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Automorphic string amplitudes
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Department of Fundamental Physics
Chalmers University of Technology

Abstract
This thesis explores the non-perturbative properties of higher derivative interactions
appearing in the low-energy expansion of four-graviton scattering amplitudes in
toroidal compactifications of type IIB string theory. We summarise the arguments
for finding such higher derivative corrections in terms of automorphic forms using
U-duality, supersymmetry and string perturbation theory. The perturbative and
non-perturbative parts can then be studied from their Fourier expansions. To be able
to compute such Fourier coefficients we use the adelic framework as an intermediate
step which also gives a new perspective on the arithmetic content of the scattering
amplitudes.

We give a review of known methods for computing certain classes of Fourier
coefficients from the mathematical literature as presented in Paper I of the appended
papers, and of our own work in Paper II towards computing some of the remaining
coefficients of interest in string theory.

Keywords: string theory, automorphic forms, U-duality, non-perturbative effects,
instantons, Eisenstein series, Whittaker vectors.
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Chapter 1

Introduction

Research in fundamental physics aims to describe the principles of nature that govern
all scales in our universe and it is often by looking at the very small, or the very large
scales that we may isolates or discern these principles. For example, by studying
the collisions of elementary particles we have found a theory that describes the
interactions between them – the standard model of particle physics, and by studying
very distant objects we have found a theory that describes the evolution of our
universe – the standard model of cosmology.

The cornerstones of these theories are different principles of symmetry. The
standard model of particle physics is a quantum theory based on a gauge symmetry
described by the groups SU(3) × SU(2) × U(1) describing the strong, weak and
electromagnetic forces. On the other hand, the standard model of cosmology is a
classical theory of general relativity describing gravity and builds on the principle
of coordinate invariance. In both these cases a lot of the structure is governed by
symmetries.

When trying to unify the above theories into a quantum theory of gravity, using
the usual prescriptions for quantising a classical theory, one runs into problems of
non-renormalisable divergences and cannot compute meaningful physical observables.
Therefore, a new approach to quantum gravity is needed with a completely different
perspective.

String theory is a quantum theory with extended objects, such as strings and
branes, instead of point particles as fundamental objects and naturally includes
gravity making it a theory of quantum gravity. Using string theory we can then
study the fundamental principles governing quantum gravity and a rich regime to
explore is black holes where the effects from both gravity and quantum mechanics
are strong. This leads us to the long term goal of this research project which is to
understand the non-perturbative effects of quantum gravity through string theory
such as instantons and black holes.

We study the fundamental symmetries of string theory called U-dualities and
investigate their consequences for physical observables using the mathematical theory
of automorphic forms, which are functions invariant under some discrete symmetry
group. They play a crucial role in several areas of string theory [1,3,4,6,56,57,62,69].
We will, in this thesis, mainly focus on their part in scattering amplitudes and
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2 Chapter 1. Introduction

the low-energy effective action [15, 31–33, 40–42, 50, 55]. For their relevance in
counting black hole degeneracies, statistical mechanics and pure mathematics, see,
for example, [9, 20,44,51,52,60,61] and chapter I-12 of Paper I.

Although many of these automorphic forms arising as coefficients in scattering
amplitudes are known, they are typically expressed in terms of Eisenstein series as
infinite sums over discrete subgroups and are hard to interpret. To extract physical
information from them we study their Fourier expansions on different subgroups,
but this becomes very hard when studying large symmetry groups corresponding to
compactifying to lower dimensions. To be able to compute such Fourier coefficients
we therefore lift our functions to the ring of adeles, which allows us to use very
powerful adelic techniques to compute the resulting integrals, before restricting the
final answer to a physical setting again.

For example, using symmetry arguments as described in chapter 2, one can
obtain the automorphic forms describing all the perturbative and non-perturbative
corrections to the first few derivative terms in the four-graviton scattering amplitude.
Using the adelic framework makes it possible to find closed form expressions for some
of the Fourier coefficients, such as the perturbative corrections, and Papers I & II
give some important insight into how the remaining coefficients can be computed.

The perturbative terms agree with and extend what is known from string
perturbation theory [31,50] whose corrections become increasingly hard to compute for
higher orders, meaning world-sheets with larger genera. For example, complications
arise from the problem of parametrising the moduli space of large genus surfaces
and from computing superspace integrals [16]. As will be discussed below, it is
also known that the perturbative terms do not give the complete picture requiring
the inclusion of non-perturbative effects, which are not known how to take into
account in general. The Fourier coefficients of automorphic forms giving rise to
non-perturbative corrections agree with the expected behaviour based on single
instanton computations in string theory [31] and gives us clues for how to formulate
a non-perturbative theory.

Paper I gives an overview of the subject introducing the concepts and techniques
required for the analysis of automorphic forms in the adelic framework. The aim
of this paper is to give a pedagogical introduction, with explicit examples, to the
subject for physicists and mathematicians alike, to highlight questions of interest to
the string theory community, and to be a useful source of reference for the whole
field.

Paper II was initiated during the work on Paper I. It applies some of the tools
described in the mathematical literature addressed in Paper I, to do some explicit
computations of Fourier coefficients on parabolic subgroups in terms of Whittaker
vectors, the former of which are difficult to compute, while the latter are not.

This thesis is organised as follows. In chapter 2 we motivate the study of
automorphic forms by exploring low-energy four-graviton scattering amplitudes
in toroidally compactified type IIB string theory. From U-duality we get that the
coefficient functions for the low-energy interactions are automorphic forms constrained
by supersymmetry. We also discuss results from string perturbation theory and
instanton calculations, all motivating the acquired form for the coefficient functions
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from which we then extract physical information by Fourier expansion.
Chapter 3 is dedicated to the theory of adelic automorphic forms on Lie groups

G, where we, after a brief introduction of the adeles, in particular study adelic
Eisenstein series and show how to recover the more familiar, real Eisenstein series.
We define automorphic representations and different types of Fourier coefficients on
G including so called Whittaker vectors.

It is not known how to compute a general Fourier coefficient, but in chapter 4,
we summarise methods for computing Whittaker vectors from the mathematical
literature using the adelic framework. Section 4.5 is devoted to our work from
Paper II, where we develop methods, based on [24, 54], to obtain Fourier coefficients
of interest in string theory for small automorphic representations in terms of known
Whittaker vectors.





Chapter 2

Motivation from string theory

In this chapter we will discuss toroidal compactifications of the type IIB string theory
and its low-energy effective theory: supergravity. We study their classical symmetries
and, using the arguments of Hull–Townsend [47], find how those are restricted by
quantum effects leading to the concept of U-dualities.

We then consider low-energy corrections to scattering amplitudes which are
invariant under these dualities, and can be described by automorphic forms. From
supersymmetry [40] and string perturbation theory [37] we obtain differential
equations and weak coupling asymptotics for the amplitudes allowing us to completely
determine all perturbative and non-perturbative corrections to the low-energy
amplitudes in terms of Eisenstein series introduced below [31,36].

2.1 Type IIB supergravity
The low-energy effective action for type IIB superstring theory in ten dimensions
is the type IIB supergravity with N = (2, 0) supersymmetry [39]. The particle
content of this theory consists of two left-handed Majorana-Weyl gravitinos and two
right-handed Majorana-Weyl dilatinos on the fermionic side. The bosonic particles,
which will be the main focus of this thesis, are the NS-NS bosons: the metric Gµν ,
the two-form B2 and the dilaton φ, and the R-R bosons: C0, C2 and C4. We will
denote the corresponding field strengths as H3 = dB2 and Fr+1 = dCr.

The bosonic part of the supergravity action can be split up into the terms

SIIB = SNS + SR + SCS (2.1)

which are the Neveu-Schwarz, Ramond and Chern-Simons terms respectively. In the
string frame [63]

SNS = 1
2κ2

10

∫
d10x

√
−GSe

−2φ
(
RS + 4∂µφ∂µφ− 1

2 |H3|2
)

SR = − 1
4κ2

10

∫
d10x

√
−GS

(
|F1|2 +

∣∣∣F̃3

∣∣∣2 + 1
2

∣∣∣F̃5

∣∣∣2 )
SCS = − 1

4κ2
10

∫
C4 ∧H3 ∧ F3 ,

(2.2)
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6 Chapter 2. Motivation from string theory

where GS and RS are the space-time metric and Ricci scalar1, and F̃3 and F̃5 are
defined as

F̃3 = F3 − C0 ∧H3

F̃5 = F5 −
1
2C2 ∧H3 + 1

2B2 ∧ F3 ,
(2.3)

with the additional constraint that

∗ F̃5 = F̃5 . (2.4)

This action has an SL(2,R) symmetry that becomes apparent when switching to
the Einstein frame with

Gµν = (GE)µν := e−φ/2(GS)µν (2.5)

and corresponding Ricci scalar R. Letting

τ = C0 + ie−φ ∈ H G3 = F̃3 − ie−φH3 = F3 − τH3 , (2.6)

with H = {τ ∈ C | Im τ > 0} being the Poincaré upper half plane, we have that [5]

SIIB = 1
2κ2

10

∫
d10x
√
−G

(
R− ∂µτ∂

µτ

2(Im τ)2−
|G3|2

2 Im τ
−

∣∣∣F̃5

∣∣∣2
4

)
+ 1

8iκ2
10

∫ 1
Im τ

C4∧G3∧G3 .

(2.7)
On this form, we see that SIIB is invariant under a SL(2,R) symmetry realised by

τ → γ(τ) = aτ + b

cτ + d
γ =

(
a b
c d

)
∈ SL(2,R)

(
C2
B2

)
→
(
a b
c d

)(
C2
B2

)
Gµν → Gµν F̃5 → F̃5 .

(2.8)

In fact, the moduli space can be realised as the coset space SL(2,R)/SO(2,R)
which is isomorphic to the Poincaré upper half plane H under the mapping

g 7→ g(i) = mi+ n

pi+ q
g =

(
m n
p q

)
∈ SL(2,R) . (2.9)

A group element g in SL(2,R) can be uniquely factorised using the Iwasawa
decomposition and parametrised as

g = nak =
(

1 τ1
0 1

)(
τ

1/2
2 0
0 τ

−1/2
2

)
k τ1, τ2 ∈ R, τ2 > 0, k ∈ SO(2,R) (2.10)

where n is unipotent and a is in the Cartan subgroup. This gives us

g(i) = τ1 + iτ2 = τ , (2.11)
1Subscript S for string frame.
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independent of k. An element γ in SL(2,R) acts on g by left-translation g 7→ γg.
This also defines an action on τ = g(i) in H by

γ(τ) = [γg](i) = aτ + b

cτ + d
γ =

(
a b
c d

)
∈ SL(2,R) , (2.12)

which is exactly the SL(2,R) symmetry acting on the moduli space as described
above in (2.8).

This classical SL(2,R) symmetry is not, however, a full symmetry of the ten-
dimensional type IIB superstring theory, but is broken to a discrete subgroup which,
at the largest, can be SL(2,Z) [2,5,63]. This can be seen by considering a fundamental
string carrying one unit charge of the B2 field. Under (2.8), this is transformed to a
string charged with d units of the B2 field, which are quantised and must therefore
be integer. The largest subgroup of SL(2,R) with d ∈ Z is [5]

{(
a αb
c/α d

) ∣∣∣∣∣ a, b, c, d ∈ Z and ad− bc = 1
}

(2.13)

where α ∈ R can be absorbed by rescaling C2 leaving the discrete subgroup SL(2,Z).
It is conjectured that type IIB string theory is in fact invariant under this maximal
allowed subgroup SL(2,Z). Although this cannot be proven from first principles, it
gives a consistent picture with the M-theory web of dualities [5].

The resulting string discussed above from the SL(2,Z) transformation is a bound
state of d fundamental strings and c D-strings called a (p, q)-string, here with (p, q) =
(d, c). A (1, 1)-string, for example, can be imagined by first taking a fundamental
string and a D-string aligned in the x1-direction (which is a non-supersymmetric setup
[63]). Then, to obtain a more energetically favoured configuration, the fundamental
string would break and attach to the D-string with both charged endpoints. Between
these points a B2-flux along the D-string would appear. Both endpoints would then
separate further and move to infinity, leaving only the D-string with B2-flux forming
a stable, supersymmetric bound state with the tension for the bound state being
lower than the sum of the separate states. [63,71].

When (p, q) are not coprime the system is only marginally stable against falling
apart and it is believed that there are no bound states for these cases [63]. Note that
the determinant condition for SL(2,Z) gives us, together with Bézout’s lemma, that
(d, c) are coprime.

This discrete SL(2,Z) symmetry for type IIB string theory is called S-duality
connecting a weakly coupled IIB theory with a strongly coupled IIB theory in
the string coupling gs. Indeed, with a = d = 0 and b = −c = 1 we get that
τ → γ(τ) = −1/τ , which, for τ1 = C0 = 0, amounts to e−φ = τ2 → 1/τ2 = eφ and
we will see in section 2.3 that the string coupling is related to the constant mode of
the dilaton as [70]

gs = eφ0 φ0 = lim
X→∞

φ , (2.14)

where the limit is taken with respect to the space-time coordinates X.
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1 3 4

2

5 6 7 8

Figure 2.1: Dynkin diagram of E8 with the Bourbaki convention for node labels. The groups of
table 2.1 can be obtained by adding nodes in the order of the labeling.

2.2 Toroidal compactifications

When compactifying the ten-dimensional type IIB string theory on a circle with
radius r we get a larger moduli space which includes r, and an additional duality:
T-duality, under which the IIB theory on r transforms to a IIA theory on a circle
of radius α′/r. The total, unified, U-duality group is then the combination of the
S-duality and T-duality described by SL(2,Z)× Z2.

Upon further compactification on a torus T d to D = 10−d dimensions, we obtain
a larger T-duality group O(d, d;Z) together with the S-duality group SL(2,Z), but
the full discrete symmetry group of the theory is conjectured to be larger than the
product SL(2,Z)×O(d, d;Z) in general [47].

To find the maximal possible U-duality group for a given dimension D, let
us consider the classical symmetries of the corresponding low-energy supergravity
actions denoted by G(R) in table 2.1. In figure 2.1 we see the corresponding Dynkin
diagrams which can be obtained by adding nodes in the order of the Bourbaki labeling.
The moduli space of each theory is given by the coset G(R)/K(R) where K(R) is
the maximal compact subgroup of (the split real) G(R), which, at each further
compactification gets enlarged by the introduction of new scalars. The symmetry
group for a higher dimensional theory is contained in that of a lower dimensional one.
The moduli spaces G(R)/K(R) in lower dimensions are not, in general, equipped
with a complex structure as was the case for SL(2,R)/SO(2,R) ∼= H.

To describe the moduli space one can use the Iwasawa decomposition for a general
connected semisimple real Lie group G(R)

G(R) = B(R)K(R) = N(R)A(R)K(R) (2.15)

where B is the Borel subgroup, K is the maximal compact subgroup, N the subgroup
of unipotent elements in B and A the Cartan subgroup. The precise constructions of
these subgroups will be described when discussing parabolic subgroups in section 2.7,
but for G(R) = SL(n,R) we have that B consists of upper triangular matrices, N
of upper triangular matrices with ones on the diagonal, A of the diagonal matrices
with positive entries, and K consists of the orthogonal matrices.

In four dimensions G(R) = E7(R) and the supergravity theory contains 28 vector
bosons AIµ, I = 1, . . . , 28 with field strengths F I

µν . Taking certain linear combinations
of F and ∗F one can form a dual field strength GI which combines with FI to
a 56-dimensional vector of field strengths F in the vector representation of E7
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Table 2.1: Classical symmetry groups G(R) with maximal compact subgroupsK and corresponding
U-duality groups G(Z) when compactifying on T d to D = 10 − d dimensions. From [13, 47]
summarised in [33]. The split real forms En(n) are here denoted En for brevity.

D G(R) K G(Z)
10 SL(2,R) SO(2) SL(2,Z)
9 SL(2,R)× R+ SO(2) SL(2,Z)× Z2
8 SL(3,R)× SL(2,R) SO(3)× SO(2) SL(3,Z)× SL(2,Z)
7 SL(5,R) SO(5) SL(5,Z)
6 Spin(5, 5;R)

(
Spin(5)× Spin(5)

)
/Z2 Spin(5, 5;Z)

5 E6(R) USp(8)/Z2 E6(Z)
4 E7(R) SU(8)/Z2 E7(Z)
3 E8(R) Spin(16)/Z2 E8(Z)

transforming as [47]

F =
(
F I

GI

)
→ Λ

(
F I

GI

)
Λ ∈ E7(R) . (2.16)

The corresponding charges pI and qI are the magnetic and Noether electric charges
respectively, and satisfy the Dirac-Schwinger-Zwanziger quantisation condition for
two dyons Q = (pI , qI)T and Q′ = (p′I , q′I)T

QTΩQ′ = pIq′I − p′IqI = n ∈ Z , (2.17)

where
Ω =

(
0 1
−1 0

)
. (2.18)

This is invariant under Q → Λ′Q with Λ′ ∈ Sp(56,R) ⊃ E7(R), but assuming
that all types of pI and qI charges exists, the only Λ′ that preserve the charge lattice
are those in Sp(56,Z) [47]. Thus, the full duality group of the four-dimensional
theory, taking quantum effects into account, can at most be

E7(R) ∩ Sp(56,Z) (2.19)

which also coincides with the Chevalley subgroup E7(Z) [68], which is defined as
the discrete subgroup of E7(R) that stabilises the integer lattice spanned by the
Chevalley generators under the adjoint action [12]. It is conjectured that this is
exactly the U-duality group in four dimensions [47].

We note that the S-duality and T-duality groups in four dimensions are strictly
contained in E7(Z)

SL(2,Z)×O(6, 6;Z) ⊂ E7(Z) . (2.20)

As stated above and depicted in figure 2.1 the symmetry group GD′ for dimensions
D′ < D contains the symmetry group GD which especially means that GD for D > 4
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can be embedded in the symmetry group E7 in four dimensions. This makes it
natural to conjecture that the duality groups for D > 4 are [47]

GD(Z) = GD(R) ∩ E7(Z) , (2.21)

the results of which are shown in table 2.1. For dimensions lower than four, which
are also shown in 2.1, see [47]. We note that the respective S-duality groups and
T-duality groups are contained in the U-duality groups G(Z).

All physical observables, such as the free energy and scattering amplitudes, are
functions that are invariant under this discrete symmetry.

2.3 Four-graviton scattering
The study of scattering amplitudes in string theory can be made by expanding in
several different parameters. One parameter is α′ = `2

s where `s is the characteristic
length of a string. Expanding in small α′ amounts to a derivative expansion of the
background fields in the two-dimensional world-sheet theory or taking the low-energy
limit of the corresponding momenta. Another parameter is the string coupling gs
specifying how easily strings split and merge.

Computing string scattering amplitudes in the path integral formulation leads to
an integration over world-sheet geometries S with different topologies. The constant
mode φ0 of the dilaton gives a topological factor in the string partition function
of the form exp(−φ0χ(S)) where χ(S) is the Euler characteristic of the surface S,
thus giving the expansion parameter: the string coupling gs = exp(φ0). Since, for a
surface with genus g and no boundaries, χ(S) = 2(1−g) we then obtain an expansion
in different genera of the world-sheet in the case of closed strings as pictured in
figure 2.2.

+ + +  ...

Figure 2.2: Genus expansion in string scattering amplitudes where each topology is weighted by
the string coupling to the power of the negative Euler characteristic.

In this thesis we are interested in the scattering of four gravitons which have
been computed at tree-level and one-loop in gs for all α′ in [37,39,43]. Both share
the same kinematic structure, which factorises into a left- and right-moving part
each similar to the kinematic factor for open strings [43]. Let us therefore study the
kinematic structure for open strings.

In the operator formalism, this structure comes from the trace of fermionic zero
modes Sa0 of the string where a is a target space spinor index in the transverse
spin(8) group after light-cone gauge fixing. The massless ground states are attached
to the 8v⊕ 8c representation of spin(8) spanned by eight bosonic states |i〉 and eight
fermionic states |ȧ〉. The S0-trace of an operator A is then

trS0(A) =
∑
i

〈i|A|i〉 −
∑
ȧ

〈ȧ|A|ȧ〉 . (2.22)
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When calculating loop amplitudes, one needs to compute the trace of an even number
of S0 operators. Let Rij

0 = 1
4γ

ij
abS

a
0S

b
0 which is the only independent tensor that can

be made of two S0’s allowing us to write any bilinear in S0 in terms of products of
R0’s. The first non-vanishing trace of R0 operators is [37]

tijklmnpq := trS0(Rij
0 R

kl
0 R

mn
0 Rpq

0 )

=− 1
2ε

ijklmnpq − 1
2

(
(δikδjl − δilδjk)(δmpδnq − δmqδnp)

+(δkmδln − δknδlm)(δpiδqj − δpjδqi)

+(δimδjn − δinδjm)(δkpδlq − δkqδlp)
)

+ 1
2

(
δjkδlmδnpδqi + δjmδnkδlpδqi + δjmδnpδqkδli +

antisymmetrisation on each pair of indices
)

(2.23)

Letting k1, . . . , k4 and ζ1, . . . , ζ4 be the momenta and polarisations vectors for the
four external vector states for the open string in the light-cone gauge, the kinematic
factor takes the form [37]

Kopen := Kijkl(k1, . . . , k4)ζ i1ζ
j
2ζ

k
3 ζ

l
4 := tijklmnpqk

i
1ζ
j
1k

k
2ζ

l
2k

m
3 ζ

n
3 k

p
4ζ

q
4 (2.24)

Returning to the closed string, we have that for IIB the massless ground states
are attached to the representation (8v⊕8c)⊗(8v⊕8c) giving a kinematic factor2 [37]

Kcl := Kijkl(k1
2 , . . . ,

k4
2 )Kmnpq(k1

2 , . . . ,
k4
2 )ζ im1 ζjn2 ζkp3 ζ lq4 (2.25)

with ζ1, . . . , ζ4 now being the polarisation tensors for the external gravitons.

Remark 2.1. In type IIA the massless ground states are attached to (8v ⊕ 8c)⊗
(8v ⊕ 8s) where 8s is the (undotted) spinor representation, giving two different K’s
differing in a few signs but not affecting the S-matrix [37, 43].

In covariant notation the kinematic structure can be expressed as follows with [63]

Kopen = 1
8
(
4M1

µνM
2
νσM

3
σρM

4
ρµ −M1

µνM
2
νµM

3
σρM

4
ρσ

)
+

(1234→ 1342) + (1234→ 1423)

= tµνρσαβγδk
µ
1 ζ

ν
1 k

ρ
2ζ

σ
2 k

α
3 ζ

β
3 k

γ
4ζ

δ
4 ,

(2.26)

where M i
µν = kiµζ

i
ν − kiνζ iµ.

2In Paper I, this factor is denoted by R4, the reason for which is explained below.
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The ten-dimensional scattering amplitude of four gravitons to one-loop order in
gs is then [15,35,37,39,43]

A(4) = g−2
s Kcl

(
A(4)

tree + g2
sA

(4)
one-loop

)
A(4)

tree = 1
stu

Γ(1− s)Γ(1− t)Γ(1− u)
Γ(1 + s)Γ(1 + t)Γ(1 + u)

A(4)
one-loop = 2π

∫
F

d2τ

(Im τ)2B1(s, t, u; τ)

(2.27)

where s, t and u are the dimensionless Mandelstam variables

s = −α
′

4 (k1 + k2)2 t = −α
′

4 (k1 + k3)2 u = −α
′

4 (k1 + k4)2 , (2.28)

and B1 a modular invariant function defined in [15] with F being the fundamental
domain of the modular group. The tree-level correction is also computed in chapter I-2
using the path-integral formalism.

Remark 2.2. Upon compactification the integral over the fundamental region in
the one-loop correction receives an extra modular factor in (2.27) while the tree level
remains unchanged [39].

Expanding in α′, that is, taking the low-energy limit, the four-graviton scattering
amplitude (2.27) subject to momentum conservation, s+ t+ u = 0, becomes [15]

A(4)
tree = 3

σ3
+ 2ζ(3) + ζ(5)σ2 + 2

3ζ(3)2σ3 +O((α′)4)

A(4)
one-loop = 4ζ(2) + 4

3ζ(2)ζ(3)σ3 +O((α′)4) + non-analytic terms
(2.29)

where
σ2 = s2 + t2 + u2 σ3 = s3 + t3 + u3 . (2.30)

and the higher order terms are polynomials in σ2 and σ3.
Kcl is the linearised form of [15,30,35]

R4 := tµ1ρ1...µ4ρ4tν1σ1...ν4σ4Rµ1ρ1ν1σ1 · · ·Rµ4ρ4ν4σ4 (2.31)

which appears as the first α′-correction to the Einstein-Hilbert term in the low-
energy effective action. Terms of order σp2σq3 with weight w := 2p+ 3q in (2.29) give
higher-derivative contributions denoted by D2wR4 [15]. See [32] for an exact form.

The σ−1
3 -term of A(4)

tree in (2.29) comes from the classical Einstein-Hilbert term [38].
The remaining terms give the following low-energy effective Lagrangian in the string
frame

LS ∝ RS + (α′)3
(

2ζ(3) + 4ζ(2)g2
s + . . .

)
R4
S + (α′)5

(
ζ(5) + . . .

)
D4R4

S +

(α′)6
(2

3ζ(3)2 + 4
3ζ(2)ζ(3)g2

s + . . .
)
D6R4

S +O((α′)7) (2.32)
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where the dots correspond to higher genus corrections. In the Einstein frame, which
is the frame that makes the connection to automorphic forms3, we instead have

L ∝ R+ (α′)3
(

2ζ(3)g−3/2
s + 4ζ(2)g1/2

s + . . .
)
R4 + (α′)5

(
ζ(5)g−5/2

s + . . .
)
D4R4 +

(α′)6
(2

3ζ(3)2g−3
s + 4

3ζ(2)ζ(3)g−1
s + . . .

)
D6R4 +O((α′)7) (2.33)

omitting the extra dilaton terms arising from a Weyl transformation of the Riemann
tensor.

The parenthesis in front of the different R4 terms in (2.33) are functions E(p,q) on
the moduli spaceM10 = SL(2,R)/SO(2,R) ∼= H parametrised by the axion-dilaton
τ = χ+ ig−1

s with

L ∝ R+(α′)3E(0,0)(τ)R4+(α′)5E(1,0)(τ)D4R4+(α′)6E(0,1)(τ)D6R4+O((α′)7) . (2.34)

Since the theory is invariant under SL(2,Z) transformations acting on τ by

τ → γ(τ) = aτ + b

cτ + d
γ =

(
a b
c d

)
∈ SL(2,Z) (2.35)

each function E(p,q)(τ) needs to be invariant under this action as well.

Remark 2.3. Similarly, when compactifying on a T d torus to D = 10−d dimensions
we obtain the same structure with coefficient functions E (D)

(p,q) on the moduli space
MD = G(R)/K(R) invariant under G(Z).

L ∝ R+(α′)3E (D)
(0,0)(g)R4+(α′)5E (D)

(1,0)(g)D4R4+(α′)6E (D)
(0,1)(g)D6R4+O((α′)7) . (2.36)

We will continue to denote E (10)
(p,q) as E(p,q) for brevity.

In the next section, we will show that the coefficient functions E (D)
(p,q) satisfy certain

differential equations. Together with the weak coupling conditions found by string
perturbation theory above, and the invariance under G(Z), this means that the
functions E (D)

(p,q) are so called automorphic forms. We will here give a definition of
automorphic forms for groups over the reals, but in chapter 3 we will make a more
refined and detailed definition for groups over the adeles.

Automorphic forms are functions f(g) on a Lie group G(R) taking values in C
that satisfy the following conditions

(A) Automorphic invariance: f(γg) = f(g) for all γ in G(Z)

(B) Differential equations: f is an eigenfunction to certain differential operators

(C) Growth condition: f should grow at most as a polynomial.
3Note that it was in the Einstein frame that the classical SL(2,R) symmetry of type IIB

supergravity became apparent.
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Each statement will be made exact in chapter 3.
We will often restrict ourselves to so called spherical automorphic forms, which

for the maximal compact subgroup K(R) ⊂ G(R), satisfies

f(gk) = f(g) for all k ∈ K(R) . (2.37)

that is, f is a function on G(Z)\G(R)/K(R). The main example of an automorphic
form is an Eisenstein series which we will study below.

2.4 Supersymmetry constraints
Besides being constrained by U-duality, the coefficient functions in the effective
action are also constrained by the continuous symmetries of the theory. In this
section we will obtain a differential eigenvalue equation for E(0,0) in (2.34) using
constraints from supersymmetry. So far, we have only studied the four-graviton
correction to the low-energy effective action, but there are many other interactions
entering the effective action at the same order in α′ as the R4 term, all related by
supersymmetry [30]. In order find the constraint on E(0,0) we have to consider these
additional terms as well which we will do using a superspace approach.

In four dimensions a chiral superfield Φ satisfies the schematical linear equation

D∗Φ = 0 (2.38)

where D∗ is the anti-holomorphic supercovariant derivative. In ten dimensions, with
θa, a = 1, . . . , 16 being a complex Grassmannian coordinate transforming as a Weyl
spinor under SO(9, 1), a similar holomorphicity constraint for a superfield Φ in
ten dimensions can be imposed in flat space, but not in curved space where the
integrability condition {D∗a, D∗b} = 0 is not satisfied in general [14].

It is, however, possible to consider such a field in linearised4 supersymmetry with
the rigid generators [30]

Qa = ∂

∂θa
Q∗a = − ∂

∂θ∗a
+ 2i(θγµ)a∂µ (2.39)

anticommuting with the corresponding covariant derivatives

Da = ∂

∂θa
+ 2i(γµθ∗)a∂µ D∗a = − ∂

∂θ∗a
. (2.40)

After imposing (2.38) and the constraints

D4Φ = D∗4Φ∗ , (2.41)

the on-shell superfield Φ describes all fields of the IIB supergravity [14,46] and the
linearised interactions can be obtained by integrating a superpotential F of Φ over

4In terms of fluctuations around a flat background with constant complex scalar τ = C0 + ig−1
s .
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the sixteen components of θ leading to all the possible interactions at this order in
α′ [30, 40]

L(α′)3 = f12(τ)λ16 + f11(τ)Ĝλ14 + . . .+ f0(τ)R4 + . . .+ f−12(τ)λ∗16 . (2.42)

Here fw(τ) are modular forms with holomorphic weight w and anti-holomorphic
weight −w with f0 = E(0,0) from above, λ is the dilatino, and Ĝ includes the R-R and
NS-NS 2-forms, the gravitino and the dilatino. The terms λ16, Ĝλ14 and λ∗16 are
defined in [40]. A modular form h with holomorphic weight w and anti-holomorphic
weight ŵ transforms as

h(τ)→ h(γ(τ)) = (cτ + d)w(cτ + d)ŵh(τ) τ → γ(τ) = aτ + b

cτ + d
. (2.43)

From the fact that the different fw terms, in the linear approximation, are related
by the Taylor expansion of F , one obtains that [30]

f12(τ) = D12f0(τ) = D11D10 . . . D0f0(τ) (2.44)

where Dw is the refined modular covariant derivative

Dw = i
(
τ2
∂

∂τ
− iw2

)
(2.45)

which maps a modular form of holomorphic weight w into a weight w+1 modular form
(with corresponding changes to the antiholomorphic weight). Finding an eigenvalue
equation for f12 then gives us the sought for condition for f0.

This will be achieved by studying the supersymmetry transformation of the action
S order by order in α′ using the Noether method. Expanding the supersymmetry
transformation on an arbitrary field Ψ as

δΨ = (δ(0) + α′δ(1) + (α′)2δ(2) . . .)Ψ (2.46)

acting on the effective action

S = S(0) + (α′)3S(3) + (α′)4S(4) + . . . (2.47)

we obtain constraints such as

δ(0)S(0) = 0 δ(0)S(3) + δ(3)S(0) = 0 . . . (2.48)

for each order in α′, where δ(0) corresponds to the supersymmetry transformation
of the classical theory described by S(0) and S(3) contains the interaction terms
of (2.42).

The reason for studying f12 instead of f0 is that f12 together with f11 mix only
with each other and no other terms under δ(0), while a general transformation can
become quite complicated [30]. From the order (α′)3 condition in (2.48) we get the
following two factors of two independent terms that have to vanish [30]

D11f11 + 4
3 · 144f12 = 0

D−12f12 + 3 · 144 · 15
2 f11 + 15g = 0

(2.49)
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where g is another modular form yet to be decided and

Dw = −i
(
τ2
∂

∂τ
+ i

w

2
)

(2.50)

which transforms a modular form of weight w to a weight w − 1 modular form.
By also requiring that the algebra closes for the field λ∗ defined in [30] at order

(α′)3, i.e.
(
δ

(0)
ε1
δ

(3)
ε∗2
− δ(3)

ε∗2
δ

(0)
ε1

)
λ∗ = 0, and comparing with the equation of motion for

λ∗ one finds that [30]
32D11g = f12 . (2.51)

Together with (2.49), this gives us that [40]

∆(−),12f12 =
(
− 132 + 3

4
)
f12 (2.52)

where

∆(−),w := 4Dw−1D−w = 4τ 2
2
∂

∂τ

∂

∂τ
− 2iwτ2

(
∂

∂τ
+ ∂

∂τ

)
− w(w − 1) (2.53)

is the Laplace operator acting on weight w modular forms. Inserting this into (2.44),
gives us for f0 = E(0,0) that

(∆− 3
4)E(0,0)(τ) = 0 (2.54)

where ∆ = 4τ 2
2
∂
∂τ

∂
∂τ

is the usual Laplace operator on the upper half plane. In this
way one can obtain eigenequations for all interaction coefficients f2w at the order of
the R4 term as shown in [30,40].

The method presented above was extended for the corresponding terms at order
of D4R4 as well in [67] where it was shown that the E(1,0) coefficient satisfies

(∆− 15
4 )E(1,0)(τ) = 0 . (2.55)

Remark 2.4. The D6R4 term is different from the other two terms studied above.
It does not satisfy an eigenfunction equation to the Laplace operator but includes
an extra inhomogeneous term [42]

(∆− 12)E(0,1)(τ) = −
(
E(0,0)(τ)

)2
. (2.56)

In lower dimensions we have similar eigenfunction equations. We will only state
the results here and refer the reader to I-2 for more details. The constraints in lower
dimensions from supersymmetry are [36] (see (I-2.12))

R4 :
(
∆G/K − 3(11−D)(D−8)

D−2

)
E (D)

(0,0)(g) = 6πδD,8
D4R4 :

(
∆G/K − 5(12−D)(D−7)

D−2

)
E (D)

(1,0)(g) = 40ζ(2)δD,7

D6R4 :
(
∆G/K − 6(14−D)(D−6)

D−2

)
E (D)

(0,1)(g) = 40ζ(3)δD,6 −
(
E (D)

(0,0)(g)
)2
,

(2.57)

where ∆G/K is the Laplace operator on G(R)/K(R).
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2.5 Instantons and non-perturbative effects
In 1994, Polchinski [64] found that introducing boundaries to the string world-
sheet (corresponding to open string endpoints) that satisfy Dirichlet boundary
conditions leads to non-perturbative corrections to scattering amplitudes on the
form e−1/gs . Even before that though, Shenker [66] argued in 1990, by studying the
large order behaviour of string perturbation theory, that non-perturbative effects
had to contribute on the form e−1/gs instead of the form e−1/g2

s which is typical for
non-perturbative effects in field theory.

In the computations of the scattering amplitudes in section 2.3, only string
world-sheets without boundaries were included as illustrated in figure 2.2, but when
summing over topologies, we should also include Riemann surfaces with an arbitrary
number of both holes (boundaries) and handles. A boundary may have Neumann
boundary conditions in p+ 1 space-time directions and Dirichlet boundary conditions
in 9 − p directions. In [64], Polchinski argued that these boundaries are attached
to extended physical objects called Dp-branes where p is the spatial dimension of
the brane corresponding to the Neumann conditions of the string endpoint. The
addition of such a physical object, which can have several boundaries attached to it,
gives different combinatorial properties to the scattering amplitudes compared to
treating each boundary independently. This way of counting leads to the cancellation
of divergences between world-sheets with boundaries [29,64].

D-instantons are D(−1)-branes, which are localised to a single point in both
space and time, and were found to give the sought for e−1/gs corrections to scattering
amplitudes [64].

Following [29,64], when computing a scattering amplitude A with D-instanton
effects, we thus need to sum over the number of D-instantons n at positions yi in
space-time with i = 1, . . . , n

A =
∞∑
n=0
An (2.58)

where A0 is the usual scattering of closed strings without boundaries considered in
section 2.3. For each instanton i we also need to sum over the number of world-sheet
boundaries bi that are attached to it, and integrate over the instanton position yi to
recover translational invariance. As we will shortly see, this integration also imposes
momentum conservation of the external states. We then have that

An =
n∏
i=1

( ∫
d10yi

∞∑
bi=0

)
fb1,...,bn(y1, . . . , yn) (2.59)

where fb1,...bn(y1, . . . , yn) includes the usual summation over world-sheets with
arbitrarily many handles and now including disconnected world-sheets5, all with
appropriate symmetry factors for exchanging D-instantons, disconnected components
of the world-sheet and the boundaries of those components. The scattering amplitude

5Following the combinatoric arguments from ordinary field theory, only world-sheet components
which are connected to the external states as seen from target space (i.e. that have boundaries
attached to a D-instanton shared by a world-sheet with vertex operator insertions) contribute to
scattering amplitudes [29].
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factorises over these disconnected components and we may consider the components
without vertex operator insertions (punctures) separately.

Each world-sheet component S is weighted by the factor g−χ(S)
s = g2g−2+b

s where
χ(S) is the Euler characteristic of the surface S with genus g and b boundaries. The
leading order contributions for a single D-instanton are shown in figure 2.3.

g−1
s

1
2!

gs

3!

gs

Figure 2.3: Lowest order puncture-free world-sheet components with weights and boundary
symmetry factors where each boundary is attached to the same D-instanton. First we have the disk
with one boundary and no handles followed by the annulus, and lastly a disk with two holes and a
disk with one handle.

Let us now consider the first few corrections in the single D-instanton n = 1 case.
When summing over world-sheet topologies we should sum over the number of disks,
annuli, etc. of figure 2.3 together with their weights, boundary symmetry factors
and with a symmetry factor for exchanging identical world-sheet components — we
get a gas of different types of components all with boundaries at the same point y.

Denoting the amplitude factor for a single disk as 〈 〉 and the factor for a single
annulus as 〈 〉 we then get an exponentiation [29]

A1 =
∫
d10y

∞∑
d1=0

1
d1!

(
g−1

s 〈 〉
)d1 ∞∑

d2=0

1
d2!

( 1
2!〈 〉

)d2

· · · A(vertex ops)
1

=
∫
d10y exp

(
g−1

s 〈 〉+ 1
2!〈 〉+ . . .

)
A(vertex ops)

1

(2.60)

where the dots signify higher order world-sheet components in the string coupling.
From this we see that with a negative 〈 〉 we get the anticipated non-perturbative
corrections on the form e−1/gs .

The leading contribution to A(vertex ops)
1 for the four-graviton scattering amplitude

in the single D-instanton background comes from four disks with one vertex operator
insertion on each. This correction was computed in [31] for a single unit charged
D-instanton as

A1 = Ce2πiτ
∫
d10y eiy·(k1+k2+k3+k4)Kcl , (2.61)

where the integral over y imposes momentum conservation. Together with (2.33),
this gives us a coefficient function E(0,0) on the form

E(0,0)(τ) = 2ζ(3)τ 3/2
2 + 4ζ(2)τ−1/2

2 + . . .+ Ce2πiτ + . . . . (2.62)

For the perturbative amplitudes in section 2.3, the Kcl factor was obtained by
tracing over sixteen fermionic zero modes, or by integrating over sixteen Grassmann
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coordinates in (2.42), which is half of type IIB superspace [42]. Here, in the stringy
D-instanton picture, it is obtained by integrating over fermionic zero modes from
open string vertex operators attached to the world-sheet boundaries. Each of the four
disks with graviton external states have four boundary open string vertex operators
attached to them.

The factor e2πiτ = e2πiχ−2π/gs can be motivated semi-classically from supergravity.
As illustrated in figure 2.4 we can approximate the brane-string-interaction by a
non-trivial background in supergravity. In the left illustration the brane emits and
absorbs closed strings or gravitons and, as seen above, summing over all possible
world-sheet boundaries attached to the brane leads to an exponentiation. In the
classical theory, this exponentiation can be seen as a deformation e−δS of the action
coming from the expansion of field fluctuations around a non-trivial classical solution
to the equations of motion. Schematically, for a field theory with field ϕ with
non-trivial classical solution ϕ0 and quantum fluctuations ϕ̃

ϕ = ϕ0 + ϕ̃ S[ϕ] = S[ϕ0] + 1
2
δ2S

δϕδϕ

∣∣∣∣
ϕ=ϕ0

ϕ̃2 + . . . , (2.63)

where the linear term vanishes since ϕ0 satisfies the equations of motion.

Figure 2.4: Strings interacting with a brane (left) approximated by a non-trivial supergravity
background (right).

The supergravity solution which describes a single D-instanton is [29]

Gµν = δµν eφ = gs + c

r
χ = χ∞ ± (e−φ − g−1

s ) (2.64)

where Gµν is the space-time metric and c is a positive constant related to the Noether
charge Q under translations of χ (whose sign depends on the choice of sign in χ above).
The remaining fields are trivial. The charge is defined as a nine-dimensional surface
integral around the space-time origin and is conserved under surface deformations as
long as we do not cross r = 0. In this sense the instanton is localised at the origin.

By inserting our solution into (2.2) we obtain the instanton action corresponding
to S[ϕ0] in (2.63) as

S
(N)
inst = −i |Q| τ = −2πi |N | τ (2.65)

where Q has been quantised by the Dirac-Nepomechie-Teitelboim argument [31] as
Q = 2πN with N integer. For N = 1 we obtain the factor e−Sinst = e2πiτ of (2.61).

Remark 2.5. The supergravity solution breaks sixteen supercharges, meaning that
it is a 1/2 BPS state, and gives sixteen fermionic zero modes for the instanton from
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which one obtains the kinematic factor Kcl = R4 after integration [31]. The higher
derivative corrections D4R4 and D6R4 require more fermionic zero modes and in
lower dimensions they are related to instantons many of which are dimensionally
reduced 1/4 and 1/8 BPS black hole states respectively [31,33].

2.6 Eisenstein series in ten-dimensional
scattering amplitudes

Let us summarise the results we have found for higher order corrections to the ten-
dimensional type IIB supergravity theory from four-graviton scattering amplitudes
in string theory. More details can be found in chapter I-2. The corrections were
structured in orders of α′ with coefficients that were functions on the moduli space
G(R)/K(R) invariant under G(Z). That is, they satisfy the automorphicity condition
(A) for automorphic forms as defined at the end of section 2.3.

In (2.33) we found the first perturbative corrections to the coefficient functions as

E(0,0)(τ) = 2ζ(3)τ 3/2
2 + 4ζ(2)τ−1/2

2 + . . .

E(1,0)(τ) = ζ(5)τ 5/2
2 + . . .

E(0,1)(τ) = 2
3ζ(3)2τ 3

2 + 4
3ζ(2)ζ(3)τ2 + . . .

(2.66)

with τ2 = g−1
s . This means that that these coefficient functions satisfies the growth

condition (C) for automorphic forms.
We also showed in (2.54) and (2.55) that E(0,0) and E(1,0) are eigenfunctions to

the Laplace operator on H with eigenvalues 3/4 and 15/4 respectively, which means
that they also satisfy condition (B). Thus, they satisfy all the conditions for being
an automorphic form.

Remark 2.6. The D6R4 coefficient E(0,1) is not an eigenfunction to the Laplace
operator as discussed in remark 2.4, and therefore not an automorphic form in a
strict sense. This term is discussed further in section I-12.1.2.

2.6.1 Eisenstein series on SL(2,R)
We will now show that E(0,0) and E(1,0) are in fact Eisenstein series, but first we need
some definitions and to study the properties of Eisenstein series. There are several
ways to define them, but we will use a definition that is more easily generalisable to
larger groups G(R).

An Eisenstein series on SL(2,R) is defined by a multiplicative characters χ :
B(Z)\B(R)→ C×, where B is the Borel subgroup as defined in (2.15), determined
by its restriction on A. That is,

χ(b′b) = χ(b) and χ(na) = χ(a) (2.67)

for b, b′ ∈ B(R), n ∈ N(R) and a ∈ A(R). It is trivially extended to all of G(R) by
χ(nak) = χ(na) = χ(a) for k ∈ K(R). Mapping to the upper half plane, this means
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that χ is a function of τ2 = Im(τ). Such characters are parametrised by a complex
number s as

χ(τ) = Im(τ)s . (2.68)
Then, the corresponding Eisenstein series is defined by

E(s; τ) =
∑

γ∈B(Z)\SL(2,Z)
Im(γ(τ))s =

∑
γ∈B(Z)\SL(2,Z)

τ s2
|cτ + d|2s

(2.69)

We note that the sum in (2.69) makes the Eisenstein series manifestly invariant under
G(Z) = SL(2,Z) fulfilling condition (A) in the definition of an automorphic form.
The B(Z)\SL(2,Z) coset is needed since χ is trivial under B(Z). To see how this
expression relates to Eisenstein series defined as a lattice sum over coprime integers
c and d see section I-1.1.

Additionally, χ(τ) is an eigenfunction to the Laplace-Beltrami operator on the
Poincaré upper half plane H

∆χ(τ) = s(s− 1)χ(τ) ∆ = 4τ 2
2
∂

∂τ

∂

∂τ
= τ 2

2

(
∂2

∂τ 2
1

+ ∂2

∂τ 2
2

)
, (2.70)

and since ∆ is an SL(2,R) invariant operator, i.e., if (γ ·f) = f(γ(τ)) then ∆(γ ·f) =
γ ·∆f for some function f and for all γ in SL(2,R), we have that

∆E(s; τ) = s(s− 1)E(s; τ) . (2.71)

This eigenfunction condition is exactly that of (B) in the definition of an automorphic
form.

They also satisfy the growth condition (C), which is most easily seen by studying
their Fourier expansion. The Eisenstein series is invariant under shifts τ → τ + 1
given by g → γg with

γ =
(

1 1
0 1

)
∈ G(Z) . (2.72)

We can then Fourier expand it as

E(s; τ) =
∑
m∈Z

am(τ2)e2πimτ1 = C(τ2) +
∑
m 6=0

am(τ2)e2πimτ1 (2.73)

where C(τ2) is referred to as the constant term (with respect to τ1).
As is shown in appendix I-B exploiting the lattice form of the Eisenstein series or,

more generally, in chapter I-7 using the framework of adeles, the Fourier expansion is

E(s; τ) = τ s2 + ξ(2s− 1)
ξ(2s) τ 1−s

2 + 2τ 1/2
2

ξ(2s)
∑
m 6=0
|m|s−1/2 σ1−2s(m)Ks−1/2(2π |m| τ2)e2πimτ1

(2.74)
where ξ(s) = π−s/2Γ(s/2)ζ(s), Ks is the modified Bessel function of the second kind,
and

σ1−2s(m) =
∑
d |m

d1−2s (2.75)
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is a sum over all positive divisors d of m. In the weak coupling limit corresponding
to τ2 →∞ we see that E(s, τ) grows polynomially as

E(s, τ) ∼ τ s2 + ξ(2s− 1)
ξ(2s) τ 1−s

2 + . . . τ2 →∞ . (2.76)

Thus, the Eisenstein series E(s, τ) on SL(2,R) are automorphic forms with
eigenvalues s(s − 1) to the Laplace-Beltrami operator and comparing with the
eigenvalues of E(0,0) and E(1,0) in (2.54) and (2.55) respectively, and the low coupling
limit (2.76) with (2.66) we see that the following ansätze satisfy all the required
conditions

E(0,0)(τ) = 2ζ(3)E(3/2, τ)
E(1,0)(τ) = ζ(5)E(5/2, τ)

(2.77)

and it was shown in [59] for E(0,0) that there are no additional automorphic forms
which can be added to this without changing the asymptotic behaviour (2.66).

2.6.2 Extracting physical information
From the Fourier expansion of E(0,0) we can extract a lot of physical information.
When expanding the Bessel functions for the non-zero modes in (2.74) in the weak
coupling limit τ2 →∞ (keeping the exponential suppression) we obtain

E(0,0)(τ) ∼ 2ζ(3)τ 3/2
2 +4ζ(2)τ−1/2

2 +2π
∑
N 6=0

√
|N |σ−2(N)e−S

(N)
inst (τ)

[
1+O(τ−1

2 )
]
, (2.78)

As expected, the non-perturbative terms come with a factor of e−S
(N)
inst with the

instanton action (2.65)
S

(N)
inst (τ) = −2πi |N | τ (2.79)

for an instanton with charge N . The omitted corrections O(τ−1
2 ) in the non-

perturbative terms come from higher genus instanton scattering amplitudes.
Comparing with (2.62) we see that (2.78) captures both the perturbative and non-
perturbative behaviour.

The expansion tells us that there are no further perturbative corrections beyond
one loop and, interpreting the factor

√
|N |σ−2(N) as the instanton measure counting

the number of instantons states with charge N we see that we have a degeneracy
equal to the number of ways N can be factorised into two integers. In the type IIA
picture, these two integers are the winding number and charge of a T-dual D-particle
wrapping the circle [41].
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2.7 Lower dimensions and larger groups
As shown in (2.36), the coefficient functions E (D)

(p,q) in the low-energy effective action
when compactifying on a torus are functions on the moduli space G(R)/K(R) in
table 2.1 invariant under the U-duality group G(Z). Due to supersymmetry, the lower
order terms E (D)

(0,0) and E
(D)
(1,0) satisfy the eigenfunction equations (2.57) disregarding

the in-homogeneous contributions for D = 8 and D = 7. Furthermore, it is possible
to obtain their weak coupling asymptotics using string perturbation theory in lower
dimensions.

Similar to ten dimensions, it is then possible to find the exact forms of E (D)
(0,0)

and E (D)
(1,0) in terms of Eisenstein series, but now on the larger group G(R).

Such Eisenstein series can be defined not only with respect to the Borel subgroup
B but also with respect to all parabolic subgroups P ⊇ B. It is also possible to
Fourier expand automorphic forms on larger groups G in different periodic variables
corresponding to different choices of unipotent subgroups U ⊆ N . Such a unipotent
subgroup is often constructed as part of another parabolic subgroup P . Before defining
Eisenstein series on larger groups we will therefore study parabolic subgroups which
will also give a precise definition of the Borel subgroup as the minimal parabolic
subgroup together with the Iwasawa decomposition discussed in section 2.2.

Let g be the Lie algebra of G with Cartan subalgebra h, roots ∆, positive roots
∆+ and simple roots Π. As seen in section I-4.1.3 a parabolic subgroup P is specified
by a choice of simple roots Σ ⊆ Π generating a root system 〈Σ〉. The roots defining
the Lie algebra p of P are then ∆(p) = ∆+ ∪ 〈Σ〉 with

p = h⊕
⊕

α∈∆(p)
gα , (2.80)

where
gα = {g ∈ g | [h, g] = α(h) ∀h ∈ h} (2.81)

for a root α.
The minimal parabolic subgroup corresponding to an empty subset Σ is the Borel

subgroup B constructed from all positive roots.
The parabolic subgroup P can be decomposed into a semi-simple Levi subgroup

L and a unipotent subgroup U as P = UL defined by

l = h⊕
⊕
α∈〈Σ〉

gα u =
⊕

α∈∆(u)
gα ∆(u) = ∆+\(∆+ ∩ 〈Σ〉) . (2.82)

For the minimal parabolic we have the corresponding decomposition B = NA
where U = N is a unipotent subgroup of B and L = A is the Cartan subgroup.
These form the Iwasawa decomposition of G which uniquely factorises an element
into G = BK = NAK, where K is the maximal compact subgroup introduced above.
Note that for a general parabolic subgroup P , the decomposition G = PK = ULK
is not unique.

Another special class of parabolic subgroups are those that include all simple
roots in Σ except one αj , called maximal parabolic subgroups denoted by Pαj . These
will be the main parabolic subgroups of interest besides the minimal one.
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A parabolic Eisenstein series is given by a multiplicative character χ :
P (Z)\P (R)→ C× which is determined by its restriction on L, that is χ(ul) = χ(l),
and trivially extended to all of G by χ(ulk) = χ(l). Then, similar to (2.69), the
Eisenstein series is defined as the sum over images

EP (χ; g) =
∑

γ∈P (Z)\G(Z)
χ(γg) . (2.83)

The characters χ can also be parametrised by weights λ ∈ h∗ as described in
section I-5.3 similar to the complex number s which parametrised the characters on
B of SL(2,R). We will use the character χ and the weight λ interchangeably.

We note that the sum makes the Eisenstein series inherently invariant under G(Z)
fulfilling the condition (A). They also satisfy the eigenfunction condition (B), which
is shown in appendix I-C for the Laplace operator. Since automorphic forms are
invariant under discrete translations in G(Z), they may be Fourier expanded as will
be discussed in chapter 3 and is also one of the main topics of Paper I. When studying
their Fourier coefficients one sees that also the growth condition (C) is satisfied. For
brevity we will continue to denote the Eisenstein series EB(χ, g) corresponding to
the minimal parabolic P = B as simply E(χ, g).

For dimensions D = 5, 4 and 3 corresponding to G = E6, E7 and E8 respectively,
the coefficient functions are conjectured to be the following solutions to (2.57) and
the lower dimensional versions of (2.66) in terms of maximal parabolic Eisenstein
series [36]

R4 : E (D)
(0,0)(g) = 2ζ(3)EP (λs=3/2; g)

D4R4 : E (D)
(1,0)(g) = ζ(5)EP (λs=5/2; g)

(2.84)

where P = Pα1 is given by the choice of simple roots Σ = Π\{α1} of G and
λs = 2sΛP − ρ with ΛP being the fundamental weight orthogonal to the Levi
subgroup L of P and ρ = 1

2
∑
α∈∆+ α the Weyl vector.

To extract physical information from these Eisenstein series we compute their
Fourier coefficients just as in the SL(2,R) case. But for larger groups G we have
more periodic variables to expand in and shifts of two different variables need not
commute meaning that we have to compute non-abelian Fourier coefficients which
we will define in the next chapter.

We also have a choice of unipotent subgroup – a choice of variables – to expand
in corresponding to studying different limits of the moduli space, giving insight
to different kinds of perturbative and non-perturbative effects. There are three
typical limits that one would like to study in string theory in D = 10− d dimensions
corresponding to choosing unipotent subgroups U of three different maximal parabolic
subgroups P [33].

1. Decompactification limit: Pαd+1

The limit where one of the compactified dimensions becomes large, which
amounts to studying instantons coming from wrapped, higher dimensional
black-holes. The maximal parabolic subgroup is obtained by removing the last
root in the Dynkin diagram in figure 2.1. Note that, in this limit, the Levi
subgroup of P contains the higher dimensional symmetry group GD+1.
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2. String perturbation limit: Pα1

The limit of weak string coupling gs → 0 as was studied for SL(2,R), which
amounts to studying D-instantons and NS5-instantons.

3. M-theory limit: Pα2

The limit where the M-theory torus becomes large and the eleven-dimensional
supergravity becomes a good approximation. This limit studies the wrapping
of M2- and M5-branes.

The vast amount of physical information contained in these limits strongly
motivates the study of automorphic forms on larger groups and their Fourier
expansions with respect to different parabolic subgroups. In chapters 3 and 4
we will discuss the computation of such Fourier coefficients on larger groups G. This
is, in general, a very complicated task, especially when without the comfort of a
complex structure of the underlying space or a lattice formulation of the Eisenstein
series as for G = SL(2).

However, using the adelic framework, we will see that the Fourier coefficients
factorise over primes p < ∞ together with a factor from the so called real part
denoted by p =∞, dividing the task into more manageable pieces. In terms of the
SL(2)-expansion in (2.78), these factors correspond to the arithmetic information of
the instanton measure for the former, and the Bessel function (with the instanton
action) for the latter.

In chapter 4 we will present closed form expressions for the perturbative terms
and the arithmetic factors p <∞ for the non-perturbative terms for general groups
G. Corresponding closed form expressions for the remaining real parts p =∞ are not
known in the literature, and have to be computed case by case. In Paper I we do this
for SL(2) in chapter I-7 and for SL(3) in section I-9.6. Besides computing Fourier-like
integrals, the real parts can also be studied from the differential equations (2.57), but
the numerical coefficients, the arithmetic parts, are not specified by these. Concretely,
for SL(2), inserting f(τ) = ∑

m cm(τ2) exp(2πimτ1) with unknown coefficients into
the eigenvalue equation ∆f(τ) = s(s− 1)f(τ) gives that

f(τ) = A(s)τ s2 +B(s)τ 1−s
2 + τ

1/2
2

∑
m 6=0

am(s)Ks−1/2(2π |m| τ2)e2πimτ1 , (2.85)

with the arithmetic factors A(s), B(s) and an(s) unknown.





Chapter 3

Automorphic forms

In section 2.3 we gave an introduction to automorphic forms defined on a real group
G(R). To be able to compute Fourier coefficients, we will lift the automorphic forms
to the adeles introduced below and, in particular, discuss adelic Eisenstein series and
show how they are reduced to the real case.

We will then discuss automorphic representations, which are of great importance
in Paper II, followed by a detailed definition of what we mean by a Fourier coefficient
on a group G(A). In chapter 4 we will present different methods for computing such
Fourier coefficients.

For references on adelic automorphic forms (besides Paper I) we recommend the
books [22,48] where the framework was first developed. For some good introductions,
see [10, 21,27,28].

3.1 Adelisation and Eisenstein series
For a fixed prime p the p-adic number system is an extension of the rational numbers,
but instead of using the ordinary archimedean norm, which gives the real numbers as
an extension, one uses the following non-archimedean norm. For a rational number
q = pk1

1 · · · pk
r

r with primes pj and integers kj the pi-adic norm is defined as

|q|pi = p−kii . (3.1)

For an arbitrary prime p not included in p1, . . . pr the corresponding k, called the
p-adic valuation of q, is zero giving |q|p = 1. If q = 0 the norm is defined to be
|q|p = 0 for all p. That it is non-archimedean means that it satisfies a stronger
triangle inequality

|x+ y|p ≤ max(|x|p , |y|p) . (3.2)

Taking equivalence classes of Cauchy sequences from Q with respect to this norm we
obtain the p-adic numbers Qp. The p-adic integers are defined as

Zp = {x ∈ Qp | |x|p ≤ 1} , (3.3)

27
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which includes the integers Z, and we can now define the adeles to include all these
extensions of Q as the restricted product

A = R×
∏′

p<∞
Qp (3.4)

where the restriction, denoted by the prime in the product, includes only elements
x = (x∞;x2, x3, x5, . . .) with x∞ ∈ R and xp ∈ Qp where all but a finite xp are in Zp.
It is often convenient to include R as Q∞. An object or result that only treats one
prime (or place) including ∞, is called local, while an adelic object or result is called
global.

The rational numbers can be diagonally embedded into the adeles
Q 3 q 7→ (q; q, q, . . .) ∈ A (3.5)

and in proposition I-3.24 we show that Q is discrete in A. This is a large simplification
compared to studying Z in R since Z is only a ring while Q is a field. The adelic
norm is defined as

|x|A = |x∞|∞
∏
p<∞
|xp|p x ∈ A (3.6)

and, using the fundamental theorem of arithmetic, |q|A = 1 for a rational number q
diagonally embedded in A. We will, from here on, suppress the subscript A of the
adelic norm.

The adelisation of a function fR : R → C is a function fA : A → C taking
x = (x∞;x2, x3, . . .) ∈ A, with x∞ ∈ R and xp ∈ Qp, to fA(x) such that

fA
(
(x∞; 1, 1, . . .)

)
= fR(x∞) . (3.7)

As discussed in section I-3.6 multiplicative characters on Q\A are parametrised
by rational numbers m and factorise as follows

ψ(m)(x) = ψ(m)
∞ (x∞)

∏
p<∞

ψ(m)
p (xp) = e2πimx∞

∏
p<∞

e−2πi[mxp]p (3.8)

where the p-adic fractional part [ · ]p is defined in section I-3.3.
The notion of p-adic groups is discussed in chapter I-4.2. For real Lie groups

we had the unique Iwasawa decomposition G(R) = N(R)A(R)K(R). Due to the
definition of a p-adic integer (3.3) the maximal compact subgroup for a p-adic Lie
group isKp = G(Zp) and we instead get the non-unique p-adic Iwasawa decomposition
G(Qp) = N(Qp)A(Qp)Kp. Note that G(Z) ⊂ G(Zp) = Kp.

An adelic Lie group is defined as the product
G(A) = G(R)×Gf Gf =

∏′

p<∞
G(Qp) (3.9)

restricting to elements (g∞; g2, g3, . . .) with all but finitely many gp ∈ G(Zp). The
adelic version of the compact subgroup is

KA = K(R)×Kf Kf =
∏
p<∞

Kp (3.10)

with Iwasawa decomposition
G(A) = N(A)A(A)KA . (3.11)

Since Q is discrete in A we also have that G(Q) is discrete in G(A).
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Adelic automorphic forms are functions ϕ(g) on a Lie group G(A) taking values
in C that satisfy the following conditions (a more detailed definition can be found in
chapter I-5)

(A’) Automorphic invariance: ϕ(γg) = ϕ(g) for all γ in some discrete subgroup
Γ ⊂ G

(B’) Differential equations: ϕ is an eigenfunction to all G-invariant differential
operators

(C’) Growth condition: for any norm ‖·‖ on G(A), ϕ(g) has at most polynomial
growth in ‖g‖.

We will in this thesis consider only Γ = G(Q) and spherical ϕ, that is, ϕ is a function
on G(Q)\G(A)/KA.

The strong approximation theorem I-4.5 states that

G(Z)\G(R) ∼= G(Q)\G(A)/Kf . (3.12)

This means that we can lift automorphic forms on G(Z)\G(R)/K(R) to automorphic
forms on G(Q)\G(A)/KA.

Let us now explicitly construct Eisenstein series on G(A) and see that they
are the adelisation of the real Eisenstein series of (2.83) in the meaning of (3.7).
This construction does not explicitly use the strong approximation theorem, but
the theorem does tell us that this is the only extension of the Eisenstein series to
G(A) [19].

The Eisenstein series in (2.83) were constructed as the sum over images of a
character χ : P (Z)\P (R)→ C×. The corresponding object to consider in the adelic
framework is a character χ : P (Q)\P (A) → C×. It is trivially extended to G(A)
by χ(pk) = χ(p) for k ∈ KA and factorises as χ(g) = χ∞(g∞)∏p<∞ χp(gp). In
particular, this means that χp(kp) = 1 for kp ∈ Kp.

An adelic Eisenstein series is then obtained by the sum over images

EA(χ; g) =
∑

γ∈P (Q)\G(Q)
χ(γg) (3.13)

and satisfies all the conditions for an adelic automorphic form.
We will now show that this is an adelisation of real Eisenstein series in the case

of SL(2,R). In example I-4.9 we show that B(Z)\SL(2,Z)→ B(Q)\SL(2,Q) given
by B(Z)γ 7→ B(Q)γ is an isomorphism which means that each B(Q)g coset for
g ∈ SL(2,Q) has a representative in SL(2,Z). Choosing such representatives we
obtain

EA(χ; g) =
∑

γ∈B(Q)\SL(2,Q)
χ(γg) =

∑
γ∈B(Z)\SL(2,Z)

χ(γg) . (3.14)

Restricting to g = (g∞; 1, 1, . . .) we see that

χ(γg) = χ∞(γg∞)
∏
p<∞

χp(γ) = χ∞(γg∞) (3.15)
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since γ ∈ SL(2,Z) ⊂ SL(2,Zp) = Kp. Hence

EA
(
χ; (g∞, 1, 1, . . .)

)
= ER(χ∞; g∞) (3.16)

From here on, we will, in the context of automorphic forms and Eisenstein series,
mean the adelic versions defined here and suppress the subscript A in EA.

For a discussion of non-spherical automorphic forms and how holomorphic modular
forms fit in this description see sections I-5.1.3 and I-5.5.

3.2 Automorphic representations
Let us denote the space of automorphic forms on G(A) invariant under G(Q) as
A(G(Q)\G(A)). We will now investigate how the group G(A) acts on an automorphic
form ϕ ∈ A(G(Q)\G(A)) by the right-translation action π

[π(h)ϕ](g) = ϕ(gh) h, g ∈ G(A) . (3.17)

Before we do that though we need to discuss a subtlety in the definition of
an automorphic form ϕ that we have glossed over in this summary. The rigorous
definition I-5.6 includes an additional K-finiteness condition, that is

dimC

(
span{ϕ(gk) | k ∈ KA}

)
≤ ∞ . (3.18)

In our discussion we have mainly treated spherical automorphic forms which are
invariant under KA and are thus automatically K-finite. However, the condition
(3.18) is not invariant under right-translations of G(A) meaning that ρ takes us
outside the space A(G(Q)\G(A)) [10, 26].

Instead, we consider the actions

[πf (hf )ϕ](g) = ϕ(g(1;hf )) hf ∈ Gf

[πK(R)(k∞)ϕ](g) = ϕ(g(k∞; 1)) k∞ ∈ K(R)

[πg(X)ϕ](g) = d
dt
ϕ(getX)|t=0 X ∈ U(gC)

(3.19)

where U(gC) is the universal enveloping algebra of g(C), and by (a; b) we mean
(a; b2, b3, b5, . . .) ∈ G(A) for a ∈ G(R) and b ∈ Gf . All these actions preserve the space
A(G(Q)\G(A)). An automorphic representation π of G(A) is then an irreducible
constituent in the decomposition of A(G(Q)\G(A)) under the simultaneous actions
of (3.19). The automorphic representation π factorises over primes π = ∏

p≤∞ πp
where πp for p <∞ furnishes a representation of G(Qp).

To each representation π we can assign a notion of size: the functional dimension
GKdim(π), called the Gelfand-Kirillov dimension, which is defined as the smallest
number of variables that are required to realise all the functions in π. In Paper II
we are especially interested in small representations to which the automorphic forms
for the R4 and D4R4 interactions in chapter 2 are attached.

Indeed, the Eisenstein series E (D)
(0,0) and E

(D)
(1,0) of (2.84) are attached to the minimal

and next-to-minimal representations with respect to the Gelfand-Kirillov dimension.



3.3. Fourier coefficients of automorphic forms 31

As discussed in sections 4.5 and I-6.4.2, each automorphic representation π can
be associated to a nilpotent orbit Oπ of a nilpotent element X ∈ g(C)

O = {gXg−1 | g ∈ G(C)} . (3.20)

For an introduction to nilpotent orbits see section II-2.2. In particular, the minimal
and next-to-minimal representations, πmin and πntm, are associated to the minimal
and next-to-minimal orbits, Omin and Ontm, respectively. The latter are defined by
the partial ordering of nilpotent orbits defined in section II-2.2. This connection
to orbits will be useful when discussing Fourier coefficients below and is central to
Paper II.

3.3 Fourier coefficients of automorphic forms
Before considering Fourier coefficients of adelic automorphic forms, let us first
introduce some concepts using the example of spherical Eisenstein series E(s; τ)
on SL(2,Z)\SL(2,R)/SO(2,R). The expansion was summarised in (2.74). There
we used the isomorphism SL(2,Z)/SO(2,R) ∼= H to expand E(s; τ) in shifts of
τ → τ +1, but we will now use a group-theoretical approach which can be generalised
to the other moduli spaces.

From (2.10) we obtained the Iwasawa decomposition of SL(2,R) = NAK with

N =
{
n =

(
1 x
0 1

) ∣∣∣∣∣ x ∈ R
}
. (3.21)

and we noted that shifts τ → τ + 1 was equivalent to translating g → ng with
x = 1. The different Fourier modes e2πimτ1 of (2.73) are here described by unitary
multiplicative characters ψ(m) : N(Z)\N(R)→ U(1)

ψ(m)(n) = e2πimx (3.22)

We then have that

E(s; τ) =
∑
m∈Z

am(τ2)e2πimτ1 =
∑
m∈Z

∫ 1

0
dxE(s;x+ iτ2)e−2πim(x−τ1)

=
∑
m∈Z

∫ 1

0
dxE(s; τ + x)e−2πimx

(3.23)

where, in the last step, we used the variables substitution x→ x+ τ1 and that E(τ)
is periodic. This form may be translated to group-theoretical terms as

E(s; τ) =
∑
m∈Z

∫ 1

0
dx E(s; τ + x) e−2πimx

E(s; g) =
∑
ψ

∫
N(Z)\N(R)

dn E(s;ng) ψ(n)
(3.24)

where we sum over different characters ψ parametrised by m and dn is the Haar
measure on N(R) normalised such that

∫
N(Z)\N(R) dn = 1.
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For an automorphic form ϕ, the functions

WN(ϕ, ψ; g) =
∫

N(Z)\N(R)

dnϕ(ng)ψ(n) (3.25)

have the following property

WN(ϕ, ψ;nak) =
∫

N(Z)\N(R)

dn′ ϕ(n′nak)ψ(n′) =
∫

N(Z)\N(R)

dn′′ ϕ(n′′ak)ψ(n′′n−1)

= ψ(n)WN(ϕ, ψ; ak)

(3.26)

and for spherical ϕ
WN(ϕ, ψ;nak) = ψ(n)WN(ϕ, ψ; a) . (3.27)

Such functions are called Whittaker vectors and are examples of Fourier coefficients
prominent in both Paper I and Paper II. In chapter I-6.1 we compute them for
SL(2,R) using the adelic framework, and for general groups in chapter I-9. Note
that it is only for abelian N that

ϕ(g) =
∑
ψ

WN(ϕ, ψ; g) . (3.28)

Let us now generalise this discussion to include larger groups and use the adelic
framework introduced above. Since an adelic automorphic form ϕ is a function on
G(Q)\G(A) and Q sits discretely in A we can Fourier expand ϕ in some periodic
variables ni. There are several choices of expansions depending on which periodic
variables we would like to consider equivalent to choosing a unipotent subgroup
U . We will here mainly consider unipotent subgroups that are part of a parabolic
subgroup P .

Fourier coefficients on this unipotent subgroup are then specified by a unitary
multiplicative character ψU : U(Q)\U(A)→ U(1). Similar to above, these characters
factorise into p-adic characters defined in section I-3.3, and real characters expressed
as ordinary exponential functions. If u ∈ U is given by u = ∏

α exp(uαEα) with
α ∈ ∆(u), Eα the corresponding (positive) Chevalley generator, and uα ∈ A then ψU
might be parametrised by so called charges mα ∈ Q as

ψU(u) = ψU,∞(u∞)
∏
p<∞

ψU,p(up)

= exp
(

2πi
∑

α∈∆(u)
mαuα,∞

) ∏
p<∞

exp
(
−2πi

∑
α∈∆(u)

[
mαuα,p

]
p

)
.

(3.29)

Characters with all mα 6= 0 are called generic with the special case of all mα = 1
being called unramified. If at least one mα = 0 then the character is called degenerate.
When we would like to specify the charges explicitly we denote the character as
ψ

(mα,mβ ,...)
U . A Fourier coefficient is then defined as

FU(ϕ, ψU ; g) =
∫

U(Q)\U(A)

ϕ(ug)ψU(u) du . (3.30)
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We have that
FU(ϕ, ψU ;u′g) = ψU(u′)FU(ϕ, ψU ; g) (3.31)

and since ψU is multiplicative this tells us that FU can only capture the abelianisation
[U,U ]\U of U where the commutator subgroup is defined as

[U,U ] = {u1u2u
−1
1 u−1

2 | u1, u2 ∈ U} . (3.32)

Let U (1) = U and U (n+1) = [U (n), U (n)]. A complete Fourier expansion on U requires
that we recursively include all commutator subgroups

ϕ(g) = FU(ϕ, 1; g) +
∑

ψ
U(1) 6=1

FU(1)(ϕ, ψU(1) ; g) +
∑

ψ
U(2) 6=1

FU(2)(ϕ, ψU(2) ; g) + . . . (3.33)

where FU(ϕ, 1; g) is called the constant term on U . The Fourier coefficients on
U (1) are called abelian, while the Fourier coefficients on U (n) for n > 1 are called
non-abelian.

As discussed in section 2.7, the Borel subgroup is the minimal parabolic subgroup.
Its unipotent subgroup U , denoted by N , is defined by n = ⊕

α∈∆+ gα. The
corresponding Fourier coefficients are called Whittaker vectors

WN(ϕ, ψN ; g) =
∫

N(Q)\N(A)

ϕ(ng)ψN(n) dn , (3.34)

as discussed above. Similar to (3.28) we have for a spherical automorphic form that

WN(ϕ, ψN ;nak) = ψ(n)WN(ϕ, ψN ; a) (3.35)

We will now show that when restricting to g = nak = (g∞; 1, 1, . . .) the Whittaker
vector WN(ϕ, ψ(m1,m2,...)

N ; g), with character parametrised by rational charges mi, is
non-vanishing only for integer charges. Then, we will show that these Whittaker
vectors exactly recover the real Whittaker vectors of (3.25). For brevity, we will
restrict to the case of SL(2,A), but the arguments for general groups are exactly
the same. Let n̂ = (1; n̂2, n̂3, . . .) ∈ N(A) with n̂p ∈ N(Zp) ⊂ Kp parametrised by

n̂ =
(

1 x
0 1

)
x ∈ A . (3.36)

We then also have that n̂ ∈ KA and

WN(ϕ, ψN ; a) = WN(ϕ, ψN ; an̂) = WN(ϕ, ψN ; an̂a−1a)
= ψN(an̂a−1)WN(ϕ, ψN ; a)

(3.37)

which means that ψN (an̂a−1) = 1 for WN (ϕ, ψN ; a) to be non-vanishing. Restricting
to the SL(2,A) case with character ψ(m)

N parametrised by a charge m ∈ Q and
inserting a = (a∞; 1, 1, . . .) we then get that

1 = ψ
(m)
N (an̂a−1) = ψN,∞(1)

∏
p<∞

ψN,p(n̂p) = exp
(
−2πi

∑
p<∞

[mxp]p
)

(3.38)
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Using proposition I-3.13 we then have that m ∈ Z. Thus,

ϕ
(
(g∞; 1, 1, . . .)

)
=
∑
m∈Z

WN

(
ϕ, ψ

(m)
N ; (g∞; 1, . . .)

)
=
∑
m∈Z

WN

(
ϕ, ψ

(m)
N ; (a∞; 1, . . .)

)
ψN,∞(n∞)

(3.39)

and by orthogonality arguments we then have that WN

(
ϕ, ψ

(m)
N ; (a∞; 1, . . .)

)
are the

same Whittaker vectors as the ones defined on SL(2,R) in (3.25).



Chapter 4

Main results

In this chapter we will summarise the main results of Paper I and Paper II
for computing adelic Fourier coefficients and, in particular, Whittaker vectors.
Sections 4.1 to 4.4 are based on Paper I reviewing the existing literature, while
section 4.5 summarises our own work in Paper II based on the methods of [24,54].

Section 4.1 starts with some preliminary steps and explains the different cases we
need to study in sections 4.2 and 4.3. We will use the notation

WN(χ, ψN ; g) = WN(E(χ; ·), ψN ; g) (4.1)

and we will sometimes suppress the subscript in the character ψN or drop the character
all together. Recall that, for spherical automorphic forms, WN is determined by its
values on the Cartan subgroup, and that a character χ can also be specified by a
weight λ ∈ h∗. We will use the short-hand notation

χ(a) =
∣∣∣aλ+ρ

∣∣∣ ρ = 1
2
∑
α∈∆+

α , (4.2)

for this relation as explained in section I-5.3.1, where ρ is the Weyl vector.
For applications of many of the results below in the case of SL(3) see section I-9.6,

and examples I-10.29 and I-10.30.

4.1 Preliminary steps
Using the Bruhat decomposition [7]

G(Q) =
⋃
w∈W

B(Q)wB(Q) (4.3)

where W is the Weyl group of G(R), we will now rewrite the Whittaker vectors of
Eisenstein series in a way that factorises their computation over primes p. Let

N (w)(A) =
∏
α>0
wα<0

Nα(A) (4.4)

35
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where the product is over positive roots that become negative after reflection with
w, and Nα(A) = {exp(nαEα) | nα ∈ A}. Also, for a character ψ on N , let

Cψ = {w ∈ W | wα < 0 for all α ∈ supp(ψ)} (4.5)
where supp(ψ) = {α ∈ Π | mα 6= 0}.

Then, it is shown in sections I-8.2 and I-9.1 that a Whittaker vector of a spherical
Eisenstein series can be expressed as

WN(χ; a) =
∑

γ∈B(Q)\G(Q)

∫
N(Q)\N(A)

χ(γna)ψ(n) dn =
∑
w∈Cψ

Fw(χ; a) . (4.6)

where
Fw(χ; a) =

∫
N(w)(A)

χ(wna)ψ(n) dn (4.7)

Each of the terms Fw factorises as follows

Fw(χ; a) =
∏
p≤∞

Fw,p(χp; ap) Fw,p(χp; ap) =
∫

N(w)(Qp)

χp(wnap)ψp(n) dn (4.8)

where we include p =∞ with Q∞ = R. We will now compute this in the separate
cases (defined in section 3.3)

ψ = 1 The Langlands constant term formula
ψ unramified  The Casselman-Shalika formulaψ generic
ψ degenerate

4.2 The Langlands constant term formula
Based on the factorisation above, we would now like to compute the constant term∫

N(Q)\N(A)

E(χ, na) dn (4.9)

corresponding to ψ = 1. Since supp(ψ) = ∅ we have that Cψ = W. The
resulting integrals can be computed by induction over primitive Weyl reflections
w = w1w2 . . . wl. At each step one is left with an integral that can be computed
using adelic methods. The resulting constant term is given by the following theorem
proved in chapter I-8 where 〈· | ·〉 is the Killing form on g.
Theorem I-8.1. (Langlands’ constant term formula [53]). The constant term of
E(λ, g) with respect to N is given by:∫

N(Q)\N(A)

E(λ, ng) dn =
∑
w∈W

∣∣∣awλ+ρ
∣∣∣M(w, λ) . (4.10)

where
M(w, λ) =

∏
α>0 |wα<0

ξ(〈λ|α〉)
ξ(1 + 〈λ|α〉) . (4.11)

For constant terms along different parabolic subgroups, see section I-8.9.
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4.3 The Casselman-Shalika formula
Following chapter I-9, we will now consider the non-constant Whittaker vectors on
N . For generic characters, supp(ψ) = Π and only the longest Weyl word reflects all
simple roots into negative roots, giving Cψ = {wlong}.

The Casselman-Shalika formula will enable us to compute the finite p < ∞
part of Fwlong(χ; a). There is currently no general closed-form expression for the
archimedean p = ∞ part, but it is computed for SL(2,A) in chapter I-7 and for
SL(3,A) in section I-9.6.

We will first consider the unramified case where all mα = 1, and this case will
then be used to calculate generic Whittaker vectors. Finally, degenerate Whittaker
vectors will be computed using the known expressions for generic Whittaker vectors
on smaller subgroups.

4.3.1 Unramified Whittaker vectors

Let ψ̂ be the unramified character on N with mα = 1 for all α ∈ Π. We have that
Cψ̂ = {wlong} giving

WN(χ, ψ̂; a) = Fwlong(χ, ψ̂; a) = Fwlong,∞(χ∞, ψ̂∞; a∞)
∏
p<∞

Fwlong,p(χp, ψ̂p; ap) (4.12)

with
Fwlong,p(χp, ψ̂p; ap) =

∫
N(Qp)

χp(wlongnap)ψ̂p(n) dn (4.13)

where we have used that N (wlong) = N . The Casselman-Shalika formula, then gives
us these Fwlong,p for p <∞ as follows.

Theorem I-9.1. (The Casselman-Shalika formula [11]). The local factors with
p <∞ of the unramified Whittaker vector are given by

Fwlong,p(χp, ψ̂pap) = 1
ζ(λ)

∑
w∈W

ε(wλ)
∣∣∣awλ+ρ

∣∣∣
p

(4.14)

where

ρ = 1
2
∑
α>0

α ζ(λ) =
∏
α>0

1
1− p−(〈λ|α〉+1) ε(λ) =

∏
α>0

1
1− p〈λ|α〉 . (4.15)

The proof is given in section I-9.3 and consists of finding a functional equation
for Fwlong under Weyl transformations of λ, construct a Weyl invariant function out
of the Whittaker vector which is then expressed as a sum over Weyl images. This is
the sum that appears in the right hand side of (4.14). Lastly, one of the terms in
this sum is evaluated, giving all the other terms.
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4.3.2 Generic Whittaker vectors
In section I-9.4 we show that a character ψ(mα)

N with charges mα can be expressed as
a twisting of the unramified character ψ̂ as

ψ
(mα)
N (n) = ψ̂ã(n) := ψ̂(ãnã−1)

ã = exp
(∑
α∈Π

log(vα)Hα

)
vαj =

r∏
i=1

(mαi)(A−1)ij (4.16)

where r is the rank of the group, Hα the Cartan element dual to the root α and A−1

the inverse of the Cartan matrix Aij = αj(Hαi).
As stated above, we have for generic characters that Cψ = {wlong}. This allows

us to compute the generic Whittaker vector as

WN(χ, ψ(mα)
N ; a) = Fwlong(χ, ψ(mα)

N ; a) =
∫

N
(wlong)(A)

χ(wlongna)ψ(mα)
N (n) dn

=
∫

N
(wlong)(A)

χ(wlongna)ψ̂(ãnã−1) dn
(4.17)

Now, we want to make the variable substitution n′ = ãnã−1 under which dn =
χ(wlongãw

−1
long)|ã−(wlongλ+ρ)| dn′. We then make use of the multiplicativity of χ on

B ⊃ A to write

χ(wlongãw
−1
long)χ(wlongna) = χ(wlongãw

−1
long)χ(wlongã

−1n′ãa) = χ(wlongn
′ãa) . (4.18)

Hence,

WN(χ, ψ(mα)
N ; a) = |ã−(wlongλ+ρ)|

∫
N

(wlong)(A)

χ(wlongn
′ãa)ψ̂(n′) dn′

= |ã−(wlongλ+ρ)|WN(χ, ψ̂; ãa) ,

(4.19)

whose local p <∞ factors are given by the Casselman-Shalika formula above.

4.3.3 Degenerate Whittaker vectors
Degenerate Whittaker vectors have characters without support on all simple roots,
meaning that we obtain a larger Cψ and more terms in the sum (4.6).

Let ψN be a degenerate character with supp(ψN) = Π′ ⊂ Π with associated
subgroup G′(A) ⊂ G(A) and Weyl group W ′ with longest Weyl word w′long. The
Weyl words in Cψ can then be parametrised by certain, carefully chosen representatives
wcw

′
long of W/W ′ with wc satisfying wcα > 0 for all α ∈ Π′, as shown in section I-9.5
The Whittaker vector then becomes

WN(χ, ψN ; a) =
∑

wcw′long∈W/W ′
Fwcw′long

(χ, ψN ; a) (4.20)
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It is then possible to split the integration over N (wcw′long) in Fwcw′long
into two

factors: one which becomes a generic Whittaker vector on the subgroup G′(A) and
another containing the factor M(w−1

c , λ) of (4.11) in the Langlands constant term
formula. Note that since the character ψN has support only on supp(ψN) = Π′ it
can also be viewed as a character ψ′N ′ on N ′ of G′(A).

The resulting Whittaker vector is given in the following theorem proved in
section I-9.5 from [18,45].

Theorem I-9.5. The Whittaker vector with degenerate character ψN is given by

WN(χ, ψN ; a) =
∑

wcw′long∈W/W ′

∣∣∣a(wcw′long)−1λ+ρ
∣∣∣M(w−1

c , λ)W ′
N ′(λ′, ψ′N ′ ; 1) (4.21)

where W ′
N ′ is a generic Whittaker vector on G′(A) with weight λ′ given by the

orthogonal projection of w−1
c λ on the weight space of G′(A).

4.4 The method of Piatetski-Shapiro and
Shalika

We saw above that a degenerate Whittaker vector can be expressed in terms of
Whittaker vectors on a smaller group. The method of Piatetski-Shapiro and Shalika
is another example taking advantage of this technique for the case of G = GL(n,R).
Generalisations for other groups are discussed in [54].

The method first considers the Fourier expansion along the maximal parabolic
subgroup P with unipotent subgroup along the first row of upper triangular matrices
N in GL(n).

P =
(
∗ U
0 GL(n− 1)

)
(4.22)

As will be discussed in the next section, these Fourier coefficients can all be expressed
as γ-translates of the Fourier coefficients charged only on α1, where γ is in the Levi
subgroup GL(n − 1) of P . These Fourier coefficients are themselves automorphic
forms on GL(n− 1) and we may repeat the process by expanding along the first row
of upper triangular matrices in GL(n− 1). At the end we obtain [54,58,65]6

ϕ(g) =
∑

mα1 ,...mαn−1∈Z

∑
γ∈N(n−1,Z)\GL(n−1,Z)

Wψ(γg) (4.23)

6We have here, for simplicity, neglected the constant term at each iteration which amounts to
assuming that ϕ is a cusp form.



40 Chapter 4. Main results

4.5 Character variety orbits and wavefront sets
We now turn to general Fourier coefficients that we want to compute in terms of
Whittaker vectors (which were determined above) as discussed in Paper II.

Let P be a parabolic subgroup of G with unipotent subgroup U and Levi subgroup
L. A Fourier coefficient on U was defined in (3.30) as

FU(ϕ, ψU ; g) =
∫

U(Q)\U(A)

ϕ(ug)ψU(u) du . (4.24)

For an element γ ∈ L(Q) we have, using the automorphic invariance (A) of ϕ, that

FU(ϕ, ψU ; γg) =
∫

U(Q)\U(A)

ϕ(uγg)ψU(u) du =
∫

U(Q)\U(A)

ϕ(γ−1uγg)ψU(u) du

=
∫

U(Q)\U(A)

ϕ(u′g)ψU(γu′γ−1) du′ = FU(ϕ, ψγU ; g)
(4.25)

where we have used the fact that L leaves U invariant under conjugation, and
du′ = du for u′ = γ−1uγ with γ ∈ L(Q) and where ψγU(u) := ψU(γuγ−1) is a similar
twisting to the one introduced above. This means that if we know one Fourier
coefficient in the L(Q)-orbit of ψU , called a character variety orbit, we may compute
the rest by L(Q)-translations of the argument. As discussed in section I-6.4.1, one
may parametrise the charges of ψU as an element ω in the dual space u∗ on which
L(Q) acts by conjugation. This means that we may describe the character variety
orbits using the theory of nilpotent orbits7.

We will now discuss how these character variety orbits are related to the orbit Oπ
associated to the automorphic representation π of ϕ. Disregarding a few subtleties
discussed in section I-6.4.2, the wavefront set WF(π) of an automorphic representation
π can be defined as follows. Let ϕ be an automorphic form in the automorphic
representation π. If the Fourier coefficients of ϕ in the character variety orbit L(Q)ω
are non-vanishing, then G(C)ω ⊂WF(π) and otherwise not.

It has been shown in [8,49] that the wavefront set is the Zariski closure of a single
nilpotent orbit Oπ, that is, the union of all orbits O ≤ Oπ. This is the nilpotent
orbit introduced in section 3.2 and corresponds to the minimal and next-to-minimal
orbits for πmin and πntm respectively. Concretely, this means that small automorphic
representations have few non-vanishing Fourier coefficients.

In Paper II, we explicitly, using the methods of [23–25], construct so called orbit
Fourier coefficients FO of an automorphic form ϕ in π for each orbit in G = SL(3),
and then SL(4), whose character variety orbit intersects O. This means that, by
design, FO vanishes unless O ≤ Oπ. We then prove the following Theorem I of
Paper II.

7We will identify adjoint and coadjoint orbits using the non-degenerate Killing form.
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Theorem II-I. Let E(χ, g) be an Eisenstein series on the group G(A) = SL(3,A)
or G(A) = SL(4,A) in the automorphic representation π. Then E(χ, g) can be
expanded as

E(χ, g) =
∑
O
FO(χ, g) (4.26)

where the sum is over all nilpotent orbits O of G and each FO is a sum of integrals
over translated orbit Fourier coefficients FO that is non-vanishing only for O ≤ Oπ.

In this way we can examine the contributions to E(χ, g) for each representation
separately. We find explicit expressions for FOmin in terms of Whittaker vectors and
obtain the following theorem for SL(3) and SL(4).

Theorem II-II. In the minimal representation, the only non-vanishing orbit Fourier
coefficients are the trivial and FOmin the latter of which can be expanded in terms of
translated maximally degenerate Whittaker vectors.

This means that ϕ, and all of its Fourier coefficients, is completely determined
by the constant term and maximally degenerate Whittaker vectors similar to the
theorem of [54] for E6 and E7. For the next-to-minimal representation we continued
the expansion for SL(4).

Theorem II-III. In the next-to-minimal representation for SL(4), the only non-
vanishing orbit Fourier coefficients are the trivial, FOmin and FOntm all of which can be
expanded in terms of translated Whittaker vectors that are either trivial, maximally
degenerate or charged on two commuting roots.

In general, Fourier coefficients of ϕ pick up certain terms in the expansion
(4.26) and the Whittaker vectors therein. But, we found, for SL(3) and SL(4),
that Fourier coefficients on maximal parabolic subgroups reduce to only a single
translated maximally degenerate Whittaker vector in the minimal representation. A
self-contained example of this for SL(3) can be found in example I-10.30.

Lastly, we test if maximal parabolic Fourier coefficients on E6 on E7 and E8 also
simplify to single translated Whittaker vectors in the minimal representation by
comparing with known so called spherical local vectors for both p <∞ and p =∞
as explained in more detail in sections II-5 and I-10.4.4.

4.6 Outlook
We are currently working on generalising the results of Paper II for E6, E7 and E8
corresponding to D = 5, 4 and 3 respectively. In particular, we are interested in
the maximal parabolic Fourier coefficient in small representations, which we have
found evidence for to simplify to translated Whittaker vectors. If proven true, such a
statement would allow for the computations of instanton effects in the three different
limits discussed in section 2.7.

Another interesting development is the compactification to dimensions lower
than three, leading to Kac-Moody symmetry groups E9, E10 and E11 as discussed
in section I-12.7. Eisenstein series on such groups would, in general, have infinitely
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many terms in its constant Fourier-mode, but string theory predicts a finite number
of perturbative corrections. For a certain choice of Eisenstein series though,
corresponding to the s = 3/2 and s = 5/2 in chapter 2, for example, the number
of terms collapses to only a few [17,18]. This means that, although the definition
of a small automorphic representation used in section 3.2 cannot be applied to
infinite-dimensional groups, there is a similar mechanism restricting the number of
non-vanishing Fourier coefficients.

Lastly, we have briefly remarked on the D6R4 coefficient E(0,1), which, as seen in,
(2.57) satisfies an inhomogeneous Laplace equation and does not satisfy the definition
of an automorphic form as defined above. This is also discussed in section I-12.1.2.
In [34], Green, Miller and Vanhove found the solution for E(0,1) in terms of a sum over
images, similar to the definition of an Eisenstein series (2.69), but not of a character
χ. It seems that string theory requires an extended framework of automorphic forms,
the development of which will positively bring new exciting insights to both physics
and mathematics.
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