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Abstract There is an ongoing discussion within the research field of mathematics educa-
tion regarding the utilization of the history of mathematics within mathematics education.
In this paper we consider problems that may emerge when the historical epistemology of
mathematics is paralleled to students’ conceptual developments in mathematics. We prob-
lematize this attempt to link the two fields on the basis of Grattan-Guinness’ distinction
between “history” and “heritage”. We argue that when parallelism claims are made, his-
tory and heritage are often mixed up, which is problematic since historical mathematical
definitions must be interpreted in its proper historical context and conceptual framework.
Furthermore, we argue that cultural and local ideas vary at different time periods, influ-
encing conceptual developments in different directions regardless of whether historical or
individual developments are considered, and thus it may be problematic to uncritically
assume a platonic perspective. Also, we have to take into consideration that an average
student of today and great mathematicians of the past are at different cognitive levels.
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1 Introduction

During recent decades there has been an increase of research in the history of mathemat-
ics, which seems to have influenced other domains as well. Mathematics syllabuses at
schools and universities often refer to the history of mathematics, and research in mathemat-
ics education more frequently involves history of mathematics. A sufficient comprehensive
description of the multifarious role of the history of mathematics in mathematics educa-
tion is given in Tzanakis and Arcavi (2000). The history of mathematics is utilized in the
research field of mathematics education in different ways, such as in the formation of the-
oretical frameworks (Jankvist, 2009; Jankvist & Kjeldsen, 2011; Sfard, 1991, 1995), as
teaching and learning via primary historical sources (Fenaroli, Furinghetti, & Somaglia,
2014; Glaubitz, 2011; Jahnke, 2000; Pengelley, 2011, 2012), as a motivating factor in the
learning of mathematics (Farmaki & Paschos, 2007), as a means to device educational mate-
rial and implement a teaching approach (Jankvist, 2011; Panagiotou, 2011; Siu, 2000), and
as evolutionary arguments (Piaget & Garcia, 1989). Difficulties in the effort to combine
history of mathematics and mathematics education has also been considered. For exam-
ple, Fried (2001, 2007) points out that the commitment to teaching modern mathematical
techniques is at odds with the historian’s commitment to avoid anachronism and to under-
stand the mathematics of the past as something more than an older version of modern
mathematics.

The evolutionary arguments, or the genetic approach, originates in the German biolo-
gist Ernst Haeckel’s (1834–1919) law of biological development, wherein he claims that
“ontogeny recapitulates phylogeny”. Although Haeckel’s theory of recapitulation is now
discredited among biologists, it had a strong influence on social theories and educational
practices developed during the end of the 19th century. According to the psychological ver-
sion of the theory of recapitulation, it is assumed that the present intellectual developments
are to some extent a condensed version of those of the past. This would imply that while
developing the understanding of, for example, a mathematical concept, the student reca-
pitulates the historical development of the concept. As further outlined in Fauvel (1991),
Furunghetti and Radford (2002, 2008), Mosvold (2003) and Schubring (2011), the theory
of recapitulation was adopted among mathematicians and mathematics educators in the late
19th century. For example, Henri Poincaré (1854–1912) suggested that1 “the educators’ task
is to make the children follow the path that was followed by their fathers” (Poincaré, 1899,
p. 159). Also Felix Klein (1849–1925) had an interest in mathematics education, which he
believed was closely connected to the history of mathematics. He was convinced that the
road to discovery, rather than the formal arguments, was of most importance. Furthermore,
Otto Toeplitz (1881–1940) pleaded for a genetic methodology in the teaching of mathe-
matics, using history as a didactical means. In particular he considered the role of teachers,
understanding teachers as actively reflecting the history of mathemaics and transmitting its
essence to the students (Schubring, 2011).

As described in, for example, Furunghetti and Radford (2002, 2008) and Radford (2000),
during the last century there was a growing interest in the relation between ontogenesis and
phylogenesis among psychologists. For example, Lev Vygotsky (1896–1934) dealt with the
problem of recapitulation, emphasizing the epistemological role of culture. He pointed out
that the activity of mental functions is modified by the use of tools and artefacts, such as,

1“La tâche de l’éducateur est de faire reprasser l’esprit de l’enfant par où a passé celui de ses pères.”
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for example, clay tables, counting boards, words and language. Thus, since the tools dif-
fer among different cultures, and sociohistorical conditions vary among different historical
periods, recapitulation is invalidated. Jean Piaget (1896–1980) and Rolando Garcia (1919–
2012) favoured a parallel between historical and psychological developments (Piaget &
Garcia, 1989). They disputed Haeckel’s recapitulation, suggesting that this parallel must be
seen not in terms of content but in terms of invariable mechanisms for allowing the acquisi-
tion of knowledge (Furinghetti & Radford, 2008). They tried to show that the mechanisms
of passage from one historical period to the next are analogous to those of the passage from
one psychogenetic stage to the next, and thus these mechanisms cannot be modified by, for
example, culture.

In this paper we discuss studies in mathematics education where evolutionary arguments
have been invoked erroneously. In particular, we argue that there are three essential prob-
lems that may arise when historical epistemology of mathematics is paralleled to students’
conceptual developments in mathematics: the problem of not considering different concep-
tual frameworks, the problem of tacitly assuming a platonic perspective, and the problem of
not considering differencies in cognitive levels. For example, we argue that there are stud-
ies where historical evolution is compared to students’ conceptual developments which are
based on a belief that the concepts used in schools and at universities today are the “cor-
rect” definitions that mathematicians have strived for throughout history. That is, one can
say that these studies tacitly assume a platonic perspective of mathematics or, as we are
about to describe, utilize a typical heritage approach (in terms of Grattan-Guinness’ distinc-
tion between history and heritage (Grattan-Guinness, 2004a, b). Furthermore, we argue that
it is problematic when the historical evolution is paralleled to students’ conceptual develop-
ments since the focus is often restricted to only one specific concept and different conceptual
frameworks from different periods of times and from different cultures are not taken into
consideration. For instance, it is questionable to claim that students today understand the
function concept in a similar way as, for example, Leonhard Euler (1707–1783) did during
the 18th century, since Euler not only was at a different cognitive level compared to today’s
students, but also based his function concept on a different conceptual framework compared
to the students.

2 History versus heritage of mathematics

During recent years the legitimacy of historical research in mathematics has been debated.
One crucial question has concerned how historical texts in mathematics should be
interpreted in a proper (and historically correct) way. Grattan-Guinness (2004a, b) has
considered this issue on the basis of the two approaches:

– the history approach, versus
– the heritage approach.

Although the distinction between history and heritage has mainly been considered within
the community of history of mathematics, its relevance for mathematics education has also
been discussed. Grattan-Guinness (2004a) points out that mathematics education can profit
from both history and heritage, which has been discussed by Rogers (2010) and Tzanakis
and Thomaidis (2011, 2012). In this paper the distincion between history and heritage will
be used in connection with our problematization of didactical studies where historical epis-
temology is related to students’ conceptual understanding in mathematics. Let us first give
a brief description of Grattan-Guinness’ distinction.
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History deals with what happened in the past, regardless of the modern situation. In
order to study a specific mathematical theory, definition, theorem, concept etc., the history
approach focuses on the details of its original development, its prehistory, the chronology
of progress and its impact in the years immediately following. Grattan-Guinness (2004a, b)
argues that history addresses the question “what happened in the past?” but also the question
“what did not happen in the past?” In order to answer the corresponding questions “why?”
it gives descriptions and also attempts explanations. The history approach may also con-
sider differences between the historical notion and more modern notions that are seemingly
similar. A concrete example of interpreting historical texts with the history approach is the
following: If Euler’s function concept is studied the focus would be to analyse his func-
tion concept on the basis of the mathematical context at that particular time period, without
being influenced by the modern function concept. The fact that the function concept during
the 18th century was quite different compared to today would not be a main point.

Heritage refers to the impact of a certain mathematical notion (a mathematical theory,
definition, theorem, concept, etc.) upon later work. The main focus is usually the modern
form of the notion studied, with attention paid to the course of its development and when
appropriate the modern notions are inserted into the notion studied. Grattan-Guinness sum-
marizes: “Heritage addresses the question ‘how did we get here?’ and often the answer reads
like ‘the royal road to me’ ” (Grattan-Guinness, 2004b, p. 165).

One should keep in mind that the utilization of the heritage approach often results in a
modernization of old results in order to show their current place in mathematics, but the
historical context is not always taken into account. Grattan-Guinness (2004b, p. 163) points
out that this is perfectly legitimate, as long as the heritage approach is not mixed up with the
history approach. That is, it is important to take into account that mathematicians of the past
based their definitions of the conceptual framework available at the time and to not assume
that they necessarily strived for the modern definitions of today. An example of mixing
up history with heritage is to claim that Euclid was a “geometric algebraist”, in the sense
that he was handling geometrical notions but he actually was practising common algebra.2

However, to insert modern notions of algebra into Euclid’s work is perfectly legitimate
and would be a typical example of using the heritage approach. The problem occurs if one
claims that algebra is discovered in Euclid’s work.3

3 Problems arising from posing parallelism claims

In order to describe and explain students’ conceptual developments in mathematics, evo-
lutionary arguments have become a topic largely shared within mathematics education.
For example, bearing on the ideas of “developmental invariants” initiated by Piaget, Sfard
(1991, 1995) has developed a theoretical framework based on the belief of a parallel between
the historical development of mathematical concepts and the development of students’
understanding of the concept. In particular, she claims that “difficulties experienced by an
individual learner at different stages of knowledge formation may be quite close to those
that once challenged generations of mathematicians” (Sfard, 1995, pp. 15–16). In empirical
studies aiming at comparing students’ learning of mathematical concepts with the historical

2A well–known debate regarding this issue can be found in Unguru (1975) and Weil (1978).
3Discussions regarding modern interpretations of Greek mathematics can be found in Grattan-Guinness
(2004a, b).
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development of the same concept, the conclusion is often made that students’ conceptual
understanding corresponds to a specific time period in the historical development of the
concept. Another conclusion that is often made is that students learn a specific concept in
tandem with the historical development of that concept (see, for instance, Juter (2006) and
Moreno and Waldegg (1991)). In this section we elucidate, in turn, three essential problems
that may arise in these studies with reference to evolutionary arguments: the problem of
not considering different conceptual frameworks, the problem of tacitly assuming a platonic
perspective, and the problem of not considering differencies in cognitive levels.

3.1 The problem of not considering different conceptual frameworks

One problem when the historical development of a mathematical concept is compared with
students’ understanding of the same concept is that concepts from different time periods are
based on different conceptual frameworks. For instance, if university students’ understand-
ing of the limit concept is considered, it is important to take into account that these students
are learning the modern limit concept which is based on the modern concepts of variable,
function, continuity, et cetera. That is, the modern limit concept is included in our modern
conceptual framework. In the same way, for instance, Euler’s idea of infinitesimal quanti-
ties is included in the conceptual framework of his time. The point here is that when we
compare a specific mathematical concept from one time period with the corresponding con-
cept from another time period, it is necessary to take into consideration that the concept is
included in a conceptual framework that differs between one time period and another. This
is one reason why it becomes difficult to accept Moreno and Waldegg when they in their
study regarding students’ understanding of the concept of infinity claim that “the student
response schemes are similar to the different response schemes given by mathematicians
throughout the history of mathematics” (Moreno & Waldegg, 1991, p. 211).

The problem of not considering different conceptual frameworks through the history of
mathematics may also be an issue as we consider Sfard’s theoretical framework. When she
undertakes an analysis of mathematical definitions and representations from historical and
psychological perspectives, she concludes that many mathematical concepts can be formu-
lated in two fundamentally different ways: operationally (as processes and algorithms) and
structurally (as abstract objects) (Sfard, 1991, p. 4). For example, we can consider a function
operationally as a certain computational process as well as structurally as a set of ordered
pairs. Sfard argues that operational and structural conceptions are complementary, or “oppo-
site sides of the same coin” and that the ability of seeing a concept as both a process and an
object is indispensable in order to gain a deep understanding of the concept (Sfard, 1995, p.
37). The transition from computational operations to abstract objects, also known as reifi-
cation, is defined as an “ontological shift” and is, according to Sfard, a long and difficult
process in the historical development as well as in the individual’s concept formation.

We agree with Sfard that there may be a tendency in psychological development to move
from an operational approach to a structural one. However, we are not convinced regard-
ing claims of parallelism in Sfard’s (1991, 1995) papers. Let us, for example, consider the
function concept from a historical point of view. In 1748 Euler defined the function as an
analytical expression:4 “A function of a variable quantity is an analytic expression com-
posed in any way whatsoever of the variable quantity and numbers or constant quantities”

4“Functio quantitatis variabilis est expressio analytica quomodocunque composita ex illa quantitate variabili
et numeris seu quantitatibus constantibus.”
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(Euler, 1748, p.18). The analytic expression of Euler was, according to Sfard, highly con-
nected to algebraic processes and could thus be interpreted as operational (Sfard, 1991, pp.
14–15). However, it is not clear in what context the interpretation is made. If we consider
this definition in terms of Grattan-Guinness’ heritage approach, we can interpret it as an
operational understanding of the modern function concept. But this should not be mixed up
with the history approach: Euler in fact dealt with a very different function concept than
the modern one. He neither had access to the modern function concept nor did he struggle
to formulate it. He formulated a definition of a function within his conceptual framework
which was suitable for dealing with problems in mathematics of that time. After a long con-
troversy with Jean le Rond d’Alembert (1717–1783) regarding the nature of functions to be
allowed in problems regarding the vibrating string Euler in 1755 published his highly influ-
ential book Institutiones calculi differentialis. There he defined a function in an entirely
general way:5

lf some quantities so depend on other quantities that if the latter are changed the former undergoes

change, then the former quantities are called functions of the latter. This denomination is of broadest

nature and comprises every method by means of which one quantity could be determined by others.

If, therefore, x denotes a variable quantity, then all quantities which depend upon x in any way or are

determined by it are called functions of it (Euler, 1755, p. 4).

Sfard (1991, p. 15) claims that the operational flavor emanates even more clearly from this
definition than from the 1748 version.

Moreover, in studies where students’ conceptual understanding are compared with the
historical development the focus is often restricted to only one specific concept and other
concepts have not been taken into account. We argue that since one concept is included
in a whole conceptual framework (which differs from time to time) it is important, from
a historical perspective, to consider the concept in view of its proper historical context. In
the following we will discuss two examples where students’ understanding of the function
concept have been studied. In the first example, Kjeldsen and Petersen (2014) are aiming
to bridge the history of the function concept with theories from mathematics education.
They discuss an implementation of an experimental course in the history of the concept of
a function in a Danish high school mathematics classroom. Two conclusions drawn are that
some of the participated students “acted according to meta-discursive rules that coincide
with Euler’s from the 1700s” and that the obstacles created for the students by reading a text
by Dirichlet from 1837 can be referred to “differences in meta-discursive rules” (Kjeldsen
& Petersen, 2014, p. 43). In the second example, Viirman, Attorps, and Tossavainen (2010)
compare students’ definitions of a function with Euler’s definition from 1755. One of the
conclusions is that “the definitions given by the students mostly resemble an 18th or 19th
century view of functions” (Viirman et al., 2010, p. 5).

In both of these examples students’ understanding of the function concept has been com-
pared with Euler’s definitions. We argue that such a comparison is difficult to make since
the students’ definitions are based on our modern conceptual framework which differs from
the conceptual frameworks from the 18th and the 19th centuries. For instance, the function
concept depends on the variable concept and today’s variable concept differs significantly
from the variable concept that Euler had at his disposal. Domingues (2004) points out that

5“Quae autem quantitates hoc modo ab aliis pendent, ut his mutatis etiam ipsae mutationes subeant, eae
harum functiones appellari solent; quae denominatio latissime patet atque omnes modos, quibus una quantitas
per alias determinari potest, in se complectitur. Si igitur x denotet quantitatem variabilem, omnes quantitates,
quae utcunque ab x pendent seu per eam determinantur, eius functiones vocantur.”
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most mathematicians during the 18th century regarded variables as being quantities that
vary, that change in magnitude. For instance, the mathematician Guillaume de l’Hospital
(1661–1704) defined variables in the follonging way:6 “We call variable quantities those
that increase or decrease continuously; and to the contrary we call constant quantities those
that remain the same while the others change” (l’Hospital, 1696, p. 1). L’Hospital’s def-
inition is of course quite different compared to the modern variable concept in the sense
that today a variable is viewed as a symbol representing an arbitrary element of a specific
set. Even though it is questionable whether students of today understand, for example, the
variable concept in its modern form, we believe that there is a point in emphasizing the dif-
ficulty of investigating students’ understanding of one single mathematical concept without
taking the proper conceptual framework into account.

3.2 The problem of tacitly assuming a platonic perspective

Let us now consider the second essential problem with studies where students’ conceptual
development in mathematics is compared with the historical development of the correspond-
ing concept. It seems that these studies sometimes have a tendency to view our modern
definitions of mathematical concepts as the final “goals” that mathematicians in the past
were striving for. That is, the mathematical definitions that we teach at university courses
today are viewed as the “correct” definitions that mathematicians finally have discovered,
so to speak. Perhaps one can say that studies of this kind presuppose a platonic view of
mathematics. One such example is when Juter in a study of students’ understanding of the
limit concept claims that the students “paralleled the historical development of the concept
in the sense that they were able to solve tasks in the beginning before they could explain the
theory but that with time the theory became clear to them” (Juter, 2006, p. 426). A platonic
perspective of mathematics is even more evident when she claims that historically limits
were first treated in problem solving situations, but “with time and through many mathe-
maticians’ efforts, the theory became clear” (Juter, 2006, p. 426). We may argue that Juter
in her study uses a heritage approach (in terms of Grattan-Guinness), considering the his-
torical development as “the royal road to me”, but this becomes problematic as it is mixed
up with a history approach.

From a historical point of view though, as also argued in for example Bagni (2004)
and Radford (1997), it seems unlikely that mathematicians of the past were struggling to
bring their concepts as close as possible to our modern ones. For example, there are alter-
native ways of defining mathematical concepts. As we will consider further in Section 4.2,
in non-standard analysis, which is an alternative to our standard analysis, the limit con-
cept is based on infinitesimals which give a consistent theory within non-standard analysis.
Another problem with Juter’s quotation above is that it is difficult to claim that “the students
parallelled the historical development of the limit concept”, since the historical development
of a mathematical concept has not been necessarily unique, that is, there is not necessarily
one royal road to the modern definition. In Section 4.1 we exemplify this with the historical
development of negative numbers which is different in western Europe compared to that in
China.

6“On appelle quantités variables celles qui augmentent ou diminuent continuellement; & au contraire
quanitités constantes celles qui demeurent les mêmes pendant que les autres changent.”
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Platonism involves the idea of an ideal perfect structure “out there” for us to discover. A
platonic perspective may of course be an acceptable perspective espoused by teachers, shap-
ing the way of teaching and letting the students rediscover mathematics. However, when
history of mathematics is considered, a “correct definition” should be referred to as a cor-
rect definition in a specified conceptual or mathematical framework. In mathematics and
its history it is very common to define a concept in many different ways (for example, irra-
tional numbers as equivalence classes of rational number sequences, or as Dedekind cuts)
or using different definitions to describe the same phenomenon (for example Isaac New-
ton’s (1642–1727) fluxions and Gottfried Wilhelm von Leibniz’ (1646–1716) infinitesimals
to describe the rate of change of a quantity). Therefore, we argue that a platonic perspective
is problematic when we consider the history of mathematics.

Radford argues that the history of mathematics often is presented as episodic narratives
implicitly underlain by an apriorist platonic epistemology (Radford, 1997, p. 26). Typically,
the aim is to show students how past mathematicians succeeded in discovering mathematical
concepts. We can perhaps see traces of this belief in Sfard (1991). It seems that she, in
her historical investigation of the function concept, does not take the historical context into
proper account when she, for example, claims that the problem with early definitions of the
function concept is that they leaned on the concept of variable which was “rather fuzzy and
escaped every attempt at reification” (Sfard, 1991, pp. 14–15). Schubring criticizes Sfard
for understanding the history of mathematics as a “ready-made, unquestionable product
suited to confirm her claims about historical and psychological parallels” (Schubring, 2011,
p. 85). We agree with Schubring that Sfard’s description of the history of mathematics is
simplified, at least from a history approach in terms of Grattan-Guinness. But perhaps we
could say that she utilizes a heritage approach when interpreting the history of mathematics,
focusing on the modern form of the concepts.

3.3 The problem of not considering differencies in cognitive levels

The third essential problem with studies where students’ conceptual developments are com-
pared with the historical development is what we refer to as the problem of not considering
differencies in cognitive levels. Let us consider one of Juter’s (2006) conclusions in the
study referred to above, where she claims that “the students with problems explaining the
limit definition appeared to be mainly at the stage of Newton and Leibniz with a sense of
what they do but lacking the means to strictly formulate and explain the concept of lim-
its” (Juter, 2006, p. 427).7 It seems unfair to compare a student of today (just about to
learn the fundamental concepts of calculus) with Newton, Leibniz, or Euler. Not only do
they consider different definitions in different mathematical frameworks; we also have to
assume that the students are at different cognitive levels compared to famous mathemati-
cians of the past. Even if Euler, according to Sfard’s definition of reification, may not have
reached the stage of a reified understanding of his definition of a function, since he remained
partially linked to an operational frame, he most probably was at a higher cognitive level
compared to the average student of today, who struggles to understand the modern defini-
tion of a function but still considers it as an analytical expression, and being far from the
reified stage.

7This conclusion is similar to the conclusion of Viirman et al. (2010, p. 5) that we referred to above: “the
definitions given by the students mostly resemble an 18th or 19th century view of functions”.
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Moreover, the students today have seen the definitions of the concepts that they are
about to learn and are trying to handle these concepts “from above”. The students’ mistakes
probably depend on misunderstandings of the definitions, or arithmetical miscalculations.
Historical mathematicians, on the other hand, were developing the mathematical concepts
“from below”: they carefully chose the best ways to reach their goal and they in most
cases used the defined concepts correctly. If it later turned out that their definition was not
appropriate then they corrected or reformulated it.

Kjeldsen and Petersen (2014) make a similar conclusion as Juter in their study regarding
the history of the function concept and students’ conceptual formation of functions. They
claim that “the experiment revealed that many of the students have a concept image that was
in accordance with Euler’s rather than with our modern concept definition and that they have
process oriented thinking about functions” (Kjeldsen & Petersen, 2014, p. 29). We believe
that it is problematic to claim that many of the students’ concept image were in accor-
dance with Euler’s definition, especially in the light of how Tall and Vinner define “concept
image” as “the total cognitive structure that is associated with the concept, which includes
all the mental pictures and associated properties and processes” (Tall & Vinner, 1981, p.
152). As already mentioned, one cannot assume that students are at the same cognitive level
as famous mathematicians of the past.

However, we agree with Kjeldsen and Petersen that students often have a process-
oriented thinking about functions, and there is a point in questioning whether students of
today really understand the function concept in its modern form. But this does not imply
that we unquestionably can draw conclusions from comparing students’ conceptual under-
standing with those of famous mathematicians of the past. Nevertheless, we may agree that
one can perhaps trace the parallelism suggested by Sfard if we consider the historical devel-
opment of mathematical concepts with a heritage approach without taking the historical
context into consideration. Then we possibly could compare the students’ understanding
of a modern concept with a modern interpretation of a historical definition of the con-
cept. This may, of course, according to Grattan-Guinness (2004b, p. 163) be completely
legitimate, as long as we do not mix up the heritage approach with what actually hap-
pened in the past. As historians of mathematics, however, we question what the point of
this would be.

4 Alternative historical developments and alternative theoretical frameworks

In order to further justify our claims we will in this section consider two examples. In
the first example we consider the historical development of the understanding of negative
numbers. We emphasize the epistemological role of culture in the historical development
of mathematical concepts, arguing that there is not a foregone conclusion about how a
mathematical concept has developed. In the second example we consider Schmieden and
Laugwitz’ (1958) version of non-standard analysis, which is an alternative theory to our
ordinary analysis. We argue that there are different ways of defining mathematical con-
cepts which also lead to consistent mathematical theories. Thus it may be problematic to
uncritically take a platonic view of mathematics.

4.1 Negative numbers and the role of culture

In this section we argue that local and cultural ideas about science and mathematics influ-
ence the development in different directions. We find one example of this when we study
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the development of the notion of negative numbers in China and in western Europe.
References to negative numbers were first made in China in Jiuzhang Suanshu (Nine
Chapters on the Mathematical Art); for an overview of the text see Lam (1994). This
is a practical handbook of mathematics containing mathematical concepts and methods,
and it played a fundamental role in the development of Chinese mathematics. Liu Hui
wrote a commentary on Nine Chapters in 263 AD, but the mathematics described had
been developed from about 1000 BC. Negative numbers are introduced and used in Chap-
ter 8, where a method is given for solving systems of linear equations. The method is
very similar to Gaussian elimination: the coefficients are placed in a rectangular array, or
matrix, of rod numerals and thereafter reduced to triangular form. In this algorithm negative
numbers appear.

Arithmetic in China was carried out using counting rods from about the first millenium
BC (for a full treatment, see Lam & Ang, 2004; Lam & Shen, 1989). The rods were arranged
in rows using a decimal place notation, and when performing calculations different numbers
were laid out in a series of rows forming a grid. Counting rods with different colours were
used to symbolize subtraction: a black number to be subtracted from a red one. As the red
counting rods represented positive numbers it was not hard to give the black counting rods a
meaning as negative numbers. Negatives arose naturally in solving concrete problems, and
in Liu’s commentary rules for adding and subtracting, positive and negative numbers were
explained.

In western Europe, however, the concept of negative numbers was resisted for a long
time. Knowledge of negative numbers and algebraic techniques had reached western Europe
in the 13th century. For example, negative numbers appear in many problems in Liber abici
(1202/1228) by Leonardo of Pisa (Fibonacci, 1170–1250). He generally rejected negative
solutions but reformulated the problems when possible to permit a solution. In problems
concerning money he interpreted negatives as debts, borrowed money or invested capital.
However, when a reinterpretation was impossible, the negative solution was rejected as
inconvenience (Schubring, 2005, p. 39).

In Ars Magna (The Great Art) from 1545 Girolamo Cardano (1501–1576) gave
methods of solution of the cubic and quartic equations. He rejected negative num-
bers, and since all the coefficients then had to be positive he had to describe how
to solve 13 distinct cases of cubic equations. He did recognize that some of his
equations had negative solutions, but he systematically ignored them. In the chap-
ter On the rule for postulating a negative he considers problems with complex roots
which he calculates. However, he saw no physical meaning to it and stated “so pro-
gresses arithmetic subtlety, the end of which, as is said, is as refined as it is useless”
(Cardano, 1545/1993, p. 220).

Negative numbers started being used systematically not only through the problem of
applying algebraic syntactical rules to the theory of equations, but also through the problem
of dealing with the correspondence between the terms of an arithmetical and a geometri-
cal progression (Thomaidis, 1993; Thomaidis & Tzanakis, 2007). In his book Arithmetica
Integra (1544) Michael Stifel (1486–1567 or 1487–1567) examined the correspondence
between the two progressions, in fact being a logarithmic system of base 2, noting that he
could extend the correspondence to negatives of the arithmetical and fractions of the geo-
metrical progression (Panagiotou, 2011, p. 5). He clearly stated that the negative numbers
are less than zero. However, he did not acknowledge equal status for positive and nega-
tive numbers, declaring positive numbers to be real numbers and negative numbers were
ascribed only an imagined existence (Schubring, 2005, pp. 40–41).
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Important work on negative numbers should be attributed to John Wallis and Isaac New-
ton in the 17th century (Schubring, 2005, pp. 89–92). For example, in Treatise of Algebra
from 1685, Wallis gives a simple and clear definition of positive and negative numbers as
contrary signification:

If + signify Upward, Forward, Gain, Increase, Above, Before, Addition, & c. then – is to be interpreted

of Downward, Backward, Loss, Decrease, Below, Behind, Subduction, & c. And if + be understood

of these, then – is to be interpreted of the contrary (Wallis, 1685, p. 16).

Mumford (2010, p. 140) argues that the European resistance to negative numbers was
due to two factors. The first factor is Euclid, whose Elements for generations came to define
what is and what is not mathematics. In the Elements Euclid deals with magnitudes and
ratios, and these concepts do not provide numbers that can be negative or even zero. The
second factor is the relationship between negative numbers and imaginary numbers: at the
same time as negative numbers should have been accepted, imaginary numbers also cropped
up. There was a problem with square roots because of the negatives, and thus it may have
seemed most suitable not to consider the negatives at all.

The historical development of the notion of negative numbers in different cultures
illustrates clearly that there are differences among local and cultural ideas about sci-
ence and mathematics, and their objects and methods, that influence this development.
In China the number rod system had been developed and its availability made it nat-
ural to simply use a different colour to represent, for example, debts. However, in
Europe different colours were not used to represent positives and negatives. Instead the
Greek heritage of magnitudes and ratios in combination with the problem of accept-
ing imaginary numbers for a long time kept back the full understanding and acceptance
of negatives.

4.2 Non-standard analysis

In this section we exemplify that a mathematical phenomenon can (rigorously) be defined in
different ways depending on its theoretical framework. For instance, Newton’s fluxions and
Leibniz’ infinitesimals both describe the rate of change of a quantity. Complex numbers can
be described as ordered pairs of real numbers, or as vectors, or as rotations and dilatations
in the plane, or as the algebraic extension of the algebraic field of reals by i = √−1. One
description is just as good as the other. In the following example we will further point out
that the definitions we use in mathematics courses at universities today are not necessarily
the “best” definitions that mathematicians in the past were striving for. In our example we
point out that in non-standard analysis it is possible to formulate an even better version
of the well-known Cauchy’s sum theorem compared to the formulation that we use in our
standard analysis today.

Non-standard analysis is an alternative theory to our ordinary analysis used in univer-
sity courses in mathematics today. The classical non-standard analysis is associated with
Robinson (1996), but there is also a more intuitive alternative, the so called �-calculus,
developed by Schmieden and Laugwitz (1958); our example refers to the latter.

The �-calculus deals with sequences of real numbers, that is, functions from the
natural numbers to the reals. Schmieden and Laugwitz introduce R� as the set of all
infinite sequences (x1, x2, x3, ...), where each term xk is a real number. Furthermore,
an infinitesimal quantity is defined as a sequence having zero as a limit, for instance
1
n

= (1, 1
2 , 1

3 , 1
4 , ...).
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The modern version of Cauchy’s sum theorem in standard analysis is the following: If
a sequence of real valued continuous functions, fn, converges uniformly to a function f ,
then f is a continuous function. In this case uniform convergence is a sufficient but not
a necessary condition for the theorem to be true. In non-standard analysis it is possible
to establish Cauchy’s sum theorem utilizing a weaker convergence condition than uniform
convergence, yet sufficient for the theorem to be true (Palmgren, 2007, pp. 171–172). In
fact, Palmgren proves that this weaker convergence condition not only is sufficient, but also
a necessary condition for the theorem to be true (Palmgren, 2007, p. 171). That is, one
obtains a more precise version of Cauchy’s sum theorem in non-standard analysis than in
our modern standard analysis.

Our conclusion here is that there are alternative ways of defining mathematical concepts
within other theoretical frameworks than our standard analysis. In our example above we
point out that there exists even “better” descriptions of mathematical phenomena than in our
ordinary standard analysis. This implies that it is problematic to draw the conclusion that
students’ conceptual development follow the historical development of the same concept,
since that would presuppose that the definition we use today is the “correct” one, so to
speak.

5 Concluding remarks

In this article we have revealed some pitfalls of using history of mathematics in mathemat-
ics education because it may lead to a confusion among researchers, teachers and students.
We have considered some examples of research in mathematics education where students’
conceptual developments in mathematics have been compared to the historical epistemol-
ogy of mathematics. We argue that it is problematic to expect to find a historical equivalent
to this development when students are still struggling to master a mathematical concept.
The historical development of mathematics, considered in its proper context, is not uniform
throughout the world although it is often implicitly understood as such. As we have seen
from the example with negative numbers, the development of one concept can be different
in different parts of the world and evolve during different time periods, depending on the
development of cultural ideas and the needs of society. The concepts we use today are also
not the only possible “correct” concepts, even though they may be considered as such from
a platonic perspective. We have seen that, for example, standard analysis could be replaced
by non-standard analysis where concepts such as continuity and convergence are formulated
in a different manner. This example illustrates that there are different possible conceptual
frameworks that can be used when formulating the same phenomenon. Furthermore, we
argue that it is unfair to draw the conclusion that a student who has still not understood, for
example, the limit concept and still struggles when trying to use it, has reached the level
of, for example, Newton’s or Leibniz’s understanding of the concept. However, mathemati-
cians in the history often worked with sensory images and for a long time mathematics was
thought about as something sensory and concrete, which maybe also many students in some
sense do today. Nevertheless, it is optimistic to compare students’ conceptual developments
with history and assume that students are rational in their conceptual developments. At least
we must assume that an average student IS at a significantly lower cognitive level than the
great historical mathematicians. In fact students are making mistakes when they try to use a
mathematical concept they still do not master and it is difficult to draw conclusions on the
basis of these mistakes.
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While the aim of this article has not been to discusss the usage of history of mathemat-
ics in teaching contexts as such, we do hope that this article will be useful for researchers
and teachers that might be too enthusiastic proponents of integrating history in mathe-
matics education so that they tend to ignore the subtleties inherent. We would like to
point out that using history of mathematics can play an important role in the teaching and
learning of mathematics. We side with Grattan-Guinness that mathematics education can
profit from both history and heritage, as long as the two approaches are not mixed up.
Heritage is utilized frequently, as for example when Euclid’s Elements is used in the teach-
ing of algebra. But we also have to pay attention to the history approach and its merits
in thinking about mathematics as cultural inheritance. We believe that the knowledge
of history of mathematics is very useful to understand and appreciate the mathematics
of today.
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