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Abstract

Studies on colloidal aggregation have brought forth theories on stability of col-

loidal gels and models for aggregation dynamics. Still, a complete link between de-

veloped frameworks and obtained laboratory observations has to be found. In this

work, aggregates of silica nanoparticles (20 nm) are studied using diffusion limited

cluster aggregation (DLCA) and reaction limited cluster aggregation (RLCA) mod-

els. These processes are driven by the probability of particles to aggregate upon

collision. This probability of aggregation is one in the DLCA and close to zero in

the RLCA process. We show how to study the probability of aggregation from static

micrographs on the example of a silica nanoparticle gel at 9 wt%. The analysis in-

cludes common summary functions from spatial statistics, namely the empty space

function and Ripley’s K-function, as well as two newly developed summary func-

tions for cluster analysis based on graph theory. One of the new cluster analysis

functions is related to the clustering coefficient in communication networks and the

other to the size of a cluster. All four topological summary statistics are used to

quantitatively compare in plots and in a least-square approach experimental data

to cluster aggregation simulations with decreasing probabilities of aggregation. We

study scanning transmission electron micrographs and utilized the intensity - mass

thickness relation present in such images to create comparable micrographs from

three-dimensional simulations. Finally, a characterization of colloidal silica aggre-

gates and simulated structures is obtained, which allows for an evaluation of the

cluster aggregation process for different aggregation scenarios. As a result, we find

that the RLCA process fits the experimental data better than the DLCA process.

Keywords: Cluster analysis, micrographs, nanoparticle aggregation, replicated point

patterns
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1 Introduction

The study of irreversible aggregation of colloids is of interest in many industrial applica-

tions such as food (Poon & Haw, 1997) and drug industry (Parakhonskiy et al., 2014;

Sabin et al., 2007), where gels with specific mechanical and permeability properties

are sought. A common idea is to start from a colloidal stable dispersion, where the

interparticular electrostatic repulsion is strong enough to prevent the particles from ag-

gregating. This repulsive force can be screened by the addition of salt or by adjusting

the pH of the solvent. As a result, the particles may start to aggregate and with time

form a gel. In principle, the resulting dynamic behavior of the colloids may be mod-

eled using Derjaguin-Landau-Verwey-Overbeek (DLVO)-theory, where attractive van

der Waals-London forces as well as repulsive forces are included. Although the DLVO

theory in general gives a physically reasonable model for the stability of colloidal gels,

it fails to predict the behavior of silica particles seen in laboratories (Allen & Matije-

vić, 1969, 1970; Horacio et al., 2006, p.20). The missing features are thought to be a

description of solvent layers, hydrophobic bonding and surface charge fluctuations. In

addition, the DLVO-theory solely describes the interaction between two spherical col-

loids. That is why alternative methods have often been used for modeling the dynamic

aggregation process.

The two most commonly used models describing colloidal aggregation are diffusion

limited cluster aggregation (DLCA), where diffusing colloids aggregate upon collision

(Meakin, 1983) and reaction limited cluster aggregation (RLCA), where particles need

many collisions before aggregating (Kolb & Jullien, 1984). These models outline two

limiting behaviors of colloids, where 1) no repulsive forces are present and the growth

process is dominated by the diffusion coefficient of the colloids (DLCA) and 2) the

case where the repulsive forces are strong and dominate the growth process (RLCA).

These two models have, although their simplistic form, shown a striking similarity with

experimental results obtained using scattering techniques such as light scattering (Lin
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et al., 1989a), dynamic light scattering (Kops-Werkhoven & Fijnaut, 1981; Lin et al.,

1989b), small angle X-ray scattering (Wijnen et al., 1991), microscopy techniques (Liu

et al., 1990) and indirect methods such as estimates of permeability (Babu et al., 2008).

Both theoretical and experimental investigations have shown that the regimes yield a

fractal behavior and that this behavior is universal, in the sense that the same behavior

occurs for very different types of colloids (Poon & Haw, 1997; Lin et al., 1989b; Liu

et al., 1990). From an experimental point of view, the aggregation processes are often

difficult to monitor: the scattering techniques have the limiting feature that only very

dilute systems can be monitored and therefore the dynamic aggregation process is

not accessible in the long-time limit. As an alternative, a series of microscopy images

can be used, where the colloidal state is captured at multiple time points in order to

determine the growth process. This approach suffers, however, from the fact that each

image is taken from an individual aggregation process at multiple time points resulting

in a very time consuming scheme.

In this work, the colloidal aggregation of nano sized silica particles (20 nm) at 9

wt% is studied. Silica particle gels are inorganic, non-toxic gels, for which the gelation

time can be tuned to be between minutes and days (Jurlnak & Summers, 1991). The

probability of aggregation is studied from scanning transmission electron microscopy

(STEM) micrographs representing the resulting aggregated silica particle gel. An ex-

ample of such a micrograph is given in Part A of Figure 1. A schematic DLVO potential

of spherical nano sized silica particles is presented in Part B. Instead of modeling the

full potential, a simplified model is used here, where the potential height corresponds

to a probability of aggregation to occur. Section 2 provides more detailed information

about the experimental data and cluster aggregation simulations. Section 3.1 intro-

duces the summary functions from spatial statistics used to summarize and quanti-

tatively compare the structure characteristic of micrographs experimentally obtained

and of simulated micrographs of DLCA and RLCA structures generated under different

aggregation scenarios. Section 3.2 presents the least-square approach taken into ac-
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count for conclusions drawn from all summary statistics combined. The corresponding

results are presented and discussed in Sections 4 and 5. As a result, we show that

it is not necessary to form a time series of microscopy images in order to study the

aggregation process since this information is embedded in the resulting gel network.

In this way, features of the dynamic aggregation process may be retrieved from a static

micrograph representing the resulting silica particle gel.
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Figure 1: A) STEM micrograph of nano sized silica particle (20 nm) gel at 9 wt%.
B) Schematic DLVO potential (solid) consisting of attractive Van der Waals potential
(dashed) and a repulsive electrostatic potential (dashed dotted). The height of the po-
tential barrier δV (r) of the diffusing silica spheres influences the resulting configuration
of the aggregate. This potential differs from the true effective potential, where also
additional effects such as of solvent layers, hydrophobic bonding and surface charge
fluctuations are present.

2 Materials and methods

2.1 Colloidal silica gel sample preparation

The colloidal gel used in this study consisted of an aggregated network of spherical

silica nanoparticles (SiO2, density 2.2 g/cm3), where the particles had a diameter of

around 20 nm, and the pores were filled with a salt solution. Gels were made from
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charged stabilized particle dispersions, where the negative charges originated from the

partly deprotonated hydroxyl groups on the silica surface. Following the destabilization

of the dispersion, hydroxyl groups on the particle surfaces chemically combine and

form covalent siloxane bonds, resulting in particle aggregates, and finally gelation when

these combine to form one large aggregate that spans the entire volume of the sample

(Schantz Zackrisson et al., 2006). Siloxane bonds and the mechanical properties of

the silica spheres are responsible for the relative rigidity of these gels, making them

amenable to sample preparation and STEM imaging without any significant changes

to the network structure. A detailed description of the gel synthesis has been reported

earlier in Nordin et al. (2014). An aqueous silica dispersion (Bindzil 40/130, 18.2 vol%

silica) was kindly provided by AkzoNobel Pulp and Performance Chemicals, Sweden.

The dispersion was filtered to remove larger particle aggregates and the pH was set

to 7.8 by ion exchange. The silica dispersion was mixed with deionized water, sodium

chloride solution, vortexed and left undisturbed to gel for 14 days.

2.2 Image data preparation

The gel embedding and sectioning prior to the STEM imaging is described in detail in

Nordin et al. (2014). In summary, gel cubes extracted from the inner volume of the

gel samples were dehydrated in a graded ethanol series and thereafter embedded in

LR White resin (TAAB laboratories, Equipment Ltd., Berkshire, UK). Ultra thin sections

of about 90 nm were generated using a diamond knife (DiATOME, Biel, Switzerland)

with an ultramicrotome (Powertome XL, RMC products, Boeckeler Instruments Inc,

Tucson, Arizona). The sections were imaged using a high angular annular dark-field

(HAADF) detector in a Tecnai G2 (FEI Company, Eindhoven, the Netherlands) using

an accelerating voltage of 200 kV and a camera length of 300 mm, giving the HAADF

detector an inner radius of 22 mrad. The obtained STEM micrographs were of a size of

2140 by 2140 nm2 and partitioned into 5 quadratic subwindows with a edge length of
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600 nm. These subwindows were taken in a chess-like pattern to reduce correlations

between them.

2.3 Cluster aggregation simulations

In a study of the probability of aggregation assumed to drive the aggregation dynamics

in the gel samples studied, the silica particle aggregation process was simulated under

different aggregation scenarios. Single particles were randomly placed in a periodic

simulation box according to a given volume fraction and were let to diffuse by Brownian

motion forming clusters with time. A cluster of particles can consist of one or several

aggregated spheres, where the cluster size determines the diffusion coefficient. Upon

collision between two clusters, the colliding particles have the possibility of aggregating

with probability p. A probability p = 1 gives a growth process in the DLCA regime while

p approaching zero gives an RLCA process. If no aggregation occurs, the particles are

let to collide elastically. Upon aggregation the collision point is detected and the two

clusters merge into one larger cluster. This procedure continues until one sole cluster

remains. Rotational diffusion of the clusters and gravitational forces are neglected. Us-

ing the same volume fraction as in the gel samples of 5.96% in a 700×700×700 nm3 box

and setting the sphere diameter to 20 nm, a fixed number of 4881 particles was used in

the simulations. In total, five simulated aggregated structure were generated with five

different probabilities of aggregation p ∈ {1, 0.1, 0.01, 0.001, 0.0001}. Henceforth, these

simulated structures are referred to as cluster aggregation simulations. Two examples

of resulting clusters are shown in Figure 2 for a DLCA simulation with p = 1 and an

RLCA simulation with p = 0.0001. Figure 2 also presents how the simulations were

prepared for the data analysis as described in Section 2.4.
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Figure 2: Diagram of data preparation on the example of two cluster aggregation sim-
ulations with probabilities of aggregation p = 1 (top row) and p = 0.0001 (bottom row),
respectively showing three steps: 1) 90 nm thick slice extraction from the inner 7003

nm3 cube, 2) micrograph simulation and 3) particle detection. Steps 1)-3) were re-
peated for six slices per cluster aggregation simulation.

2.4 Image analysis

2.4.1 Simulation of micrographs

To ensure a fair comparison between two-dimensional experimental data and three-

dimensional simulated particle aggregates, gray-scale images mimicking STEM micro-

graphs were created from the cluster aggregation simulations. In particular, a central

cube with an edge length of 600 nm was extracted from each generated cluster ag-

gregation simulation. The outer part within each box was excluded from the analysis

in order to avoid any wrapping effects due to the usage of a periodic simulation box.

The remaining central cube was partitioned into six 90 nm thick non-overlapping slices

as depicted in Figure 2. As a result, six approximately independent repetitions are ob-

tained per cluster aggregation simulation. The corresponding micrographs were formed

using the method presented in Nordin et al. (2014) describing the expected intensity
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I(x, y) of a pixel at (x, y) as

I(x, y) =

∫ 90

0
ρs(x, y, z)dz

90
,

where ρs denotes a mass-intensity function contained in the small pixel region at (x, y).

Furthermore, zero-mean Gaussian noise with constant variance, σ2 = 0.001, was

added to the double gray-scale images with pixel values in [0, 1] making the particle

detection comparably challenging for simulated as for STEM micrographs.

In the data analysis, the initial, static state of single particles in the simulations

prior to diffusion was used as a reference particle distribution. Whereas the completely

spatially random case, the Poisson point process, is commonly used as a reference

process, a Strauss process (Stoyan et al., 1995, p. 171 ff.) was used here. The inter-

action parameter was set to 10−11 such that configurations close to a hard-core pattern

with no overlapping particles are obtained. In particular, six independent realizations

of the hard-core model were generated. The simulations were run with a fixed num-

ber of 4881 points in a 7003 nm3 observation window which corresponds to the same

silica volume fraction as in the gel samples and cluster aggregation simulations. Sub-

sequently, micrographs were also simulated for a single, randomly placed 90 nm thick

slice per reference realization.

2.4.2 Particle detection

Tools from image analysis implemented essentially in the Image Processing Toolbox

in MATLAB R2013b were used for the particle detection in experimental and simulated

micrographs. The particle detection was based on several steps. Prior to particle de-

tection, the micrographs were roughly segmented into empty space and silica phase.

Consecutively, each resulting binary image was smoothened with a median filter with

a 3 by 3 structure matrix. Then, the silica phase was dilated by a circular structure ele-

ment of radius 3 nm in order to facilitate the particle detection. The resulting template
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was subtracted from the original image, such that a gray-scale input image with even

background and sharper edges around the silica phase was obtained. Next the par-

ticles were detected using the circular Hough transform (Atherton & Kerbyson, 1999)

calculated from pixels above a certain threshold determined by the gradient field of the

input image (Peng, 2005). Since this routine searches for circular objects in the input

image, some detected round objects were removed as falsely detected particles. The

remaining particles were subtracted from the input image and the two particle detection

steps, finding round objects and deleting falsely detected particles, were repeated. A

comparison of the known number of artificial particles and the number of detected par-

ticles in the simulated micrographs showed that on average almost 70% of the particles

were detected and included in the spatial statistical analysis.

3 Spatial statistical analysis

For the spatial statistical analysis, the software R version 3.1.0. and especially the R

package spatstat version 1.37-0 (Baddeley & Turner, 2005) was used. In the analysis,

a set of detected particle centers was interpreted as a realization of a point process

X = {Xi}i∈N, N = {1, 2, . . .}.

Here, X can here be defined as a sequence of random two-dimensional vectors rep-

resenting the coordinates of the particle centers (Stoyan et al., 1995, p.99 ff.). Hence-

forth, X is assumed to be invariant under translation and rotation. Since the particles

were assumed to be monodispersed with a fixed radius of about 10 nm, the spatial sta-

tistical analysis was only conducted on the particle center point patterns disregarding

the particle radii.
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3.1 Structure characterization

The important characteristics of the experimental and simulated aggregates were in-

vestigated using summary functions from spatial statistics assuming stationarity and

isotropy. First, the empty space function F was chosen as a first-order characteristic

describing the pore space since the pore or empty space is of interest for the proper-

ties and functions of gels. Second, Ripley’s K-function was considered as a second-

order characteristic. These two characteristics are commonly used to test against the

completely spatially random case, the Poisson point process. Here, however, different

cluster point processes were only compared to each other without testing for a cer-

tain distribution. That is why the so called clustering function c as introduced in Rajala

(2010) was used to study the inner cluster behavior on a higher-order. In addition,

a new summary function based on the diameter of gyration of clusters is introduced,

which takes the average of all distances between particles in a cluster into account.

3.1.1 First-order characteristic

The empty space function F : [0,∞) −→ [0, 1] is a morphological summary of the

distance distribution of an arbitrary fixed point to the nearest point in X in a micrograph

W ∈ R2. Considering the probability that a ball b(x, r) centered at an arbitrary point x in

W with radius r does not contain any point of X, a cumulative distribution as a function

of radius r is obtained by (Illian et al., 2008, p.201 f.)

F (r) = 1− P(X ∩ b(x, r) = ∅) ∀r ≥ 0.

In order to deal with the edge effects caused by missing observations beyond the

boundaries of W , a Kaplan-Meier estimator based on observed points X ∩ W was
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used as suggested in Baddeley & Gill (1997) by

F̂ (r) = 1− exp
(
−
∫ r

0

(
h1(∂(X⊕s) ∩W	s)
ν2(W	s \X⊕s)

)
ds

)
∀r ≥ 0

for Minkowski operations X⊕r = X ⊕ b(o, r), W	r = W 	 b(o, r). Here, h1 gives the

length of the boundary of X⊕r contained in the eroded window W	r and ν2 the area in

this eroded window not occupied by the dilated points X⊕r.

3.1.2 Second-order characteristic

Ripley’s K-function K : [0,∞) −→ [0,∞] was considered here as a second-order

characteristic, which is defined by

K(r) = λ−1Eo(h0(X ∩ b(o, r) \ {o})) ∀r ≥ 0,

where h0(A) gives the number of points of X in A ∈ R2. λK(r) refers to the expected

number of further points within distance r of a typical point o of X conditioning that

such a point exists (Illian et al., 2008, p.214 ff.). λ denotes the intensity, which is

the mean number of points of the process X per unit area. Using Ripley’s isotropic

edge correction, the following estimator for K is obtained for interpoint distances dij =

‖xi − xj‖ by

K̂(r) =
ν2(W )

n(n− 1)

n∑
i=1

∑
j 6=i

w−1ij I(dij < r),

where n = h0(X ∩W ) and I(·) denotes the indicator function with weights

wij =
h1(∂b(xi, dij) ∩W )

h1(∂b(xi, dij))
.

Here, h1 gives the length of the arc of the ball b(xi, dij) lying in W , such that wij = 1

if b(xi, dij) ⊂ W . Detailed calculations can be found in (Diggle, 2014, p.66). Instead

of analyzing the K-function directly, a variance stabilizing transform, the L-function
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L : [0,∞) −→ [0,∞) given by

L(r) =

√
K(r)

π
∀r ≥ 0

was considered. Based on the estimator K̂, a plug-in estimator L̂ for the L-function

was obtained.

3.1.3 Third-order characteristic

Intended as a third-order characteristic, the clustering function as introduced in Rajala

(2010) and implemented in the R package SGCS Rajala (2014) is used to identify high

density groups of points by taking point triplets into account. In particular, the clustering

function c : [0,∞) −→ [0, 1] sets the number of triplets in b(o, r) in relationship to the

theoretical number of possible triplets. Hence, it is defined as c(r) = Eoco,r with

co,r =



∑
j,k:xj,xk∈b(o,r)\{o} I(djk≤r)

1
2
(δ(o)2−δ(o)) , δ(o) ≥ 2

0 , δ(o) < 2

∀r ≥ 0

and δ(o) =
∑n

j=1 I(0 < ‖o − xj‖ ≤ r). A minus-sampling scheme was applied in order

to get an edge corrected estimator

ĉ(r) =
1

n	

n∑
i=1

I(xi ∈ W	b(o,r))
∑

j,k:xj ,xk∈b(xi,r)\{xi} I(djk ≤ r)
1
2
(δ(xi)2 − δ(xi))

, δ(xi) ≥ 2

and 0 otherwise, where n	 = h0(X ∩ W	b(o,r)) is the number of points in the eroded

window W	b(o,r).
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3.1.4 Higher-order characteristic

The topology of silica aggregates can also be characterized by the average cluster size

based on the diameter of a cluster

D = 2

√√√√ 1

2n2
k

nk∑
i=1

nk∑
j=1

d2ij,

where nk is the number of particles in a cluster. D is also called the diameter of gyration

(Khan et al., 2014). In this study, the samples taken and especially the micrographs

obtained do not show that the nanoparticle gel consists of one large cluster. Instead

smaller clusters are visible and the question of how to discriminate them from each

other arises. Here, geometric graphs (Penrose, 2003) placing an edge between two

points if dij ≤ r were used to identify clusters. As a result, clusters are formed by

points connected in the graph and the mean cluster size function M : [0,∞) −→ [0,∞)

can be defined as a function of r by

M(r) = E (D(r)) ∀r > 0.

In order to account for edge effects, a weighted average of the diameter of gyration of

K clusters was used for the estimation of M such that

M̂(r) =
K∑
k=1

wkDk(r)

with weights wk = nk

n
as the proportion of the number nk of points in the kth cluster to

the total number n of points in W . The geometric graphs were constructed using the R

package spatgraphs (Rajala, 2012).



From static micrographs to particle aggregation dynamics in three dimensions 16

3.1.5 Handling of replicated point patterns

Given three times five replicates of STEM micrographs from gel samples and six repli-

cates from each cluster aggregation simulation, related summary functions fi, i =

1, . . . , I, where I refers to the number of replicates, were pooled by calculating the

weighted averages

f̂(r) =

∑I
i=1 nif̂i(r)∑I
i=1 ni,

,

where the weights are determined by the number of points ni in the respective point

pattern (Diggle, 2014, p.92 f.).

3.2 Least-squares approach for comparing aggregation scenarios

The probability of aggregation p assumed to drive the particle aggregation dynamics

was studied in a simulation based approach. The aim was to estimate the dynamic

aggregation process from static images of completely aggregated structures. In order

to identify one group of simulated structures that is most similar to the STEM data,

a least-squares approach inspired by Redenbach & Särkkä (2013) was chosen on a

grid of five probabilities of aggregation p ∈ {1, 0.1, 0.01, 0.001, 0.0001}. In this study, the

pooled summary functions of the STEM micrographs fj and the simulated micrographs

f̃ipj per aggregation scenario ip = 1, . . . , 5 were compared by calculating the relative

squared error at T ∈ N chosen equally spaced distances r1, . . . , rT resulting in sums of

squares

Sipj =
1

T

T∑
t=1

(
f̃ipj(rt)− fj(rt)

fj(rt)

)2

, (1)

for each summary function j = F, L, c, M . If the different aggregation scenarios can

be discriminated from each other, the probability of aggregation linked to the smallest

total sum of squares of the evaluated summary functions

Sip = SipF + SipL + Sipc + SipM
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can be associated with the probability of the gel samples. Using relative differences

allows here for comparisons of summary functions on different scales.

4 Data analysis

4.1 Summary characteristics

All summary functions used for the characterization of particle structures in the micro-

graphs are presented in Figure 3, namely the empty space function F , the L-function,

the clustering function c and the mean cluster size function M . All cluster aggregation

summary functions of first and second-order lie between those of particle patterns prior

to (reference) and after aggregation (STEM data). Therefore, the cluster aggregation

processes seem to be applicable for modeling the silica particle aggregation dynam-

ics. If the cluster aggregation simulations had not shown a clear difference to the static

reference pattern prior to aggregation, the modeled aggregation would have been in-

effective and, hence, the corresponding model unfeasible. Moreover, it can be seen in

Figure 3 that the lower the probability of aggregation, the more the cluster aggregation

summary functions approach the data curves. Hence, it can also be concluded that the

DLCA process with probability of aggregation equal to one is the best model for the sil-

ica particle aggregation dynamics. Interestingly, there is no clear ranking of the cluster

aggregation summary functions according to their probability of aggregation visible for

the higher-order functions. However, the lowest probability of aggregation appears to

give the best overall result.

Inference on the topology of the particle aggregates can be drawn from each plot

in Figure 3. Starting with the first-order characteristic, the empty space function, it ap-

pears that there is a larger empty space or space of pores in the gel samples than

in the cluster aggregation simulations. One reason for this can be the fact that larger

clusters tend to sink to the bottom of the sample due to gravity, an effect not incorpo-
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rated in the cluster aggregation simulations. However, it can be seen that the smaller

the probability of aggregation, the larger the empty space. This indicates that the parti-

cles aggregate in more round and tighter fashion for small probabilities of aggregation,

which is in line with the expected theoretical aggregation behavior. Interestingly, there

is almost a perfect ordering of empty space functions according to the respective prob-

ability of aggregation. The same can be observed for the L-function. Furthermore, one

can identify a small change in the slope of the L-function at the radius of 20 nm. Since

this change is also present for the reference L-function, there is some evidence that the

particle detection algorithm introduces a hard-core distance between the points which

may disguise larger differences between the cluster aggregation simulations at smaller

radii. Also in the clustering and the mean cluster size function there is hardly any visible

difference between the cluster aggregation simulations up to a radius of 20 nm. In fact,

the STEM and cluster aggregation clustering functions are very similar up to a radius

of about 50 nm. For larger radii the cluster aggregation simulations tend to deviate

from the STEM data indicating a tighter clustering in the gel samples. This conclusion

is supported by the results for the mean cluster size function. Here, one can also de-

tect a tighter clustering for the STEM data than for the cluster aggregation simulations.

Remarkably, the smaller probabilities of aggregation appear to result in more chain like

clusters at small ranges up to 50 nm than the larger probabilities. In contrast to the

DLCA regime and the RLCA simulations with probabilities down to 0.01, however, the

RLCA simulations closest to zero seem to form tighter clusters at larger ranges still

showing a smaller mean cluster size than the reference case, where particles did not

aggregate.

4.2 Least-square analysis of the probability of aggregation

As discussed in Section 4.1, the summary functions for the different aggregation sce-

narios were not very different from each other. However, there were some indica-
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tions on the probability of aggregation associated with the gel samples. In order to

strengthen these conclusions, the integrated relative difference between STEM sum-

mary functions and those of the different cluster aggregation simulations was approx-

imated by calculating sums of squares as in equation (1) at T = 40 equidistant dis-

tances between r1 = 22 and rT = 100. Distances below 22 were not taken into account

due to the effect introduced to the point patterns by the particle detection algorithm

for distances up to 20 nm as mentioned in Section 4.1. Table 1 presents the sums

of squares per summary function and aggregation scenario: without aggregation (ref-

erence), DLCA (p = 1) and RLCA approaches (p ∈ {0.1, 0.01, 0.001, 0.0001}). These

sums of squares reflect the behavior seen in Figure 3. On trying to identify one proba-

bility of aggregation whose corresponding simulated structures are most similar to the

STEM data, the first, second and higher-order summary functions, F , L and M , sug-

gest p = 0.0001, but the third-order characteristic, c, indicates that p = 0.1 seems to

model the short range repulsive behavior within a cluster best.

Table 1 gives the total sums of squares over all summary function per aggregation

scenario presented in Figure 3. Obviously, the cluster aggregation simulations per-

form better than the simulations without aggregation as models for the silica particle

aggregation dynamics since their total sums of squares are only half as large as for

the reference scenario. Whereas it is difficult to detect a clear difference between the

DLCA regime and the larger probabilities of aggregation p ∈ {0.1, 0.01} tested for the

RLCA regime, there seems to be a distinct improvement from p = 0.001 onward. Over-

all, the smallest probability of aggregation appears to be in closest agreement with the

experimental data among the tested probabilities of aggregation, but even a smaller

probability seems to be required for capturing the particle aggregation dynamics of the

gel samples.
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Probability of Summary statistics Total
aggregation F L c M sum
reference 0.5154 0.1481 0.0722 0.5189 1.2547
p= 1 0.2928 0.0868 0.0054 0.2258 0.6108
p= 0.1 0.3042 0.0908 0.0036 0.1861 0.5847
p= 0.01 0.2750 0.0818 0.0044 0.2693 0.6305
p= 0.001 0.2635 0.0732 0.0072 0.2183 0.5622
p= 0.0001 0.2420 0.0678 0.0061 0.1429 0.4588

Table 1: Comparison of the pooled summary statistics for STEM and simulated clus-
ter aggregation micrographs for the reference structure prior to aggregation and five
aggregated structures generated with decreasing probabilities of aggregation

5 Discussion

For the spatial statistical analysis, other first and second-order characteristics are avail-

able. For instance, another commonly used first-order characteristic is the nearest

neighbor distance distribution function. It is important to keep in mind that particles

are not overlapping in the three-dimensional structure which would result in a nearest-

neighbor distance of 20 nm. Projected to micrographs, particles may overlap making a

nearest neighbor analysis feasible. Here, however, the hard-core distance identifiable

in Figure 3 indicates that the implemented particle detection algorithm induces such a

hard-core distance as well in the micrographs. In fact, only around 40% of particles

with a projected interpoint distance of 20 nm were detected on average. Consequently,

the nearest neighbor distance distribution was not used in the analysis since no crucial

differences between the different aggregation scenarios were preserved. Also a combi-

nation of several kth, k ≥ 1, nearest neighbor distance functions did not appear useful.

An alternative second-order summary function related to the K-function is the pair cor-

relation function, which is a normalized transform of the derivative of the K-function.

In order to obtain an estimator for the derivative, kernel smoothing is needed based on

a certain bandwidth. The K-function was chosen here since no bandwidth had to be

specified.

Overall, we had expected to see more prominent differences between the summary
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functions of the different cluster aggregation simulations. In analogous simulation on-

lattice, where all clusters have the same diffusion coefficient, we found a very clear

difference between the different aggregation scenarios. We suspect that either the

increased degree of freedom for the clusters using an off-lattice simulation or the low-

ering of the diffusion coefficient as the clusters grow (or both) have an impact on the

results. In the first case, it would be very good to study RLCA simulations with even

lower probabilities of aggregation than considered in the study, especially since the

data analysis suggests lowering the probability of aggregation as well. Unfortunately,

such simulations are not feasible since they demand very high computational effort.

Instead, an alternative way for generating such particle aggregates should be devel-

oped. It deserves mentioning that in a small simulation based validation study, the

three-dimensional cluster aggregation simulations only showed a clear difference be-

tween two groups of probabilities of aggregation, namely between p ∈ {1, 0.1, 0.01}

and p ∈ {0.001, 0.0001}. Furthermore, the behavior of the three-dimensional summary

functions was in line with summary functions from the micrographs.

6 Conclusion

In this study, we investigated the aggregated structure of nanoparticles gels and the

process that creates such structures. In particular, we analyzed two-dimensional STEM

micrographs from three-dimensional nano sized silica particle gel samples. In order to

understand the aggregation process of the nanoparticles, simulated particle aggre-

gates were generated using the DLCA and RLCA process. Since these processes

are driven by the probability of the particles to aggregate upon collision, it was also of

interest to approximate this probability of aggregation for the given gel samples. Five

decreasing probabilities of aggregation were used in the cluster aggregation simula-

tions. For the comparison of two-dimensional STEM data to three-dimensional simu-

lations, micrographs were simulated from the particle aggregates generated with the
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cluster aggregation processes. For the comparison, summary functions from spatial

statistics were used to characterize the different point patterns obtained by detecting

the particles in the micrograph with tools from image analysis. Besides commonly

used summary statistics, the spatial statistical analysis included also newly developed

functions for cluster analysis, where the one based on the diameter of gyration was

introduced in this work. The results from both, the visual inspection of the summary

functions and the least-square approach, indicated that even smaller probabilities of

aggregation should be studied in order to find the one that can be associated with the

gel samples. Since simulations with very small probabilities of aggregation require a

lot of computations, alternative simulation methods should be developed. Furthermore,

there is also some evidence that for modeling the short range inner cluster behavior,

larger probabilities of aggregation appear more suitable, such that a hierarchical mix-

ture aggregation process with a change in probability of aggregation could be worth

including in such alternative models.

Even though, this study further showed that inference from two-dimensional projec-

tions can be drawn on three-dimensional clustered structures, a validation with repli-

cated three-dimensional data should be conducted. Further studies could also include

two-dimensional summary functions for marked point processes, where the image in-

tensity at the center of a particle is attached as a mark to each point of the process.

It could be tested if intensity based two-dimensional mark summary functions can be

used to describe the particle distribution in three dimensions.

All in all, it became evident, that the DLCA process might not be the best choice

when modeling silica nanoparticle aggregates and that the RLCA regime should be

preferred. Moreover, this study showed that it is possible to draw inference on three-

dimensional particle aggregation dynamics directly from static two-dimensional micro-

graphs of the resulting gel without requiring a time consuming and complicated time

series of microscopy images.
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Figure 3: (A) Empty space function F , (B) L-function, (C) clustering function c and (D)
mean cluster size function M pooled for detected point patterns from cluster aggre-
gation simulations with five different aggregation scenarios, realizations of a reference
point process without particle aggregation and STEM micrographs. It becomes evi-
dent that the process with the smallest probability of aggregation (p = 0.0001) tends to
describe the aggregation dynamics of silica nanoparticles best.
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