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Abstract—Linear embedding via Green’s operators (LEGO)
is a domain decomposition method that uses electromagnetic
“bricks” to solve wave scattering problems. The algebraic form of
the relevant functional equations (which are derived by invoking
the surface equivalence principle) is a linear system characterized
by a full and possibly large matrix. The size of the system can
be effectively reduced by adopting macro basis functions defined
on the surface of a brick through 1) the eigencurrents expansion
method (EEM) and 2) the Adaptive Cross Approximation (ACA).
The two methods lead to the same results, though the ACA macro
basis functions are faster to compute.

I. INTRODUCTION

Linear embedding via Green’s operators (LEGO) is a do-

main decomposition method particularly well-suited for the

solution of electromagnetic (EM) scattering problems com-

prised of many objects immersed in a background medium

[1] and a host medium [2]. The formulation is based on the

introduction of simple-shaped EM bricks Dk, k = 1, . . . , ND,

each one enclosing an object, as illustrated in Fig. 1. The EM

behaviour of a brick is accounted for through its scattering

operator Skk , viz.,

qs
k = Skk q

i
k, (1)

where qi
k and qs

k are abstract column vectors of equivalent

incident and scattered surface currents on ∂Dk, namely,

qi
k =

[

J
i
k

√
η1

−M
i
k/
√
η1

]

, qs
k =

[

J
s
k

√
η1

−M
s
k/
√
η1

]

, (2)

with η1 the intrinsic impedance of the background medium

(➀). The multiple scattering phenomenon that occurs between

any two bricks is described by means of transfer operators

Tkn, Tnk, n 6= k. The functional equation governing the EM

problem can be shown to be [1]

(I− diag {Skk}T) qs = diag {Skk} qi, (3)

where I is a suitable identity operator, and T is the total transfer

operator given explicitly, e.g., in [3, Eq. (12)].

The numerical inversion of (3) relies on the Method of

Moments (MoM) in Galerkin’s form. The procedure starts with

the definition of sets of Rao-Wilton-Glisson (RWG) functions

on ∂Dk to represent qs,i
k and on the surface of the object

inside Dk to expand the surface currents thereon [1]. Next, the

scattering and transfer operators are turned into their algebraic

counterparts, i.e., [Skk] and [Tkn]. With these two ingredients,

the weak form of (3), namely,

([I]− blkdiag {[Skk]} [T ]) [qs] = blkdiag {[Skk]}
[

qi
]

, (4)
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Fig. 1: LEGO method applied to a set of objects: each object (medium ➀)
is enclosed inside an EM brick Dk , k = 1, . . . , ND , in turn described by
means of a scattering operator Skk . In this paper, the host medium (➁) and
background material (➀) are assumed to have the same EM parameters.

can be assembled in a straightforward manner. If the total

number of basis functions on ∂Dk is 2NF , the size of the

system matrix in (4) is 2NFND.

In this paper, we describe and compare two sets of macro

basis functions, namely, the eigencurrents [1, 3] and functions

obtained by applying the adaptive cross approximation (ACA)

[4, 5] algorithm to [Skk]. Both approaches are viable and

effective when [Skk] is rank deficient. This usually happens

when the background medium (➀) and the host medium (➁)

have the same EM properties (see Fig. 1).

II. DERIVATION OF THE MACRO BASIS FUNCTIONS

In this section we outline the compression of (4) by means

of two reduced vector bases for representing the unknown

expansion coefficients [qs].

A. Order reduction with ACA of [Skk]

The discrete version of the ACA algorithm [5] allows us to

factorize the algebraic scattering operators as

[Skk] = [Ukk] [Vkk] , (5)

where the matrices [Ukk] and [Vkk] have size 2NF × rk and

rk × 2NF , respectively. From (1) and (5) we derive that

[qs
k] = [Ukk] [Vkk]

[

qi
k

]

= [Ukk] [ck] , (6)

which suggests the columns of [Ukk] can be adopted as a

vector basis to represent the scattered current coefficients [qs
k],

because rk ≪ 2NF . Besides, in the light of (6) the columns

of [Ukk] define entire-domain macro basis functions over the

surface of ∂Dk.



It is convenient to define the block-diagonal matrices

[U ] = blkdiag {[Ukk]} , [V ] = blkdiag {[Vkk]} (7)

to lighten the notation. Upon inserting (5) into (4) and letting

[qs] = [U ] [q̃s], [q̃i] = [V ] [qi], (8)

after a little algebra we obtain the compressed linear system

([I]− [V ] [T ] [U ]) [q̃s] = [q̃i], (9)

whose rank is
∑

k rk in general or NDr1 in the case where

all the bricks are identical.

B. Order reduction with eigencurrents of [Skk] revisited

The spectral decomposition of the algebraic scattering op-

erators reads [1]

[Skk] = [Ekk] diag
{

λ(k)
p

}

[Ekk]
−1

, (10)

where we have adopted the non-standard notation [Ekk] to

avoid confusion with [Vkk] in (5). The definition (1) in tandem

with (10) suggests that a basis for [qs
k] can be formed by using

the first NC columns of [Ekk], i.e., the eigenvectors associated

with the largest eigenvalues1. The eigenvectors in turn define

entire-domain macro basis functions (dubbed eigencurrents)

over the surface of ∂Dk [1].

To proceed, we introduce the block-diagonal matrices

[UC ] = blkdiag
{

[U
(k)
C ]

}

, [VC ] = blkdiag
{

[V
(k)
C ]

}

, (11)

where [U
(k)
C ] ([V

(k)
C ]) is a matrix formed with the first NC

columns (rows) of [Ekk], ([Ekk]
−1

). Thanks to these defini-

tions and by further letting

[qs] = [UC ] [q̃
s], [q̃i] = [VC ] [q

i], (12)

with a few manipulations the compressed form of (4) becomes

([IC ]− [ΛC ] [VC ] [T ] [UC ]) [q̃
s] = [ΛC ] [q̃

i], (13)

where

[ΛC ] = blkdiag
{

diag
{

λ(k)
p

}}

, p = 1, . . . , NC , (14)

is a diagonal matrix formed with the first NC eigenvalues of

each scattering operator [Skk]. The rank of (13) is NDNC

under the assumption that all the bricks are identical.

III. RESULTS AND DISCUSSION

We have investigated the properties of the eigencurrents and

the ACA macro basis functions by solving a few plane-wave

scattering problems. The background (➀) and the host medium

(➁) are free space in all the tests considered.

The first configuration consists of a cluster of four spheres

arranged in a square lattice, and the spheres (medium ➂) are

assumed to be either PEC or dielectric. The LEGO model is

comprised of ND = 4 cubic bricks, and the number of RWG

functions over ∂Dk is 2NF = 648. The RWG functions over

1This viewpoint is different than the one hinged on the notion of cou-
pled/uncoupled eigencurrents [1], though more in line with Section II-A.
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Fig. 2: RCS of four spheres computed with LEGO by using (—) eigencurrents
of [S11] and (�, ◦) ACA basis of [S11], t ∈ {10−3, 10−2}. Inset: LEGO
model showing the mesh of the bricks and the spheres, and the incident plane
wave. Data: radius of the spheres a = 0.25 m, edge of the cubic EM bricks
s = 1 m, incident plane wave Ei = x̂ exp(−jk1z), k1 = 2πf/c0, f = 0.1
GHz, ε1 = ε2 = ε0, ε3 ∈ {2ε0,∞}.

the surface of a sphere are NO = 294 for the PEC case and

twice as many for the dielectric case. (Additional data are

given in Fig. 2.) The Radar Cross Sections (RCS) obtained

by solving (9) and (13) are compared in Fig. 2. We have set

the number of eigencurrents to NC = 50. From Fig. 2 it is

seen that, for the case of PEC spheres, r1 = NA = 63 ACA

macro basis functions are necessary to attain the same level

of accuracy; this corresponds to a threshold t = 10−3 for

stopping the ACA of [S11]. The dielectric case is expected to

be less demanding, and indeed r1 = NA = 25 (t = 10−2)

ACA macro basis functions are sufficient to attain the same

accuracy afforded by NC = 50 eigencurrents. For the sake

of completeness, the scattered currents qs
k over the surface of

the bricks are compared in Figs. 3 and 4. As can be seen

the results yielded by the EEM and the ACA functions are in

excellent agreement. Finally, plotted in Figs. 5a and 5b are the

spectrum of eigenvalues of [S11] and the relative error of the

ACA of [S11] [5]. The exponential decay of |λ(1)
p | and that

of the error are remarkably similar, and this provides a solid

argument for the adoption of either the eigencurrents or the

ACA macro basis functions for expanding qs
k.

In the second test case, we have considered four dielectric

cylinders embedded in as many cubic bricks arranged in a

square lattice. The size of the cylinders is kept fixed whereas

the permittivity is varied. The RWG functions over ∂Dk are

2NF = 1152 and the RWG functions over the cylinders are

NO = 702. (Additional data are given in Fig. 6.) The RCSs

obtained with the two reduction methods are compared in

Fig. 6. Since the cylinders are relatively large as compared

to the size of the embedding bricks, both the number of

coupled eigencurrents and the number of ACA functions are

substantial, but the strategy based on the ACA of [S11] is still

competitive. The spectrum of [S11] and the relative error of the
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Fig. 3: Scattering from four PEC spheres with LEGO (see inset of Fig. 2):
(a), (c) |J s

k
| and |M s

k
| computed with eigencurrents of [S11]; (b), (d) |J s

k
|

and |M s
k
| computed with ACA of [S11]. Data: see Fig. 2.
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Fig. 4: Scattering from four dielectric spheres with LEGO (see inset of Fig. 2):
(a), (c) |J s

k
| and |M s

k
| computed with eigencurrents of [S11]; (b), (d) |J s

k
|

and |M s
k
| computed with ACA of [S11]. Data: see Fig. 2.

ACA of [S11] are compared in Fig. 7. The decay of the ACA

error is not monotonic, and this explains why, for a given

threshold t = 10−3 the number of ACA functions required

for the high contrast case (ε3 = 11ε0) is slightly smaller

than that for the low contrast case (ε3 = 2ε0). Interestingly,

both the spectrum and the error exhibit an abrupt change for

p = r = 576 = NF , which is half the number of RWG

functions on ∂Dk. This behaviour suggests that, regardless of

the reduction strategy adopted, NF is the maximum number

of (any) macro basis functions on the boundary, although

this may not always be evident (e.g., [6]). From a physical
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Fig. 5: Comparison of spectrum and ACA of [S11]: (a) eigenvalues versus
their index; (b) relative error of the ACA decomposition versus rank([U11]).

standpoint, this may be a consequence of the surface equivalent

currents J
s
k and M

s
k being dependent on each other.

Next, we have examined the scattering from four dielectric

cylinders with fixed permittivity but varying sizes. The cylin-

ders are embedded in four cubic bricks arranged in a square

lattice. The larger cylinders are the same as those shown in

the inset of Fig. 6, while the smaller ones are shown in the

inset of Fig. 8. The number of RWG functions over ∂Dk is

again 2NF = 1152, but the number of RWG functions over

the cylinders has been adjusted according to the size, namely,

NO ∈ {702, 558}. The RCSs obtained with the two reduction

methods are compared in Fig. 8. As expected, the solution

of the case of smaller cylinders requires fewer eigencurrents

and ACA functions. As a matter of fact, it can be seen from

Fig. 9 the both the eigenvalues of [S11] and the ACA error

decay faster for the configuration of smaller cylinders. Besides,

the ACA approach is invariably competitive over the EEM

strategy.

TABLE I: COMPARISON OF CPU TIMES

Content of LEGO bricks 2NF TACA [s] TEEM [s]

Sphere† ε3 = ∞ (Fig. 2) 648 0.078 27

Sphere∗ ε3 = 2ε0 (Fig. 2) 648 0.015 28

Cylinder† ε3 = 2ε0 (Fig. 6) 1152 2.9 20

Cylinder† ε3 = 11ε0 (Fig. 6) 1152 2.4 20

Cylinder† h = 8 mm (Fig. 8) 1152 2.5 20

Cylinder† h = 4 mm (Fig. 8) 1152 0.43 26

†Threshold for stopping the ACA of [S11] t = 10−3

∗Threshold for stopping the ACA of [S11] t = 10−1
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Fig. 6: RCS of four cylinders computed with LEGO by using (—) eigencur-
rents of [S11] and (�, ◦) ACA basis of [S11], t = 10−3. Inset: LEGO model
showing the mesh of the bricks and the cylinders, and the incident plane wave.
Data: radius of the cylinder a = 4 mm, height of the cylinder 8 mm, edge of
the cubic EM bricks d = 10 mm, incident plane wave Ei = x̂ exp(−jk1z),
k1 = 2πf/c0, f = 7.5 GHz, ε1 = ε2 = ε0, ε3 ∈ {2ε0, 11ε0}.
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Fig. 7: Comparison of spectrum and ACA of [S11]: (a) eigenvalues versus
their index; (b) relative error of the ACA decomposition versus rank([U11]).

Compared in Table I are the times taken to perform the

spectral decomposition (TEEM) and the ACA (TACA) of [S11]
for the problems of Figs. 2, 6 and 8. As long as all the

eigenvectors of [S11] are computed, TEEM is expected to be

constant for a given brick type. On the other hand, TACA varies

depending on the effective rank of [S11].

In the last example, we have computed the scattering from

a 5 × 5 array of PEC double cross dipoles arranged in a

0 30 60 90 120 150 180
−50

−40

−30

−20

−10

0

10

θ [deg]

R
C
S
/
d
2
[d
B
]

 

 

EEM NC = 400
EEM NC = 200
ACA NA = 330
ACA NA = 142

h = 8 mm

h = 4 mm

φ = 0◦

φ = 90◦

φ = 90◦
k̂

E
i

Fig. 8: RCS of four cylinders computed with LEGO by using (—, −−)
eigencurrents of [S11] and (�, ◦) ACA basis of [S11], t = 10−3. Inset:
LEGO model showing the mesh of the bricks and the shorter cylinders, and
the incident plane wave. Data: radius of the cylinder a = 4 mm, height of
the cylinder h ∈ {4, 8} mm, edge of the cubic EM bricks d = 10 mm,
incident plane wave Ei = x̂ exp(−jk1z), k1 = 2πf/c0, f = 7.5 GHz,
ε1 = ε2 = ε0, ε3 = 6ε0.
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Fig. 9: Comparison of spectrum and ACA of [S11]: (a) eigenvalues versus
their index; (b) relative error of the ACA decomposition versus rank([U11]).

planar square lattice, as is suggested by the inset of Fig. 10.

The dipoles are embedded in ND = 25 cuboidal bricks

(see Fig. 11) on which 2NF = 1080 RWG functions are

introduced, so the size of the uncompressed algebraic system

(4) is 2NFND = 27000. The number of RWG functions over

the two dipoles in a brick is NO = 554. (Additional data are

given in Fig. 10.) The bistatic RCS obtained with the two
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Fig. 10: RCS of an array of double cross dipoles computed with LEGO by
using (—) eigencurrents of [S11] and (−−) ACA basis of [S11], t = 10−3.
Inset: LEGO model showing the double cross dipoles and the incident plane
wave. Data: length of the dipoles d = 12 mm, width of the dipoles 2 mm,
horizontal separation and edge of the cubic EM bricks s = 20 mm, vertical
separation 2 mm, incident plane wave Ei = ŷ exp(−jk1z), k1 = 2πf/c0,
f = 12.5 GHz, ε1 = ε2 = ε0, ε3 = ∞.

reduction methods is plotted in Fig. 10 for f = 12.5 GHz.

At this specific frequency, it appears that fewer eigencurrents

are required than ACA functions for the two methods to

yield same results. However, NC = 70 eigencurrents may

not be sufficient as the frequency of the incident plane wave

is increased. This is apparent from Fig. 11 in which the

monostatic RCS of the array for θ = 180◦ is plotted versus

the electric length of the dipoles: for frequencies beyond the

resonance (d/λ0 ≈ 0.5) the RCS predicted by the two methods

is not in perfect agreement, although the comparison is still

very good. The number of ACA functions for a given threshold

t = 10−3 is not constant with the frequency, as can be seen

in Fig. 12, and this may due to the oscillatory nature of the

ACA error. Even though the number of ACA functions in this

example is larger than the number of eigencurrents employed,

still even in the worst case (f = 9 GHz, NA = 96 in Fig. 12)

the time taken to carry out the ACA of [S11] is just 0.17 s

versus the 20 s spent to determine the spectral decomposition

of [S11].

IV. CONCLUSION

The results point to the ACA macro basis functions as a fast

alternative to the EEM, when both strategies are applicable,

because carrying out the ACA of [Skk] is indisputably faster

than computing the eigenvectors thereof. The numerical exper-

iments considered indicate that the number of ACA functions

required for a given level of accuracy increases with the size

and the permittivity of the object embedded in a LEGO brick,

while there seems to be no clear trend as the frequency is

varied. Further investigation is needed to find a link — if any

exists — between the threshold t for stopping the ACA of
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Fig. 11: Monostatic RCS of an array of double cross dipoles computed with
LEGO by using (—) eigencurrents of [S11] and (−−) ACA basis of [S11],
t = 10−3 . Inset: LEGO model showing the mesh of the bricks and the
dipoles, and the incident plane wave. Data: see Fig. 10.
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Fig. 12: Number of macro basis functions NA = rank([U11]) versus electric
length for the array of cross dipoles of Figs. 10 and 11.

[Skk] and the accuracy of the computed currents qs
k. A similar

study was conducted for the EEM in [6].
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