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In his seminal article,1 Smoluchowski analyzed 3D
diffusion-limited association of suspended spherical particles
and showed that except a short initial phase the process can be
described at the mass-action law level with the rate constant
given by

ka = 4πRD, (1)

where R is the contact radius or, more specifically, the sum of
the radii, and D is the sum of the diffusion coefficients of the
two species. The first important works complementing what
was done by Smoluchowski were performed by Collins and
Kimball2 and Berg.3 Numerous subsequent theoretical studies
are reviewed in the textbooks on chemical kinetics. The most
recent extensions of the conventional treatments are focused
on the role of stochasticity4 and crowding.5

In numerous applications of Eq. (1) or other similar
equations to nanoparticles (or, in the context of biophysics,
to proteins, micelles, vesicles, virions, ligand-functionalized
metal nanoparticles, etc.), the diffusion coefficient, D, is
usually identified with that predicted by hydrodynamics,
D◦ = kBT/6πηR, where R is the particle radius, and η is the
viscosity coefficient. The latter expression is valid for single
particles far from interfaces. During the contacts between
particles or with an interface, D is, however, smaller than
D◦. In particular, according to hydrodynamics, the coefficient
of diffusion perpendicular to a flat solution-solid interface can
be represented as6,7

D =
6h2 + 2hR

6h2 + 9hR + 2R2 D◦, (2)

where h is the minimal distance between the particle surface
and the solid surface. According to this expression, D is not just
numerically smaller than D◦ but it vanishes at h → 0. Below,
we show how this feature can influence the association rate.

To keep the analysis mathematically transparent, we focus
on the diffusion-limited association of suspended nanoparti-
cles, A + B → AB, of radii R and ρ with R ≫ ρ. In this case,
the diffusion coefficient of A is much smaller than that of B, and
the location of A can be considered to be fixed. The B diffusion
coefficient, D, appreciably deviates from D◦ = kBT/6πηρonly
when A is located near B. In these regions, the surface of A
can be considered to be flat, and accordingly to describe the
dependence of D on the distance, r , between the centers of A
and B, one can just replace in Eq. (2) R by ρ and h by r − R,
where R = R + ρ. Following this line and aiming, as already

noticed, at the transparency of the treatment, we simplify
Eq. (2) as

D(r) =



(r − R)λ−1D◦ at R ≤ r ≤ R + λ,

D◦ at r ≥ R + λ,
(3)

where λ is the parameter comparable with ρ (depending on
the taste, one can, e.g., use λ = ρ, 2ρ, or 4ρ). In analogy with
Eq. (2), Eq. (3) predicts D ∝ r − R at r − R ≪ ρ and D = D◦
at r ≫ ρ.

To describe the A and B association, we consider that the
B distribution around each A particle is spherically symmetric
on average (this is acceptable if the A and B concentrations
are not high) and use the steady-state approximation (as it
was originally done in Ref. 1). In combination with (3), this
approximation yields at r ≥ R + λ the following expressions
for the B diffusion flux (per an A particle) and concentration:

J = 4πr2D◦
dc
dr

, (4)

c(r) = c◦ −
J

4πD◦r
, (5)

where c◦ is the concentration at r ≫ R (this concentration can
be identified with the average B concentration).

At R + δ ≤ r ≤ R + λ, the diffusion flux is given by

J = 4πr2(r − R)λ−1D◦
dc
dr

. (6)

In this expression, r2 can be replaced by R2, because r is close
to R, i.e.,

J = 4πR2(r − R)λ−1D◦
dc
dr

. (7)

To integrate this equation, one should take into account that
the decrease of D down to zero at r → R is mathematically
correct in the framework of the axiomatic phenomenological
hydrodynamics but physically is not acceptable because in
this limit the diffusion is influenced by the factors which
are ignored in the conventional hydrodynamics. Collectively,
this is related to the interface-induced rearrangement of
molecules on the length scale δ ≃ 1 nm. In the physiological
solutions containing, e.g., appreciable amount of water, this
rearrangement results in the appearance of the DLVO-type
forces including the so-called hydration forces (which are still
poorly understood8,9). Simultaneously, the rearrangement is
expected to influence the diffusion in such a way that D remains
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finite at r → R. Focusing on the situations with ρ ≫ δ, we
assume that the diffusion resistance of the narrow region with
R ≤ r ≤ R + δ is negligible and integrate Eq. (7) with the
boundary condition c(R + δ) = 0, i.e.,

c(r) = λJ
4πR2D◦

ln
(

r − R
δ

)
. (8)

At r = R + λ, the concentrations given by Eqs. (5) and
(8) should coincide. This condition yields

c◦ −
J

4πD◦(R + λ) =
λJ

4πR2D◦
ln(λ/δ). (9)

On the left-hand side of this equation, R + λ can be replaced
byR, because λ ≃ ρ ≪ R. With this tiny modification, Eq. (9)
results in

J =
4πD◦Rc◦

1 + (λ/R) ln(λ/δ) (10)

or

ka ≡ J/c◦ =
4πD◦R

1 + (λ/R) ln(λ/δ) . (11)

The latter expression indicates that if the conventional
hydrodynamics is used for D at r down to R (this corresponds
to δ → 0), the association becomes negligible because ka
→ 0. For physically reasonable conditions with δ ≃ 1 nm,

ka remains, however, finite. In particular, our treatment has
implied λ ≪ R. In this case, ka given by Eq. (11) can often be
close to that given by Eq. (1).

The reduction of association rate constant (11) compared
to that defined by Eq. (1) is physically related to hydrodynamic
slowdown of the particle mobility in the contact region.
Formally, it can be interpreted as reduction of the effective
contact radius (in analogy with the earlier treatment of the
effect of the jump length on the association occurring via
discrete walks10,11).
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