Field Computations Through the ACA Algorithm

This document has been downloaded from Chalmers Publication Library (CPL). It is the author’s
version of a work that was accepted for publication in:

9th European Conference on Antennas and Propagation, EUCAP 2015, Lisbon, Portugal, 13-
17 May 2015

Citation for the published paper:

Maaskant, R. ; Lancelotti, V. (2015) "Field Computations Through the ACA Algorithm". 9th
European Conference on Antennas and Propagation, EUCAP 2015, Lisbon, Portugal, 13-17
May 2015

Downloaded from: http://publications.lib.chalmers.se/publication/227901

Notice: Changes introduced as a result of publishing processes such as copy-editing and
formatting may not be reflected in this document. For a definitive version of this work, please refer
to the published source. Please note that access to the published version might require a
subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.

The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)


http://publications.lib.chalmers.se/publication/227901

Field Computations Through the ACA Algorithm

Rob Maaskant!, Vito Lancelotti2
Chalmers University of Technology, Gothenburg, Sweden, rob.maaskant@chalmers.se
2Eindhoven University of Technology, Eindhoven, The Netherlands, v.lancelotti @tue.nl

Abstract—The adaptive cross approximation algorithm is in-
voked for the fast construction of the method-of-moment matrix
involving source basis functions for the currents and a set of
auxiliary test functions that samples the radiated electromagnetic
(EM) field. Once the adaptive cross approximation coupling
matrix is constructed, the far and near fields from a source
current are obtained directly through a single matrix-vector
product. The post-processing method is particularly fast when
the EM fields are smoothly varying over their sampling domain,
or when far fields need to be computed for many current
distributions, e.g., for sets of macro basis functions arising in
several domain decomposition methods.

Index Terms—ACA algorithm, far field, near field, moment
method.

I. INTRODUCTION

The adaptive cross approximation (ACA) algorithm, first
introduced in [1], has been used extensively to accelerate the
numerical discretization of electromagnetic field integral equa-
tions; more specifically, this purely algebraic method has been
used in moment method approaches, both for the compression
and for the fast construction of low-rank off-diagonal moment
matrix (MoM) blocks [2]-[5]. This paper proposes to use the
ACA algorithm as a post-processing step, namely for the fast
computation of the far and near fields of radiating structures.
Micro scale basis functions are used as localized field testing
functions at the desired field sampling points after which the
ACA-generated MoM matrix is constructed between these
field testing functions and the basis functions for modeling
the current. Once the currents on the radiating structure are
known, the corresponding EM fields are obtained algebraically
through matrix-vector products. The method is particularly
fast when the fields are smoothly varying over its sampling
domain and when fields need to be computed for many current
distributions, e.g. for sets of macro basis functions as is the
case in several domain decomposition methods. An additional
advantage is that an existing MoM solver can be used directly
for the post-processing of the fields, while benefiting from
MoM acceleration techniques, which is also more consistent
as the same solver is used for both the computation of
the currents and the fields through the appropriate Green’s
functions. Finally, a recent application of the ACA algorithm
in computing equivalent currents (basically near fields) on an
equivalent outer surface enclosing an inner equivalent source
surface can be found in [6], the field sampling method of
which has some commonality with the present work.

Section II details the ACA field computation concept for
a simple example. The computation of the radiating fields

of a single Bowtie antenna element will be examined in
Sec. III. Since the method applies to both electric and magnetic
fields/currents, a slot antenna array example is considered
afterwards. Conclusions are drawn in Sec. IV.

II. ACA FIELD COMPUTATIONS
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Fig. 1. EM field sampling of a radiating Bowtie antenna element. The field
sampling RWGs are enlarged for vizualization purposes.

Fig. 1 illustrates a Bowtie antenna element above a PEC
ground plane whose radiated EM fields are tested onto pairs of
orthogonally-oriented Rao-Wilton-Glisson (RWG) basis func-
tions that are placed tangential to a hemispherical surface
surrounding the antenna. Note that this setup is equivalent to
performing measurements with a near field scanner although
the field sampling RWGs can have any desired orientation
and position as shown later. The RWGs must be chosen small
enough to be able to assume that the field is tested at a single
point only. Also, the testing RWGs are allowed to overlap
and/or intersect.

As an example, let Z,,, denote the reaction between the
E-field of the source electric current RWG basis function f,,
and the RWG testing function f,,, then

Zmn = /S .fm : E(-fn)ds (1)

where S, is the support of the RWG testing function f,,, and
where

gm +

24LPm
0 elsewhere.
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Here, p; = +(r — 2 ), Ti% are the triangular supports of

the mth RWG, rffho are the corresponding free corner vertices,
and ¢, is the mth RWG common edge length. Next, upon
assuming identical RWG testing triangles that are in the same
plane, i.e., Ai = A, pf,i = p,,, and also that ¢,, = ¢, and
by evaluating (1) through the midpoint integration rule at the

triangle centroids 77, ., yields
p., )
Zunn = 2 [B(r}, )+ E(r7,.)] )

Furthermore, if the mth RWG that samples the field is suffi-
ciently small, we can assume that E(r}f, .) = E(r,, ). If we
further choose that p,,, = ¢p,,,, and if the expansion coefficient
for basis function f,, is known to be I,,, we conclude from (3)

that
Epm(rm) = E_QZmnIn (4)

where 7., = (7}, . + 7., .)/2. In other words, (4) shows how
the p,, component of the F-field at the point 7, radiated by
basis function f, of strength I, is given through the MoM
matrix element Z,,,.

After building the total coupling matrix Z, and given the
solution expansion coefficient vector J = [I1, Io, ..., I N]T, we
obtain for the total field V = ZJ, which, on account of (4), is
seen to be directly related to the total radiated E-field through

E=/(2Z)~(2Q(U)) (5)

where the column-vector E holds the polarization-sampled
FE-field values, and where the ACA algorithm is used in
the process of computing the low-rank block factorization
of Z, ie., Z = QU. 'This is done iteratively, where the
ACA threshold « is set to control the approximation error:
k = ||QU — Z||z/||Z|| 7, where F' denotes the Frobenius-
norm. Typical values for x range from 10=2 to 1073, The
number of iterations, which is also the number of columns in
Q, equals the matrix effective rank.

Although the above electric field is solely generated by
an electric current, viz. E(J), for linear reacting systems we
generally have that

E(J,M)=E(J)+ E(M)
H(J,M)=H(J)+ H(M)

(6a)
(6b)

for the total electric and magnetic fields, respectively. Further-
more, when near fields are considered, one is often interested
in the three Cartesian components of the vector field. Accord-
ingly, one can employ the three orthogonally-oriented field
sampling RWG functions as shown in Fig. 2 (see also [6]).
Similar to the derivation leading up to (5), the E- and H-
fields are then computed in general as
E=¢2[2"3+ 2"V M| (7a)

H= (2 [ZHJJ + zHMM} (7b)

I'The evaluation of Q(UJ) is computationally cheaper than (QU)J.

Fig. 2. A set of three orthogonally-oriented field sampling RWG functions
(top-left) placed in a rectangular grid above a 2 X 2 array of slot antennas
located in a PEC ground plane.

where the matrix Zz 7, for instance, represents the coupling
matrix from the source current RWGs expanding J to the field
sampling RWGs testing H . Each of the coupling matrices are
approximated through the ACA algorithm as in (5).

III. NUMERICAL RESULTS

In the following two examples we examine both the per-
formance and accuracy characteristics of the ACA algorithm
in computing the F-field, which is either radiated by an
electric or magnetic current source. By doing so, we separately
examine the ACA performances of the so-called £- and K-
operators, since E(J, M) = L(J) — K(M), where

L) = —jwp { /V TG, ')AV’

+% V' - J(r)VG(r,r")dV’ (8a)

v

K(M) = / M(r") x V'G(r,r")dV". (8b)
v

A. Radiated E-Field from a Bowtie Antenna

The E-field of a resonant A\/2 Bowtie antenna placed \/4
above a PEC ground plane, as shown in Fig. 1, is considered
first. The field sampling RWGs are placed tangential to the
surface of a hemisphere of radius R. For large R, one could
let the length ¢ of these RWGs scale with R to compensate
for the R~! decay of the field to maintain high numerical
accuracy when computing Z,,,, through a MoM approach.

Using (5), we will examine the normalized field function

9 .
G(R,0,9) = n%|Em<R,9,¢)ReJ’“RP ©)

where P, is the antenna input power, n is the free-space
impedance, and k is the corresponding wavenumber. Note that,
if R — oo, one observes that G(R,0,¢) — G(0,¢), ie., G
turns into the ordinary far-field function.

We further consider the computational accuracy and effi-
ciency for various ACA threshold levels « relative to a direct
calculation through Z in (5), which constitutes our reference
solution. We also examine the effect of taking various angular



ranges 0 < 0 < 6y, where 6y is the semi-subtended angle.
Finally, the angular resolution of the field sampling grid is
fixed: A9 = A¢ = 5 degrees, and the relative average field
error is computed as

_ f9<90 |Etan,ref - -Etan|2dQ

€% = % 100%.
f9<90 |-Etan,ref|2dQ

(10)

Field function G for R—~
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Fig. 3.  E-plane field function G computed for different ACA threshold
levels, for: (a) R — oo, and; (b) R = 0.5).

Fig. 3(a) shows that the numerical accuracy of the computed
E-plane far-field function is weakly dependent on the ACA
threshold ~. The accuracy increases for smaller ACA threshold
values. Note in Fig. 3(b) that the ACA threshold must be
chosen much smaller in the near field (R = 0.5)) to obtain
accurate results. Further note that the ACA factorization in (5)
is performed by selecting rows and columns of Z, so if this
procedure is terminated prematurely, asymmetry in the field
pattern may arise as visualized in Fig. 3(b) for x > 1072, The
matrix Z is non-square viz. of size 2774 x 101, which may
negatively impact the numerical speed-up of the ACA field
computations. In fact, for R — oo the speed-up factors are
18 (k =1),2.0 (k= 1071), and 1.3 (k = 10~2), while for

R = 0.5\ these are 19 (k = 1), 3.3 (x = 1071), and 0.5
(k =1072).

B. Radiated E-Field from Slot Antennas

As the second example, we consider the 2 x 2 array of \/2
radiating slot antennas located in a PEC ground plane as shown
in Fig. 2. Each slot assumes a TE;g waveguide mode with
equal excitation amplitudes (1 V/m in the slot center) in order
to scan to broadside (6 = 0). The slot modal field is generated
by an equivalent magnetic current that is placed right above
the ground plane and is synthesized by RWG basis functions.
The slot width is A/10, which is also equal to the H-plane
gap separation between the slots (cf. Fig. 2). Both the E- and
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Fig. 4. Radiated E-field of a 2 X 2 array of slots whose near-field is sampled
in the planes z € {0.1X,0.5X,1.0A} in front of the array (dBV/m). (a)
Reference case (x = 0); (b) ACA threshold x = 10°; (c) ACA threshold
k= 1071; (d) ACA threshold k = 1072,

H-fields are sampled by RWG testing functions, as in Fig. 2,
in planes in front of the array for different ACA threshold
levels. The field sampling resolution is Az = Ay = A/30,
¢ = 1FE — 10 m, and the mesh discretization in the slot is
A/10.

As can be concluded from Fig. 4, the field | E(M )| exhibits
strong asymmetries for the highest ACA threshold level, i.e.,
% = 10°, whereas the error in the field decreases for smaller
threshold levels relative to the reference case in Fig. 4(a). This
behavior is expected and also similar to the above-described



Bowtie antenna example. The field is visually indistinguish-
able from the reference solution in the last case, Fig. 4(d).

The singular value spectra of ZEM are shown in Fig. 5 for
different cases. One observes that the effective matrix rank
decreases as the sampling plane moves away from the source
currents, as expected. Furthermore, it can be seen that if the
slots are meshed more finely (\/40 instead of A/10 mesh size),
the coupling matrix will be more rank-deficient and the use
of the ACA algorithm will have clearer benefits over a direct
matrix fill approach.
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Fig. 5. Singular value spectra of ZFM for the samplig lane distances

z = 0.1\ ,z = A, z = 10\, and z = 100A. (a) Size Z M is 7437 x 36
(A/10 slot meshing); (b) Size ZEM 5 7437 x 864 (A/40 slot meshing).

Table I summarizes the numerical values for both the E-
and H-field errors as well as the speed-up factor relative to a
direct approach (no ACA) for different ACA threshold levels,
sampling plane distances, and mesh sizes of the slots. For this
specific slot array example, the speed-up factor is as large
as 89 for k = 10%z = 0.1\, and \/10 meshing, but the
field computations suffer from large errors. On the other hand,
0% error level can be achieved for k = 1072, even in the
reactive field, but then the ACA algorithm is much slower than
a direct matrix fill approach as the matrix block is barely rank-

TABLE I
ACCURACY AND EFFICIENCY OF THE NEAR FIELD COMPUTATIONS

2=0.1\ A/10mesh | k=0 | k=100 | k=101 | Kk =10"2
el 0.0 579 114 0.0
55; 0.0 502 105 0.0
Speed-up factor 1.0 9.8 0.32 0.14
2z =100\, \/10mesh | k=0 [ k=10 [ k=10"T | k= 102
eZ 0.0 31866 58 58
eg 0.0 50 57 42
Speed-up factor 1.0 9.4 0.75 0.62
2=0.1\ A\/40mesh | k=0 | k=100 [ k=10"T | k=102
eZ 0.0 27568 429 28
eé 0.0 349 224 12
Speed-up factor 1.0 89 8.8 0.69
2=100\, \/40mesh | k=0 | k=100 | k=10"T [ k =102
L 0.0 41788 5 8.3
eé 0.0 56 27 10
Speed-up factor 1.0 84 13 10

deficient. Moving the sampling plane away and increasing the
mesh density for the slots is beneficial for the ACA approach
(see also Fig. 5); the error is seen to be less than 10% for
k=102, 2 = 100\ and for a \/40 meshing.

IV. CONCLUSION

The ACA algorithm has been applied for computing the near
and far fields of radiating structures; a Bowtie antenna and an
array of slots in a ground plane have been examined and the
performance of the novel field post-processing algorithm has
been analyzed. The accuracy and numerical efficiency of the
method are as one can expect based on the effective rank of
the moment matrix describing the coupling between the source
basis functions and the field testing functions. This needs to be
explored further, as well as how the method can be integrated
in domain decomposition methods as it is particularly fast for
computing fields from multiple source currents through simple
matrix vector products.
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