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Abstract: Duplex structure Cu-Cr alloys are widely used as contact materials. They are 

generally designed by increasing the Cr content for the hardness improvement, which, 

however, leads to the unfavorable rapid increase of the electrical resistivity. The 

solidification behavior of Cu100−xCrx (x = 4.2, 25 and 50 in wt.%) alloys prepared by laser 

rapid solidification is studied here, and their hardness and electrical conductivity after 

aging are measured. The results show that the Cu-4.2%Cr alloy has the most desirable 

combination of hardness and conductive properties after aging in comparison with  

Cu-25%Cr and Cu-50%Cr alloys. Very importantly, a 50% improvement in hardness is 

achieved with a simultaneous 70% reduction in electrical resistivity. The reason is mainly 

attributed to the liquid phase separation occurring in the Cu-4.2%Cr alloy, which 

introduces a large amount of well-dispersed sub-micron-scale Cr-rich particulates in the 

Cu-rich matrix. 
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1. Introduction 

Great research interest has been devoted to Cu-Cr alloys in the past few decades as the alloys are 

the most commonly used contact materials in medium-voltage and high-current vacuum  

interrupters [1–3]. It has been well known that a liquid miscibility gap exists in the Cu-Cr binary phase 

diagram, due to a large positive mixing heat between Cu and Cr in the liquid state. Once the Cu-Cr 

melt achieves a sufficient undercooling and cools into the liquid miscibility gap, the Cr-rich 

strengthening phase will nucleate through the liquid phase separation (LPS) process and form 

particulates to disperse in the Cu-rich matrix [1–3]. Numerous explorations, mostly by the 

containerless solidification, have been made to investigate the undercooling effect in Cu-Cr alloys and 

it has been proved that the properties of Cu-Cr alloys are strongly dependent on their solidification 

behavior, compositions, aging effects, and also the morphology of the Cr phase [3–5]. In general, the 

Cr content is designed to range from 25 to 50 wt.% to obtain a good combination of mechanical and 

electrical properties by optimizing the duplex structure [6,7]. However, the containerless solidification 

process can only prepare small-sized samples. It is hard to obtain sufficient undercooling in fabricating 

Cu-Cr alloys with a certain thickness and large contact area for industrial applications. Laser surface 

cladding seems to be a desirable route to fabricate Cu-Cr alloys if the target is for engineering 

applications, where a concentrated laser beam is used to fuse a designed alloy coating with a thickness 

of larger than 1 mm. The laser cladding process has distinctive advantages, such as a rapid 

solidification rate (10
3
–10

6
 °C/s), forming fine microstructure and a metallurgical bonding interface. 

Furthermore, the rapid solidification of the laser process can lead to a high undercooling, having a 

significant effect on non-equilibrium solute trapping and improving the solubility [8,9]. Therefore, it is 

interesting to study the solidification behavior, microstructure, and mechanical and electrical properties 

of laser rapidly solidified Cu-Cr alloys, with various Cr contents, which constitutes the topic of the 

current work. 

2. Experimental Section 

Various Cu100−xCrx (x = 4.2, 25 and 50 in wt.%) alloy powders were mixed from elemental copper 

and chromium powders with the purity of 99.9%. The particle size of the elemental powders ranged 

from 50 to 120 μm. The powder mixture was placed onto the surface of a low-carbon steel (C: 0.17, 

Mn: 0.08, Si: 0.37, S: 0.039, P: 0.036, Fe: balance in mass percentage) to form a powder bed with a 

thickness of about 1.8 mm. A 5 kW TJ-HLT5000-type continuous-wave CO2-laser system was used 

for cladding, with about 0.5 L/min high-purity argon supplied through the coaxial nozzle to prevent 

oxidation. The used laser power was 1.8 kW, the diameter of the laser beam was 4.5 mm, and the laser 

feed rate was 600 mm/min. The pre-placed powder mixture was melted by moving the laser beam, and 

a single track alloy with a final thickness of ~1.5 mm was formed on the substrate and was cooled in 

air. To investigate the heat treatment effect, the as-solidified alloy was aged for 50 min at temperatures 

from 200 to 600 °C.  

The microstructures of the as-solidified alloys were observed on a finely polished and etched 

surface under the scanning electron microscope (SEM, JSM-6490, JEOL, Tokyo, Japan), equipped 

with the energy dispersive spectrometer (EDS, GENESIS Apex, EDAX, Mahwah, NJ, USA). The 
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Vickers hardness was measured on the polished surface by applying a load of 4.9 N for 20 s. The 

electrical resistivity of the as-solidified and aged alloys was measured near the center of the single 

track alloy using a SZT-2-type four-probe instrument. The low-carbon steel substrate was removed by 

grinding before the electrical resistivity measurement. 

3. Results 

3.1. Solidification Behavior and Microstructures 

Figure 1a shows an overview of the cross-sectional microstructure of the Cu-4.2%Cr single track 

alloy. It can be seen that a large amount of spherical white Cr-rich phases are observed and well 

dispersed in the dark Cu-rich matrix, suggesting that the LPS can occur in the Cu-4.2%Cr alloy. Laser 

rapid solidification can provoke a large dynamical undercooling and prevent the growth and 

coalescence of Cr-rich particulates. In this case, the existing time of the laser-melted pool is too short 

for each droplet to coalesce, and these finely dispersed Cr-rich phases with spherical morphology 

formed at the early stage during LPS therefore remained in the Cu-rich matrix.  

  

(a) (b) 

 

(c) 

Figure 1. The cross-sectional microstructures in the Cu-4.2%Cr alloy: (a) an overview of 

the single track alloy; (b) the equiaxed Cu-rich matrix in the center area of alloy; (c) the  

sub-micron-scale Cr-rich spherical particulates dispersed in the matrix. 
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Figure 2. The cross-sectional microstructure in the Cu-25%Cr and Cu-50%Cr alloys:  

(a) the overall morphology of the Cu-25%Cr alloy; (b) the enlarged dendritic Cr-rich phase 

dispersed in the center area of the Cu-25%Cr alloy; (c) the overview of the Cu-50%Cr 

alloy; (d) the Cr-rich phase dispersed in the Cu-50%Cr matrix; (e) the Cr-rich particulate 

coalesces to about several hundred microns in diameter in the Cu-50%Cr alloy. 

Meanwhile, it can be seen that there are three distinctive regions in the cross-sectional 

microstructure according to the particle size distribution of the Cr-rich phase. Near the substrate 

(region 1), Cr-rich particles have a larger size of about several tens of microns in diameter. In the 

central area (region 2) of the alloy, the particle sizes of the Cr-rich phase decrease sharply and have 

diameters on the sub-micron-scale, as shown in the enlarged microstructure in Figure 1b,c. The  

Cr-rich phase was labeled by red arrows in Figure 1c. In region 3, near the surface of the alloy, the 

particle sizes and content of Cr-rich droplets slightly increase again and are a little larger than those in 

region 2. EDS measurements show that the solubility of Cr in the Cu-rich matrix gradually increases 

from region 1 to region 3, with the averaged value increase from 2.8, 4.3, to 5.2 wt.%. This increase 

can be attributed to the lower density and, hence, the floating tendency of the Cr-rich liquid in the 
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laser-melted pool. According to previous descriptions of the melt and the solidification process in the 

laser-melted pool, the crystal growth velocity (v) depends on the location and is linked to the heat 

source velocity (i.e., laser feed rate, vs) [10,11]. The crystal growth velocity, v, will increase rapidly 

from zero at the bottom of the alloy to a value close to vs at the surface, and is accompanied with a 

decrease of the time interval (Δt) between the start of liquid separation and solidification. Therefore, in 

region 1, where there is the lowest crystal growth velocity (v) and the longest time interval (Δt), the  

Cr-rich liquid phase will coalesce and have a large particle size. In region 2, Δt decreases greatly with 

the rapid increase of the v, where the sub-micron-scale Cr-rich liquid phase formed during LPS has no 

sufficient time to coalesce and maintains a very fine particle size. In region 3, where there is the 

highest solute content of Cr, the chance of the coalescence for the increased amount of Cr-rich liquid 

phase droplets increases, resulting in the slight increase of particle size and content of the Cr-rich 

phase compared to that in the center of the alloy. 

Figure 2a,b show the overview and typical dendritic microstructures of the Cr-rich phase in the  

Cu-25%Cr alloy, respectively. The feature size of the Cr-rich phase is approximate 50 μm and it grows 

into the dendritic morphology, indicating that the well-distributed Cr-rich phase is not formed via LPS, 

possibly due to the insufficient undercooling. Meanwhile, some spherical Cr-rich particulates appear 

near the surface of the alloy, as marked in Figure 2a, indicating that LPS can occur in some local areas 

of the alloy, where there is sufficient solidification rate and undercooling. Figure 2c shows the 

overview of the Cu-50%Cr alloy; the high Cr content in the Cu-50%Cr composition leads to the 

unavoidable coalescence of Cr-rich particulates. As a consequence, many large-sized Cr-rich phases 

about several hundreds of microns in diameter are formed. Figure 2d shows the nearly spherical 

morphology of Cr-rich particulates in the matrix of Cu-50%Cr alloy. In the Figure 2e it can be seen 

that the spherical structure of Cr-rich phases extends with some protrusions (marked by the square) 

around the edges of large-sized Cr-rich particles, suggesting that separated melts reject solutes during 

solidification, and some interaction occurs at the interface of neighboring melts. 

3.2. The Effect of Aging  

The hardness measurement is conducted on the cross-section of the single track alloy and measured 

five times. Figure 3 shows the mean hardness distribution in the Cu-Cr alloys directly after laser rapid 

solidification. For the Cu-50%Cr alloy, the hardness distribution is not very even, mainly due to the 

large size of the Cr-rich phase. For Cu-25%Cr and Cu-4.2%Cr alloys, the hardness increases from the 

bottom to the surface due to the increased solutioning of Cr. Figure 4a shows the average hardness in 

the Cu-Cr alloys after the aging treatment, while Figure 4b presents the electrical resistivity revolution 

of the alloys, which were measured by a four-probe instrument and only one time. Interestingly, the 

Cu-4.2%Cr alloy has the highest hardening effect, and the hardness increases from 116 HV in the  

as-solidified state to 172 HV after aging at 500 °C, while at the same time the electrical resistivity 

decreases from 10.1 to 3.2 μΩ·cm. As for the Cu-25%Cr and Cu-50%Cr alloys, the hardness increases 

slowly from 186 to 202 HV and from 203 to 219 HV, respectively, while the electrical resistivity 

decreases from 22.1 to 10.4 μΩ·cm and from 26.9 to 13.9 μΩ·cm, respectively. Considering its lowest 

electrical resistivity while still having a hardness comparable to that of Cu-25%Cr and Cu-50%Cr, the 



Metals 2015, 5 2124 

 

 

laser rapidly solidified Cu-4.2%Cr alloy is considered to have the most desirable combination of 

hardness and electrical conductivity, and noticeably this is achieved at a very low Cr content. 
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Figure 3. Cross-sectional hardness distribution in the Cu-Cr alloys. 
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Figure 4. Evolution of properties after aging in the Cu-Cr alloys: (a) hardness;  

(b) electrical resistivity. 

4. Discussion 

There are two phase diagrams of the Cu-Cr alloy system according to previous research [12,13]. 

Muller et al. gave the equilibrium phase diagram of the Cu-Cr alloy system, and considered that it is 

monotectic with a stable liquid miscibility gap between 40 to 94.5 wt.% Cr. Recently, it has been 

argued that the Cu-Cr system has a metastable liquid miscibility gap from thermodynamic calculations, 

as replotted in Figure 5 [13]. Before we conducted experiments, the composition of the Cu-Cr alloy 

was designed according to Muller's equilibrium phase diagram and set to be Cu-50%Cr (in the 

miscibility gap), Cu-25%Cr (in the middle of the hypereutectic zone), and Cu-4.2%Cr (very close to 

the eutectic composition). However, our experiment results here show that LPS can occur in the  

Cu-4.2%Cr, Cu-50%Cr, and at the surface of Cu-25%Cr alloys, providing support for the existence of 

a metastable liquid miscibility gap in Figure 5. When the Cu-Cr alloy is undercooled below some 

temperature depending on the composition, the liquid phase will separate into two liquids. According 

to Figure 5, the undercooling for Cu-25%Cr (23.4 at.% Cr) is smaller than that in Cu-4.2%Cr (5.1 at.% 
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Cr) and Cu-50%Cr (55 at.% Cr). Therefore, it could be difficult for LPS to occur in the Cu-25%Cr 

(23.4 at.% Cr) alloy, and the Cr-rich phase grows into the dendritic morphology. As for the Cu-50%Cr 

(55.0 at.% Cr) alloy, although LPS still occurs, it is difficult to avoid the coalescence of the Cr-rich 

particulates due to the high Cr content. In the Cu-4.2%Cr (5.1 at.% Cr) alloy, it is seen that  

sub-micron-scale Cr-rich spherical particulates are well dispersed in the Cu-rich matrix, due to the 

laser rapid solidification process which supplies a sufficient undercooling and introduces LPS. The 

aging treatment at 500 °C leads to a ~50% improvement in hardness and a 70% reduction in electrical 

resistivity. The reduced electrical resistivity can be attributed to the weakened electron scattering effect 

after aging, while the hardness increase is due to the precipitation hardening. To understand the 

relationship between aging properties and microstructure evolution, further investigations conducted 

by TEM should be done. 

 

Figure 5. Cu-Cr binary phase diagram with metastable liquid miscibility gap predicted by 

thermodynamic calculations, replotted after Ref. [13]. 

5. Conclusions  

To summarize, a duplex structure with well-dispersed sub-micron-scale Cr-rich particulates via the 

LPS process has been successfully achieved in the laser rapidly solidified Cu-4.2%Cr alloy. In the  

Cu-50%Cr alloy, Cr-rich particulates formed during LPS are easily coalesced with a particle size of 

about several hundreds of microns, leading to an uneven hardness distribution. No LPS is observed in 

the Cu-25%Cr alloy due to the insufficient undercooling. Aging at 500 °C leads to a 50% improvement 

in hardness (from 116 to 172 HV) and, simultaneously, a 70% reduction in electrical resistivity (from  

10.1 μΩ·cm to 3.2 μΩ·cm) in the Cu-4.2%Cr alloy, giving the most desirable combination of hardness 

and electrical conductivity.  

Acknowledgments 

The authors thank the financial support from the National Natural Science Foundation of China 

under Grants No. 51271001 and No. 51445005, the University Natural Science Research Project of 



Metals 2015, 5 2126 

 

 

Anhui Province of China under Grant No. KJ2014A029, and the Tribology Science Fund of State Key 

Laboratory of Tribology under Grant No. SKLTKF14B02. 

Author Contributions 

Song-Hua Si, Hui Zhang and Sheng Guo wrote the paper and contributed to all the activities related 

to this paper. Yi-Zhu He and Ming-Xi Li contributed to the discussion.  

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Bachmaie, A.; Rathmayr, G.B.; Bartosik, M.; Apel, D.; Zhang, Z.; Pippan, R. New insights on the 

formation of supersaturated solid solutions in the Cu-Cr system deformed by high-pressure 

torsion. Acta Mater. 2014, 69, 301–313. 

2. Fu, Y.B; Cui, J. Preparation of Cu-Cr-Zr alloy billets by horizontal electromagnetic continuous 

stirring. Sci. Technol. 2014, 30, 370–376. 

3. Lin, G.B.; Wang, Z.D.; Zhang, M.K.; Zhang, H.; Zhao, M. Heat treatment method for making 

high strength and conductivity Cu–Cr–Zr alloy. Mater. Sci. Technol. 2011, 27, 966–969. 

4. Zhou, Z.M.; Wang, Y.P.; Gao, J.; Kolbe, M. Microstructure of rapidly solidified Cu-25 wt.% Cr 

alloys. Mater. Sci. Eng. A 2005, 398, 318–322. 

5. Gao, J.; Wang, Y.P.; Zhou, Z.M.; Kolbe, M. Phase separation in undercooled Cu-Cr melts. Mater. 

Sci. Eng. A 2007, 449–451, 654–657. 

6. He, W.X.; Yu, Y.; Wang, E.D.; Sun, H.F.; Hu, L.X.; Chen, H. Analysis of phase in  

Cu-15%Cr-0.24%Zr alloy. Trans. Nonferrous Met. Soc. China 2013, 23, 1342–1348. 

7. Zhao, Q.; Shao, Z.B.; Liu, C.J.; Jiang, M.F.; Li, X.T.; Zevenhoven, R.; Saxen, H. Preparation of 

Cu-Cr alloy powder by mechanical alloying. J. Alloy. Compd. 2014, 607, 118–124. 

8. Pan, M.; Konda, G.; Prashanth, S.S.; Jia, Y.D.; Wang, H.W.; Zou, C.M.; Wei, Z.J.; Jürgen, E. 

Influence of Annealing on Mechanical Properties of Al-20Si Processed by Selective Laser 

melting. Metals 2014, 4, 28–36. 

9. Zhang, H.; He, Y.Z.; Pan, Y. Enhanced hardness and fracture toughness of the laser-solidified 

FeCoNiCrCuTiMoAlSiB0.5 high-entropy alloy by martensite strengthening. Scr. Mater. 2013, 69, 

342–345. 

10. Holger, S.; Konda, G.P.; Lukas, L.; Uta, K.; Jürgen, E.; Poprawe, R. Selective Laser Melting of  

Ti-45Nb Alloy. Metals 2015, 5, 686–694. 

11. Yue, T.M.; Xie, H.; Lin, X.; Yang, H.O.; Meng, G.H. Microstructure of Laser Re-Melted 

AlCoCrCuFeNi High Entropy Alloy Coatings Produced by Plasma Spraying. Entropy 2013, 15, 

2833–2845. 

12. Muller, R. Arc-melted Cu-Cr alloys as contact materials for vacuum interrupters.  

SiemensForsch—UEntwick—Ber Bd. 1988, 17, 105–115. 

http://www.maneyonline.com/action/doSearch?ContribStored=Fu%2C+Y+B
http://www.maneyonline.com/action/doSearch?ContribStored=Cui%2C+J
http://www.maneyonline.com/action/doSearch?ContribStored=Lin%2C+G+B
http://www.maneyonline.com/action/doSearch?ContribStored=Wang%2C+Z+D
http://www.maneyonline.com/action/doSearch?ContribStored=Zhang%2C+M+K
http://www.maneyonline.com/action/doSearch?ContribStored=Zhao%2C+M
http://www.sciencedirect.com/science/article/pii/S0921509305003862
http://www.sciencedirect.com/science/article/pii/S0921509305003862
http://www.sciencedirect.com/science/article/pii/S1003632613626023
http://www.sciencedirect.com/science/article/pii/S1003632613626023
http://www.sciencedirect.com/science/article/pii/S0925838814008676
http://www.sciencedirect.com/science/article/pii/S0925838814008676
http://www.mdpi.com/search?authors=Pan%20Ma
http://www.mdpi.com/search?authors=Konda%20G.%20Prashanth
http://www.mdpi.com/search?authors=Sergio%20Scudino
http://www.mdpi.com/search?authors=Yandong%20Jia
http://www.mdpi.com/search?authors=Hongwei%20Wang
http://www.mdpi.com/search?authors=Chunming%20Zou
http://www.mdpi.com/search?authors=Zunjie%20Wei
http://www.mdpi.com/search?authors=J%C3%BCrgen%20Eckert
http://www.mdpi.com/2075-4701/4/1/28
http://www.mdpi.com/2075-4701/4/1/28
http://www.mdpi.com/search?authors=Holger%20Schwab
http://www.mdpi.com/search?authors=Konda%20Gokuldoss%20Prashanth
http://www.mdpi.com/search?authors=Lukas%20L%C3%B6ber
http://www.mdpi.com/search?authors=Uta%20K%C3%BChn
http://www.mdpi.com/2075-4701/5/2/686
http://www.mdpi.com/2075-4701/5/2/686


Metals 2015, 5 2127 

 

 

13. Wei, X.; Wang, J.P.; Yang, Z.M.; Sun, Z.B.; Yu, D.M.; Song, X.P.; Ding, B.J.; Yang, S. Liquid 

phase separation of Cu–Cr alloys during the vacuum breakdown. J. Alloy. Compd. 2011, 509,  

7116–7120. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 

http://www.sciencedirect.com/science/article/pii/S0925838811008371
http://www.sciencedirect.com/science/article/pii/S0925838811008371

