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Abstract
We propose the infinite factorial dynamic model (iFDM), a general Bayesian non-
parametric model for source separation. Our model builds on the Markov In-
dian buffet process to consider a potentially unbounded number of hidden Markov
chains (sources) that evolve independently according to some dynamics, in which
the state space can be either discrete or continuous. For posterior inference, we
develop an algorithm based on particle Gibbs with ancestor sampling that can be
efficiently applied to a wide range of source separation problems. We evaluate the
performance of our iFDM on four well-known applications: multitarget tracking,
cocktail party, power disaggregation, and multiuser detection. Our experimental
results show that our approach for source separation does not only outperform
previous approaches, but it can also handle problems that were computationally
intractable for existing approaches.

1 Introduction
The central idea behind Bayesian nonparametrics (BNPs) is the replacement of classical finite-
dimensional prior distributions with general stochastic processes, allowing for an open-ended num-
ber of degrees of freedom in a model [8]. They constitute an approach to model selection and
adaptation in which the model complexity is allowed to grow with data size [17]. In the literature,
BNP priors have been applied for time series modeling. For example, the infinite hidden Markov
model [2, 20] considers a potentially infinite cardinality of the state space; and the BNP construc-
tion of switching linear dynamical systems (LDS) [4] considers an unbounded number of dynamical
systems with transitions among them occurring at any time during the observation period.

In the context of signal processing, the source separation problem has captured the attention of the
research community for decades due to its wide range of applications [12, 23, 7, 24]. The BNP
literature for source separation includes [10], in which the authors introduce the nonparametric
counterpart of independent component analysis (ICA), referred as infinite ICA (iICA); and [23],
where the authors present the Markov Indian buffet process (mIBP), which places a prior over an
infinite number of parallel Markov chains and is used to build the infinite factorial hidden Markov
model (iFHMM) and the ICA iFHMM. These approaches can effectively adapt the number of hidden
sources to fit the available data. However, they suffer from several limitations: i) the iFHMM is
restricted to binary on/off hidden states, which may lead to hidden chains that do not match the
actual hidden causes, and it is not able to deal with continuous-valued states, and ii) both the iICA
and the ICA iFHMM make independence assumptions between consecutive values of active hidden
states, which significantly restricts their ability to capture the underlying dynamical models. As a
result, we find that existing approaches are not applicable to many well-known source separation
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problems, such as multitarget tracking [12], in which each target can be modeled as a Markov chain
with continuous-valued states describing the target trajectory; or multiuser detection [24], in which
the high cardinality of the hidden states makes this problem computationally intractable for the non-
binary extension of the iFHMM. Hence, there is a lack of both a general BNP model for source
separation, and an efficient inference algorithm to address these limitations.

In this paper, we provide a general BNP framework for source separation that can handle a wide
range of dynamics and likelihood models. We assume a potentially infinite number of sources that
are modeled as Markov chains that evolve according to some dynamical system model. We assume
that only the active sources contribute to the observations, and the states of the Markov chains are not
restricted to be discrete but they can also be continuous-valued. Moreover, we let the observations
depend on both the current state of the hidden sequences, and on some previous states. This system
memory is needed when dealing with applications in which the individual source signals propagate
through the air and may thus suffer from some phenomena, such as reverberation, echo, or multipath
propagation. Our approach results in a general and flexible dynamic model that we refer to as infinite
factorial dynamical model (iFDM), and that can be particularized to recover other models previously
proposed in the literature, e.g., the binary iFHMM.

As for most BNP models, one of the main challenges of our iFDM is posterior inference. In discrete
time series models, including the iFHMM, an approximate inference algorithm based on forward-
filtering backward-sampling (FFBS) sweeps is typically used [23, 5]. However, the exact FFBS
algorithm has exponential computational complexity with respect to the memory length. The FFBS
algorithm also becomes computationally intractable when dealing with on/off hidden states that
are continuous-valued when active. In order to overcome these limitations, we develop a suitable
inference algorithm for our iFDM by building a Markov chain Monte Carlo (MCMC) kernel using
particle Gibbs with ancestor sampling (PGAS) [13]. This algorithm presents quadratic complexity
with respect to the memory length and can easily handle a broad range of dynamical models.

The versatility and efficiency of our approach is shown through a comprehensive experimental val-
idation in which we tackle four well-known source separation problems: multitarget tracking [12],
cocktail party [23], power disaggregation [7], and multiuser detection [24].1 Our results show that
our iFDM provides meaningful estimations of the number of sources and their corresponding indi-
vidual signal traces even in applications that previous approaches cannot handle. It also outperforms,
in terms of accuracy, the iFHMM (extended to account for the actual state space cardinality) com-
bined with FFBS-based inference in the cocktail party and power disaggregation problems.

2 Infinite Factorial Dynamical Model
In this section, we detail our proposed iFDM. We assume that there is a potentially infinite number of
sources contributing to the observed sequence {yt}Tt=1, and each source is modeled by an underlying
dynamic system model in which the state of the m-th source at time t, denoted by xtm ∈ X , evolves
over time as a first-order Markov chain. Here, the state space X can be either discrete or continuous.
In addition, we introduce the auxiliary binary variables stm ∈ {0, 1} to indicate whether the m-th
source is active at time t, such that the observations only depend on the active sources. We assume
that the variables stm follow a first-order Markov chain and let the states xtm evolve according to
p(xtm|stm, x(t−1)m, s(t−1)m), i.e., the dynamic system model may depend on whether the source
is active or inactive. We assume dummy states stm = 0 for t ≤ 0. As an example, in the cocktail
party problem, yt denotes a sample of the recorded audio signal, which depends on the individual
voice signals of the active speakers. The latent states xtm in this example are real-valued and the
transition model p(xtm|stm = 1, x(t−1)m, s(t−1)m) describes the dynamics of the voice signal.

In many real applications, the individual signals propagate though the air until they are mixed and
gathered by the receiver. In such propagation, different phenomena (e.g., refraction or reflexion of
the signal in the walls) may occur, leading to multipath propagation of the signals and, therefore,
to different delayed copies of the individual signals at the receiver. In order to account for this
“memory” effect, we consider that the state of them-th source at time t, xtm, influences not only the
observation yt, but also the future L− 1 observations, yt+1, . . . ,yt+L−1. Therefore, the likelihood
of yt depends on the last L states of all the Markov chains, yielding

p(yt|X,S) = p(yt|{xtm, stm, x(t−1)m, s(t−1)m, . . . , x(t−L+1)m, s(t−L+1)m}Mm=1), (1)

1Code for these applications can be found at https://github.com/franrruiz/iFDM
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Figure 1: (a) Graphical representation of the iFDM with memory length L = 2. The dashed lines
represent the memory. (b) Equivalent representation using extended states.

where X and S are T ×M matrices containing all the states xtm and stm, respectively. We remark
that the likelihood of yt cannot depend on any hidden state xτm if sτm = 0.

In order to be able to deal with an infinite number of sources, we place a BNP prior over the binary
matrix S that contains all variables stm. In particular, we assume that S ∼ mIBP(α, β0, β1), i.e., S
is distributed as a mIBP [23] with parameters α, β0 and β1. The mIBP places a prior distribution
over binary matrices with a finite number of rows T and an infinite number of columns M , in which
each row represents a time instant, and each column represents a Markov chain. The mIBP ensures
that, for any finite value of T , only a finite number of columns M+ in S are active almost surely,
whereas the rest of them remain in the all-zero state and do not influence the observations. We
make use of the stick-breaking construction of the mIBP, which is particularly useful to develop
many practical inference algorithms [19, 23]. Under the stick-breaking construction, two hidden
variables for each Markov chain are introduced, representing the transition probabilities between
the active and inactive states. In particular, we define am = p(stm = 1|s(t−1)m = 0) as the
transition probability from inactive to active, and bm = p(stm = 1|s(t−1)m = 1) as the self-
transition probability of the active state of the m-th chain. In the stick-breaking representation, the
columns of S are ordered according to their values of am, such that a1 > a2 > a3 > . . ., and
the probability distribution over variables am is given by a1 ∼ Beta(α, 1), and p(am|am−1) ∝
(am)α−1I(0 ≤ am ≤ am−1), being I(·) the indicator function [19]. Finally, we place a beta
distribution over the transition probabilities bm of the form bm ∼ Beta(β0, β1).

The resulting iFDM model, particularized for L = 2, is shown in Figure 1a. Note that this model
can be equivalently represented as shown in Figure 1b, using the extended states s(e)tm, with

s
(e)
tm =

[
xtm, stm, x(t−1)m, s(t−1)m, . . . , x(t−L+1)m, s(t−L+1)m

]
. (2)

This extended representation allows for an FFBS-based inference algorithm. However, the exponen-
tial complexity of the FFBS with the memory parameter L and with continuous-valued hidden states
xtm makes the algorithm intractable in many real scenarios. Hence, we maintain the representation
in Figure 1a because it allows us to derive an efficient inference algorithm.

The proposed iFDM in Figure 1a can be particularized to resemble some other models that have
been proposed in the literature. In particular, we recover: i) the iFHMM in [23] by choosing the
state space X = {0, 1}, xtm = stm and L = 1, ii) the ICA iFHMM in [23] if we set X = R, L = 1
and assume that p(xtm|stm = 1, x(t−1)m, s(t−1)m) = p(xtm|stm = 1) is a Gaussian distribution,
and iii) a BNP counterpart of the LDS [9] with on/off states by assuming L = 1 and X = R, and
letting the variables xtm be Gaussian distributed with linear relationships among them.

3 Inference Algorithm
We develop an inference algorithm for the proposed iFDM that can handle different dynamic and
likelihood models. Our approach relies on a blocked Gibbs sampling algorithm that alternates be-
tween sampling the number of considered chains and the global variables conditioned on the current
value of matrices S and X, and sampling matrices S and X conditioned on the current value of the
remaining variables. In particular, the algorithm proceeds iteratively as follows:

• Step 1: AddMnew new inactive chains using an auxiliary slice variable and a slice sampling
method. In this step, the number of considered chains is increased from its initial valueM+

to M‡ =M+ +Mnew (M+ is not updated because stm = 0 for all t for the new chains).
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Algorithm 1 Particle Gibbs with ancestor sampling
Input : Reference particle x0

t for t = 1, . . . , T , and global variables.
Output: Sample xout

1:T from the PGAS Markov kernel
Draw xi

1 ⇠ r1(x1) for i = 1, . . . , P � 1 (Eq. 4)1
Set xP

1 = x0
12

Compute the weights wi
1 = W1(x

i
1) for i = 1, . . . , P (Eq. 5)3

for t = 2, . . . , T do4
// Resampling and ancestor sampling

Draw ai
t ⇠ Categorical(w1

t�1, . . . , wP
t�1) for i = 1, . . . , P � 15

Compute ewi
t�1|T for i = 1, . . . , P (Eq. 6)6

Draw aP
t ⇠ Categorical( ew1

t�1|T , . . . , ewP
t�1|T )7

// Particle propagation

Draw xi
t ⇠ rt(xt|xai

t
1:t�1) for i = 1, . . . , P � 1 (Eq. 4)8

Set xP
t = x0

t9

Set xi
1:t = (x

ai
t

1:t�1, xi
t) for i = 1, . . . , P (Eq. 3)10

// Weighting

Compute the weights wi
t = Wt(x

i
1:t) for i = 1, . . . , P (Eq. 5)11

Draw k ⇠ Categorical(w1
T , . . . , wP

T )12
return xout

1:T = xk
1:T13

furthermore, they can switch on and off (i.e., start or stop transmitting) at any given time. Targets
are allowed to switch on at any position. We generate synthetic data in which three different targets
move within a region of 800 ⇥ 800 metres, where 25 sensors are located on a regular grid of 5 ⇥ 5.
The state xtm = [x

(1)
tm, x

(2)
tm, v

(1)
tm , v

(2)
tm ]> of each target consists of its position and velocity in a two

dimensional plane, and we assume a linear Gaussian dynamic model such that, while active, xtm

evolves according to

xtm = Gxx(t�1)m + Guut =

2
64

1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 1

3
75x(t�1)m +

2
664

T 2
s

2 0

0
T 2

s

2
Ts 0
0 Ts

3
775ut, (7)

where Ts = 0.5 is the sampling period, and ut ⇠ N (0, I) is a vector that models the acceleration
noise. For each considered target, we sample the initial position uniformly in the sensor network
space, and assume that the initial velocity is Gaussian distributed with zero mean and covariance
0.01I. Similarly to [20, 12], we assume the observation of sensor j at time t is given by the received

signal strength (RSS), i.e., ytj =
P

m:stm=1 P0 ·
⇣

d0

dmjt

⌘�

+ ntj , where ntj ⇠ N (0, 2) is the noise
term, dmjt is the distance between target m and sensor j at time t, P0 = 10 is the transmitted power,
and d0 = 100 metres and � = 2 are respectively the reference distance and the path loss exponent,
which account for the radio propagation model. We apply our inference algorithm on an observation
period of length T = 300. In our inference algorithm we sample the noise variance by placing an
InvGamma(1,1) as its prior distribution.

In Figure 3, we show the true and inferred trajectories of the targets, and the temporal evolution of
the position error. We have sorted the inferred targets in a way that the position error is minimized.
In this figure, we observe that the proposed model and algorithm is able to detect the three targets and
their trajectories with an average position error of around 6 metres. We do not consider a benchmark
algorithm because, to the best of our knowledge, there are not multitarget tracking approaches in the
literature that can deal with targets that may start and stop transmitting at any time.

Cocktail Party. We now address a blind speech separation task, also known as the cocktail party
problem. More specifically, we record multiple people who are simultaneously speaking, using a
set of microphones. Given the recorded signal, the goal is to separate out the individual speech
signals. Speakers may start speaking or become silent at any given time. Similarly to [23], we
collect data from several speakers from the PASCAL ‘CHiME’ Speech Separation and Recognition
Challenge website.1 The voice signal for each speaker consists of 4 sentences, which we append
with random pauses in between each sentence. We artificially mix the data 10 times (corresponding

1http://spandh.dcs.shef.ac.uk/projects/chime/PCC/datasets.html

6

(b) PGAS algorithm.

Figure 2: Particle Gibbs with ancestor sampling.

• Step 2: Jointly sample the states xtm and stm of all the considered chains. Compact
the representation by removing those chains that remain inactive in the entire observation
period, consequently updating M+.
• Step 3: Sample the global variables in the model, which include the transition probabilities

and the emission parameters, from their posterior distribution.

In Step 1, we follow the slice sampling scheme for inference in BNP models based on the Indian
buffet process (IBP) [19, 23], which effectively transforms the model into a finite factorial model
with M‡ = M+ +Mnew parallel chains. Step 2 consists in sampling the elements of the matri-
ces S and X given the current value of the global variables. Here, we propose to use PGAS, an
algorithm recently developed for inference in state-space models and non-Markovian latent vari-
able models [13]. Each iteration of this algorithm presents quadratic complexity with respect to
the memory length L, avoiding the exponential complexity of the standard FFBS algorithm when
applied over the equivalent model with extended states in Figure 1b. Details on the PGAS approach
are given in Section 3.1. After running PGAS, we remove those chains that remain inactive in the
whole observation period. In Step 3, we sample the transition probabilities am and bm, as well as
other model-dependent variables such as the observation variables needed to evaluate the likelihood
p(yt|X,S). Further details on the inference algorithm can be found in the Supplementary Material.

3.1 Particle Gibbs with ancestor sampling
PGAS [13] is a method within the framework of particle MCMC [1] that combines the main ideas,
as well as the strengths, of sequential Monte Carlo and MCMC techniques. In contrast to other
particle Gibbs with backward simulation methods [25, 14], this algorithm can also be conveniently
applied to non-Markovian latent variable models, i.e., models that are not expressed on a state-space
form. The PGAS algorithm is an MCMC kernel, and thus generates a new sample of the hidden state
matrices (X,S) given an initial sample (X′,S′), which is the output of the previous iteration of the
PGAS (extended to account for the Mnew new inactive chains). The machinery inside the PGAS
algorithm resembles an ordinary particle filter, with two main differences: one of the particles is
deterministically set to the reference input sample, and the ancestor of each particle is randomly
chosen and stored during the algorithm execution. We briefly describe the PGAS approach below,
but we refer to [13] for a rigorous analysis of the algorithm properties.

In the proposed PGAS, we assume a set of P particles for each time instant, each representing the
states {xtm, stm}M

‡
m=1. We denote by the vector xit the state of the i-th particle at time t. We also

introduce the ancestor indexes ait ∈ {1, . . . , P} in order to denote the particle that precedes the
i-th particle at time t. That is, ait corresponds to the index of the ancestor particle of xit. Let also
xi1:t be the ancestral path of particle xit, i.e., the particle trajectory that is recursively defined as

xi1:t = (x
ait
1:t−1,x

i
t). Figure 2a shows an example to clarify the notation.
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The algorithm is summarized in Figure 2b. For each time instant t, we first generate the ancestor
indexes for the first P − 1 particles according to the importance weights wit−1. Given these an-
cestors, the particles are then propagated across time according to a distribution rt(xt|xat

1:t−1). For
simplicity, and dropping the global variables from the notation for conciseness, we assume that

rt(xt|xat
1:t−1) = p(xt|xat

t−1) =
M‡∏

m=1

p(xtm|stm, xat(t−1)m, s
at
(t−1)m)p(stm|sat(t−1)m), (3)

i.e., particles are propagated as in Figure 1a using a simple bootstrap proposal kernel,
p(xtm, stm|s(t−1)m, x(t−1)m). The P -th particle is instead deterministically set to the reference
particle, xPt = x′t, whereas the ancestor indexes aPt are sampled according to some weights w̃it−1|T .
Indeed, this is a crucial step that vastly improves the mixing properties of the MCMC kernel.

We now focus on the computation on the importance weights wit and the ancestor weights w̃it−1|T .
For the former, the particles are weighted according to wit =Wt(x

i
1:t), where

Wt(x1:t) =
p(x1:t|y1:t)

p(x1:t−1|y1:t−1)rt(xt|x1:t−1)
∝ p(yt|xt−L+1:t), (4)

being yτ1:τ2 the set of observations {yt}τ2t=τ1 . Eq. 4 implies that, in order to obtain the importance
weights, it suffices to evaluate the likelihood at time t. The weights w̃it−1|T are given by

w̃it−1|T = wit−1
p(xi1:t−1,x

′
t:T |y1:T )

p(xi1:t−1|y1:t−1)
∝ wit−1p(x′t|xit−1)

t+L−2∏

τ=t

p(yτ |xi1:t−1,x′t:T ). (5)

Note that, for memoryless models (i.e., L = 1), Eq. 5 can be simplified, since the product in the last
term is not present and, therefore, w̃it−1|T ∝ wit−1p(x

′
t|xit−1). For L > 1, the computation of the

weights w̃it−1|T in (5) for i = 1, . . . , P has computational time complexity scaling as O(PM‡L2).
Since this computation needs to be performed for each time instant (and this is the most expensive
calculation), the resulting algorithm complexity scales as O(PTM‡L2).

4 Experiments
We now evaluate the proposed model and inference algorithm on four different applications, which
are detailed below and summarized in Table 1. For the PGAS kernel, we use P = 3, 000 particles in
all our experiments. Additional details on the experiments are given in the Supplementary Material.

Multitarget Tracking. In the multitarget tracking problem, we aim at locating the position of
several moving targets based on noisy observations. Under a general setup, a varying number of
indistinguishable targets are moving around in a region, appearing at random in space and time.
Multitarget tracking plays an important role in many areas of engineering such as surveillance,
computer vision and signal processing [18, 16, 21, 6, 12]. Here, we focus on a simple synthetic
example to show that our proposed iFDM can handle time-dependent continuous-valued hidden
states. We place three moving targets within a region of 800 × 800 metres, where 25 sensors are
located on a square grid. The state xtm = [x

(1)
tm, x

(2)
tm, v

(1)
tm , v

(2)
tm ]> of each target consists of its

position and velocity in a two dimensional plane, and we assume a linear Gaussian dynamic model
such that, while active, xtm evolves according to

xtm = Gxx(t−1)m +Guut (6)

where Gx = [1 0Ts 0; 0 1 0Ts; 0 0 1 0; 0 0 0 1], Gu = [
T 2
s

2 0; 0
T 2
s

2 ;Ts 0; 0Ts], Ts = 0.5 is the sam-
pling period, and ut ∼ N (0, I) is a vector that models the acceleration noise. For each considered
target, we sample the initial position uniformly in the sensor network space, and assume that the
initial velocity is Gaussian distributed with zero mean and covariance 0.01I. Following [21, 12], we
generate (T = 300) observations based on the received signal strength (RSS), where the measure-

ment of sensor j at time t is given by ytj =
∑
m:stm=1 P0 ·

(
d0
dmjt

)γ
+ ntj . Here, ntj ∼ N (0, 2)

is the noise term, dmjt is the distance between target m and sensor j at time t, P0 = 10 is the
transmitted power, and d0 = 100 metres and γ = 2 are, respectively, the reference distance and the
path loss exponent, which account for the radio propagation model. In our inference algorithm, we
sample the noise variance by placing an InvGamma(1,1) distribution as its prior. Here, we compare
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Application Model X p(xtm|stm = 1, x(t−1)m, s(t−1)m = 1) L

Multitarget Tracking Infinite factorial LDS R4 N (xtm|Gxx(t−1)m,GuG
>
u ) 1

Cocktail Party ICA iFHMM R N (xtm|0, σ2
x) 1

Power Dissagregation Non-binary iFHMM {0, 1, . . . , Q− 1} amjk = p(xtm = k|x(t−1)m = j) 1

Multiuser Detection − A⋃{0} U(A) ∈ N

Table 1: Applications of the iFDM.
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Figure 3: Results for the multitarget tracking problem.

the performance of the iFDM with a ‘genie-aided’ finite factorial model with perfect knowledge of
the number of targets and noise variance.

In Figures 3a and 3b, we show the true and inferred trajectories of the targets, and the temporal
evolution of the position error of the iFDM. Additionally, Figure 3c shows the average position error
(in absolute value) for our iFDM and the genie-aided method. In these figures, we observe that the
proposed model and algorithm is able to detect the three targets and their trajectories, providing
similar performance to the genie-aided method. In particular, both approaches provide average
position errors of around 6 metres, which is thrice the noise variance.

Cocktail Party. We now address a blind speech separation task, also known as the cocktail party
problem. Given the recorded audio signals from a set of microphones, the goal is to separate out the
individual speech signals of multiple people who are speaking simultaneously. Speakers may start
speaking or become silent at any time. Similarly to [23], we collect data from several speakers from
the PASCAL ‘CHiME’ Speech Separation and Recognition Challenge website.2 The voice signal
for each speaker consists of 4 sentences, which we append with random pauses in between each sen-
tence. We artificially mix the data 10 times (corresponding to 10 microphones) with mixing weights
sampled from Uniform(0, 1), such that each microphone receives a linear combination of all the con-
sidered signals, corrupted by Gaussian noise with standard deviation 0.3. We consider two scenarios,
with 5 and 15 speakers, and subsample the data so that we learn from T = 1, 354 and T = 1, 087
datapoints, respectively. Following [23], our model assumes p(xtm|stm = 1, x(t−1)m, s(t−1)m) =
N (xtm|0, 2), and xtm = 0 whenever stm = 0. We also model yt as a linear combination of all
the voice signals under Gaussian noise, i.e., yt =

∑M+

m=1 wmxtm + nt, where nt ∼ N (0, σ2
yI)

is the noise term, wm ∼ N (0, I) is the 10-dimensional weighting vector associated to the m-th
speaker, and σ2

y ∼ InvGamma(1, 1). We compare our iFDM with the ICA iFHMM in [23] using
FFBS sweeps for inference, with (i) p(xtm|stm = 1) = N (xtm|0, 2) (denoted as FFBS-G), and (ii)
p(xtm|stm = 1) = Laplace(xtm|0, 2) (denoted as FFBS-L).

For the scenario with 5 speakers, we show the true and the inferred (after iteration 10, 000) number
of speakers in Figures 4a, 4b, 4c and 4d, along with their activities during the observation period. In
order to quantitatively evaluate the performance of the different algorithms, we show in Figure 4e
(top) the activity detection error rate (ADER), which is computed as the probability of detecting
activity (inactivity) of a speaker while that speaker is actually inactive (active). As the algorithms
are unsupervised, we sort the estimated chains so that the ADER is minimized. If the inferred
number of speakers M+ is smaller (larger) than the true number of speakers, we consider some
extra inferred inactive chains (additional speakers). The PGAS-based approach outperforms the two
FFBS-based methods because it can jointly sample the states of all chains (speakers) for each time
instant, whereas the FFBS requires sampling each chain conditioned on the current states of the
other chains, leading to poor mixing, as discussed in [22]. As a consequence, the FFBS tends to
overestimate the number of speakers, as shown in Figure 4e (bottom).

2http://spandh.dcs.shef.ac.uk/projects/chime/PCC/datasets.html
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(a) Ground truth. (b) PGAS. (c) FFBS-G. (d) FFBS-L.

Method # of Speakers
5 15

A
D

E
R PGAS 0.08 0.08

FFBS-G 0.25 0.14
FFBS-L 0.14 0.12

M
+

PGAS 5 15
FFBS-G 7 15
FFBS-L 8 15

(e) ADER / Inferred M+.

Figure 4: Results for the cocktail party problem.

Algorithm H. 1 H. 2 H. 3 H. 4 H. 5
PGAS 0.68 0.79 0.60 0.58 0.55
FFBS 0.59 0.78 0.56 0.53 0.43

(a) REDD (‘H’ stands for ‘House’).

Algorithm Day 1 Day 2
PGAS 0.76 0.82
FFBS 0.67 0.72

(b) AMP.

Table 2: Accuracy for the power disaggregation problem.

Power Disaggregation. Given the aggregate whole-home power consumption signal, the power
disaggregation problem consists in estimating both the number of active devices in the house and
the power draw of each individual device [11, 7]. We validate the performance of the iFDM on
two different real databases: the Reference Energy Disaggregation Data Set (REDD) [11], and the
Almanac of Minutely Power Dataset (AMP) [15]. For the AMP database, we consider two 24-hour
segments and 8 devices. For the REDD database, we consider a 24-hour segment across 5 houses
and 6 devices. Our model assumes that each device can take Q = 4 different states (one inactive
state and three active states with different power consumption), i.e., xtm ∈ {0, 1, . . . , Q− 1}, with
xtm = 0 if stm = 0. We place a symmetric Dirichlet prior over the transition probability vectors
of the form amj ∼ Dirichlet(1), where each element amjk = p(xtm = k|stm = 1, x(t−1)m =

j, s(t−1)m). When xtm = 0, the power consumption of device m at time t is zero (Pm0 = 0), and
when xtm ∈ {1, . . . , Q−1} its average power consumption is given by Pmxtm

. Thus, the total power
consumption is given by yt =

∑M+

m=1 P
m
xtm

+ nt, where nt ∼ N (0, 0.5) represents the additive
Gaussian noise. For q ∈ {1, . . . , Q− 1}, we assume a prior power consumption Pmq ∼ N (15, 10).
In this case, the proposed model for the iFDM resembles a non-binary iFHMM and, therefore, we
can also apply the FFBS algorithm to infer the power consumption draws of each device.

In order to evaluate the performance of the different algorithms, we compute the mean accuracy of

the estimated consumption of each device (higher is better), i.e., acc = 1−
∑T

t=1

∑M
m=1 |x

(m)
t −x̂(m)

t |
2
∑T

t=1

∑M
m=1 x

(m)
t

,

where x(m)
t and x̂(m)

t = Pmxtm
are, respectively, the true and the estimated power consumption by

device m at time t. In order to compute the accuracy, we assign each estimated chain to a device
so that the accuracy is maximized. If the inferred number of devices M+ is smaller than the true
number of devices, we use x̂(m)

t = 0 for the undetected devices. IfM+ is larger than the true number
of devices, we group all the extra chains as an “unknown” device and use x(unk)

t = 0. In Table 2 we
show the results provided by both algorithms. The PGAS approach outperforms the FFBS algorithm
in the five houses of the REDD database and the two selected days of the AMP database. This occurs
because the PGAS can simultaneously sample the hidden states of all devices for each time instant,
whereas the FFBS requires conditioning on the current states of all but one device.

Multiuser Detection. We now consider a digital communication system in which users are allowed
to enter or leave the system at any time, and several receivers cooperate to estimate the number of
users, the (digital) symbols they transmit, and the propagation channels they face. Multipath propa-
gation affects the radio signal, thus causing inter-symbol interference. To capture this phenomenon
in our model, we use L ≥ 1 in this application. We consider a multiuser Wi-Fi communication sys-
tem, and we use a ray tracing algorithm (WISE software [3]) to design a realistic indoor wireless sys-
tem in an office located at Bell Labs Crawford Hill. We place 12 receivers and 6 transmitters across
the office, in the positions respectively marked with circles and crosses in Figure 5 (all transmitters
and receivers are placed at a height of 2 metres). Transmitted symbols belong to a quadrature phase-
shift keying (QPSK) constellation,A = {±1±

√−1√
2
}, such that, while active, the transmitted symbols

are independent and uniformly distributed in A, i.e., p(xtm|stm = 1, x(t−1)m, s(t−1)m) = U(A).
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14m
1 2 3 4 5 6

7 8 9 10 11 12
1
2

3

45
6

Figure 5: Plane of the office building at Bell Labs Crawford Hill.

Model L
1 2 3 4 5

iFDM 6/6 6/6 6/6 6/6 6/6
iFHMM 3/11 3/11 3/8 1/10 −

(a) # Recovered transmitters / Inferred M+.

Model L
1 2 3 4 5

iFDM 2.58 2.51 0.80 0.30 0.16
iFHMM 2.79 1.38 5.53 1.90 −

(b) MSE of the channel coefficients (×10−6).

Table 3: Results for the multiuser detection problem.

The observations of all the receivers are weighted replicas of the transmitted symbols under noise,
yt =

∑M+

m=1

∑L
`=1 h

m
` x(t−`+1)m + nt, where xtm = 0 for the inactive states, and the chan-

nel coefficients hm` and noise variance σ2
y are provided by WISE software. For inference, we as-

sume Rayleigh-fading channels and, therefore, we place a circularly symmetric complex Gaussian
prior distribution over the channel coefficients, hm` |σ2

` ∼ CN (0, σ2
` I,0), and over the noise term,

nt ∼ CN (0, σ2
yI,0). We place an inverse gamma prior over σ2

` with mean and standard deviation
0.01e−0.5(`−1). The choice of this particular prior is based on the assumption that the channel co-
efficients hm` are a priori expected to decay with the memory index `, since the radio signal suffers
more attenuation as it propagates through the walls or bounces off them. We use an observation
period T = 2, 000, and vary L from 1 to 5. Five channel taps correspond to the radio signal trav-
elling a distance of 750 m, which should be enough given the dimensions of this office space. We
compare our iFDM with a non-binary iFHMM model with state space cardinality |X | = 5L using
FFBS sweeps for inference (we do not run the FFBS algorithm for L = 5 due to its computational
complexity).

We show in Table 3a the number of recovered transmitters (i.e., the number of transmitters for which
we recover all the transmitted symbols with no error) found after running the inference algorithms,
together with the inferred value of M+. We see that the iFHMM tends to overestimate the number
of transmitters, which deteriorates the overall symbol estimates and, as a consequence, not all the
transmitted symbols are recovered. We additionally report in Table 3b the MSE of the first channel
tap, i.e., 1

6×12
∑
m ||hm1 −ĥm1 ||2, being ĥm` the inferred channel coefficients. We sort the transmitters

so that the MSE is minimized, and ignore the extra inferred transmitters. In general, the iFDM
outperforms the iFHMM approach, as discussed above. Under our iFDM, the MSE decreases as we
consider a larger value of L, since the model better fits the actual radio propagation model.

5 Conclusions
We have proposed a general BNP approach to solve source separation problems in which the number
of sources is unknown. Our model builds on the mIBP to consider a potentially unbounded number
of hidden Markov chains that evolve independently according to some dynamics, in which the state
space can be either discrete or continuous. For posterior inference, we have developed an algorithm
based on PGAS that solves the intractable complexity that the FFBS presents in many scenarios,
enabling the application of our iFDM in problems such as multitarget tracking or multiuser detec-
tion. In addition, we have shown empirically that our PGAS approach outperforms the FFBS-based
algorithm (in terms of accuracy) in the cocktail party and power disaggregation problems, since
the FFBS gets more easily trapped in local modes of the posterior in which several Markov chains
correspond to a single hidden source.

Acknowledgments
I. Valera is currently supported by the Humboldt research fellowship for postdoctoral researchers
program and acknowledges the support of Plan Regional-Programas I+D of Comunidad de Madrid
(AGES-CM S2010/BMD-2422). F. J. R. Ruiz is supported by an FPU fellowship from the Span-
ish Ministry of Education (AP2010-5333). This work is also partially supported by Ministerio de
Economı́a of Spain (projects COMPREHENSION, id. TEC2012-38883-C02-01, and ALCIT, id.
TEC2012-38800-C03-01), by Comunidad de Madrid (project CASI-CAM-CM, id. S2013/ICE-
2845), by the Office of Naval Research (ONR N00014-11-1-0651), and by the European Union
7th Framework Programme through the Marie Curie Initial Training Network ‘Machine Learning
for Personalized Medicine’ (MLPM2012, Grant No. 316861).

8



References
[1] C. Andrieu, A. Doucet, and R. Holenstein. Particle Markov chain Monte Carlo methods. Journal of the

Royal Statistical Society Series B, 72(3):269–342, 2010.
[2] M. J. Beal, Z. Ghahramani, and C. E. Rasmussen. The infinite hidden Markov model. In Advances in

Neural Information Processing Systems, volume 14, 2002.
[3] S. J. Fortune, D. M. Gay, B. W. Kernighan, O. Landron, R. A. Valenzuela, and M. H. Wright. WISE

design of indoor wireless systems: Practical computation and optimization. IEEE Computing in Science
& Engineering, 2(1):58–68, March 1995.

[4] E. B. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky. Bayesian nonparametric methods for learning
Markov switching processes. IEEE Signal Processing Magazine, 27(6):43–54, 2010.

[5] E. B. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky. A sticky HDP-HMM with application to
speaker diarization. Annals of Applied Statistics, 5(2A):1020–1056, 2011.

[6] L. Jiang, S. S. Singh, and S. Yıldırım. Bayesian tracking and parameter learning for non-linear multiple
target tracking models. arXiv preprint arXiv:1410.2046, 2014.

[7] M. J. Johnson and A. S. Willsky. Bayesian nonparametric hidden semi-Markov models. Journal of
Machine Learning Research, 14:673–701, February 2013.

[8] M. I. Jordan. Hierarchical models, nested models and completely random measures. Springer, New York,
(NY), 2010.

[9] R. E. Kalman. A new approach to linear filtering and prediction problems. ASME Journal of Basic
Engineering, 82(Series D):35–45, 1960.

[10] D. Knowles and Z. Ghahramani. Nonparametric Bayesian sparse factor models with application to gene
expression modeling. The Annals of Applied Statistics, 5(2B):1534–1552, June 2011.

[11] J Z. Kolter and T. Jaakkola. Approximate inference in additive factorial hmms with application to energy
disaggregation. In International conference on artificial intelligence and statistics, pages 1472–1482,
2012.

[12] J. Lim and U. Chong. Multitarget tracking by particle filtering based on RSS measurement in wireless
sensor networks. International Journal of Distributed Sensor Networks, March 2015.

[13] F. Lindsten, M. I. Jordan, and T. B. Schön. Particle Gibbs with ancestor sampling. Journal of Machine
Learning Research, 15(1):2145–2184, 2014.

[14] F. Lindsten and T. B. Schön. Backward simulation methods for Monte Carlo statistical inference. Foun-
dations and Trends in Machine Learning, 6(1):1–143, 2013.

[15] S. Makonin, F. Popowich, L. Bartram, B. Gill, and I. V. Bajic. AMPds: A public dataset for load dis-
aggregation and eco-feedback research. In Proceedings of the 2013 IEEE Electrical Power and Energy
Conference (EPEC), 2013.

[16] S. Oh, S. Russell, and S. Sastry. Markov chain Monte Carlo data association for general multiple-target
tracking problems. In IEEE Conference on Decision and Control, volume 1, pages 735–742, Dec 2004.

[17] P. Orbanz and Y. W. Teh. Bayesian nonparametric models. In Encyclopedia of Machine Learning.
Springer, 2010.
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