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On Proactive Caching with Demand and Channel Uncertainties

L. Srikar Muppirisetty1, John Tadrous2, Atilla Eryilmaz3, and Henk Wymeersch1

Abstract— Mobile data traffic has surpassed that of voice
to become the main component of the system load of today’s
wireless networks. Recent studies indicate that the data de-
mand patterns of mobile users are predictable. Moreover, the
channel quality of mobile users along their navigation paths
is predictable by exploiting their location information. This
work aims at fusing the statistically predictable demand and
channel patterns in devising proactive caching strategiesthat
alleviate network congestion. Specifically, we establish afunda-
mental bound on the minimum possible cost achievable by any
proactive scheduler under time-invariant demand and channel
statistics as a function of their prediction uncertainties, and
develop an asymptotically optimal proactive service policy that
attains this bound as the prediction window grows. In addition,
the established bound yields insights on how the demand and
channel statistics affect proactive caching decisions. Wereveal
some of these insights through numerical investigations.

I. INTRODUCTION

The major bottleneck for future networks lies in handling
the increasingly high mobile data traffic from the users.
It is predicted that mobile data traffic will see a nine-fold
increase by the end of 2020 [1]. Therefore, networks should
consider employing various smart resource allocation strate-
gies to comply with this rapidly rising user data demands.
Interestingly, the demand patterns of the mobile users [2]–
[4] and also their experienced channel quality metrics (CQM)
including, e.g., received signal strength, RMS delay spread,
and interference levels are predictable [5]–[8].

Today’s networks predominantly employ reactive strate-
gies for resource allocation in which the user requests are
served by the network after being initiated by the user. This
reactive approach suffers from huge penalty when there is
heavy traffic from the users requesting data. In contrast,
proactive resource allocation strategies, which are seen as
one of the key disruptive technologies for 5G wireless
networks [9], can track, learn, and then predict the user
demand requests ahead of time, and hence possess more
flexibility in scheduling these requests before their actual
time of arrival. The main advantage of this approach is
network load balancing over large time scale dynamics, at
the expense of possible waste of network resources [10].
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Proactive design strategies have gained importance very
recently. The work in [11] introduced a novel proactive re-
source allocation paradigm by exploiting the predictability of
the user behavior. It provided a solid theoretical background
and demonstrated significant spectral efficiency gains in vari-
ous scenarios. In [10], proactive resource allocation schemes
under time-invariant and time-varying demand statistics are
studied. The authors proposed fundamental lower bounds on
the achievable costs, and developed asymptotically optimal
policies that approach these bounds when the prediction win-
dow size is increased. In [12], [13], the impact of proactive
scheduling on user delay has been investigated under ideal-
istic queuing scenarios whereby it is shown that proactive
scheduling reduces average delay exponentially in proactive
window size. However, the utilization of predicted CQM
for proactive resource allocation is not captured in proactive
scheduling thus far. Energy efficient scheduling such as in
[14], [15] studied optimal policies with statistically known
CQM, but assumed perfectly predictable demand. Clearly,
there is a gap in the research area of designing optimal
proactive schedulers with demand and channel uncertainties.
In [5]–[8], a location-aided framework was proposed and
showed how large-scale channel characteristics of the wire-
less channel can be predicted by exploiting the user’s location
information. Since location-aided predicted CQM is coarse, it
can be efficiently harnessed in predictive/proactive resource
allocation whereby demand dynamics and large scale channel
characteristics vary within the same time scale.

In this work, we study proactive resource allocation
strategies that exploit both the predictable data demand
and channel characteristics, with uncertainties. Especially,
we consider a time-invariant demand statistics model in
which all the incoming requests from the user over time
are statistically indistinguishable. We further considertime-
invariant channel statistics model in which user experiencing
a channel state over time is independent and identically
distributed. The main contributions of this paper can be
summarized as follows:

• We extend the work in [10] with the inclusion of
predicted channel statistics of the users and study its
effect on the proactive scheduling.

• We establish a global lower bound on the proactive
scheduling cost that captures the impact of demand and
channel uncertainties.

• Driven by insights from the obtained bound, we de-
velop a stationary and asymptotically optimal proactive
service policy that even approaches that bound as pre-
diction window size grows.



• We demonstrate that the designed proactive scheduler
offers better performance in terms of lower achievable
cost in contrast to the baseline reactive scheduler.

Notation: Vectors and matrices are written in bold (e.g.,
a vectork and a matrixK); E[.] denotes expectation;{}t
denotes a collection of elements, and()t denotes a sequence
of elements.

II. SYSTEM MODEL

We consider a network which consists of a set ofN users
N = {1, 2, . . . , N}. The network is equipped with a service
provider which serves the user data requests by allocating
resources to them on a per time slot basis.

User demand model

We assume the data requests from the users is not perfectly
predictable but with uncertainties. Letdn,t ∈ {0, 1} be
a binary random variable that captures the probabilistic
nature of the data request from a usern in time slot t,
where dn,t = 1 indicates a data request with probability
πn,t = P (dn,t = 1). Each usern ∈ N over an infinite
time period generates independent sequence of data requests
{dn,t}t. We assume time-invariant demand statistics for the
data requests from the users1. Then,{dn,t}t for each user
n is an independent and identically distributed sequence
of random variables withE[dn,t] = π̄n. Let us denote the
demand profile of the users as̄π = (π̄n)n. We assume that
the service provider is aware of the demand profileπ̄, which
captures the statistical characteristics of future demand. Each
request from the user is served by the network by spending
S amount of its resources2.

Wireless channel model

We assume each usern in a time slot t experiences
one of theKn possible channel states from the setCn =

{g
(k)
n , k = 1, . . . ,Kn} with corresponding probabilities

ψn = {ψ
(k)
n , k = 1, . . . ,Kn}, such that

∑Kn

k=1ψ
(k)
n =

1, ∀n ∈ N . It should be noted that the set of channel
statesCn, the number of possible channel statesKn, and
the possible channel statesg(k)n are all dependent on user
index n. Therefore, different users tend to have different
support sets of channel realizations. All channel realizations
are assumed to be non-negative and finite. We further assume
time-invariant channel statistics for the channel states of the
users across different time slots. In other words, usern
experiences a channel stateg(k)n , which is independent and
identically distributed across different time slots. The channel
profile of users is denoted asΨ = (g

(k)
n , ψ

(k)
n )k=1,...Kn

n=1,...N .
Let us define a channel realization vectorg =

[g1, g2, . . . , gn] denoting a possible realization of channels
for all n users. The probability of this vector being realized

1The system can further be generalized to time-varying (fluctuating)
demand characteristics as in [10], yet this will lead to complicated notation
without significant conceptual benefit. Hence, we have not considered this
scenario here.

2The results obtained in this work can directly be generalized to the case
where such amount of resources is user and time-dependent, i.e.,Sn,t, yet
known to the system within the prediction window ofT slots in advance.

is Pc(g). Note thatg ∈ C, whereC =
∏

n Cn. We can thus
write Pc(g) =

∏

n P (gn). We further denote{gt}t as a
sequence of channel realization of all users over timet.

Cost function model

We denoteCd(x), Cd : R+ → R+, as the demand cost
function for serving a demandx ≥ 0 in a time slot. The
demand cost functionCd(x) is assumed to be strictly convex
and increasing. We denoteCc(g), Cc : R+ → R+, as the
channel cost function to utilize the channelg ≥ 0 in a time
slot. The channel cost functionCc(g) is decreasing3 in g.

Reactive network model

We consider reactive network as a baseline scenario in
which the requests are served upon their arrival. The load of
a usern in time slot t for a reactive network under channel
realizationgn,t is written as

LR
n,t(gn,t) = S dn,t Cc(gn,t). (1)

The time-averaged expected cost of all users under reactive
operation is

cR(π̄,Ψ) = lim sup
t→∞

1

t

t−1
∑

l=0

E

[

Cd

(

N
∑

n=1

LR
n,t(gn,t)

)

]

, (2)

where expectation is over the demand and channel statistics
of the users.

Proactive network model

We assume the service provider is aware of the demand
π̄ and channelΨ profiles of the users over aT time slot
prediction window. As shown in [10], the network traffic load
is averaged out over time if the service provider employs a
proactive operation. Following the same notation as in [10],
let us denoteun,t(τ) as the amount of proactive service
applied to a usern at time slott for a future possible request
after τ slots4, i.e., at timet + τ , where1 ≤ τ ≤ T . The
proactive service of a future request cannot exceed the total
demand ofS units of service, i.e.,

T
∑

τ=1

un,t−τ (τ) ≤ S, ∀n, t, (3)

and the proactive service can never be negative, i.e.,

un,t(τ) ≥ 0, ∀n, t, τ. (4)

Let us denote the amount of load generated by a usern
in a time slott asLP

n,t(un,t, gn,t) under proactive control

3We can viewS, for example, as the total number of bitsB =
∑

t
bt to

be delivered over aT time slot period. There is a channel cost for sending
bt bits in each time slot. The channel cost is related to the amount of energy
spentEt to sendbt bits over the wireless channelg. Obviously, the cost is
more if channelg is bad and vice-versa. So, the costEt is inversely related
to the channel stateg.

4The notation of the proactive serviceun,t(τ) can best understood with
an example. Consider the case witht = 1 andτ = 2, thenun,1(2) indicates
the proactive service applied in time slot1 for a future possible request in
time slot 3, i.e., two slots ahead of the current time slot.



un,t = (un,t(τ))τ and the channel realizationgn,t, which is
written as

LP
n,t(un,t, gn,t) =

(

S −
T
∑

τ=1

un,t−τ (τ)

)

dn,t Cc(gn,t)

+

T
∑

τ=1

un,t(τ)Cc(gn,t), (5)

where the term
∑T

τ=1 un,t−τ (τ) corresponds to the past
applied proactive services for each usern and the term
∑T

τ=1 un,t(τ) captures the proactive service to be applied
for usern over the nextT slots.

Problem statement

The goal of the proactive controller is to determine the
optimal online proactive service policy that minimizes the
time averaged expected cost while delivering the content on
time. The optimization problem of the proactive controller
is written ascPT (π̄,Ψ) =

min
{un,t(τ)}n,t,τ

lim sup
t→∞

1

t

t−1
∑

l=0

E

[

Cd

(

N
∑

n=1

LP
n,l(un,l, gn,l

)

)

]

s.t. (3), (4). (6)

The subscriptT captures the proactive service window size,
and the superscriptP indicates proactive operation.

III. L OWER BOUND AND ASYMPTOTICALLY OPTIMAL

DESIGN

Under the time-invariant demand statistics model, the
incoming demand requests from the user over time are sta-
tistically indistinguishable. Under the time-invariant channel
statistics model, a channel state experienced by a user is inde-
pendent and identically distributed across different timeslots.
For this model, the proactive gains come from the ability
to harness available demand and channel statistics together
with observable instantaneous realizations of demand and
channels to flatten the network load over time at minimum
cost. As in [10], the exact solution of (6) is not tractable
due to infinite dimensionality of the problem. Instead, we
resort to find a global lower bound on the achievable cost as
a function of demand and channel uncertainties, and develop
an asymptotically optimal policy which attain that bound as
proactive widow size grows.

A. Global lower bound on minimum achievable cost

In this subsection, we state a fundamental, non-trivial
bound on achievable costs by any proactive policy.

Theorem 1:Let Bt = {n ∈ N : dn,t = 1} be the set of
users that generate data requests at timet according toπ̄,
andgt ∈ C be the channel realization vector of all the users
at timet according toΨ. Then, under time-invariant demand
and channel statistics model and for anyT ≥ 1, the optimal
proactive scheduling costcPT (π̄,Ψ) of (6), satisfies

cPT (π̄,Ψ) ≥ cU (π̄,Ψ) (7)

where

cU (π̄,Ψ) = min
{µ̃n(B,g)}n,g,B

{

∑

g∈C

Pc(g)
∑

B⊆N

Pd(B)×

Cd

(

∑

n∈B

(

S Cc(gn)−

(

∑

h∈C

Pc(h)

×
∑

D⊆N

Pd(D) µ̃n (D,h)

)

Cc(gn)

)

+

N
∑

n=1

µ̃n (B,g)Cc(gn)

)}

subject to0 ≤ µ̃n (B,g) ≤ S, ∀n,B,g (8)

wherePd(B) is the probability of setBt = B under the time-
invariant demand statistics model,Pc(g) is the probability
of channel realizationg under the time-invariant channel
statistics model.

Proof: See Appendix I.
In the objective of (8), the term
∑

h∈C Pc(h)
∑

D⊆N Pd(D) µ̃n (D,h) corresponds to
the average proactive service assigned to a request from
user n before the request is actually realized. The term
µ̃n (B,g) is the total expected proactive service assigned to
all possible requests from usern when the current set of
demanding users isB and their channel realization isg. We
note that the optimization ofcU (π̄,Ψ) is convex and yields
a unique solution due to strict convexity ofCd(·). The
theorem establishes that no proactive scheduling policy can
achieve a lower cost than the non-trivial boundcU (π̄,Ψ)
under the uncertainties associated with the time-invariant
demand and channel statistics. In contrast to [10, Theorem 1]
with only time-invariant demand statistics model, the lower
boundcU (π̄,Ψ) accounts for the additional information of
channel statistics available at the scheduler.

B. Asymptotically optimal design

In this subsection, we develop a simple stationary policy
that hinges on the solution of (8) to deliver efficient perfor-
mance in moderateT regimes, and asymptotically realizes
the lower boundcU (π̄,Ψ).

Definition 1 (Policyp): Let {µn(B,g)}n,B,g denote the
optimal solution to (8). We consider proactive scheduling
policy p that observes the set of requesting usersBt, and
channel gain realizationsgt every time slott, and assigns
proactive controlsun,t(τ) =

µn(Bt,gt)
T , ∀n, t, 1 ≤ τ ≤ T .

From the definition, the online policyp is stationary
and depends only on the current realization of demand and
channel quality. In addition, it is a simple policy that directly
employs a look-up table of length2N

∏

nKn which entails
a search process of complexityO(N +

∑

n log(Kn)). Note
that, to apply policyp, the solution of (8) has to be obtained
offline based on the demand̄π and channelΨ profiles.

Now, we establish the asymptotic optimality property of
policy p.
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Fig. 1. Comparison of reactive and proactive costs for single user
scenario under the time-invariant demand and channel statistics model. The
probabilities of the demand̄π1 and channelψ(1)

1 are varied with the channel

states fixed tog(1)1 = 1 (bad channel state),g(2)1 = 2 (good channel state).

Theorem 2:Denote the time average expected cost under
policy p by cp

T (π̄,Ψ). Then policyp is asymptotically opti-
mal, in the sense thatlim supT→∞ |cp

T (π̄,Ψ)− cPT (π̄,Ψ)|
= 0.

Proof: Please refer to Appendix II.
Thanks to strong law of large numbers, equal allocation

of proactive service throughout the prediction window of
size T , policy p achieves the global lower bound asT →
∞. Having established the key characteristics of proactive
scheduling under demand and channel uncertainties, we next
move on to deeper insights on the system performance
through numerical simulations.

IV. N UMERICAL RESULTS AND DISCUSSION

A. Scenario

The network scheduler is aware of the user demandπ̄

and channelΨ profiles. The scheduler spendsS = 1 units
of service for each request. Each usern observes one of
the two possible channel states{g(1)n , g

(2)
n } with probabilities

{ψ
(1)
n , 1 − ψ

(1)
n }. We considerg(2)n ≥ g

(1)
n , henceg(2)n is

termed the good channel state, whileg(1)n is the bad channel
state. We assume the cost function for the demand to be of
polynomial formCd(x) = x4 and for the channel usage as
Cc(g) = 1/g.

B. Impact of demand and channel probabilities on the ex-
pected cost

We consider a single user scenario to understand the
impact of demand and channel statistics on expected cost
for reactive and proactive schedulers. The time averaged
expected cost of the reactive scheme can be computed from
(2) as

cR(π̄1, g
(1)
1 , g

(2)
1 , ψ

(1)
1 )

= π̄1

(

(1/g
(1)
1 )4ψ

(1)
1 + (1/g

(2)
1 )4(1− ψ

(1)
1 )
)

. (9)

We denoteµ1 = µ̃1(0, g
(1)
1 ), µ2 = µ̃1(1, g

(1)
1 ), µ3 =

µ̃1(0, g
(2)
1 ), µ4 = µ̃1(1, g

(2)
1 ) to be make the notation simpler.

The proactive controlsµ1 and µ3 corresponds to the two
channels states when there is no demand requests, and the
corresponding controls with demand requests areµ2 andµ4.
Then the lower bound to the proactive scheduling cost can
be computed from (8) as

cU(π̄1, g
(1)
1 , g

(2)
1 , ψ

(1)
1 )

= min
(µ1,µ2,µ3,µ4)�0

ψ
(1)
1 (1− π̄1)µ

4
1 (1/g

(1)
1 )4 + ψ

(1)
1 π̄1

× (1/g
(1)
1 )4

(

1− ψ
(1)
1 (1− π̄1)µ1 − ψ

(1)
1 π̄1µ2 − (1− ψ

(1)
1 )

× (1− π̄1)µ3 − (1− ψ
(1)
1 )π̄1µ4 + µ2

)4

+ (1− ψ
(1)
1 )

× (1− π̄1)µ
4
3 (1/g

(2)
1 )4 + (1− ψ

(1)
1 )π̄1(1/g

(2)
1 )4

×
(

1− ψ
(1)
1 (1− π̄1)µ1 − ψ

(1)
1 π̄1µ2 − (1− ψ

(1)
1 )

× (1− π̄1)µ3 − (1− ψ
(1)
1 )π̄1µ4 + µ4

)4

(10)

Fig. 1 compares the average costscR(π̄1, g
(1)
1 , g

(2)
1 , ψ

(1)
1 )

and cU(π̄1, g
(1)
1 , g

(2)
1 , ψ

(1)
1 ), achievable by the reactive and

proactive schemes respectively. It can be observed that the
proactive scheduling offers lower cost compared to the re-
active scheme for any(π̄1, ψ

(1)
1 ). The reactive scheme bears

no freedom in the scheduling strategy to minimize the cost
as it has to serve the demand requests after they have been
initiated, whereas the proactive scheme offers flexibilityin
the scheduling strategy by exploiting the demand and channel
statistics to minimize cost by load balancing. The expected
cost for both schemes increases with increase inπ̄1 andψ(1)

1 .
The cost increases with increase inπ̄1 due to the fact that
the system is more loaded with incoming demand requests.
The reason for the cost to increase withψ(1)

1 is as the user
more often experiences a bad channel stateg

(1)
1 than a good

channel stateg(2)1 .
It is interesting to note that, unlike in the case with time-

invariant demand statistics and no channel knowledge, the
cost of reactive and proactive services do not converge when
π̄1 = 1 (which was reported in [10]). The reason for this
behavior can be best understood from (10) by settingπ̄1 = 1.
It can be derived easily that proactive service coincides with
the reactive service when the user always observes either
the good or bad channel state all the time. Hence, when
the channels are identical over all slots and data demand is
certain, then there is no gain of applying proactive service.
However, when the channels vary from one slot to another
(i.e.,0 < ψ

(1)
1 < 1), then even with certain data demand there

is still potential to apply proactive service in the presence
of good channel so as to minimize the cost when the bad
channel is realized.

C. Impact of the value of channel states on the expected cost

Fig. 2 compares the impact of increase ing(2)1 on the cost
of reactive and proactive schemes for a single user scenario.
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under the time-invariant demand and channel statistics model. The channel
probability ψ(1)

1 and channel stateg(2)1 are varied with fixed user demand

probability to π̄1 = 0.5 and fixedg(1)1 = 1.

For this scenario, the demand probability is set toπ̄1 = 0.5

and the bad channel state is set tog(1)1 = 1. Whenψ(1)
1 = 1

(shown in blue), which means the user always observesg
(1)
1 ,

there is no impact ofg(2)1 on the expected cost for both the
schemes. Forψ(1)

1 = 0.3 andψ(1)
1 = 0.7, the cost decreases

with increase ing(2)1 . This is expected, as when one of the
channel states becomes good, the applied proactive service
is shifted to that channel condition to minimize the cost. It
should be emphasized that highest gains in terms of reduced
cost is observed wheng(2)1 is twice g(1)1 , while beyond this
point the reduction in cost is minimal. This effect is attributed
to the fourth-order polynomial of the demand cost function.
For lower-order polynomial cost functions, the expected cost
will reduce gradually forg(2)1 > 2.

D. Behavior of the proactive controls

The proactive controls of the single user when there is no
demand requests arẽµ1(0, g

(1)
1 ) and µ̃1(0, g

(2)
1 ) for the two

channels states, respectively, and the corresponding controls
with demand requests arẽµ1(1, g

(1)
1 ) and µ̃1(1, g

(2)
1 ). Fig. 3

depicts proactive controls of a single user when the demand
probability is π̄1 = 0.7 and with equiprobable (ψ(1)

1 = 0.5)
channel statesg(1)1 = 1, and g(2)1 = 2. For this scenario,
we note that irrespective of channel state, proactive service
is always applied when there is no demand from the user.
However, the applied proactive service increases when the
channel conditions are better. Proactive service is not applied
under bad channel conditions when there are requests from
the user. On the other hand, it is advantageous to do proactive
service under good channel conditions even when there are
demand requests from the user.
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Fig. 3. Proactive controls of the single user with channel statesg(1)1 = 1

(bad channel state),g(2)1 = 2 (good channel state) are (i)̃µ1(0, g
(1)
1 )

when no demand request and with channel stateg
(1)
1 , (ii) µ̃1(1, g

(1)
1 ) with

demand request and channel stateg(1)1 , (iii) µ̃1(0, g
(2)
1 ) when no demand

request and with channel stateg(2)1 , and (iv) µ̃1(1, g
(2)
1 ) with demand

request and channel stateg(2)1 . Both channel states are equiprobable, i,e.,

ψ
(1)
1 = 0.5 and user demand probability is set toπ̄1 = 0.7.
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invariant demand and channel statistics model. The demand probability,
channel probability, and the two channel states are kept same for all the
users.

E. Impact of number of users on the expected cost

The impact of increasing the number of users in the system
on the expected cost is depicted in Fig. 4. For easier analysis
of the results, we kept the demand probability, channel
probability, and the two channel states to be same for all the
users. It can be observed that increase in number of users
increases the expected cost, which is due to higher network
load with more users. Similar to the single user case (see
Fig. 1), the expected cost increases with increase in demand
and channel probabilities.
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F. Impact of prediction window size on the expected cost

In Fig. 5, we plot the achieved time average cost under
p against the prediction window sizeT under time-invariant
demand and channel statistics. The considered scenario con-
sists ofN = 4 users in the system who request services
based on the demand profilēπn = 0.5, n = 1, 2, 3, 4. We
assume equiprobable channel states for all users, i.e.,ψ

(k)
n =

0.5, ∀n, k, with same channel state valuesg(1)n = 1, g
(2)
n = 2,

for all the users. It can be observed easily that the policy
p converges rapidly withT to the established lower bound
cU (π̄,Ψ). For the considered scenario, the policy converges
to the lower bound forT = 250. We can consider that the
service provider can proactively serve requests up to one day
ahead. In which the day is divided in toT slots, which means
T = 250 corresponds to a slot size of around 6 minutes
which is reasonable for a user to generate one data request.

V. CONCLUSIONS

We studied the impact of demand and channel uncer-
tainties on the design of a proactive scheduler under time-
invariant demand and channel statistics models. We have
established fundamental lower bound on the achievable cost
through proactive scheduling, and developed asymptotically
optimal policy that attain the lower bound rapidly as the
proactive scheduling window size increases. We observed
that the proactive resource scheduler provides better per-
formance in terms of lower achievable cost, compared to
reactive scheduler. The proactive scheduler offers better
flexibility in scheduling, and adjusts the loads based on user
demand requests and channel conditions. We showed that
the proactive scheduler depends not only on user demand
statistics but also on the realized channel qualities and its
associated statistics.

APPENDIX I
PROOF OFTHEOREM 1

Let us denote{u∗
n,t}t be the optimal proactive scheduling

policy of user n under time-invariant data demand and

channel statistics, whereu∗
n,t = (un,t(τ))τ . The objective

of the proactive scheduler is

cPT (π̄,Ψ) = lim sup
t→∞

1

t

t−1
∑

l=0

E

[

Cd

(

N
∑

n=1

LP
n,l(un,l, gn,l)

)

]

.

(11)
By joint conditioning on all possible sets of requesting users
Bl and their possible experiencing channel state realizations
gl at time l ≥ 0, we can writecPT (π̄,Ψ) as

cPT (π̄,Ψ) = lim sup
t→∞

1

t
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P (Bl = B,gl = g)

× E
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∣Bl = B,gl = g

]

.

(12)

As the set of requesting usersBl in a time slot l is
independent to their observed channel realizationgl, we can
write P (Bl = B,gl = g) as product ofP (gl = g) and
P (Bl = B). Then,

cPT (π̄,Ψ) = lim sup
t→∞

1

t

t−1
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g∈C
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B⊆N
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.

(13)

Now, incorporating the definition ofLP
n,l(un,l, gn,l), we have

cPT (π̄,Ψ) = lim sup
t→∞

1

t
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∑

g∈C

P (gl = g)
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B⊆N

P (Bl = B)

× E

[
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un,l(τ)Cc(gn,l)
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]

. (14)

Note that{gl}l is an i.i.d. sequence under the time-invariant
channel statistics model, thus we could usePc(g) =
∏

n

∑Kn

k=1 ψ
(k)
n I(gn = g

(k)
n ), where I(gn = g

(k)
n ) is an

indicator function that equals one if and only ifgn = g
(k)
n .

That means the set of channel states of users in one time slot
are independent in an another time slot. Furthermore,{Bl}l is
an i.i.d. sequence under the time-invariant demand statistics
model, thus we could usePd(B) =

∏

n∈B π̄n
∏

m/∈B(1 −
π̄m). So, the set of user requests in one time slot are
independent in an another time slot. We obtain

cPT (π̄,Ψ) = lim sup
t→∞

1
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We can apply Jensen’s inequality on (15), sinceCd(x) is
assumed to be strictly convex. Moreover,Bl is independent of
∑T

τ=1 un,l−τ (τ), because the current set of usersBl does not
influence the past services in the time slots{l−1, l−2, . . . l−
T }. However, they will influence the future services because
the future services are dependent on the load in the current
time slot. Similarly,gl is independent of

∑T
τ=1 un,l−τ (τ).

The current channel state of the users does not influence
past applied proactive controls but on the future proactive
services. We can write

cPT (π̄,Ψ) ≥ lim sup
t→∞

1
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Since
∑

B⊆N Pd(B) = 1 ,
∑

g∈C Pc(g) = 1, and
1
t

∑t−1
l=0 1 = 1, we can apply Jensen’s inequality again.

Also invoking lim supt→∞(−f(t)) = − lim inft→∞(f(t)),
we have
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(17)

AsCd(x) is monotonically increasing inx, replacinglim sup
on the right hand side of the expression bylim inf, which
yields
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We define µ̃n (B,g) =
lim inf
t→∞

1
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way
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and we obtain
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It should be noted that constraints on the proactive service
(3) and (4) implies0 ≤ µ̃n (B,g) ≤ S, ∀n,B,g. Now, by
minimizing the right-hand-side of the last expression overall
feasible choices of{µ̃n (B,g)}n,B,g, the theorem is proved.

APPENDIX II
PROOF OFTHEOREM 2

It suffices to prove thatlim supT→∞ cp
T (π̄,Ψ) =

lim infT→∞ cPT (π̄,Ψ). We start bylim supT→∞ cp
T (π̄,Ψ).

Since policyp is stationary, we can writecp
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Now, we consider the sum
∑T

τ=1 un,t−τ(τ), which is in-
dependent ofBt, gt. Define a random variableZT (D,h)
which counts the number of occurrences of the pair of
requesting setD ⊆ N and associated channel gain vector
h ∈ C, in slots t − T , · · · , t − 1. Then,

∑T
τ=1 un,t−τ (τ)

=
∑

D⊆N

∑

h∈C
µn(D,h)ZT (D,h)

T . By the strong law of large



numbers,

lim sup
T→∞
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h∈C

µn(D,h)ZT (D,h)

T
=

µn(D,h)Pd(D)Pc(h), w.p. 1.

By noting that the system load at any time slot is uniformly
bounded above, bounded convergence theorem implies

lim sup
T→∞

cp
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)

= cU(π̄,Ψ).

Thus we have established that average expected cost
under policyp attains the global lower bound as prediction
window size grows to infinity. Now by the definition of
cPT (π̄,Ψ) being the minimum possible cost achieved by
proactive scheduling with prediction windowT , it follows
that lim supT→∞ cp

T (π̄,Ψ) = lim infT→∞ cPT (π̄,Ψ).
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