoid types not only commute with composition but also preserve identities.
Lemma 5.0.11 (Morphoid types are functors). The mapping associated with a morphoid type preserves
identities.

Proof.

𝐴(𝗂𝖽𝛾)
≡Right groupoid is a right identity

𝐴(𝗂𝖽𝛾) · 𝑅𝑖𝑔ℎ𝑡(𝐴(𝗂𝖽𝛾))
≡𝐴(𝗂𝖽𝛾) is a morphism from 𝐴(𝛾) ≡ 𝐿𝑒𝑓𝑡(𝐴(𝗂𝖽𝛾)) to 𝐴(𝛾) ≡ 𝑅𝑖𝑔ℎ𝑡(𝐴(𝗂𝖽𝛾))

𝐴(𝗂𝖽𝛾) · 𝐿𝑒𝑓𝑡(𝐴(𝗂𝖽𝛾))
≡Definition of the left groupoid

𝐴(𝗂𝖽𝛾) · 𝐴(𝗂𝖽𝛾) · 𝐴(𝗂𝖽𝛾)−1

≡A commutes with composition
𝐴(𝗂𝖽𝛾 · 𝗂𝖽𝛾) · 𝐴(𝗂𝖽𝛾)−1

≡𝗂𝖽𝛾 is an identity
𝐴(𝗂𝖽𝛾) · 𝐴(𝗂𝖽𝛾)−1

≡Definition of the left groupoid
𝐿𝑒𝑓𝑡(𝐴(𝗂𝖽𝛾))

≡Definition of the left identity
𝗂𝖽𝐴(𝛾)

Since morphoid types are groupoid functors, they preserve inverses. Therefore, morphoid types are
closed under inverses in the sense of path types.

∀𝛼 ∈ 𝐴𝑔(𝑎, 𝑎′).𝛼−1 ∈ 𝐴𝑔−1(𝑎′, 𝑎)

Because of the way the subspaces that a morphoid connects are defined, elements can be transported
along morphoids. However, it is not clear how to choose the transported elements for an arbitrary
morphoid type such that it can be equipped with a functorial transport operation in the sense of path
types. In fact, it is impossible in general. Consider the morphoid type

𝐴(∙) ≔ {∘}
𝐴𝟎(∘, ∘) ≔ {𝐧|𝑛 mod 2 ≡ 0} 𝐴𝟏(∘, ∘) ≔ {𝐧|𝑛 mod 2 ≡ 1}
𝗂𝖽∘ ≔ 𝟎
𝐧−1 ≔ −𝐧
𝑎 ·𝐴 𝑎′ ≔ 𝑎 +ℤ 𝑎′

in the context

Γ𝑆 ≔ {∙}
Γ𝑅(∙, ∙) ≔ {𝟎, 𝟏}
𝗂𝖽∙ ≔ 𝟎
𝟎−1 ≔ 𝟎 𝟏−1 ≔ 𝟏
𝛾 ·Γ 𝛾′ ≔ 𝛾 +ℤ 𝛾′ mod 2

A functorial transport must satisfy

∘↑
𝟏 ·𝐴 ∘↑

𝟏 ·𝐴 ∘↑
𝟏 ≡ ∘↑

𝟏·Γ𝟏·Γ𝟏 ≡ ∘↑
𝟏,

that is choose an integer 𝑛 ≢ 0 such that 𝑛 + 𝑛 + 𝑛 ≡ 𝑛. This is impossible and hence an example
of a morphoid type for which we cannot possibly define a functorial transport for. The non-example is
taken from [Str14b].

In the language of fibrations (cf. [Str14b]), we are faced with the difference between a cleavage and
a splitting. Morphoid types are only cleavaged while path types are split. We have seen that the path
interpretation models intensional type theory as presented in section 2.1 and we used the functoriality
of transport to interpret the term 𝐽 . Because terms in both the path and the morphoid model are
functorial, it is unclear how one would interpret 𝐽 for paths in the morphoid model. If we eliminate this
difference and simply require a functorial transport, we conjecture that the resulting set of types forms
a cwf that supports the same logical structure as the path model.

This closes the section on morphoids, which imply closure under inverse paths for dependent types
without requiring their existence as an axiom.

Chapter 6

Conclusion

We presented a model of intensional type theory with extensional dependent function spaces and an
extensional universe (plus propositional truncation) in the sense of categories with families. The reason
for this particular choice of logical rules is that it comprises Martin-Löf’s Logical Framework (LF) [NPS90]
with intensional identity types, which has been used as the basis for proof assistants or to encode predicate
logic. This does not mean that the presented model automatically extends to logics defined within LF. In
particular, common additions to dependent type theories are inductive families, a hierarchy of universes
or dependent sum types and none of these was considered in this thesis. However, the model supports
function and universe extensionality, which are non-standard logical rules.

The interpretation underlying the path model takes a type to be a path space and a family of subspaces
such that points can be transported between the subspaces that correspond to connected contexts. Then,
terms are interpreted by families of connected points indexed by the type context. More generally, the
path model can be seen as an interpretation of type theory into proof-relevant equivalence relations with
coherence conditions. A possible generalisation to 𝑛-ary relations comes to mind but was not considered
in the present work.

The path model in its current form is one-dimensional in the sense of Voevodsky, that is types can
be seen as categories with discrete homsets. A generalisation to homcategories was not part of the
work conducted for this thesis. It is worth noting that restricting or truncating the relations to mere
propositions seems to give an interpretation logically equivalent to a setoid interpretation of type theory.
Applying the truncation keeps the information about which pairs of points are connected in the model
but throws away multiple paths. This then validates the uniqueness principle of identity proofs and
invalidates the extensionality principle for the universe.

While looking at the morphoid model of type theory, we found that the crucial difference is the
missing transport in the morphoid interpretation; closed types and contexts coincide in both models.
The lack of transport has implications on the theory that is modelled. The morphoid model validates
a meta-theoretical abstraction theorem akin to [Rey83], whereas in intensional type theory this gets
internalised by identity elimination.

The primitive operations on paths allowed us to reason constructively but whether the construction
can actually be carried out in a type-theoretic meta-theory like Martin-Löf type theory itself is left
unanswered. In particular, the strict equalities under substitution or 𝛽-/𝜂-conversion seem to suggest
that the meta-theory needs to support at least function extensionality, which is not available in Martin-
Löf type theory. Moreover, the coherence conditions on paths are formulated using definitional equality
and can thus not be included in a meta-theoretic type of semantic contexts, types or terms.

Interesting directions for future work seem to be a formalisation of the truncation relation with a
setoid and the cubical sets interpretation as cwf morphisms for instance, the connection between type
theory with parametricity and intensional type theory given they both have relational models and an
investigation into how the interpretation of the extensionality principles in the path model can help to
justify them computationally.

46

Bibliography

[AGJ14] R. Atkey, N. Ghani, and P. Johann. “A relationally parametric model of dependent type the-
ory”. In: The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014. Ed. by S. Jagannathan and
P. Sewell. ACM, 2014, pp. 503–516. isbn: 978-1-4503-2544-8. doi: 10.1145/2535838.2535852.
url: http://doi.acm.org/10.1145/2535838.2535852.

[BCH13] M. Bezem, T. Coquand, and S. Huber. “A Model of Type Theory in Cubical Sets”. In: 19th
International Conference on Types for Proofs and Programs, TYPES 2013, April 22-26, 2013,
Toulouse, France. Ed. by R. Matthes and A. Schubert. Vol. 26. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2013, pp. 107–128. isbn: 978-3-939897-72-9. doi: 10.4230/
LIPIcs.TYPES.2013.107. url: http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.107.

[BJP12] J. Bernardy, P. Jansson, and R. Paterson. “Proofs for free - Parametricity for dependent
types”. In: J. Funct. Program. 22.2 (2012), pp. 107–152. doi: 10.1017/S0956796812000056.
url: http://dx.doi.org/10.1017/S0956796812000056.

[Car86] J. Cartmell. “Generalised algebraic theories and contextual categories”. In: Ann. Pure Appl.
Logic 32 (1986), pp. 209–243. doi: 10.1016/0168-0072(86)90053-9. url: http://dx.doi.
org/10.1016/0168-0072(86)90053-9.

[Dyb95] P. Dybjer. “Internal Type Theory”. In: Types for Proofs and Programs, International Workshop
TYPES’95, Torino, Italy, June 5-8, 1995, Selected Papers. Ed. by S. Berardi and M. Coppo.
Vol. 1158. Lecture Notes in Computer Science. Springer, 1995, pp. 120–134. isbn: 3-540-61780-
9. doi: 10.1007/3-540-61780-9_66. url: http://dx.doi.org/10.1007/3-540-61780-
9_66.

[Hof97a] M. Hofmann. Extensional constructs in intensional type theory. CPHC/BCS distinguished
dissertations. Springer, 1997. isbn: 978-3-540-76121-1.

[Hof97b] M. Hofmann. “Syntax and Semantics of Dependent Types”. In: Semantics and Logics of Com-
putation. Cambridge University Press, 1997, pp. 79–130.

[HS14] M. Hofmann and T. Streicher. “Lifting Grothendieck Universes”. Unpublished notes available
at the author’s home page. Dec. 2014. url: http://www.mathematik.tu-darmstadt.de/
~streicher/NOTES/lift.pdf.

[HS98] M. Hofmann and T. Streicher. “The groupoid interpretation of type theory”. In: Twenty-five
years of constructive type theory (Venice, 1995). Vol. 36. Oxford Logic Guides. New York:
Oxford Univ. Press, 1998, pp. 83–111.

[Hub15] S. Huber. A Model of Type Theory in Cubical Sets. Author homepage. 2015. url: http:
//www.cse.chalmers.se/~simonhu/misc/lic.pdf.

[McA14] D. McAllester. “Implementation and Abstraction in Mathematics”. In: CoRR abs/1407.7274
(2014). url: http://arxiv.org/abs/1407.7274.

[NPS90] B. Nordström, K. Petersson, and J. M. Smith. Programming in Martin-Löf’s Type Theory, An
Introduction. Oxford University Press, 1990. url: http://www.cse.chalmers.se/research/
group/logic/book/.

[Rey83] J. C. Reynolds. “Types, Abstraction and Parametric Polymorphism”. In: IFIP Congress. 1983,
pp. 513–523.

47

http://dx.doi.org/10.1145/2535838.2535852
http://doi.acm.org/10.1145/2535838.2535852
http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.107
http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.107
http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.107
http://dx.doi.org/10.1017/S0956796812000056
http://dx.doi.org/10.1017/S0956796812000056
http://dx.doi.org/10.1016/0168-0072(86)90053-9
http://dx.doi.org/10.1016/0168-0072(86)90053-9
http://dx.doi.org/10.1016/0168-0072(86)90053-9
http://dx.doi.org/10.1007/3-540-61780-9_66
http://dx.doi.org/10.1007/3-540-61780-9_66
http://dx.doi.org/10.1007/3-540-61780-9_66
http://www.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf
http://www.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf
http://www.cse.chalmers.se/~simonhu/misc/lic.pdf
http://www.cse.chalmers.se/~simonhu/misc/lic.pdf
http://arxiv.org/abs/1407.7274
http://www.cse.chalmers.se/research/group/logic/book/
http://www.cse.chalmers.se/research/group/logic/book/

[Str14a] T. Streicher. “A model of type theory in simplicial sets: A brief introduction to Voevodsky’s
homotopy type theory”. In: J. Applied Logic 12.1 (2014), pp. 45–49. doi: 10.1016/j.jal.
2013.04.001. url: http://dx.doi.org/10.1016/j.jal.2013.04.001.

[Str14b] T. Streicher. “Fibred Categories à la Jean Bénabou”. Unpublished notes available at the au-
thor’s home page. Dec. 2014. url: http://www.mathematik.tu-darmstadt.de/~streicher/
FIBR/FibLec.pdf.

[Ton13] S. Tonelli. “Investigations into a model of type theory based on the concept of basic pair”.
MA thesis. Stockholms Universitet, 2013.

[Uni13] T. Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Math-
ematics. Institute for Advanced Study: http://homotopytypetheory.org/book, 2013.

http://dx.doi.org/10.1016/j.jal.2013.04.001
http://dx.doi.org/10.1016/j.jal.2013.04.001
http://dx.doi.org/10.1016/j.jal.2013.04.001
http://www.mathematik.tu-darmstadt.de/~streicher/FIBR/FibLec.pdf
http://www.mathematik.tu-darmstadt.de/~streicher/FIBR/FibLec.pdf
http://homotopytypetheory.org/book

Appendix A

Proofs

Relational interpretation forms a cwf
Lemma A.0.1 (Relational contexts form a category).

𝑂𝑏𝑗2𝑅𝑒𝑙 ≔ {⟨Γ𝑆 ∶ 𝒮𝑒𝑡, Γ𝑅 ∶ Γ → Γ → 𝒮𝑒𝑡⟩}
ℎ𝑜𝑚2𝑅𝑒𝑙(⟨Γ𝑆, Γ𝑅⟩, ⟨Δ𝑆, Δ𝑅⟩) ≔ {⟨𝑓0 ∶ Γ𝑆 →𝒮𝑒𝑡 Δ𝑆, 𝑓1 ∶ {𝛾, 𝛾′ ∈ Γ𝑆}Γ𝑅(𝛾, 𝛾′) →𝒮𝑒𝑡 Δ𝑅(𝑓0(𝛾), 𝑓0(𝛾′))⟩}

𝑔 ∘ 𝑓 ≔ ⟨𝑔0 ∘𝒮𝑒𝑡 𝑓0, 𝑔1 ∘𝒮𝑒𝑡 𝑓1⟩
𝗂𝖽⟨Γ,𝑅Γ⟩ ≔ ⟨𝗂𝖽𝒮𝑒𝑡Γ, 𝗂𝖽𝒮𝑒𝑡𝑅Γ

⟩

is a category.

Proof. Composition is well-typed because

𝑔0(𝑓0(𝛾)) ≡ (𝑔0 ∘ 𝑓0)(𝛾)

and identity is because

𝗂𝖽⟨Γ𝑆,Γ𝑅⟩0
(𝛾) ≡ 𝛾.

Associativity of composition and neutrality of identity are inherited from 𝒮𝑒𝑡.
Lemma A.0.2 (Relational substitution forms a functor).

𝖳𝗒(⟨Γ𝑆, Γ𝑅⟩) ≔ {⟨𝐴𝑆 ∶ Γ𝑆 → 𝒮𝑒𝑡, 𝐴𝑅 ∶ 𝛾, 𝛾′ ∈ Γ𝑆Γ𝑅(𝛾, 𝛾′) → 𝐴𝑆(𝛾) → 𝐴𝑆(𝛾′) → 𝒮𝑒𝑡⟩}
𝖳𝗆⟨Γ𝑆,Γ𝑅⟩(⟨𝐴𝑆, 𝐴𝑅⟩) ≔ {⟨𝑡𝑠 ∶ {𝛾 ∈ Γ𝑆}𝐴𝑆(𝛾), 𝑡𝑟 ∶ {𝛾, 𝛾′ ∈ Γ𝑆, 𝑔 ∈ Γ𝑅(𝛾, 𝛾′) → 𝐴𝑅𝛾,𝛾′(𝑔)(𝑡𝑠𝛾, 𝑡𝑠𝛾′)⟩}

⟨𝐴𝑆, 𝐴𝑅⟩{⟨𝑓0, 𝑓1⟩} ≔ ⟨𝐴𝑆 ∘ 𝑓0, 𝐴𝑅 ∘ 𝑓1⟩
⟨𝑡𝑠, 𝑡𝑟⟩{⟨𝑓0, 𝑓1⟩} ≔ ⟨𝑡𝑠 ∘ 𝑓0, 𝑡𝑟 ∘ 𝑓1⟩

𝑇 ≔ {Γ ↦ (𝖳𝗆Γ(𝐴))𝐴∈𝖳𝗒(Γ)
𝑓 ↦ ⟨(·){𝑓}, (·){𝑓}⟩

(substitution) is a functor.

Proof. Substitution on types and terms is well-defined because

𝐴𝑆(𝑓0(𝛿)) ≡ 𝐴{𝑓}𝑆(𝛿) and 𝐴𝑅(𝑓0(𝛿), 𝑓0(𝛿′)) ≡ 𝐴{𝑓}𝑅(𝛿).

𝑇 preserves identities because the components of 𝗂𝖽Γ are identities (in 𝒮𝑒𝑡). Lastly, application of 𝑇
commutes with composition because composition (in 𝒮𝑒𝑡) is associative.

49

Lemma A.0.3 (Relational contexts support an empty context). [] ≔ ⟨{∙}, ⟨∙, ∙⟩ ↦ {∙}⟩ is a terminal
object.

Proof. Let ⟨Γ𝑆, Γ𝑅⟩ be any other object, then ! ≔ ⟨𝛾 ↦ ∙, 𝑔 ↦ ∙⟩ is the unique morphism from Γ into
[].
Lemma A.0.4 (Relational contexts support context comprehension). 2𝑅𝑒𝑙 is closed under dependent
sum. For every ⟨Γ𝑆, Γ𝑅⟩ ∶ 2𝑅𝑒𝑙 and ⟨𝐴𝑆, 𝐴𝑅⟩ ∈ 𝖳𝗒(Γ)

Γ.𝐴𝑆 ≔ {⟨𝛾, 𝑎⟩|𝛾 ∈ Γ, 𝑎 ∈ 𝐴𝛾}
Γ.𝐴𝑅(⟨𝛾, 𝑎⟩, ⟨𝛾′, 𝑎′⟩) ≔ {⟨𝑔, 𝛼⟩|𝑔 ∈ Γ𝑅(𝛾, 𝛾′), 𝛼 ∈ 𝐴𝑅𝛾,𝛾′(𝑔, 𝑎, 𝑎′)}

is an object of 2𝑅𝑒𝑙 with two morphisms

𝐩Γ.𝐴 ≔ {⟨𝛾, 𝑎⟩ ↦ 𝛾
⟨𝑔, 𝛼⟩ ↦ 𝑔 ∶ Γ.𝐴 → Γ

𝐪Γ.𝐴 ≔ {⟨𝛾, 𝑎⟩ ↦ ⟨𝛾, ⟨𝑎, 𝑎⟩⟩
⟨𝑔, 𝛼⟩ ↦ ⟨𝑔, ⟨𝛼, 𝛼⟩⟩ ∶ Γ.𝐴 → Γ.𝐴.𝐴{𝐩Γ.𝐴}

such that 𝐩Γ.𝐴.𝐴{𝐩Γ.𝐴} ∘ 𝐪Γ.𝐴 ≡ 𝗂𝖽Γ.𝐴 and for every 𝜎 ∶ Δ → Γ and 𝑠 ∶ Δ → Δ.𝐴{𝜎} with
𝐩∆.𝐴{𝜎} ∘ 𝑠 ≡ 𝗂𝖽∆ a unique ⟨𝜎, 𝑠⟩ ∶ Δ → Γ.𝐴 such that

𝐩Γ.𝐴 ∘ ⟨𝜎, 𝑠⟩ ≡ 𝜎 and 𝐪Γ.𝐴{⟨𝜎, 𝑠⟩} ≡ 𝑠
Proof. 𝐪Γ.𝐴 is well-defined because

𝐴𝑆𝛾 ≡ 𝐴{𝐩Γ.𝐴}𝑆⟨𝛾,𝑎⟩
and 𝐴𝑅𝛾,𝛾′(𝑔, 𝑎, 𝑎′) ≡ 𝐴{𝐩Γ.𝐴}𝑅⟨𝛾,𝑎⟩,⟨𝛾′,𝑎′⟩

(⟨𝑔, 𝛼⟩, ⟨𝑎, 𝑎⟩, ⟨𝑎′, 𝑎′⟩).

And, indeed, the equations

𝐩Γ.𝐴 ∘ ⟨𝜎, 𝑠⟩ ≡ 𝜎 and 𝐪Γ.𝐴{⟨𝜎, 𝑠⟩} ≡ 𝑠
completely determine the morphism

⟨𝜎, 𝑠⟩(𝛿) ≡ ⟨𝜎(𝛿), 𝑠(𝛿)⟩.

Groupoid interpretation supports a path structure
Lemma A.0.5 (𝑡𝑟𝑎𝑛𝑠 is an associative operator). For all 𝛼 ∈ 𝐴𝑅(𝑎, 𝑎′), 𝛼′ ∈ 𝐴𝑅(𝑎′, 𝑎″) and 𝛼″ ∈
𝐴𝑅(𝑎″, 𝑎‴)

𝑡𝑟𝑎𝑛𝑠(𝛼, 𝑡𝑟𝑎𝑛𝑠(𝛼′, 𝛼″)) ≡ 𝑡𝑟𝑎𝑛𝑠(𝑡𝑟𝑎𝑛𝑠(𝛼, 𝛼′), 𝛼″)
Proof.

𝑡𝑟𝑎𝑛𝑠(𝛼, 𝑡𝑟𝑎𝑛𝑠(𝛼′, 𝛼″))
≡𝐴(𝑔′ ·Γ 𝑔″)(𝛼) ·𝐴(𝛾‴) 𝑡𝑟𝑎𝑛𝑠(𝛼′, 𝛼″)
≡𝐴(𝑔′ ·Γ 𝑔″)(𝛼) ·𝐴(𝛾‴) (𝐴(𝑔″)(𝛼′) ·𝐴(𝛾‴) 𝛼″)
≡(𝐴(𝑔′ ·Γ 𝑔″)(𝛼) ·𝐴(𝛾‴) 𝐴(𝑔″)(𝛼′)) ·𝐴(𝛾‴) 𝛼″

≡𝐴(𝑔″)(𝐴(𝑔′)(𝛼) ·𝐴(𝛾″) 𝛼′) ·𝐴(𝛾‴) 𝛼″

≡𝑡𝑟𝑎𝑛𝑠(𝐴(𝑔′)(𝛼) ·𝐴(𝛾″) 𝛼′, 𝛼″)
≡𝑡𝑟𝑎𝑛𝑠(𝑡𝑟𝑎𝑛𝑠(𝛼, 𝛼′), 𝛼″)

Lemma A.0.6 (The morphisms 𝑟𝑒𝑓𝑙(𝑎) are neutral elements). For all 𝛼 ∈ 𝐴𝑅(𝑎, 𝑎′)

𝑡𝑟𝑎𝑛𝑠(𝛼, 𝑟𝑒𝑓𝑙(𝑎′)) ≡ 𝛼 ≡ 𝑡𝑟𝑎𝑛𝑠(𝑟𝑒𝑓𝑙(𝑎), 𝛼)

Proof.

𝑡𝑟𝑎𝑛𝑠(𝛼, 𝑟𝑒𝑓𝑙(𝑎′))
≡𝐴(𝗂𝖽𝛾′)(𝛼) ·𝐴(𝛾′) 𝗂𝖽𝑎′

≡𝐴(𝗂𝖽𝛾′)(𝛼)
≡𝛼

and

𝑡𝑟𝑎𝑛𝑠(𝑟𝑒𝑓𝑙(𝑎), 𝛼)
≡𝐴(𝑔)(𝗂𝖽𝑎) ·𝐴(𝛾′) 𝛼
≡𝗂𝖽𝐴(𝑔)(𝑎) ·𝐴(𝛾′) 𝛼
≡𝛼

Lemma A.0.7 (The morphisms 𝑠𝑦𝑚(𝛼) are inverse elements). For all 𝛼 ∈ 𝐴𝑅(𝑎, 𝑎′)

𝑡𝑟𝑎𝑛𝑠(𝑠𝑦𝑚(𝛼), 𝛼) ≡ 𝑟𝑒𝑓𝑙(𝑎′) 𝑡𝑟𝑎𝑛𝑠(𝛼, 𝑠𝑦𝑚(𝛼)) ≡ 𝑟𝑒𝑓𝑙(𝑎)

Proof.

𝑡𝑟𝑎𝑛𝑠(𝑠𝑦𝑚(𝛼), 𝛼)
≡𝐴(𝑔)(𝐴(𝑔−1)(𝛼−1)) ·𝐴(𝛾′) 𝛼
≡𝛼−1 ·𝐴(𝛾′) 𝛼
≡𝗂𝖽𝑎′

≡𝑟𝑒𝑓𝑙(𝑎′)

and

𝑡𝑟𝑎𝑛𝑠(𝛼, 𝑠𝑦𝑚(𝛼))
≡𝐴(𝑔−1)(𝛼) ·𝐴(𝛾) 𝐴(𝑔−1)(𝛼−1)
≡𝐴(𝑔−1)(𝛼 ·𝐴(𝛾′) 𝛼−1)
≡𝐴(𝑔−1)(𝗂𝖽𝐴(𝑔)(𝑎))
≡𝗂𝖽𝐴(𝑔−1)(𝐴(𝑔)(𝑎))

≡𝗂𝖽𝑎
≡𝑟𝑒𝑓𝑙(𝑎)

Lemma A.0.8 (The morphisms 𝑎↑ commute with composition). For all 𝑎 ∶ 𝐴(𝛾) and 𝑔 ∶ 𝛾 →Γ 𝛾′,
𝑔′ ∶ 𝛾′ →Γ 𝛾″

𝑎↑(𝑔 ·Γ 𝑔′) ≡ 𝑡𝑟𝑎𝑛𝑠(𝑎↑(𝑔), (𝑎+(𝑔))↑(𝑔′))

Proof.

𝑡𝑟𝑎𝑛𝑠(𝑎↑(𝑔), (𝑎+(𝑔))↑(𝑔′))
≡𝑡𝑟𝑎𝑛𝑠(𝗂𝖽𝐴(𝑔)(𝑎), 𝗂𝖽𝐴(𝑔′)(𝐴(𝑔)(𝑎)))
≡𝐴(𝑔′)(𝗂𝖽𝐴(𝑔)(𝑎)) ·𝐴(𝛾″) 𝗂𝖽𝐴(𝑔′)(𝐴(𝑔)(𝑎))

≡𝗂𝖽𝐴(𝑔′)(𝐴(𝑔)(𝑎)) ·𝐴(𝛾″) 𝗂𝖽𝐴(𝑔′)(𝐴(𝑔)(𝑎))

≡𝗂𝖽𝐴(𝑔′)(𝐴(𝑔)(𝑎))

≡𝗂𝖽𝐴(𝑔·Γ𝑔)(𝑎)

≡𝑎↑(𝑔 ·Γ 𝑔′)

Path interpretation forms a cwf
Lemma A.0.9 (Path contexts form a category with terminal object.). The identity function is a context
morphism.

• 𝗂𝖽Γ1(𝗂𝖽𝛾) ≡ 𝗂𝖽𝛾

• 𝗂𝖽Γ1(𝑔 · 𝑔′) ≡ 𝑔 · 𝑔′

• 𝗂𝖽Γ1(𝛼−1) ≡ 𝛼−1

Context morphisms are closed under function composition.

• (𝑔 ∘ 𝑓)1(𝑔 · 𝑔′) ≡ (𝑔 ∘ 𝑓)1(𝑔) · (𝑔 ∘ 𝑓)1(𝑔′)
• (𝑔 ∘ 𝑓)1(𝗂𝖽𝛾) ≡ 𝗂𝖽(𝑔∘𝑓)0(𝛾)

• (𝑔 ∘ 𝑓)1(𝛼−1) ≡ (𝑔 ∘ 𝑓)1(𝛼)−1

The empty context is a path context.

• ∙ · (∙ · ∙) ≡ ∙ ≡ (∙ · ∙) · ∙
• 𝗂𝖽∙ ≔ ∙, ∙ · 𝗂𝖽∙ ≡ ∙ ≡ 𝗂𝖽∙ · ∙
• ∙−1 ≔ ∙, ∙ · ∙−1 ≡ 𝗂𝖽∙ ≡ ∙−1 · ∙
The empty context is terminal.

• !1 (𝑔 · 𝑔′) ≡ ∙ ≡ ∙ · ∙ ≡!1 (𝑔)·!1 (𝑔′)
• !1 (𝗂𝖽𝛾) ≡ ∙ ≡ 𝗂𝖽∙

• !1 (𝑔−1) ≡ !1 (𝑔)−1

• !1 ≡ 𝑠 for every 𝑠 ∶ Δ → []
Proof. Straightforward.

Lemma A.0.10 (The category of path contexts supports context comprehension). Composition is as-
sociative.

⟨𝑔, 𝛼⟩·(⟨𝑔′, 𝛼′⟩·⟨𝑔″, 𝛼″⟩) ≡ ⟨𝑔·(𝑔′ ·𝑔″), 𝛼·(𝛼′ ·𝛼′)⟩ ≡ ⟨(𝑔·𝑔′)·𝑔″, (𝛼·𝛼′)·𝛼′⟩ ≡ (⟨𝑔, 𝛼⟩·⟨𝑔′, 𝛼′⟩)·⟨𝑔″, 𝛼″⟩

Has identities.

⟨𝑔, 𝛼⟩ · 𝗂𝖽⟨𝛾′,𝑎′⟩ ≡ ⟨𝑔 · 𝗂𝖽𝛾′ , 𝛼 · 𝗂𝖽𝑎′⟩ ≡ ⟨𝑔, 𝛼⟩ ≡ ⟨𝗂𝖽𝛾′ · 𝑔, 𝗂𝖽𝑎′ · 𝛼⟩ ≡ 𝗂𝖽⟨𝛾′,𝑎′⟩ · ⟨𝑔, 𝛼⟩

Has inverses.

⟨𝑔, 𝛼⟩ · ⟨𝑔, 𝛼⟩−1 ≡ ⟨𝑔 · 𝑔−1, 𝛼 · 𝛼−1⟩ ≡ 𝗂𝖽⟨𝛾,𝛼⟩ ≡ ⟨𝑔−1 · 𝑔, 𝛼−1 · 𝛼⟩ ≡ ⟨𝑔, 𝛼⟩−1 · ⟨𝑔, 𝛼⟩

𝐩 and 𝐪 preserve concatenation.

𝐩Γ.𝐴1(⟨𝑔, 𝛼⟩ · ⟨𝑔′, 𝛼′⟩) ≡ 𝑔 · 𝑔′ ≡ 𝐩Γ.𝐴1(⟨𝑔, 𝛼⟩) · 𝐩Γ.𝐴1(⟨𝑔′, 𝛼′⟩)
𝐪Γ.𝐴1(⟨𝑔, 𝛼⟩ · ⟨𝑔′, 𝛼′⟩) ≡ ⟨⟨𝑔 · 𝑔′, 𝛼 · 𝛼′⟩, 𝛼 · 𝛼′⟩ ≡ 𝐪Γ.𝐴1(⟨𝑔, 𝛼⟩) · 𝐪Γ.𝐴1(⟨𝑔′, 𝛼′⟩)

𝐩 and 𝐪 preserve identities.

𝐩Γ.𝐴1(𝗂𝖽⟨𝛾,𝑎⟩) ≡ 𝗂𝖽𝛾 ≡ 𝗂𝖽𝐩Γ.𝐴0(⟨𝛾,𝑎⟩)

𝐪Γ.𝐴1(𝗂𝖽⟨𝛾,𝑎⟩) ≡ ⟨⟨𝗂𝖽𝛾, 𝗂𝖽𝑎⟩, 𝗂𝖽𝑎⟩ ≡ 𝗂𝖽𝐪Γ.𝐴0(⟨𝛾,𝑎⟩)

⟨𝑠, 𝑡⟩ preserves concatenation.

⟨𝑠, 𝑡⟩1(𝑑 · 𝑑′) ≡ ⟨𝑠(𝑑 · 𝑑′), 𝑡𝑑 · 𝑡𝑑′⟩ ≡ ⟨𝑠(𝑑), 𝑡𝑑⟩ · ⟨𝑠(𝑑′), 𝑡𝑑′⟩ ≡ ⟨𝑠, 𝑡⟩1(𝑑) · ⟨𝑠, 𝑡⟩1(𝑑′)

⟨𝑠, 𝑡⟩ preserves identities.

⟨𝑠, 𝑡⟩1(𝗂𝖽𝛿) ≡ ⟨𝑠(𝗂𝖽𝛿), 𝑡𝗂𝖽𝛿
⟩ ≡ ⟨𝗂𝖽𝑠(𝛿), 𝗂𝖽𝑡𝛿

⟩ ≡ 𝗂𝖽⟨𝑠(𝛿),𝑡𝛿⟩ ≡ 𝗂𝖽⟨𝑠,𝑡⟩0(𝛿)

The fact that ⟨𝑠, 𝑡⟩, 𝐩 and 𝐪 preserve inverses is implied by the fact that they preserve identities and
commute with composition.
Lemma A.0.11 (Path substitution is a functor). The mapping of categories

{Γ ↦ (𝖳𝗆Γ(𝐴))𝐴∈𝖳𝗒(Γ)
𝑠 ↦ ⟨𝐴 ↦ 𝐴{𝑠}, 𝑡 ↦ 𝑡{𝑠}⟩

from path contexts to path terms indexed by path types is a functor.

Proof. Because composition in the category of contexts is function composition we have

(𝑠 ∘ 𝑟)(𝛿) ≡ 𝑠(𝑟(𝛿)) and (𝑠 ∘ 𝑟)(𝑑) ≡ 𝑠(𝑟(𝑑))

in both the set and function family indices of definition 4.1.7 such that

𝐴{𝑠 ∘ 𝑟} ≡ 𝐴{𝑠}{𝑟} and 𝑡{𝑠 ∘ 𝑟} ≡ 𝑡{𝑠}{𝑟}.

Moreover, the identity morphisms are the identity functions, which implies

𝐴{𝗂𝖽Γ} ≡ 𝐴 and 𝑡{𝗂𝖽Γ} ≡ 𝑡.

Path interpretation supports Π types
Lemma A.0.12 (Π transport preserves identities). Transport along an identity path yields the same
element and the identity path at the element.

Proof.

𝑓+
𝗂𝖽𝛾

(𝑎)
≡Definition of transport in Π𝐴𝐵

𝑓𝑎+
𝗂𝖽𝛾−1

+

𝗂𝖽𝛾,𝑎+
𝗂𝖽𝛾−1,𝐴

,𝐵

≡Transport in 𝐴 preserves identities
𝑓𝑎

+
𝗂𝖽𝛾,𝗂𝖽𝑎,𝐵

≡Definition identity path in Γ.𝐴
𝑓𝑎

+
𝗂𝖽⟨𝛾,𝑎⟩,𝐵

≡Transport in 𝐵 preserves identities
𝑓𝑎

𝑓+
𝗂𝖽𝛾

(𝛼)
≡Definition of transport in Π𝐴𝐵

𝑓𝑎−
𝗂𝖽𝛾−1

−

⟨𝗂𝖽𝛾,𝑎+
𝗂𝖽𝛾−1 ⟩,𝐵

· 𝑓𝛼+
𝗂𝖽𝛾−1

· 𝑓𝑎′+
𝗂𝖽𝛾−1

+

𝗂𝖽𝛾,𝑎′+
𝗂𝖽𝛾−1 ,𝐵

≡Transport in 𝐴 and 𝐵 preserves identities
𝑓𝑎−

𝗂𝖽𝛾−1
· 𝑓𝛼+

𝗂𝖽𝛾−1
· 𝑓𝑎′+

𝗂𝖽𝛾−1

≡Transport in 𝐴 preserves identities
𝑓𝗂𝖽𝑎

· 𝑓𝛼 · 𝑓𝗂𝖽𝑎′

≡𝑓 preserves identities
𝗂𝖽𝑓𝑎

· 𝑓𝛼 · 𝗂𝖽𝑓𝑎′

≡Identity of path composition
𝑓𝛼

𝑓↑
𝗂𝖽𝛾

(𝛼)
≡Definition of transport in Π𝐴𝐵

𝑓𝛼·𝑎′↑
𝗂𝖽𝛾−1,𝐴

· 𝑓𝑎′+
𝗂𝖽𝛾−1,𝐴

+

𝗂𝖽𝛾,𝑎′↑
𝗂𝖽𝛾−1,𝐴

,𝐵

≡Transport in 𝐴 and 𝐵 preserves identities
𝑓𝛼 · 𝗂𝖽𝑓𝑎′

≡Identity of path composition
𝑓𝛼

≡Definition of identity paths in Π𝐴𝐵
(𝗂𝖽𝑓)𝛼

Lemma A.0.13 (Π transport commutes with path composition). Transporting along a composed path
is the same as first transporting along the first path and then along the second path.

Proof. We begin with the verification of the point component of 𝑓+
𝑔·𝜌.

𝑓+
𝑔·𝜌(𝑎)

≡Definition of transport in Π𝐴𝐵
𝑓(𝑎−

𝑔·𝜌)+
⟨𝑔·𝜌,𝑎↓

𝑔·𝜌⟩,𝐵

≡𝑎↓
𝑔·𝜌 ≡ (𝑎−

𝜌)↓
𝑔

· 𝑎↓
𝜌

𝑓(𝑎−
𝑔·𝜌)+

⟨𝑔,(𝑎−𝜌)↓
𝑔

⟩·⟨𝜌,𝑎↓
𝜌⟩,𝐵

≡Transport in 𝐵 commutes with path composition

(𝑓(𝑎−
𝑔·𝜌)+

⟨𝑔,𝑎−𝜌 ↓
𝑔

⟩,𝐵
)+

⟨𝜌,𝑎↓
𝜌⟩,𝐵

≡𝑎−
𝑔·𝜌 ≡ (𝑎−

𝜌)−
𝑔

(𝑓((𝑎−
𝜌)−

𝑔
)+

⟨𝑔,(𝑎−𝜌)↓
𝑔

⟩,𝐵
)+

⟨𝜌,𝑎↓
𝜌⟩,𝐵

≡Definition of transport in Π𝐴𝐵
𝑓+

𝑔 (𝑎−
𝜌)+

⟨𝜌,𝑎↓
𝜌⟩,𝐵

≡Definition of transport in Π𝐴𝐵
(𝑓+

𝑔)+
𝜌

(𝑎)

The same applies to the path component of 𝑓+
𝑔·𝜌.

𝑓+
𝑔·𝜌(𝛼)

≡Definition of transport in Π𝐴𝐵
𝑓(𝑎−

𝑔·𝜌)↓
⟨𝑔·𝜌,𝑎↓

𝑔·𝜌⟩,𝐵
· 𝑓(𝛼−

𝑔·𝜌) · 𝑓(𝑎′−
𝑔·𝜌)↑

⟨𝑔·𝜌,𝑎′↓
𝑔·𝜌⟩,𝐵

≡Transport composition in 𝐵
(𝑓(𝑎−

𝑔·𝜌))+
𝑔

↓

⟨𝜌,𝑎↓
𝜌⟩,𝐵

· 𝑓(𝑎−
𝑔·𝜌)↓

⟨𝑔,(𝑎−𝜌)↓
𝑔

⟩,𝐵
· 𝑓(𝛼−

𝑔·𝜌) · 𝑓(𝑎′−
𝑔·𝜌)↑

⟨𝑔,𝑎′−
𝜌

↓
𝑔

⟩,𝐵
· (𝑓(𝑎′−

𝑔·𝜌))+
𝑔

↑

⟨𝜌,𝑎′↓
𝜌⟩,𝐵

≡Transport composition in 𝐴
(𝑓((𝑎−

𝜌)−
𝑔

))+

𝑔

↓

⟨𝜌,𝑎↓
𝜌⟩,𝐵

· 𝑓((𝑎−
𝜌)−

𝑔
)↓

⟨𝑔,(𝑎−𝜌)↓
𝑔

⟩,𝐵
· 𝑓((𝛼−

𝜌)−
𝑔

) · 𝑓((𝑎′−
𝜌)−

𝑔
)↑

⟨𝑔,𝑎′−
𝜌

↓
𝑔

⟩,𝐵
· (𝑓((𝑎′−

𝜌)−
𝑔

))+

𝑔

↑

⟨𝜌,𝑎′↓
𝜌⟩,𝐵

≡Definition of transport in Π𝐴𝐵
𝑓+

𝑔 (𝑎−
𝜌)↓

⟨𝜌,𝑎↓
𝜌⟩,𝐵

· 𝑓+
𝑔 (𝛼−

𝜌) · 𝑓+
𝑔 (𝑎′−

𝜌)↑
⟨𝜌,𝑎′↓

𝜌⟩,𝐵

≡Definition of transport in Π𝐴𝐵
(𝑓+

𝑔)+
𝜌

(𝛼)

We conclude 𝑓+
𝑔·𝜌 ≡ (𝑓+

𝑔)+
𝜌

by family extensionality in the meta-theory. Lastly, the path connecting

𝑓 and 𝑓+
𝑔·𝜌.

(𝑓↑
𝑔·𝜌)𝛼

≡Definition of transport in Π𝐴𝐵
𝑓(𝛼 · 𝑎″↓

𝑔·𝜌) · 𝑓(𝑎″−
𝑔·𝜌)↑

⟨𝑔·𝜌,𝑎″↓
𝑔·𝜌⟩

≡Transport composition in 𝐵
𝑓(𝛼 · 𝑎″↓

𝑔·𝜌) · 𝑓(𝑎″−
𝑔·𝜌)↑

⟨𝑔,(𝑎″−
𝜌)↓

𝑔
⟩
· (𝑓(𝑎″−

𝑔·𝜌)+
𝑔

)↑

⟨𝜌,𝑎″↓
𝜌⟩

≡Transport composition in 𝐴
𝑓(𝛼 · 𝑎″↑

𝜌 · (𝑎″−
𝜌)↑

𝑔
) · 𝑓((𝑎″−

𝜌)−
𝑔

)↑

⟨𝑔,(𝑎″−
𝜌)↓

𝑔
⟩
· (𝑓(𝑎″−

𝑔·𝜌)+
𝑔

)↑

⟨𝜌,𝑎″↓
𝜌⟩

≡Definition of transport in Π𝐴𝐵
(𝑓↑

𝑔)𝛼·𝑎″↓
𝜌

· 𝑓+
𝑔 (𝑎″−

𝑔·𝜌)↑
⟨𝜌,𝑎″↓

𝜌⟩

≡𝑎″↑
𝜌 · 𝑎″↓

𝜌 ≡ 𝗂𝖽𝑎″ and unit law in 𝐵
(𝑓↑

𝑔)𝛼·𝑎″↓
𝜌

· 𝑓+
𝑔 (𝑎″↑

𝜌 · 𝑎″↓
𝜌) · 𝑓+

𝑔 (𝑎″−
𝑔·𝜌)↑

⟨𝜌,𝑎″↑
𝜌⟩

≡Definition of transport in Π𝐴𝐵
(𝑓↑

𝑔)𝛼·𝑎″↓
𝜌

· ((𝑓+
𝑔)↑

𝜌
)𝑎″↑

𝜌

≡Definition of composition in Π𝐴𝐵 and 𝑎″↑
𝜌 · 𝑎″↓

𝜌 ≡ 𝗂𝖽𝑎″

(𝑓↑
𝑔 · (𝑓+

𝑔)↑
𝜌
)𝛼

We conclude 𝑓↑
𝑔·𝜌 ≡ 𝑓↑

𝑔 · (𝑓+
𝑔)↑

𝜌
.

Lemma A.0.14 (Path 𝜆 terms are functorial). The definition preserves identities

((𝜆𝑏)𝗂𝖽𝛾
)𝛼 ≡ 𝑏⟨𝗂𝖽𝛾,𝛼⟩ ≡ ((𝜆𝑏)𝛾)𝛼 ≡ (𝗂𝖽(𝜆𝑏)𝛾

)𝛼

and is functorial

((𝜆𝑏)𝑔·𝜌)𝛼
≡Definition

𝑏⟨𝑔·𝜌,𝛼⟩

≡𝑔+(𝑎) · 𝛼 · (𝜌−1)−(𝑎′) � �
𝑏⟨𝑔,𝑔+(𝑎)⟩ · 𝑏⟨𝗂𝖽𝛾′ ,𝛼⟩ · 𝑏⟨𝜌,(𝜌−1)−(𝑎′)⟩

≡Definition
((𝜆𝑏)𝑔)𝑔+(𝑎) · ((𝜆𝑏)𝛾′)𝛼 · ((𝜆𝑏)𝜌)(𝜌−1)−(𝑎′)

≡Definition
((𝜆𝑏)𝑔 · (𝜆𝑏)𝜌)𝛼

Lemma A.0.15 (Path 𝖺𝗉𝗉(·, ·) terms are functorial). Indeed, this defines a term since the definition
preserves identities

(𝖺𝗉𝗉(𝜆, 𝑎))𝗂𝖽𝛾
≡ 𝜆𝗂𝖽𝛾

𝛼𝗂𝖽𝛾
≡ 𝗂𝖽𝜆𝛾

𝗂𝖽𝑎𝛾
≡ (𝗂𝖽𝜆𝛾

)𝗂𝖽𝑎𝛾
≡ 𝗂𝖽(𝜆𝛾)𝑎𝛾

≡ 𝗂𝖽𝖺𝗉𝗉(𝜆,𝑎)𝛾

and is functorial

(𝖺𝗉𝗉(𝜆, 𝑎))𝑔·𝜌 ≡ 𝜆𝑔·𝜌𝑎𝑔·𝜌 ≡ (𝜆𝑔 · 𝜆𝜌)(𝑎𝑔 · 𝑎𝜌) ≡ 𝜆𝑔𝑎𝑔 · 𝜆𝜌𝑎𝜌 ≡ 𝖺𝗉𝗉(𝜆, 𝑎)𝑔 · 𝖺𝗉𝗉(𝜆, 𝑎)𝜌

Lemma A.0.16 (Path Π types commute with substitution).

Π𝐴𝐵{𝑠}𝛿 ≡ Π𝐴𝐵𝑠(𝛿) ≡ 𝖳𝗆𝐴𝑠(𝛿)
(𝐵{𝑎 ↦ ⟨𝑠(𝛿), 𝑎⟩}) ≡ Π(𝐴{𝑠})(𝐵{⟨𝑠 ∘ 𝐩, 𝐪⟩})𝛿

Π𝐴𝐵{𝑠}𝑑(𝑓, 𝑓′) ≡ Π𝐴𝐵𝑠(𝑑)(𝑓, 𝑓′)
≡

{(𝜑𝛼 ∈ 𝐵⟨𝑠(𝑑),𝛼⟩(𝑓(𝑎), 𝑓′(𝑎′)))𝛼∈𝐴𝑠(𝑑)(𝑎,𝑎′)}
≡𝐴{𝑠}𝑑(𝑎, 𝑎′) ≡ 𝐴𝑠(𝑑)(𝑎, 𝑎′) and 𝐵⟨𝑠 ∘ 𝐩, 𝐪⟩⟨𝑑,𝛼⟩(𝑏, 𝑏′) ≡ 𝐵⟨𝑠∘𝐩,𝐪⟩(⟨𝑑,𝛼⟩)(𝑏, 𝑏′) ≡ 𝐵⟨𝑠(𝑑),𝛼⟩(𝑏, 𝑏′)

{(𝜑𝛼 ∈ 𝐵{⟨𝑠 ∘ 𝐩, 𝐪⟩}⟨𝑑,𝛼⟩(𝑓(𝑎), 𝑓′(𝑎′)))𝛼∈𝐴{𝑠}𝑑(𝑎,𝑎′)}
≡

Π(𝐴𝑠)(𝐵⟨𝑠 ∘ 𝐩, 𝐪⟩)𝑑(𝑓, 𝑓′)

(𝜑 · 𝜑′)𝛼 ≡ 𝜑𝛼𝑔
· 𝜑𝛼𝑔′ ≡ (𝜑 · 𝜑′)𝛼

𝗂𝖽𝑓𝛼
≡ 𝑓𝛼 ≡ 𝗂𝖽𝑓𝛼

𝜑−1
𝛼 ≡ 𝜑𝛼−1

−1 ≡ 𝜑−1
𝛼

Lemma A.0.17 (Path 𝜆 terms commute with substitution).

((𝜆𝑏)𝑠)𝛿
≡Definition of substitution

(𝜆𝑏)𝑠𝛿

≡Definition of 𝜆 abstraction
𝑏[·]𝐴𝑠𝛿

≡⟨𝑠𝐩, 𝐪⟩[·](𝐴𝑠)𝛿
≡ ⟨𝑠𝐩, 𝐪⟩⟨Δ(𝛿), ⟩ ≡ [·]𝐴𝑠𝛿

and functoriality of substitution

(𝑏⟨𝑠𝐩, 𝐪⟩)[·]𝐴𝛿

≡Definition of 𝜆 abstraction
𝜆(𝑏⟨𝑠𝐩, 𝐪⟩)𝛿

((𝜆𝑏)𝑠)𝜌
≡Definition of substitution

(𝜆𝑏)𝑠𝜌

≡Definition of 𝜆 abstraction
𝑏[·]𝐴𝑠𝜌

≡[·]𝐴𝑠𝛿
≡ ⟨𝑠, 𝐪⟩[·](𝐴𝑠)𝛿

(!)

(𝑏⟨𝑠, 𝐪⟩)[·](𝐴𝑠)𝜌

≡Definition of 𝜆 abstraction
𝜆(𝑏⟨𝑠, 𝐩⟩)𝜌

Lemma A.0.18 (Path 𝖺𝗉𝗉(·, ·) terms commute with substitution).

((𝖺𝗉𝗉(𝑓, 𝑎))𝑠)𝛾
≡Definition of substitution and application

(𝑓𝑠𝛾
)𝑎𝑠𝛾

≡Definition of substitution
((𝑓𝑠)𝛾)(𝑎𝑠)𝛾

≡Definition of application
(𝖺𝗉𝗉(𝑓𝑠, 𝑎𝑠))𝛾

((𝖺𝗉𝗉(𝑓, 𝑎))𝑠)𝑔
≡Definition of substitution

𝖺𝗉𝗉(𝑓, 𝑎)𝑠𝑔

≡Definition of application
𝑓𝑠𝑔

𝑎𝑠𝑔

≡Definition of substitution
(𝑓𝑠)𝑔(𝑎𝑠)𝑔

≡Definition of application
(𝖺𝗉𝗉(𝑓𝑠, 𝑎𝑠))𝑔

Path interpretation supports Id types
Lemma A.0.19 (Path Id types commute with substitution). For every substitution 𝑠 ∶ Δ → Γ, the
types 𝖨𝖽𝐴{⟨⟨𝑠 ∘ 𝐩, 𝐪⟩ ∘ 𝐩, 𝐪⟩} and 𝖨𝖽𝐴{𝑠} are the same.

Proof.

𝖨𝖽𝐴{⟨⟨𝑠 ∘ 𝐩, 𝐪⟩ ∘ 𝐩, 𝐪⟩}⟨𝛿,𝑎,𝑎′⟩

≡𝖨𝖽𝐴⟨𝑠(𝛿),𝑎,𝑎′⟩

≡𝐴𝗂𝖽𝑠(𝛿)
(𝑎, 𝑎′)

≡𝐴{𝑠}𝗂𝖽𝛿
(𝑎, 𝑎′)

≡𝖨𝖽𝐴{𝑠}⟨𝛿,𝑎,𝑎′⟩

and

𝖨𝖽𝐴{⟨⟨𝑠 ∘ 𝐩, 𝐪⟩ ∘ 𝐩, 𝐪⟩}⟨𝑑,𝛼,𝛼′⟩(𝛼𝛿, 𝛼𝛿′)
≡𝖨𝖽𝐴⟨𝑠(𝑑),𝛼,𝛼′⟩(𝛼𝛿, 𝛼𝛿′)
≡{∙|𝛼𝛿 · 𝛼 ≡ 𝛼′ · 𝛼𝛿′}
≡𝖨𝖽𝐴{𝑠}⟨𝑑,𝑎,𝑎′⟩

(𝛼𝛿, 𝛼𝛿′)

because 𝐴𝑠(𝛿) ≡ 𝐴{𝑠}𝛿 and 𝐴𝑠(𝑑) ≡ 𝐴{𝑠}𝑑 by definition of substitution.
The equalities for transport, concatenation, inverses and identities are also straightforward.

Lemma A.0.20 (Path reflexivity proofs commute with substitution). For every substitution 𝑠 ∶ Δ → Γ,
the terms 𝗋𝖾𝖿𝗅𝐴{𝑠} and 𝗋𝖾𝖿𝗅𝐴{𝑠} are the same.

Proof.

𝗋𝖾𝖿𝗅𝐴{𝑠}⟨𝛿,𝑎⟩ ≡ 𝗂𝖽𝑎 ≡ 𝗋𝖾𝖿𝗅𝐴{𝑠}⟨𝛿,𝑎⟩
𝗋𝖾𝖿𝗅𝐴{𝑠}⟨𝑑,𝛼⟩ ≡ ∙ ≡ 𝗋𝖾𝖿𝗅𝐴{𝑠}⟨𝑑,𝛼⟩

in 𝐴𝗂𝖽𝑠(𝛿)
≡ 𝐴{𝑠}𝗂𝖽𝛿

and 𝐴𝑠(𝑑)(𝑎, 𝑎′) ≡ 𝐴{𝑠}𝑑(𝑎, 𝑎′), respectively.

Lemma A.0.21 (Path equality elimination commutes with substitution). For every substitution 𝑠 ∶
Δ → Γ, the terms 𝐽𝐶,𝑑{⟨⟨⟨𝑠 ∘ 𝐩, 𝐪⟩ ∘ 𝐩, 𝐪⟩ ∘ 𝐩, 𝐪⟩} and 𝐽𝐶⟨⟨⟨𝑠∘𝐩,𝐪⟩∘𝐩,𝐪⟩∘𝐩,𝐪⟩,𝑑{⟨𝑠∘𝐩,𝐪⟩} are the same.

Proof. This is straightforward because

𝐶⟨⟨⟨𝑠 ∘ 𝐩, 𝐪⟩ ∘ 𝐩, 𝐪⟩ ∘ 𝐩, 𝐪⟩⟨𝛿,𝑎,𝑎′,𝛼⟩≡𝐶⟨𝑠(𝛿),𝑎,𝑎′,𝛼⟩
and 𝐶⟨⟨⟨𝑠 ∘ 𝐩, 𝐪⟩ ∘ 𝐩, 𝐪⟩ ∘ 𝐩, 𝐪⟩⟨𝑑,𝛼,𝛼′,∙⟩≡𝐶⟨𝑠(𝑑),𝛼,𝛼′,∙⟩

and

𝑑{⟨𝑠 ∘ 𝐩, 𝐪⟩}⟨𝛿,𝑎⟩ ≡ 𝑑𝑠(𝛿),𝑎 and 𝑑{⟨𝑠 ∘ 𝐩, 𝐪⟩}⟨𝑑,𝛼⟩ ≡ 𝑑𝑠(𝑑),𝛼

by definition of substitution.

Path interpretation supports a U type
Lemma A.0.22 (Small type elimination commutes with substitution). For every substitution 𝑠 ∶ Δ → Γ
and semantic term 𝑀 ∈ 𝖳𝗆Γ(𝑈) we have 𝐸𝑙(𝑀{𝑠}) ≡ 𝐸𝑙(𝑀){𝑠}.

Proof. By definition of term and type substitution as well as structure preservation for context mor-
phisms.

𝐸𝑙(𝑀{𝑠})𝛾 ≡ 𝑀{𝑠}𝛾 ≡ 𝑀𝑠(𝛾) ≡ 𝐸𝑙(𝑀)𝑠(𝛾) ≡ 𝐸𝑙(𝑀){𝑠}𝛾

𝐸𝑙(𝑀{𝑠})𝑔 ≡ 𝑀{𝑠}𝑔 ≡ 𝑀𝑠(𝑔) ≡ 𝐸𝑙(𝑀)𝑠(𝑔) ≡ 𝐸𝑙(𝑀){𝑔}𝛾

𝑀{𝑠}𝗂𝖽𝛾
≡ 𝑀𝑠(𝗂𝖽𝛾) ≡ 𝑀𝗂𝖽𝑠(𝛾)

𝑀{𝑠}𝑔−1 ≡ 𝑀𝑠(𝑔−1) ≡ 𝑀𝑠(𝑔)−1

𝑀{𝑠}𝑔·𝑔′ ≡ 𝑀𝑠(𝑔·𝑔′) ≡ 𝑀𝑠(𝑔)·𝑠(𝑔′)

Path interpretation supports ‖ · ‖ types
Lemma A.0.23 (Path ‖ · ‖ types commute with substitution). For every context morphism 𝑠 ∶ Δ → Γ
the types ‖𝐴‖{𝑠} and ‖𝐴{𝑠}‖ are the same.

Proof. The sets ‖𝐴‖{𝑠}𝛾 and ‖𝐴{𝑠}‖𝛾 are both 𝐴𝑠(𝛾) and the relations are the same because two paths
are the same if they connect the same endpoints.

The transport, concatenation, inverses, identities parts are straightforward as well.

Lemma A.0.24 (Path ‖ · ‖ terms commute with substitution). For every context morphism 𝑠 ∶ Δ → Γ
the terms ‖𝑎‖{𝑠} and ‖𝑎{𝑠}‖ are the same.

Proof. Directly because on the object part they are the same by definition of ‖𝑎‖ and on the morphism
parts both terms are necessarily the same by definition of ‖𝐴‖.
Lemma A.0.25 (Path ‖ · ‖ recursion commutates with substitution). For every context morphism 𝑠 ∶
Δ → Γ the terms ‖𝑓‖{𝑠} and ‖𝑓{𝑠}‖ are the same.

Proof. Similar to the reasoning for ‖𝑎‖{𝑠} ≡ ‖𝑎{𝑠}‖ (cf. A.0.24).

	Introduction
	Preliminaries
	Dependent Type Theory
	Models
	Categories with Families

	Relational Model
	Path Model
	Category with Families
	Dependent Function Space
	Identity Types
	Universe
	Propositional Truncation

	Morphoid Model
	Conclusion
	Proofs

