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Quantum optics and relativistic motion with superconducting circuits
JOEL LINDKVIST

Applied Quantum Physics Laboratory
Department of Microtechnology and Nanoscience
Chalmers University of Technology

Abstract

Superconducting microwave circuits provide a versatile platform for study-
ing quantum optics with artificial atoms, mainly motivated by applications
in quantum information. In addition, the circuits are promising for simu-
lation of relativistic phenomena. This thesis is based on theoretical work
along both these lines.

Firstly, we consider a transmon coupled to an open transmission line.
Using circuit quantization techniques and the master equation formalism,
we theoretically describe scattering of coherent microwaves states on the
transmon. The results agree with various recent experiments. As an exam-
ple, we see a photon number redistribution leading to antibunching in the
reflected field and superbunching in the transmitted field. Inspired by these
results, we further investigate the possibility of generating single-photon
states on demand in the system. We find that a single two-level system
in an open transmission line is not a suitable single-photon source. With
an asymmetric setup using two transmission lines, however, single-photon
probabilities close to unity can be achieved.

Secondly, we investigate simulation of a relativistically moving cavity
containing a quantum field. Previously, in order to demonstrate the dy-
namical Casimir effect, a SQUID was used to tune a boundary condition
in a way that mimics a moving mirror. Building on this idea, we extend
the setup and use two SQUIDs to simulate the moving cavity. An exper-
iment is proposed where the cavity is used as a clock and we show that
time dilation should be observable for realistic circuit parameters. We also
show how the size and the acceleration of the clock leads to a deviation
from the ideal clock formula. Moreover, the effect of acceleration on the
precision of the clock is analyzed.

Keywords: Superconducting circuits, circuit QED, SQUID, transmon,
propagating microwaves, quantum optics, quantum field theory, special
relativity, relativistic motion, time dilation
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New Journal of Physics 16, 055018 (2014)

V. Twin paradox with macroscopic clocks in superconducting
circuits
Joel Lindkvist, Carlos Sab́ın, Ivette Fuentes, Andrzej Dragan, Ida-
Maria Svensson, Per Delsing and Göran Johansson
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Chapter 1

Introduction

In quantum optics, light and its interaction with matter is studied at a level
where quantum effects are important. Although quantum descriptions of
light and atoms date back to the early days of quantum mechanics, it
took many years for experiments to reach the point where single photons
and atoms can be manipulated and measured. In 2012, Serge Haroche
and David Wineland were awarded the Nobel Prize in Physics for their
contributions to this development [1, 2]. An important challenge in ex-
perimental quantum optics is to reach the strong coupling regime, where
the atom-photon coupling is much larger than the coupling to the external
world. In this case, controlled operations can be performed on the system
before information is lost to the environment, which is crucial in many ap-
plications. One approach is to confine the light in a cavity, thus enhancing
the coupling between atoms and light at the single-photon level. This field
of research is known as cavity quantum electrodynamics (cavity QED or
CQED) [3].

An alternative to performing quantum optics experiments with natu-
ral atoms is to use analogue systems based on artificial atoms [4]. These
are many-particle systems designed to have simple energy level structures,
similar to those of single atoms. Setups with artificial atoms can offer sev-
eral advantages compared to natural atoms; improved control, increased
tunability and the possibility of reaching parameter regimes not found in
nature. One very promising platform for quantum optics with artificial
atoms, and the one that we focus on in this thesis, is circuit quantum
electrodynamics (circuit QED or cQED) [5–7], which is based on super-
conducting electrical circuits. The development of circuit QED is outlined
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in section 1.1 and in Chapter 2 we give a more thorough introduction to
superconducting circuits.

Apart from its relevance for experimentally investigating fundamental as-
pects of quantum mechanics, development in CQED and in particular
cQED has largely been driven by possible applications in quantum infor-
mation processing. The idea of a computer with an operational principle
based on quantum mechanics was first introduced in 1982 by Richard Feyn-
man [8]. A quantum computer is based on quantum bits, or qubits, which
are quantum mechanical two-level systems. While a classical bit can only
take the values 0 and 1, a qubit can exist in a superposition of its two
eigenstates |0〉 and |1〉,

|ψ〉 = a |0〉+ b |1〉 , (1.1)

where a and b are complex numbers. This can be exploited for paralleliza-
tion, allowing certain computational tasks to be performed much faster on
a quantum computer than on a classical one [9]. Developing algorithms
[10, 11] for quantum computers is an active field of research, with the most
well-known example to date being Shor’s algorithm for prime factorization
[12].

In the past decades, a large effort has gone into the problem of imple-
menting qubits in physical systems. For quantum computing to work, it
must be possible to initialize the qubit states, perform one- and two-qubit
gate operations and read out the qubit states [13]. Another challenge is
to overcome the problem of decoherence. Due to interaction with the en-
vironment, the superposition state of a qubit is lost after a certain time.
Designing qubits with longer coherence times is an active field of research.
Apart from CQED and cQED, candidates for quantum computing include
trapped ions [14, 15], semiconductor quantum dots [16, 17], NV centers in
diamond [18] and atoms in optical lattices [19].

The quest for a quantum computer is only one part of the vast field
of quantum information science. Closely related is the idea of quantum
simulations [20] where, instead of being able to perform different compu-
tational tasks, one controllable quantum system simply simulates another
quantum system. In addition, there is the field of quantum communica-
tion [21, 22], aiming to realize quantum-based communication networks.
Communication channels able to transmit quantum states can be used for
quantum cryptography [23, 24].
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In the last decade, the emerging field of relativistic quantum information
(RQI) [25, 26] has gained a considerable amount of attention. In RQI, the
effects of special and general relativity [27, 28] on quantum information
tasks are investigated. Not only is this interesting from a fundamental
standpoint, but also from a more pragmatic point of view. Quantum com-
munication protocols have recently been carried out over long distances
on Earth [29] and there are plans to realize similar experiments between
satellites [30, 31]. On these macroscopic scales, possible effects of relativity
must be taken seriously.

Closely related to RQI is relativistic quantum metrology [32]. Quan-
tum metrology aims to exploit quantum physics for high-precision mea-
surements. One example is timekeeping, where quantum mechanics can be
used to build more precise clocks [33]. Effects of special and general rela-
tivity have since long been measured with atomic clocks [34, 35], and gravi-
tational time dilation is corrected for in the GPS system [36]. These clocks,
however, are described by non-relativistic quantum mechanics. Both quan-
tum and relativistic effects can be taken into account within the framework
of quantum field theory (QFT) [37, 38]. In Papers V and VI, we consider a
fundamental clock model based on QFT and investigate how its rate and
precision is affected by non-uniform relativistic motion.

Superconducting circuits cannot only be used for circuit QED experi-
ments, but also for simulation of relativistic motion [39, 40]. This is the
main topic of Paper V, where we propose an experiment to simulate a
moving clock. A longer introduction to this type of simulations is given in
section 1.2.

1.1 Circuit QED

In circuit QED, quantum optical analogue systems are implemented in
superconducting circuits. These circuits are on-chip devices where the
circuitry is made of a superconducting material placed on top of a dielectric
substrate. The fact that the entire system is an integrated circuit allows
for great stability and controllability. Unlike in natural systems, there is
no need to trap the atoms and keep them stable. The fabrication of the
chips uses lithographic techniques that are well known from conventional
circuit fabrication.

The artificial atoms in cQED are small circuits designed to have an
atom-like level structure. Despite being macroscopic, these circuits can
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Figure 1.1: Optical micrograph of a chip containing the circuit used to implement
the results of Paper V. The brighter areas are superconducting, while the darker
areas are dielectric. The left figure shows the entire chip, where the meandered
structure is a coplanar waveguide terminated at both ends to form a cavity. The
right figure shows two Josephson junctions forming a SQUID at the end of the
coplanar waveguide. A separate waveguide is used to generate a magnetic flux
through the SQUID. Pictures by Ida-Maria Svensson.

for low enough temperatures exhibit quantum behavior. There are many
ways to design superconducting artificial atoms, each with their advan-
tages and disadvantages. What they all have in common is that they
are based on the Josephson junction [41], which is a nonlinear inductive
circuit element. The superconducting artificial atoms typically have transi-
tion frequencies in the microwave (GHz) range. This means that standard
equipment from microwave technology can be used for signal generation
and amplification. The atoms are connected by transmission lines, in the
form of coplanar waveguides [42], for the electromagnetic field. These can
be seen as squashed coaxial cables, with a center conductor between two
ground planes. Figure 1.1 shows a chip with the circuit studied in Pa-
per V. The (meandered) coplanar waveguide can clearly be seen, and the
zoom-in shows two Josephson junctions forming a so-called SQUID (see
section 2.5). In order to exhibit quantum behavior, these circuits must be
operated in cryostats at temperatures around 50 mK.

Since superconducting artificial atoms in most applications are used as
qubits, with only two levels addressed, we will often refer to them as su-
perconducting qubits. One drawback of these qubits is that, being macro-
scopic, they couple strongly to the environment, leading to decoherence.
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This means that they generally have shorter coherence times than natu-
ral atoms. The first experimental demonstration of coherent control of a
superconducting qubit, the so-called charge qubit, was performed in 1999
[43]. Since then, much effort has gone into developing qubits with longer
coherence times, both theoretically and experimentally. Other than the
charge qubit, early superconducting qubit designs include the flux qubit
[44, 45] and the phase qubit [46]. For a review of these three types of
qubits, see [47].

A later development of the charge qubit, known as the transmon [48],
shows a significantly reduced sensitivity to charge noise. This increases
the coherence time, making the transmon a popular choice among the su-
perconducting qubits. Part of the work in this thesis concerns systems
with transmons, experimentally (Papers I & II) and theoretically (Paper
III). Even longer coherence times are achieved by coupling transmons to
3D cavities [49]. The last decade has seen coherence times of supercon-
ducting qubits increase with several orders of magnitude, and they start to
reach the regime where quantum computing is possible. To actually build
a working quantum computer with superconducting circuits, however, re-
mains an enormous technological challenge [50].

Since the coplanar waveguides are effectively one-dimensional transmis-
sion lines, circuit QED systems show a good confinement of the electric
field. Together with the fact that the effective dipole moments of the arti-
ficial atoms can be large by design, this makes it easier to achieve strong
coupling between single photons and atoms than in natural cavity QED
setups [6]. Moreover, by the use of SQUIDs, the transition frequencies and
coupling strengths cannot only be chosen by design, but also tuned in situ.

Most experiments in circuit QED have made use of a coplanar waveg-
uide terminated in both ends to form a cavity, where the atom interacts
with discrete field modes. In the quantum computing applications, the ar-
tificial atoms play the roles of qubits while the photons are used for qubit
manipulation and readout. Recently, however, there has been a growing
interest in artificial atoms interacting with propagating photons in open
transmission lines [51–56]. These systems can be used to realize quantum
communication networks [57] and potentially for all-optical quantum com-
puting [58]. Here, the roles of the photons and the atoms are reversed; the
qubit is represented by the photon, whereas the atoms are used to manip-
ulate the photon states. The system studied in Papers I-IV is a transmon
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interacting with propagating photons in an open transmission line.

In order to realize quantum information protocols with propagating
microwave photons, it must be possible to routinely generate and detect
single photons. Due to the lower energy of the photons, photodetectors are
more difficult to realize for microwaves than in the optical regime. The-
oretical proposals of single-photon detectors based on qubits [59–61] and
transmons [62] have been made, but not yet realized experimentally. Gen-
eration of single-photon states have been realized in different experiments
[63–66], but these all make use of a cavity that limits the bandwidth of
operation. Paper I is an experimental study of a transmon coupled to an
open transmission line, where it is shown that nonclassical photon states
can be generated in the system. Inspired by this, we propose a non-cavity
based single-photon source in Paper IV.

A growing trend in quantum information processing is that of hybrid
systems [67]. By combining several physical systems, it is possible to ex-
ploit the advantages and avoid the disadvantages of each system. In most
cases, superconducting circuits are included due to their controllability
and strong coupling to external fields. Optical photons in fibers, on the
other hand, are suitable for long-distance communication. For storing of
information, in a quantum memory [68], natural atoms or spins are more
suitable than superconducting circuits due to their longer coherence times.
Finding interfaces to transfer quantum information between the systems is
an active area of research. Another example is quantum electromechanics
[69], where the circuits are coupled to mechanical systems. Closely related
is quantum optomechanics [70], where photons interact with mechanical
resonators. Controlling mechanical systems at the quantum level is of fun-
damental interest, since it may be used to study decoherence of macroscopic
objects, a fundamental problem in quantum mechanics. In particular, the
systems can possibly be used to test models of gravitationally induced de-
coherence [71–73]. Such experiments would increase our understanding
of the relation between quantum mechanics and general relativity, which
remains one of the biggest open questions in modern physics.

1.2 Relativistic motion in superconducting cir-
cuits

As mentioned in section 1.1, SQUIDs can be used to tune transition fre-
quencies and coupling strengths in circuit QED. This tunability is also
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useful in a different context, when the SQUID is operated as a boundary
condition for the quantum field in a coplanar waveguide. By modulating
the magnetic flux in the SQUID, the boundary condition can be made to
mimic that of a mirror moving at relativistic speeds. In 2011, this trick was
used to experimentally demonstrate the dynamical Casimir effect (DCE)
for the first time [39]. The DCE is a prediction of quantum field the-
ory, stating that photons are created from the vacuum when there are
time-dependent boundary conditions [74]. Due to the difficulty in moving
massive mirrors fast enough, though, it had never been observed before.

The setup used to demonstrate the DCE can be extended to simulate
a moving one-dimensional cavity, by use of two SQUIDs. Moving cavi-
ties containing quantum fields have been studied in the context of RQI, to
investigate relativistic effects on quantum entanglement [75–79] and tele-
portation protocols [40]. In Papers V and VI, we let a cavity of this type
play the role of a fundamental clock and propose an experiment to simulate
time dilation effects in superconducting circuits. Possibly, more predictions
from RQI can be tested using these simulations in the future.

Modulation of boundary conditions is not the only way to simulate
relativistic physics with superconducting circuits. Relativistic motion of
qubits [80] has been suggested to study effects similar to the Unruh effect
[81, 82]. Another example, involving general relativity, is the proposal to
simulate Hawking radiation [83, 84] by using a SQUID array to create an
event horizon [85].

1.3 Outline of the thesis

In this section, we give an overview of the content in the following chapters.
Since this is a compilation thesis, the scientific results are included mainly
in the appended papers. The preceding chapters serve to give the reader
a background in the different subject areas, necessary to understand the
papers.

Chapter 2 treats superconducting circuits, which in some way relates
to all the appended papers. Starting with a brief introduction to super-
conductivity, we then outline how to quantize electrical circuits. Next,
the fundamental circuit elements (capacitance, inductance and Josephson
junction) are introduced and in the subsequent sections we describe the
important components of the systems studied in the papers; the SQUID,
the transmission line and the transmon.
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Chapter 3 starts with an introduction to special relativity. We then go
on to discuss time dilation and accelerated clocks. Finally, we discuss rigid
body motion in relativity. All these concepts relate to the clock model
used in Papers V and VI, which is a rigid cavity undergoing accelerated
motion.

Chapter 4 treats the one-dimensional massless Klein-Gordon field, which
is the effective description of the electromagnetic field used in all the ap-
pended papers. We start by describing the quantization of the field in
open space, with a continuous spectrum, and in a cavity, with a discrete
spectrum. Next, the interaction of the field with atoms, used in Papers
I-IV is discussed. In the subsequent sections, different types of states are
described. First, we focus on discrete mode states, among them the Gaus-
sian states that are important in our description of the moving cavity in
Papers V and VI. The following section is devoted to continuous mode
states, relevant for Papers I-IV, and how to characterize them using co-
herence functions. We end with a treatment of the Klein-Gordon field in
noninertial reference frames and describe how to use Bogoliubov transfor-
mations to transform between different frames. These techniques are used
in Papers V and VI.

In Chapter 5, we treat open quantum systems. To describe the evo-
lution of a system under the influence of its surroundings, like the elec-
tromagnetic field, we introduce the master equation. To accompany the
master equation, we also derive input-output equations for the signal being
scattered from the system. These formalisms are used in the treatment of
atom-field interactions in Papers I-IV.

Finally, Chapter 6 contains an overview of each of the appended papers
and in Chapter 7 we summarize our work and give a brief outlook.



Chapter 2

Superconducting circuits

As we saw in Chapter 1, superconducting circuits can be used for quantum
optics experiments and quantum information tasks, as well as simulation
of relativistic effects. Although the devices contain a macroscopic num-
ber of atoms, their low-energy behaviour can effectively be described by a
few collective degrees of freedom. The systems described by these degrees
of freedom typically have characteristic frequencies in the GHz range and
when operated at low enough temperatures, that is 10-50 mK, they can ex-
hibit quantum behaviour. In this sense, macroscopic quantum phenomena
can be observed in superconducting circuits.

In section 2.1 we give a brief introduction to superconductivity and
introduce the lumped-element description of circuits. For a more extensive
introduction to superconductivity, see [86]. In the remaining sections of
this chapter, the quantization procedure is described, mainly following [87],
and all the relevant circuit elements are introduced.

2.1 Superconductivity

When cooled below a critical temperature, certain metals become super-
conducting [86]. In this state of matter, two basic phenomena emerge. The
first is zero electrical resistance, making it possible for a current to flow
without dissipation, and the second is the expulsion of magnetic fields from
the interior of the material, known as the Meissner effect.

A microscopic theory of so-called conventional superconductors was
developed in 1957 by Bardeen, Cooper and Schrieffer (BCS) [88]. In BCS
theory, the electrons in the superconductor are paired into Cooper pairs
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[89] due to a phonon-mediated attractive interaction. The Cooper pairs
form a condensate and there is a certain energy cost of breaking a pair to
form a single-particle excitation. This results in an energy gap ∆ between
the ground state and the lowest excited state of the superconductor. For
energies well below the gap, the degrees of freedom are thus significantly
reduced.

Ginzburg-Landau (GL) theory was originally introduced as a phenomeno-
logical theory describing the macroscopic degrees of freedom of the super-
conducting state, but was later shown to be a consquence of BCS theory. In
GL theory, the central object is the complex order parameter ψ(r), defined
so that |ψ(r)|2 represents the local density of superconducting electrons.
Moreover, the phase of ψ(r) is important when describing Josephson junc-
tions (see section 2.4).

Now, consider a superconducting circuit with physical dimensions much
smaller than the shortest wavelength of the currents and voltages of inter-
est. In this case, we can neglect retardation effects and assume instanta-
neous propagation of signals in the circuit. The different electromagnetic
phenomena, like generation of electric and magnetic fields, can then be rep-
resented by lumped elements. In this way, we go from a description with
a continuous charge density distribution |ψ(r)|2 to a simpler description
where the electron fluid moves rigidly and charges can only be accumu-
lated on a discrete number of nodes. This further reduces the degrees
of freedom of the circuit. The immense reduction of degrees of freedom,
made possible by both the superconductivity and the lumped-element ap-
proximation, allows us to design macroscopic circuits behaving as single
harmonic or anharmonic oscillators. It is this fact that enables us to con-
struct artificial atoms, as we will see in section 2.7.

2.2 Circuit quantization

A systematic way to quantize an electrical circuit in the lumped-element
approximation was described in [87, 90]. Here, we will outline the main
steps of this approach. The first step is to choose a set of generalized
coordinates and write down the Lagrangian L = T − U , where T is the
kinetic energy and U the potential energy. The degrees of freedom in a
classical circuit are usually described in terms of the voltages V (t) and
currents I(t) associated with the circuit branches. These are constrained
by Kirchoff’s laws. An independent set of variables can be obtained by
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identifying the nodes of the circuit and assigning a coordinate to each
node. One possibility is to use the node charge Q(t), related to the current
I(t) through the node by

Q(t) =
∫ t

−∞
I(t′)dt′, (2.1)

as the generalized coordinate. In the following, however, we will mostly
describe circuits containing nonlinear elements (i. e. Josephson junctions)
for which it proves more convenient to use the flux Φ(t) of the node as
coordinate. The flux is related to the voltage V (t) at the node, relative to
an arbitrary ground node, by

Φ(t) =
∫ t

−∞
V (t′)dt′. (2.2)

Indexing the nodes by i, the fluxes Φi constitute a set of generalized po-
sition coordinates that can be used to describe the Lagrangian dynamics
of the circuit. From the Lagrangian L, the Hamiltonian H is obtained
through the Legendre transformation

H =
∑
i

QiΦ̇i − L, (2.3)

with Qi = ∂L
∂Φ̇i

being the generalized momenta. Using the node flux as

generalized coordinate, Qi can be identified as the node charge (2.1). The
flux and the charge of each node are thus canonically conjugate quantities.

To step to a quantum mechanical description, Φi and Qi are promoted
to operators obeying the canonical commutation relations [91]

[Φi,Qj ] = i~δij , (2.4)

with ~ = h/2π, where h is Planck’s constant.

2.3 Capacitance and inductance

Capacitances and inductances are two basic circuit elements with different
voltage-current relations. In this section, we describe these elements and
write down standard expressions for their Lagrangians in terms of node
fluxes. We let Φ denote the flux drop over the element, i. e. the difference
in flux between the two nodes.
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Figure 2.1: The circuit symbols for capacitance C and inductance L.

A capacitance C is assigned to a device where energy is stored in the
electric field between two charged conductors separated by an insulator.
The voltage drop over the capacitance is proportional to the stored charge
Q according to V = CQ. In terms of Φ, the stored energy can be expressed
as

EC = 1
2CΦ̇

2. (2.5)

Thus, each capacitance corresponds to a kinetic term in the Lagrangian.
An inductance L is assigned to a device where energy is stored in the

magnetic field generated by moving charges. The voltage drop over the
inductance is proportional to the time-derivative of the current via the
relation V = Lİ. In terms of Φ, the stored energy can be expressed as

EL = 1
2LΦ

2. (2.6)

Thus, each inductance corresponds to a potential term in the circuit La-
grangian. The standard circuit symbols for capacitance and inductance
are shown in figure 2.1.

2.4 Josephson junctions

A Josephson junction consists of two superconductors coupled by a weak
link, which can be a thin layer of insulating material or a normal metal.
In a groundbreaking paper from 1962 [41], Josephson showed that Cooper
pairs can tunnel through the link, giving rise to several interesting phe-
nomena. In contrary to conventional circuit elements, current can flow
even when there is no voltage drop over the junction. This is the so-called
DC Josephson effect. Letting φ(t) denote the difference in the phase of the
Ginzburg-Landau order parameter on the two sides of the junction, the
current is given by

I(t) = Ic sinφ(t), (2.7)
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where Ic is a parameter of the junction known as the critical current. This
is the maximal supercurrent through the junction, i. e. current that can
flow without resistance. When Ic is exceeded, the current partly consists
of quasiparticle tunneling and the junction becomes resistive [92]. In a
voltage-biased junction, the phase difference evolves in time according to

φ̇(t) = 2π
Φ0
V (t), (2.8)

where Φ0 = h/2e is the magnetic flux quantum. For a constant voltage-
bias V , the phase difference evolves as φ(t) = 2πV t/Φ0 and consequently,
the current through the junction varies harmonically in time. This is called
the AC Josephson effect. Sometimes (2.7) and (2.8) are referred to as the
DC and AC Josephson relations, respectively.

Comparing (2.2) and (2.8), we note that the phase and flux drops
are related by φ = 2πΦ/Φ0. We can thus easily incorporate Jospehson
junctions into the Lagrangian description of circuits outlined in section
2.2. Using (2.7) and (2.8), the voltage drop can be written as

V = Φ0
2π φ̇ = Φ0

2π
1

Ic cosφİ (2.9)

and we can therefore think of the Josephson junction as an inductor, with
nonlinear inductance

LJ = Φ0
2π

1
Ic cosφ. (2.10)

The nonlinear properties of the Josephson junction are crucial in the de-
sign of artificial atoms, allowing quantum optics experiments and quantum
information tasks to be performed in superconducting circuits.

To obtain an expression for the energy UJ stored in a Josephson junc-
tion, we integrate the power P = IV over time. Again using (2.7) and
(2.8), this results in

UJ =
∫ t

−∞
I(t′)V (t′)dt′ = Φ0Ic

2π

∫ t

−∞

dφ

dt′
sinφ(t′)dt′

= Φ0Ic
2π

∫ φ

0
sinφ′dφ′ = EJ(1− cosφ), (2.11)

where we have defined the Josephson energy EJ = Φ0Ic/2π. Thus, using
the node fluxes as generalized coordinates, a Josephson junction corre-
sponds to a potential term in the Lagrangian. This is, in fact, the great
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Figure 2.2: Left: The circuit symbol for an ideal Josephson junction with Joseph-
son energy EJ . Right: The circuit symbol for a junction with Josephson energy
EJ and capacitance CJ .

advantage of using the node fluxes as generalized coordinates instead of
the node charges.

Above, we have described ideal Josephson junctions. A physical junc-
tion, however, also has capacitive properties and is modelled by a nonlin-
ear inductance in parallel with a capacitance CJ . The Lagrangian thus
becomes

LJ = 1
2CJ Φ̇

2 − EJ (1− cos (2πΦ/Φ0)) . (2.12)

As shown in figure 2.2, the circuit symbol for an ideal Josephon junction
is a cross, while the ”x-box” symbolizes a tunnel junction in parallel with
a capacitance.

Consider now the case when the phase drop over the Josephson junction
is small, so that the current I is small compared to Ic. In this case, we
can linearize the nonlinear Josephson inductance by expanding the cosine
in (2.12) to second order, resulting in the Lagrangian

L = 1
2CJ Φ̇

2 − 1
2

(2π
Φ0

)2
EJΦ

2. (2.13)

This corresponds to a simple harmonic LC-oscillator with eigenfrequency

ωp = 2π
√

EJ
Φ2

0CJ
, (2.14)

which is known as the plasma frequency of the junction.

2.5 SQUIDs

A superconducting quantum interference device (SQUID) is a supercon-
ducting loop interrupted by one or several Josephson junctions. SQUIDs
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Figure 2.3: Left: Scanning-electron micrograph of the DC SQUID used for the
experiments in Paper I. Picture taken from Paper I. Right: Circuit diagram of a
DC SQUID with negligible self-inductance.

are primarily used as extremely sensetive magnetometers in a variety of dif-
ferent contexts. For our purposes, as we will see below, their importance
lies in the fact that they can be operated as tunable Josephson junctions.

The interesting properties of a SQUID are based on the phenomenon
of fluxoid quantization [86]. Since the Ginzburg-Landau order parameter
must be a single-valued function, the phase φ of the condensate can only
change by multiples of 2π when completing a loop. This implies that
a quantity known as the fluxoid is quantized in integer multiples of the
magnetic flux quantum Φ0. Written out explicitly, the fluxoid for a SQUID
with N Josephson junctions is

Φ′ = Φext + Φind + Φ0
2π

N∑
i=1

φi, (2.15)

where Φext is the external magnetic flux through the loop, Φind is the flux
induced by a circulating current and φi are the phase differences across the
Josephson junctions.

In the following, we will limit our analysis to two-junction loops, also
known as DC SQUIDs. Figure 2.3 shows a picture of a DC SQUID, as well
as the circuit diagram. In the case of a symmetric SQUID, where both
Josephson junctions have the same capacitance CJ and Josephson energy
EJ , the Lagrangian is

L = 1
2CJ

(
Φ̇2

1 + Φ̇2
2

)
+ EJ [cos (2πΦ1/Φ0) + cos (2πΦ2/Φ0)] , (2.16)

where the constant terms in the potential have been dropped. Now, due
to the fluxoid quantization condition, Φ1 and Φ2 are not independent vari-
ables. If the loop is small enough, we can neglect the induced magnetic
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flux Φind in (2.15), resulting in the condition

Φ1 − Φ2 + Φext = nΦ0. (2.17)

Here, the integer n determining the number of flux quanta in the loop
depends on the external flux Φext according to

(n− 1
2)Φ0 < Φext < (n+ 1

2)Φ0. (2.18)

To implement the fluxoid quantization condition, we introduce the new
variable Φ = 1

2 (Φ1 + Φ2). Together with (2.17), this implies

Φ1 = Φ− 1
2 (Φext − nΦ0) , (2.19)

Φ2 = Φ+ 1
2 (Φext − nΦ0) . (2.20)

Inserting (2.19) and (2.20) into (2.16) and simplifying, we obtain

L = CJ Φ̇
2 + 2EJ

∣∣∣∣cos
(
π

Φ0
Φext

)∣∣∣∣ cos
(2π
Φ0
Φ

)
. (2.21)

Here, we have neglected terms containing only Φext, since they do not affect
the dynamics of the system. Now, comparing (2.21) to (2.12), we see that
the symmetric DC SQUID behaves as a single Josephson junction, with
capacitance 2CJ and tunable Josephson energy

EJ(Φext) = 2EJ
∣∣∣∣cos

(
π

Φ0
Φext

)∣∣∣∣ , (2.22)

which we have plotted in figure 2.4. The effective Josephson energy, or
equivalently the critical current, can thus be tuned by modulating the
external magnetic flux through the loop. This tunability is important in
many applications. In circuit QED, it allows the parameters of the artificial
atoms to be tuned in situ. Moreover, it can be exploited to generate tunable
boundary conditions for quantum fields in waveguides, as we will see in
section 2.6.1. In practice, the external magnetic flux is usually generated
by sending a current through a separate line on the chip, giving rise to a
magnetic field.

In order to intuitively understand the flux-dependence of (2.22), we
recall that the critical current Ic of a Josephson junction is the maximal
current that can flow through the junction by Cooper pair tunnelling. In a
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Figure 2.4: Effective Josephson energy EJ(Φext) of a symmetric DC SQUID as a
function of the external flux Φext.

symmetric DC SQUID without external flux, a bias current will split into
two equal parts, resulting in an effective critical current of 2Ic. Applying a
small flux Φext will result in a circulating screening current which, through
the DC Jospehson relation (2.7), gives rise to phase drops over the junctions
to keep the value of the fluxoid (2.17) equal to zero. This current flows
in different directions in the two branches of the loop and as a result, the
amount of additional current that can flow before exceeding the critical
current in one of the Josephson junctions decreases. As Φext → Φ0/2, the
screening current approaches Ic, so that the effective critical current of the
SQUID approaches zero. For Φext > Φ0/2 the screening current will reverse
direction, to instead satisfy (2.17) with n = 1. Increasing Φext even further
will now decrease the screening current until it is zero again at Φext = Φ0.
This takes us back to the initial situation, albeit with one fluxoid quantum
trapped in the loop instead of zero.

2.6 Transmission lines

In a transmission line, or waveguide, electromagnetic waves are transferred
from one point to another. In on-chip superconducting circuits, the copla-
nar waveguide (CPW) [42] is widely used for this purpose. A CPW consists
of a center conductor between two ground planes, as seen in figure 2.5(a).

Since a transmission line is typically longer than the wavelength of the
field, it cannot be treated as a single lumped element. By dividing it into
small parts, however, it is possible to describe it using the procedure in
section 2.2. Figure 2.5(b) shows the circuit diagram of a CPW, with an
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(a)

(b)

Figure 2.5: (a) Sketch of a coplanar waveguide, consisting of a center conductor
between two ground planes. (b) Circuit model of a coplanar waveguide with
capacitance C0 and inductance L0 per unit length.

inductance L0 and capacitance C0 per unit length. If ∆x is taken to be
small enough, the field is approximately constant in each interval. This
is the requirement for the lumped-element description to be valid. The
Lagrangian of the CPW is

LCPW =
∑
n

(1
2∆xC0Φ̇

2
n −

1
2∆xL0

(Φn+1 − Φn)2
)
. (2.23)

With the conjugate momenta Qn = ∆xC0Φ̇n, the Hamiltonian becomes

HCPW =
∑
n

(
Q2
n

2∆xC0
+ (Φn+1 − Φn)2

2∆xL0

)
. (2.24)

Next, we take the continuum limit ∆x → dx. In this limit, Φn(t) be-
comes a flux field Φ(t,x) and Qn(t)/∆x a charge density field Q(t,x). The
continuum Hamiltonian is

H = 1
2

∫
dx

(
Q2(t,x)
C0

+ (∂xΦ(t,x))2

L0

)
. (2.25)
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Now, Φ(t,x) and Q(t,x) are our canonical field operators, satisfying the
equal-time commutation relation

[Φ(t,x), Q(t,x′)] = i~δ(x− x′). (2.26)

Using the Heisenberg equations of motion and (2.26), we obtain ∂tΦ(t,x) =
Q(t,x)/C0 and ∂tQ(t,x) = ∂2

xΦ(t,x)/L0, implying(
∂2
t −

1
L0C0

∂2
x

)
Φ(t,x) = 0, (2.27)

which is the massless Klein-Gordon equation [37]. Thus, we can conclude
that the flux field Φ(t,x) in the coplanar waveguide behaves as a one-
dimensional massless Klein-Gordon field propagating at a velocity

c = 1/
√
L0C0. (2.28)

For a thorough discussion of the Klein-Gordon field, see Chapter 4. In the
quantum description, we will use the term photon for an excitation of this
field. For typical circuit parameters, the value of c is of the same order of
magnitude as the speed of light in vacuum.

2.6.1 Boundary conditions

By terminating the CPW in different ways, various boundary conditions
for the flux field can be realized. Grounding the waveguide at the endpoint
x = 0 gives rise to the Dirichlet boundary condition Φ(t,0) = 0. This is
the same boundary condition that a perfectly conducting mirror imposes
on an electromagnetic field. In contrast, leaving the waveguide open ended
results in the Neumann boundary condition ∂xΦ(t,x)|x=0 = 0. A cavity is
formed by terminating both ends of the CPW, allowing cavity QED-like
experiments to be performed in circuit QED [5].

Consider now the slightly more complicated case of terminating the
CPW via a DC SQUID, as shown in figure 2.6. After linearizing the
cosine potential like in (2.13), a circuit analysis of the setup shows that
the boundary condition for the field becomes [93]

CJ∂
2
t Φ(t,0) +

(2π
Φ0

)
EJ(Φext)Φ(t,0) + 1

L0
∂xΦ(t,x) |x=0 = 0, (2.29)

where EJ(Φext) and CJ is the effective Josephson energy and capacitance
of the SQUID. Now, (2.29) can be rewritten as

1
ω2
p

∂2
t Φ(t,0) + Φ(t,0) + Leff(Φext)∂xΦ(t,x) |x=0 = 0, (2.30)
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Figure 2.6: Circuit diagram of a coplanar waveguide terminated by a DC SQUID.

where ωp is the plasma frequency (2.14) and

Leff(Φext) =
(2π
Φ0

)2 1
L0EJ(Φext)

, (2.31)

can be interpreted as an effective length, as we will see shortly. If the
plasma frequency is far higher than all the other frequencies involved, the
first term in (2.30) can be neglected. We are left with

Φ(t,0) + Leff(Φext)∂xΦ(t,x) |x=0 = 0, (2.32)

which is known as a Robin boundary condition. Now, if Leff(Φext) is small
compared to the wavelength of the field, (2.32) is a good approximation of

Φ (t, Leff(Φext)) = 0, (2.33)

which is a Dirichlet boundary condition at a different effective position
than the physical position of the SQUID. By modulating the external flux
Φext, this effective position can be dynamically tuned. Thus, for frequen-
cies satisfying ω � ωp and ω � c/Leff(Φext), a boundary condition corre-
sponding to a moving mirror can be generated by means of a SQUID. The
mirror can effectively be moved at velocities where relativistic effects be-
come important. In 2011, this was exploited to demonstrate the dynamical
Casimir effect [39, 93, 94] and in [40] it was suggested that a moving cavity
can be simulated by the use of two SQUIDs. In Paper V, we propose an
experiment involving this type of cavity.

2.7 Superconducting artificial atoms - the trans-
mon

By using only standard capacitances and inductances, a circuit behaving
like a harmonic oscillator, with an equidistant energy spectrum, can be
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Figure 2.7: Circuit diagram of a Cooper pair box with gate voltage Vg. The
superconducting island is represented by the node with flux Φ.

designed. An artificial atom suitable for quantum optics experiments and
quantum information, however, must have a non-equidistant spectrum. In
order to achieve this, some kind of nonlinearity is required, and this is
provided by the Josephson junction. As mentioned in Chapter 1, there
are several ways to design Josephson junction based artificial atoms. In
the following, we will exclusively deal with the transmon [48], which is a
variant of the Cooper pair box (CPB) [95]. A CPB consists of a small super-
conducting island coupled to a superconducting reservoir via a Josephson
junction, allowing Cooper pairs to tunnel on and off the island. Since the
environment can also induce charges on the island, both through controlled
operations and unwanted noise, we include a capacitively coupled voltage
source in the description. The circuit diagram of a CPB is shown in fig-
ure 2.7. Using the standard expressions from sections (2.3) and (2.4), the
Lagrangian of the voltage-biased CPB is

LCPB = 1
2CJ Φ̇

2 + 1
2Cg

(
Φ̇− Vg

)2
− [1− EJ cos (2πΦ/Φ0)] , (2.34)

where Φ is the flux coordinate of the island node. With the canonical
momentum (node charge) being Q = CJ Φ̇ + Cg(Φ̇ − Vg), applying the
Legendre transformation and neglecting constant terms yields the following
Hamiltonian,

HCPB = 1
2(CJ + Cg)

(Q+ CgVg)2 − EJ cos (2πΦ/Φ0). (2.35)

With n = −Q/2e being the number of Cooper pairs on the island and
ng = CgVg/2e the number of Cooper pairs induced by the voltage source,
the Hamiltonian (2.35) can be written as

HCPB = 4EC (n− ng)2 − EJ cosφ, (2.36)
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Figure 2.8: The three lowest energy levels of the Cooper pair box as a function of
the charge offset ng, for EJ/EC = 1 (left) and EJ/EC = 20 (right). The energy
is given in units of the separation between the two lowest states for ng = 0.

where EC = e2/2(CJ + Cg) is referred to as the charging energy.

Stepping to a quantum description, we use the Cooper pair number n
and the phase φ as canonical variables1, instead of the charge and the flux.
The commutation relation (2.4) implies [n, φ] = i from which we, using the
Baker-Hausdorff lemma [91], can derive

[eiφ, n] = eiφ. (2.37)

The Hamiltonian (2.36) can be projected onto the eigenbasis |n〉 of the
Cooper pair number operator n. Noting that the commutation relation
(2.37) implies e±iφ |n〉 = |n∓ 1〉, we obtain

HCPB =
∑
n

(
4EC(n− ng)2 |n〉 〈n| − EJ

2 (|n− 1〉 〈n|+ |n+ 1〉 〈n|)
)
.

(2.38)
The spectrum of (2.38) depends on the designable parameters EJ and
EC , as well as the charge offset ng. For EC � EJ , the CPB is said
to be operated in the charge regime. Here, the charge on the island is
well-defined and the eigenstates of the CPB are close to the Cooper pair
number eigenstates |n〉. This is the so-called charge qubit. For EJ � EC ,
the CPB is said to be operated in the phase regime. Here, the phase is
well-defined, with correspondingly large charge fluctuations. This is the
so-called transmon.

1The operator φ is to be understood simply as a rescaled flux operator, not a proper
quantum phase operator.
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In figure 2.8 we plot the three lowest energy levels as a function of
ng for two different cases. With EJ/EC = 1, choosing the voltage bias
so that ng = 1/2 makes the two lowest states well separated from the
higher energy levels, enabling us to use the system as a qubit. Since the
energy levels are highly dependent on ng, however, this qubit is sensitive
to charge noise, limiting its coherence times. In the phase regime, we see
a decreased dependence on ng, making the transmon much more robust to
charge noise. The drawback of increasing EJ/EC is that the anharmonicity,
the difference between the first and second transition energies, decreases.
In most cases, however, the anharmonicity is enough for qubit purposes,
making the transmon one of the most widely used superconducting qubit
designs today. In practice, a DC SQUID is often used instead of a single
Josephson junction in order to make EJ tunable. To obtain the small values
of EC required to reach the transmon regime, the SQUID is shunted by a
large extra capacitance.





Chapter 3

Elements of special relativity

In the early 20th century, Einstein’s special theory of relativity (SR) [96]
revolutionized our understanding of space and time. Since space and time
constitute the background where physical theories take place, SR deeply
affects many branches of physics. At the heart of SR lies the concept of
inertial frames, which are reference frames moving with constant velocities
with respect to each other. The theory is based on two basic postulates.
The first is the relativity principle, which compactly can be stated as ”all
physical laws are invariant under a change of inertial frame”. The second
postulate states that the speed of light in vacuum has the same value c in
all inertial frames. For a good introductory textbook on special relativity,
see [27]. Here, we will only give a brief introduction.

Einstein’s two postulates together imply that the temporal and spatial
coordinates of two different inertial frames must be related by a Lorentz
transformation. Let us consider two frames S and S′, with coordinates
(t,x,y,x) and (t′,x′,y′,z′) respectively. For simplicity, we assume that the
two frames are in standard configuration. This means that the x- and x′-
axes are aligned and that the spatial origin of S′ moves along the x-axis
with velocity v, with the origins coinciding at t = t′ = 0. The Lorentz
transformation relating S and S′ is then

t′ = γ(v)
(
t− vx/c2

)
, (3.1)

x′ = γ(v) (x− vt) , (3.2)

with the remaining coordinates transforming trivially. Here,

γ(v) ≡ 1√
1− v2/c2 (3.3)
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is the so-called Lorentz factor. It is worth mentioning that, from the rela-
tivity principle alone, it follows that S and S′ must be related by (3.1)-(3.2)
for some nonnegative number c. The role of the second postulate is simply
to fix the value of c to the speed of light. In the limit c → ∞ we obtain
t′ = t and x′ = x − vt, thus retrieving the Galilean transformation which
is the symmetry transformation of Newtonian mechanics.

From the Lorentz transformation it is apparent that time and space
are no longer absolute concepts. Rather, they are interrelated and combine
into a single four-dimensional spacetime [97], where points are referred to as
events and trajectories are known as worldlines. Spacetime is conveniently
described in the language of differential geometry, using the metric tensor.
To introduce the metric tensor, let us first define the invariant spacetime
interval

ds2 = −dt2 + dx2 + dy2 + dz2. (3.4)

It is easy to verify that ds2 is invariant under Lorentz transformations.1

Now, using Einstein’s summation convention2, we can write (3.4) as

ds2 = ηµνdx
µdxν , (3.5)

where µ,ν = 0 corresponds to the temporal coordinate and µ, ν = 1, 2, 3 to
the spatial coordinates. Thus, the metric tensor is given by

ηµν = diag(−1,1,1,1). (3.6)

This is the so-called Minkowski metric of special relativity. The space-
time itself is referred to as Minkowski space or simply flat spacetime. The
Lorentz transformations, taking us from one inertial frame to another, are
those that leave ηµν invariant. Transforming to a non-inertial frame does
not preserve the metric, which reflects the fact that physical laws do not
generally take the same form in these frames [28].

In general relativity, Minkowski space is generalized to curved space-
time, with a more general metric tensor gµν indicating the presence of

1The full class of transformations preserving the interval also includes translations
and spatial rotations. Transformations of the type (3.1)-(3.2) are often referred to as
Lorentz boosts, while Lorentz transformations are understood to include rotations as
well. Lorentz transformations and translations are together known as Poincaré trans-
formations (or inhomogeneous Lorentz transformations), which specifies the full class of
symmetries in special relativity.

2Einstein’s summation convention is the rule saying that an index appearing twice in
a term should be summed over.
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gravity. In this case, all frames are non-inertial and the physical laws are
invariant under general coordinate transformations. There is no set of pre-
ferred frames like in special relativity. In the following, however, we will
focus on special relativity and, more specifically, the phenomenon of time
dilation.

3.1 Clocks and time dilation

Famous consequences of the Lorentz transformation include time dilation
and length contraction. In this section, we describe time dilation in detail,
again making reference to the two inertial frames S and S′ in standard
configuration. Consider two events at the same spatial point in the S′-
frame (so that ∆x′ = 0), separated by a time delay ∆t′. Using (3.1) and
(3.2), we can then show that the time delay between the same events in
the S-frame is

∆t = γ(v)∆t′. (3.7)

Thus, since γ(v) > 1, an observer in the S-frame would conclude that a
longer time has elapsed between the events than would an observer in the
S′-frame. This is what is meant by time dilation. It should be emphasized
that this phenomenon is completely symmetric between observers in S and
S′; both observers agree that processes in the other system run slower.

Before continuing, let us stop to briefly discuss the concept of time.
Even though it is an intuitively obvious quantity, time is rather difficult
to define in a stringent way. The best we can do is to define it in terms of
how it is measured; time is simply what a clock reads. The next question
then becomes, what is a clock? A clock is a device based on some periodic
process, where the elapsed time can be defined as being proportional to
the number of periods. For example, according to today’s SI standards,
the second is defined as a certain number of periods of the radiation cor-
responding to the transition between two energy levels of the cesium 133
atom. When discussing different observers, we always assume that each
observer has access to a clock. In our example above, we let the two events
correspond to consecutive ticks of a clock at rest in S′ (and thus moving
with velocity v in S). The time dilation result (3.7) can then be stated
as ”moving clocks tick slower”. In special relativity, every periodic process
must behave according to this rule, no matter what actual physical law is
responsible for the process.
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Time dilation is sometimes popularized in the form of the twin paradox,
first introduced by Langevin [98]. This is a thought experiment with two
twins where one, Alice, stays on Earth while her brother, Rob, embarks
on a round trip in space, finally returning to Alice. Since Rob has been in
motion, he has aged less due to time dilation and would be younger than
Alice at their reunion. Now, a naive application of special relativity would
lead to an apparent paradox. According to Rob, Alice has been in motion
and due to the symmetry of time dilation she should also be the younger
of the two. The resolution of this paradox lies of course in the fact that
only constant motion is symmetric. In the travel scenario, however, Rob
changes inertial frames whereas Alice does not and this breaks the sym-
metry between them. Indeed, a more careful analysis shows that Rob is
younger. In Paper V, we propose a simulation of a ”twin paradox scenario”
in superconducting circuits.

So far, we have dealt only with clocks moving at constant velocities. In
practice, of course, no clock is subject to indefinite constant motion, but
has to accelerate at some point. Unlike in the uniform motion case, there is
no way to predict how the rate of a generic clock is affected by accelerated
motion. Let us consider a pointlike clock moving along an arbitrary path,
with velocity v(t) in some arbitrary inertial frame S. At each instant, the
clock is at rest with respect to some instantaneous rest frame. Now, we
can define an ideal clock [27] as a clock whose rate is affected by its instan-
taneous velocity only, through the time dilation formula (3.7). The time τ
elapsed on a clock of this type during the interval (ti,tf ) in S is then given
by integrating the infinitesimal version of (3.7) over the path, resulting in

τ =
∫ tf

ti

√
1− v(t)2

c2 dt. (3.8)

The quantity τ is usually called the proper time of the path. Sometimes, the
existence of ideal clocks measuring proper time along their paths is referred
to as the clock postulate. In reality, however, the rate of an accelerated
clock depends on its underlying physical mechanisms. For certain finite-
size clocks, as investigated in Paper V, the rate obviously changes in the
case of accelerated motion. For decay rates of unstable particles accelerated
in storage rings, time dilation according to the ideal clock formula (3.8)
has been experimentally verified to high accuracy [99]. As pointed out in
[100], however, even these rates must fundamentally be modified due to
acceleration.
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3.2 Acceleration and rigid body motion

Let us now in detail describe acceleration in special relativity. In the
following, we assume that the two inertial frames S and S′ are in standard
configuration and that all motion takes place along the x-axis. The Lorentz
transformation (3.1)-(3.2) implies that the velocities of a particle in the two
frames are related by

u′ = u− v
1− uv/c2 , (3.9)

with u = dx/dt and u′ = dx′/dt′. Similarly, accelerations in the two frames
are related by

a′ =
(√

1− v2/c2

1− uv/c2

)3

a. (3.10)

Now, consider the special case where S′ is the instantaneous rest frame of
the particle, so that u = v. The acceleration measured in this frame is
known as the proper acceleration α and is given by

α = a

(1− u2/c2)3/2 = γ(u)3a. (3.11)

The proper acceleration is what an observer feels, sitting in an acceler-
ated vehicle. As we will see in section 4.6, observers moving with constant
proper accelerations are the only non-inertial observers that can mean-
ingfully define particles in quantum field theory. Suppose now that α is
constant, in which case we can integrate (3.11) to obtain

αt = u√
1− u2/c2 , (3.12)

where we have used the inital condition u = 0 for t = 0. Squaring (3.12)
and solving for u yields

u = ± αt√
1 + α2t2

c2

, (3.13)

and one more integration, with the integration constant set to zero, leads
to the result

x = ±

√
c2t2 + c4

α2 . (3.14)

Equation (3.14) describes hyperbolas in the xt-plane (see figure 3.1) and
for this reason, motion with constant proper acceleration is known as hy-
perbolic motion. This is the relativistic counterpart of parabolic motion
x = ±αt2/2 in Newtonian mechanics.
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Left wedge Right wedge

Figure 3.1: Diagram of the Rindler coordinates. The red hyperbolas are curves
of constant Rindler position χ, corresponding to uniformly accelerated observers.
The blue lines are surfaces of constant Rindler time η. The dashed lines correspond
to lightlike trajectories and are horizons for the Rindler observers.

3.2.1 Rindler coordinates

A convenient way to parametrize hyperbolic worldlines is to use the Rindler
coordinates (η, χ), defined by

x = χ cosh (βη/c), (3.15)

t = χ

c
sinh (βη/c), (3.16)

or inverted

χ =
√
x2 − c2t2, (3.17)

η = c

β
arctanh (ct/x), (3.18)

where β is an arbitrary transformation parameter with dimensions of accel-
eration. Now, (3.17) implies that an observer at constant Rindler position
χ is moving hyperbolically with proper acceleration c2/χ in the positive
x-direction. Moreover, the surfaces of constant Rindler time are straight
lines through the origin, as seen in figure 3.1. Writing the metric in Rindler
coordinates, we have

ds2 = −β
2χ2

c2 dη2 + dχ2, (3.19)
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from which we clearly can see that the χ-coordinate measures distance
along a surface of constant Rindler time. Moreover, (3.19) looks exactly
like the metric of a curved spacetime, with a gravitational field strength
proportional to 1/χ.

The Rindler coordinates defined as in (3.15)-(3.16) describe observers
accelerating in the positive x-direction, and the corresponding region of
spacetime is known as the right Rindler wedge (see figure 3.1). Likewise,
the left Rindler wedge describes observers accelerating in the negative x-
direction. In this case, the Rindler coordinates are defined with a different
sign in (3.15).

As we will see in section 4.6 when solving the Klein-Gordon equation, it
is sometimes convenient to use a different parametrization ξ of the Rindler
position, defined by

ξ = c2

β
ln
(
βχ/c2

)
. (3.20)

3.2.2 Relativistic rigid body motion

In Newtonian mechanics, a rigid body is defined as a body where two given
points are always at the same distance from each other. In other words,
a rigid body is not deformed and is not subject to any strains or stresses.
Stepping to relativity this concept becomes problematic, since the distance
between any two points is observer-dependent. Thus, we define rigidity by
requiring that the distance from any given point A to any other point B on
the body is constant in the instantaneous rest frame of A. This condition
is known as Born rigidity [101]. Clearly, a body satisfying Born rigidity is
not subject to strains or stresses.

In Newtonian mechanics, a rigid body can move in any fashion. In
relativity, this is not the case and Born rigidity is a property of the type of
motion rather than of the body itself. Let us start by considering inertial
motion. Even though the shape of a body in general is distorted for a
moving observer due to length contraction along the direction of motion,
it is preserved in the body’s rest frame and the motion is rigid.

Next, let us consider the case of uniform acceleration. More specifically,
we consider a one-dimensional rod accelerating along the direction of its
extension. For the Born rigidity condition to be satisfied, the entire rod
must instantaneously come to rest in some inertial frame S at any given
instant. The length L as measured in this frame, known as the proper
length, must be constant throughout the motion. Suppose now that each
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point on the rod accelerates with the same proper acceleration. As seen in
S, this means that the length is preserved while the rod still gains speed.
Thus, it is longer than the proper length in its new rest frame and the Born
rigidity cannot be satisfied. Instead, the rod must shrink with respect to
a fixed arbitrary inertial frame as it gains speed.

Now, suppose that one point on the rod moves hyperbolically. What
should the trajectories of the remaining points look like for the proper
length to be preserved? We have seen that the χ-coordinate as defined
in (3.17) measures distance for the uniformly accelerated observer. Thus,
in order for the distance between any two points to be preserved, the
difference between their χ-values must be constant. This means that, if
one point is moving hyperbolically, so must all the other points, but with
different proper accelerations. To be more specific, suppose that the center
of the rod moves with proper acceleration a, corresponding to the Rindler
position χ = c2/a. If a point at a distance L from the center accelerates
with aL, we then have

±
(
c2

aL
− c2

a

)
= L, (3.21)

where the plus (minus) sign is for points towards the front (rear) of the
rod. Now, (3.21) implies

aL = a

1± aL
c2
, (3.22)

and we see that the proper acceleration steadily increases from the front to
the rear. It is interesting to note that (3.22) diverges as L → c2/a. Thus
for a given acceleration a at the center of the cavity, there is a limitation
to how long the rod can be for the rear end to ”keep up” with the rest of
the body.

As seen from (3.22), a force gradient applied all along the length of
the rod is required to accelerate it from rest while preserving its proper
length. Applying a force to a single point necessarily breaks the rigidity
due to the finite travel time of information along the rod. After an initial
relaxation time, though, it is possible that the rod starts moving rigidly due
to internal forces, if the applied force is constant [102]. More generally, the
proper length cannot be preserved for time-dependent accelerations unless
a pre-programmed force is applied all along the length. For small enough
changes in acceleration, however, rigid motion is a good approximation.
In Papers V and VI, we consider a Klein-Gordon field in a rigidly moving
cavity.



Chapter 4

Quantum field theory and
quantum optics

As the name suggests, quantum field theory (QFT) [37] concerns the ap-
plication of quantum mechanics to fields. Currently, our most fundamental
theories of elementary particles are formulated in the framework of QFT.
Here, the field is the fundamental concept whereas particles can be derived
as excitations of the field. Moreover, these theories are Lorentz invariant,
successfully unifying special relativity and quantum mechanics.

The quantum field theory describing the electromagnetic (EM) field and
its interaction with matter is quantum electrodynamics (QED). In QED,
both the EM field and the matter is described by relativistic quantum
fields. The electromagnetic part is described by a vector field with photons
as excitations and the matter is described by spinor fields with fermionic
particles (such as electrons) as excitations. This treatment is required
to treat processes in high-energy physics, such as scattering in particle
accelerators. In most experiments in other areas, however, the matter
can be treated as atoms described by standard non-relativistic quantum
mechanics, while the full relativistic quantum field description is kept for
the EM field. This is the regime of quantum optics [103, 104].

In many cases in quantum optics, the electromagnetic vector field is
plane polarized. Under these circumstances, the polarization degree of
freedom is unimportant and the EM field can be effectively treated as a
scalar field. As we saw in section 2.6, this approach works particularly well
for the field in a coplanar waveguide, where the geometry constrains the
polarization to one dimension.
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In section 4.1, we quantize the massless Klein-Gordon field, mainly
following [26], and in section 4.2 we discuss its interaction with atoms,
following [104]. In the three subsequent sections, different states of the field
are discussed in the discrete-mode and continuous-mode cases. In section
4.3, we introduce the important subclass of Gaussian states [105, 106] for
discrete modes. In section 4.4 we discuss single-mode states, following
[103] and [104], and in section 4.5 continuous-mode states [104]. Finally,
in sections 4.6 and 4.7 we quantize the field in noninertial frames [38] and
introduce Bogoliubov transformations as a tool to change frames.

4.1 Klein-Gordon theory

As explained above, a plane polarized electromagnetic field propagating
along a single axis can be described by a massless scalar field φ(t,x) in 1+1-
dimensional Minkowski space. As a consequence of Maxwell’s equations,
this field obeys the massless Klein-Gordon equation(

∂2
t − c2∂2

x

)
φ(t,x) = 0. (4.1)

We saw in section 2.6 that this is also the equation satisfied by the flux
field in a coplanar waveguide.

The wave equation (4.1) has a general solution of the form

φ(t,x) = f (x+ ct) + g (x− ct) , (4.2)

corresponding to left- and right-propagating waves. We can expand these
in terms of plane wave solutions

φk(t,x) = Ake
−i(ωkt−kx), (4.3)

with the dispersion relation |k| = ωk/c. Together with their complex con-
jugates, the plane waves in (4.3) constitute a complete set of solutions to
(4.1) and we can write

φ(t,x) =
∫ ∞
−∞

dk [akφk(t,x) + c.c.] , (4.4)

for some complex coefficients ak. The normalization factor Ak is chosen so
that (4.3) is normalized with respect to the Lorentz invariant Klein-Gordon
inner product [26]

(φ1,φ2) = −i
∫
dx (φ1∂tφ

∗
2 − φ∗2∂tφ1) , (4.5)
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according to

(φk,φk′) = δ
(
k − k′

)
, (4.6)

(φ∗k,φ∗k′) = −δ
(
k − k′

)
. (4.7)

Note that the complex conjugates φ∗k have negative norm. In a single-
particle description, where the norms are interpreted as probabilities, this
is problematic. Thus, a multi-particle theory is required to successfully
unite quantum mechanics and special relativity, as we will see below. We
note that, since we have

i∂tφk(t,x) = ωkφ(t,x) (4.8)

i∂tφ
∗
k(t,x) = −ωkφ∗(t,x) (4.9)

the basis functions, or mode functions, naturally can be split up into sets of
positive and negative frequencies. It is easy to check that this classification
is Lorentz invariant, so that all inertial observers agree on which solutions
are of positive or negative frequency.

The quantization procedure of any field φ(t,x) involves writing down
the Lagrangian density L in terms of φ(t,x) and its derivatives and find-
ing the conjugate momentum Π(t,x) = ∂L/∂φ̇. Next, φ(t,x) and Π(t,x)
are promoted to operators obeying the equal time canonical commutation
relation [

φ(t,x), Π(t,x′)
]

= i~δ(x− x′). (4.10)

For the free Klein-Gordon field, the canonical momentum is simplyΠ(t,x) =
∂tφ(t,x). In the case of the flux field in a CPW, it corresponds to a charge
density field, as we saw in section 2.6. The promotion of φ(t,x) to an oper-
ator has the consequence that the coefficients ak in (4.4) become operators
as well, and imposing (4.10) implies[

ak, a
†
k′

]
= δ(k − k′), (4.11)

with all the remaining commutators vanishing. These are the usual har-
monic oscillator commutation relations [91], with ak and a†k being anni-
hilation and creation operators, respectively. The Klein-Gordon field can
thus be thought of as a continuum of harmonic oscillators. In terms of ak
and a†k, the Hamiltonian becomes

H = ~
∫ ∞
−∞

dkωk

[
a†kak + 1

2δ(0)
]
. (4.12)
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4.1.1 The vacuum

To find the spectrum of the Hamiltonian (4.12), we require that the ground
state |0〉, known as the vacuum, satisfies

ak |0〉 = 0, ∀k. (4.13)

The vacuum is understood to be the zero-particle state. It is not, however,
a state of zero energy. As can be seen from (4.12), the zero-point energy of
each oscillator mode contributes to make the total energy infinite. These
so-called vacuum fluctuations can be viewed as photons of all possibles
energies constantly being created and annihilated.

The infinity of the vacuum is usually handled by arguing that only
energy differences are measurable, so that the ground state energy can
arbitrarily be shifted. The vacuum fluctuations do, however, give rise to
observable phenomena in many cases when the field interacts with external
systems. In quantum optics, the fluctuations give rise to a renormalization
of the atomic energy levels known as the Lamb shift [107, 108] and are also
responsible for the process of spontaneous emission [109].

Other observable vacuum phenomena occur when boundary conditions
for the field are imposed. Placing two perfectly conducting plates close to
each other will result in an attractive force between them due to radiation
pressure, since the mode density is lower between the plates than outside
the plates. This is known as the (static) Casimir effect [110] and has
been observed in several contexts [111–113]. A related phenomenon is the
dynamical Casimir effect (DCE) [74] . This is the creation of photon pairs
from the vacuum when the boundary conditions, represented by mirrors,
are time-dependent. The first prediction of the DCE was done for a field
between two mirrors [74] and was later generalized to the case of a single
mirror oscillating in open space [114]. For a mirror oscillating sinusoidally,
the photon generation rate is given by [115]

N = Ω

6π

(
vmax

c

)2
, (4.14)

where Ω is the oscillation frequency and vmax is the maximal velocity
of the mirror. We see from (4.14) that, for the photon production rate
to be significant, the mirror must reach velocities that are not too small
compared to the speed of light. Due to the obvious difficulties in reaching
this regime, the DCE eluded experimental observation for many years.
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As mentioned in section 2.6.1, however, it was in 2011 finally observed
in a coplanar waveguide with a SQUID generating the time-dependent
boundary condition [39]. Studying the DCE in superconducting circuits
is not only of fundamental interest. The produced photons are entangled
[116] and in [117], it was proposed that the effect may be exploited to
generate entanglement between artificial atoms.

The DCE can be viewed as parametric amplification of the vacuum
[118]. Recently, a different type of experiment involving the vacuum was
performed where, by using short laser pulses, the vacuum fluctuations could
be sampled directly in the time-domain without amplification [119].

4.1.2 Fock space

Having defined the ground state, the remaining states in the spectrum
are formed by acting on |0〉 with the creation operators. An arbitrary
eigenstate of (4.12) is given by

a†k1
a†k2

...a†kN−1
a†kN
|0〉 , (4.15)

where the operator a†k creates a particle with wavevector k and energy
~ωk = ~c|k|. The space spanned by these states is known as the Fock space.
For each mode, specified by the wavevector k, there is an orthonormal basis
of particle number eigenstates,

|nk〉 = 1√
n!

(
a†k

)n
|0〉 , (4.16)

known as the Fock basis. The Fock bases for all modes together span the
entire Fock space.

The classification of mode functions in terms of positive and negative
frequencies is essential in the construction of the Fock space and thus in the
definition of particles. As seen in the field expansion (4.4), positive (neg-
ative) frequencies are associated with annihilation (creation) operators. If
these different types of operators are not distinguishable, we cannot con-
struct the Fock space. The quantization procedure above was carried out in
an inertial frame, and we saw that the mode functions can be split accord-
ing to (4.8)-(4.9). In an arbitrary noninertial frame or curved spacetime,
however, a similar classification of mode functions is not possible and the
notion of a particle as defined in QFT is lost. In section 4.6, we discuss
under what conditions the construction of the Fock space is possible.
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In the expansion (4.4), negative (positive) k corresponds to waves prop-
agating to the left (right). It is sometimes more convenient to split φ(t,x)
into a left- and a right-moving part and integrate over ω instead of k. In
the specific case of the flux field in section 2.6, the normalized left- and
right-moving field operators are given by

ΦL(t,x) =

√
~Z0
4π

∫ ∞
0

dω√
ω

[
aLωe

−i(ωt+kωx) + h.c.
]
, (4.17)

ΦR(t,x) =

√
~Z0
4π

∫ ∞
0

dω√
ω

[
aRω e

−i(ωt−kωx) + h.c.
]
, (4.18)

where aLω (aRω ) is understood to annihilate a left- (right-) moving particle
with frequency ω. Z0 =

√
L0/C0 is the characteristic impedance of the

transmission line.

4.1.3 Cavity modes

When confining the field to a cavity, the left- and right-propagating so-
lutions combine into standing waves and the mode structure becomes
discrete. A cavity constructed out of two perfectly conducting mirrors
can be modeled by imposing two Dirichlet boundary conditions φ(t,xl) =
φ(t,xr) = 0, with xr − xl = L > 0. In this case, a complete set of solutions
to the Klein-Gordon equation is given by

un(t,x) = 1√
nπ

sin (kn(x− xl))e−iωnt, n = 1,2,3... (4.19)

with ωn = πnc/L and kn = ωn/c. The mode functions (4.19) and their
complex conjugates satisfy

(un,un′) = δnn′ (4.20)

(u∗n,u∗n′) = −δnn′ , (4.21)

with the inner product defined as in (4.5). Analogously to (4.4), the field
operator can be expanded as

φ(t,x) =
∞∑
n=1

(
anun(t,x) + a†nu

∗
n(t,x)

)
, (4.22)

with [
am,a

†
n

]
= δmn. (4.23)
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4.2 Light-matter interaction

In quantum optics, light-matter interaction is represented by atoms cou-
pled to the electromagnetic field. When the size of the atom is much
smaller than the wavelength of the field, as is usually the case, the interac-
tion can be treated as pointlike. More specifically, only the electric dipole
term in the multipole expansions of the electric and magnetic fields is kept.
This is known as the electric dipole approximation [104]. The interaction
Hamiltonian is of the form

HED = e ~D · ~E, (4.24)

where ~D is the dipole moment operator of the atom and ~E is the electric
field operator. By confining photons in cavities along one or several di-
rections, the electric field per photon becomes stronger. Since the dipole
interaction is proportional to the electric field, the confinement increases
the coupling strength. This is done in cavity QED to study light-matter
interactions at the quantum level.

In this thesis, our interest lies in atoms interacting with propagating
photons. Natural atoms in free space radiate in all directions and couple
to light propagating in three dimensions. We are, however, interested in
coplanar waveguides, where the field propagates in one dimension only.
In these systems, there is good confinement of the electric field in the
transverse directions, allowing the coupling to be strong even in the absence
of a cavity. Moreover, since the field can only be scattered in one dimension,
stronger interference effects occur compared to the 3D case.

Consider now a field propagating along a single axis and with a fixed
polarization, quantized in a volume that is of infinite extent along its prop-
agation axis and has a cross sectional area A. In this particular case, (4.24)
becomes [104]

HED = i~
√
α

A

∫ ∞
0

dω
√
ω
[
aω − a†ω

]∑
mn

Dmn |m〉 〈n| , (4.25)

where α ≈ 1/137 is the fine-structure constant and Dmn the transition
dipole moment between the atomic eigenstates |m〉 and |n〉. It is clear from
the 1/

√
A-factor in (4.25) that the coupling strength can be increased by

tight confinement of the field.
In a CPW, the distance between the center conductor and the ground

planes is typically in the micrometer range, resulting in a good confine-
ment. Moreover, the effective dipole moment of an artificial atom is a
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designable parameter. These two facts together enable us to strongly cou-
ple an artificial atom to propagating photons [53–55].

As stated above, natural and artificial atoms are usually treated as
pointlike objects in quantum optics. There is, however, recent work on
giant atoms [120], which can be experimentally realized in hybrid systems
where a transmon is coupled to surface acoustic waves [121].

4.3 Gaussian states

In many quantum optics setups, the field is confined to a cavity and the
mode-structure is discrete. Often, only one mode is relevant for the exper-
iment, but in some cases several modes are involved. In this section, we
introduce the important subclass of Gaussian states [105, 106] in the gen-
eral multimode case. As we will see later, many of the states of importance
in quantum optics experiments are Gaussian. Moreover, the Gaussian char-
acter of a state is preserved under the action of a unitary transformation
U = e−iH generated by a Hamiltonian H which is at most quadratic in the
field operators [105]. In the Heisenberg picture, this corresponds to linear
transformations of the ladder operators [106],

an →
∑
n

(
Amnan −B∗mna†n

)
+ αm, (4.26)

where unitarity constrains the coefficients to satisfy∑
k

(AmkA∗nk −BmkB∗nk) = δij , (4.27)∑
k

(AmkBnk −BmkAnk) = 0. (4.28)

Many common processes in quantum optics, such as beam-splitting and
parametric down-conversion, belong to this category.

In addition to being preserved under the above class of transformations,
the Gaussian character of a state is also preserved when tracing out modes.
In other words, after tracing out an arbitrary number of modes from a
multimode Gaussian state, the reduced state is still Gaussian [122]. In
section 4.4, we specialize to single-mode theory and describe the most
important states in more detail, Gaussian as well as non-Gaussian.
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To introduce Gaussian states, let us begin by defining the quadrature
operators

X2n−1 = 1
2
(
an + a†n

)
, (4.29)

X2n = − i2
(
an − a†n

)
. (4.30)

These operators, being the the normalized positions and momenta of the
harmonic oscillators corresponding to the field modes, span what is known
as the phase space. In phase space, a complete description of any state is
given by one of several quasi-probability distributions, such as the Wigner
function. An arbitrary N -mode state is thus represented by a function de-
fined on a 2N -dimensional space [106]. Without delving too deep into the
matter, we define the Gaussian states to be those with quasi-probability
distributions of Gaussian form. It follows that a Gaussian state is com-
pletely described by the first and second moments of the quadrature oper-
ators, allowing us to greatly simplify the description of the states. Instead
of a full density operator treatment, we can use the covariance matrix
formalism.

We describe the first and second moments of the field by the vector

R = (〈X1〉,〈X2〉,...) (4.31)

and the covariance matrix σ, with the elements defined by1

σmn = 1
2〈XmXn +XnXm〉 − 〈Xm〉〈Xn〉. (4.32)

In the covariance matrix formalism, Gaussian-preserving unitary transfor-
mations on the Hilbert space are represented by symplectic transformations
on R and σ [105]. These can be written as

R → SR+ d, (4.33)

σ → SσST , (4.34)

where d is a real vector and S is a matrix satisfying

SΩST = Ω. (4.35)

1In literature, the definition of the covariance matrix sometimes differ by a factor of
2.
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Here, Ω is the symplectic form, defined by

[Xm,Xn] = iΩmn. (4.36)

In the N -mode case, unitary operations on the infinite dimensional Fock
space can thus be described by 2N × 2N -matrices. Another operation
which is greatly simplified in the covariance matrix formalism is taking
the partial trace over the subsystem corresponding to a certain mode. To
find the covariance matrix for the reduced state, the rows and columns
corresponding to the traced out mode are simply deleted from the original
matrix [26].

4.4 Single-mode states

In many experiments in quantum optics, only a single cavity mode is of
relevance. In this section, we describe a few of the most important single-
mode states. We can conveniently visualize a state in phase space by letting
the horizontal and vertical axes represent the X1- and X2-quadrature, re-
spectively. A state is then pictured by a region in phase space, whose
location represents the expectation values 〈Xi〉 and whose shape in some
qualitative sense represents the variances

∆Xi =
√
〈X2

i 〉 − 〈Xi〉2. (4.37)

Note that the mean square deviations (∆Xi)2 of the quadrature operators
are the diagonal elements of the covariance matrix (4.32). Often, it is
also useful to calculate the mean and the variance of the photon number
operator n̂ = a†a.

4.4.1 Fock states

Let us start with the eigenstates |n〉 of the photon number operator n̂,
known as Fock states. For these states we have 〈n̂〉 = n and ∆n̂ = 0 and as
we saw in section 4.1, they constitute a complete basis for the Fock space.
For the quadrature operators we have 〈X1〉 = 〈X2〉 = 0, and thus the
expectation value of the field is always zero for a Fock state, no matter the
number of photons. This means that the phase is completely undefined.
Since a classical field solution corresponds to a wave with a well-defined
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(a) (b)

(c) (d)

Figure 4.1: Phase space representations of four different single-mode states. (a)
The vacuum is represented by a disc centered at the origin, indicating equal
fluctuations in the quadratures. (b) The Fock state |n〉 is represented by a circle,
indicating that the photon number is definite and the phase is undetermined.
(c) A coherent state is represented by a circle displaced by α = |α|eiθ. (d) The
squeezed vacuum with squeezing parameter r is represented by an ellipse with
major (minor) axis er/2 (e−r/2). Here, the squeezing angle is φ = 0.

phase, the Fock states are in some sense the most ”quantum mechanical”
states. The quadrature variances are

∆X1 = ∆X2 =
√

1
2

(
n+ 1

2

)
. (4.38)

In the special case of the vacuum, with n = 0, (4.38) becomes ∆X1 =
∆X2 = 1/2. These are the vacuum fluctuations discussed in section 4.1.1.
Figure 4.1(a) and 4.1(b) shows the phase space representation of the vac-
uum and a Fock state with n > 0, respectively. With the exception of the
vacuum, the Fock states are not Gaussian.
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4.4.2 Coherent states

In section 4.4.1, we saw that the properties of Fock states are far from those
of classical fields, even in the limit of many photons. The quantum me-
chanical states being ”most classical” are instead the coherent states [123],
loosely speaking being classical fields with vacuum fluctuations. These are
to a good approximation the states generated by lasers or microwave gen-
erators and are thus very commonly used as input in quantum optics and
circuit QED experiments. A coherent state is the simplest example of a
Gaussian state.

The coherent states are defined as eigenstates of the annihilation oper-
ator,

a |α〉 = α |α〉 , (4.39)

where the eigenvalue α is a complex number. Correspondingly, the field
operator expectation values look exactly like classical field solutions, while
the variances are equal to those of the vacuum. The mean number of
photons is 〈n̂〉 = |α|2 and the variance is easily seen to be ∆n̂ = |α|, giving
us the fractional uncertainty

∆n̂

〈n̂〉
= 1√

〈n̂〉
. (4.40)

Thus, in the limit of large photon numbers, the coherent state really ap-
proaches a classical wave.

Since the quadrature variances of the coherent state are the same as
those of the vacuum, the state can be represented by a circle in phase
space. The first moments, however, are now nonzero which means that
the circle is displaced from the origin, as seen in figure 4.1(c). A coherent
state can be obtained from the vacuum as

|α〉 = D(α) |0〉 , (4.41)

where

D(α) = e(αa†−α∗a) (4.42)

for obvious reasons is known as the displacement operator.

In the Fock basis, the expansion of a coherent state reads

|α〉 = e−
1
2 |α|

2
∞∑
n=0

αn√
n!
|n〉 . (4.43)
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From (4.43) we can compute the probability P (n) of finding n photons,

P (n) = |〈n|α〉|2 = e−〈n̂〉
〈n̂〉n

n! , (4.44)

which we recognize as a Poissonian distribution. This distribution arises
for processes where the probability for an event is independent of earlier
events. In other words, light from a source where the photon emission
events are independent from each other has a Poissonian photon number
distribution. This is very different from the light emitted from a single
atom, as we will see in section 4.5.1.

4.4.3 Thermal states

All single-mode states we have considered so far have been pure states.
We will now describe the simplest example of a mixed Gaussian state; the
thermal state. Thermal states arise when the field is in thermal equilibrium
with a heat bath of fixed temperature T . In many experiments, the noise
background can to a good approximation be considered thermal.

Using statistical mechanics, it is easy to prove that the density operator
of a thermal state can be written as

ρth =
∞∑
n=0

P (n) |n〉 〈n| , (4.45)

where the probability P (n) of finding n photons in the mode (of frequency
ω) is given by

P (n) =
(
1− e−~ω/kBT

)
e−~ωn/kBT , (4.46)

and where kB is Boltzmann’s constant. The mean number of photons is

〈n̂〉 = tr (n̂ρth) = 1
e~ω/kBT − 1

, (4.47)

which is the Bose-Einstein distribution. Using (4.47), we can write (4.46)
as

P (n) = 〈n̂〉n

(1 + 〈n̂〉)n+1 . (4.48)

For the variance, we obtain

∆n̂ =
√
〈n̂〉+ 〈n̂〉2, (4.49)

which means that the variance is always larger than the mean.
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4.4.4 Single-mode Gaussian states

In section 4.3 we introduced the covariance matrix formalism for arbi-
trary multimode Gaussian states. In this section, we specialize to arbitrary
single-mode Gaussian states and give explicit expressions for the first mo-
ments and the covariance matrix in terms of physically relevant quantities.
In Paper VI, we investigate how these states are affected by relativistic
motion.

It can be shown that the density matrix of an arbitrary single-mode
Gaussian state can be decomposed as [122]

ρ = R(θ)D(α)S(ξ)ρth(n)S†(ξ)D†(α)R†(θ). (4.50)

Here, ρth(n) is the density operator (4.45) of a thermal state with mean
photon number n, D(α) is the displacement operator (4.42) and R(θ) =
eiθa

†a is the phase rotation operator. The remaining operator S(ξ) =
e

1
2 (ξ(a†)2−ξ∗a2), with ξ ≡ reiφ being a complex number, is known as the

(single-mode) squeezing operator. To understand this operator, let us in-
vestigate its effect on the vacuum. Computing the quadrature variances
for the so-called squeezed vacuum state S(ξ) |0〉 yields

∆X1 = 1
2

√
e−2r sin2 (φ/2) + e2r cos2 (φ/2), (4.51)

∆X2 = 1
2

√
e−2r cos2 (φ/2) + e2r sin2 (φ/2). (4.52)

For φ = 0, (4.51)-(4.52) reduces to ∆X1 = er/2 and ∆X2 = e−r/2. Thus,
we clearly see that the squeezing reduces the fluctuations in one quadrature
at the expense of increasing them in the other one. We can represent this
state by an ellipse (”squeezed circle”) in phase space, as seen in figure
4.1(d). For φ 6= 0, the squeezing takes place along a different axis, with
φ = π corresponding to the X1-quadrature. With φ chosen so that the
phase fluctuations decrease, squeezed states can be used to enhance the
precision in interferometry devices [124, 125].

Let us now return to the arbitrary single-mode Gaussian state (4.50),
”a squeezed, displaced and rotated thermal state”, and describe it in the
covariance matrix formalism. We can without loss of generality take α
to be real, since we include the arbitrary phase rotation R(θ). The first
moments become

〈X1〉 = α cos θ, (4.53)
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〈X2〉 = α sin θ (4.54)

and the covariance matrix

σ =
[
σ11 σ12
σ21 σ22

]
, (4.55)

with [122]

σ11 = (2n+ 1)
4 [cosh (2r) + sinh (2r) cos (2θ + φ)] , (4.56)

σ22 = (2n+ 1)
4 [cosh (2r)− sinh (2r) cos (2θ + φ)] , (4.57)

σ12 = σ21 = (2n+ 1)
4 [sinh (2r) sin (2θ + φ)] . (4.58)

Finally, we also write down the mean photon number of the state [126],

〈n̂〉 = α2 + n+ (2n+ 1) sinh2 r. (4.59)

4.5 Continuous-mode states

In sections 4.3 and 4.4 we described states relevant for cavity-based sys-
tems. As we saw in section 1.1, setups with propagating photons in copla-
nar waveguides are also interesting in many contexts. In these open sys-
tems, the mode-structure is continuous and a different formalism is re-
quired.

The state in (4.16) is a propagating n-photon state with definite en-
ergy and momentum. This state, however, has its finite energy completely
delocalized in space and time and is of limited use in the description of
actual physical situations. In realistic scenarios, more than one mode is
excited in the propagating field. In this case, the concept of a photon as
a single excitation is not as obvious anymore, since the excitation now is
distributed over a range of frequencies. We define a photon number state
as

|nξ〉 = 1√
n!

(
a†ξ

)n
|0〉 , (4.60)

where

a†ξ =
∫
dωξ(ω)a†ω (4.61)
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is the creation operator for a photon wavepacket. Here, a†ω creates an ex-
citation with a definite frequency. In the time-domain, |nξ〉 represents an
n-photon pulse whose shape is given by the Fourier transform of ξ(ω). Sim-
ilarly as in the single-mode case, we can define displacement and squeezing
operators in terms of the photon wavepacket operators. In this way, we
can describe propagating pulses of coherent or squeezed light.

In many cases, the propagating field can be approximated by a station-
ary beam, which has time-independent fluctuation properties and persists
indefinitely. The fact that the mean photon number for such a state is
infinite poses no problem. What is important is instead the number of
photons per unit time or, equivalently, the intensity.

4.5.1 Coherence functions

A useful way to characterize the state of a propagating field is through the
coherence functions [127]. While these can be defined to any order, the
first- and second-order functions are of special interest since they can be
directly related to measurement results in standard interferometers.

When we are interested in correlation functions involving the field op-
erator at different times but at the same spatial point, we can suppress the
x-argument and write the positive- and negative-frequency parts as φ+(t)
and φ−(t), respectively. The degree of first order coherence is defined as

g(1)(t1,t2) = 〈φ−(t1)φ+(t2)〉√
〈φ−(t1)φ+(t1)〉〈φ−(t2)φ+(t2)〉

(4.62)

and can straightforwardly be measured as the intensity output in a Mach-
Zender interferometer. For stationary fields, (4.62) depends only on τ =
t2 − t1, and we can write

g(1)(τ) = 〈φ
−(t)φ+(t+ τ)〉
〈φ−(t)φ+(t)〉 . (4.63)

When |g(1)(τ)| = 1, we say that the field is first-order coherent. This is true
for all single-mode states and multimode coherent states. For multimode
thermal light, we have |g(1)(τ)| < 1, with g(1)(τ) → 0 as τ → ∞. Thus,
these fields are incoherent and the field correlations are lost entirely for
long delay times.

Experiments involving only first-order coherence can be explained clas-
sically. In order to examine the true quantum mechanical properties of
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Figure 4.2: Schematic sketch of a Hanbury-Brown-Twiss interferometer. The light
is split into two equal parts in a 50/50 beam-splitter. The photodetectors D1 and
D2 measure the intensities and, after a relative time delay τ , the two detector
outputs are multiplied. In this way, intensity-intensity correlations of the input
field as a function of the delay time τ can be measured. In the microwave regime,
there are no photodetectors. Here, the intensity measurements are instead done
using linear amplifiers [129].

light, we need to look at the degree of second-order coherence, defined in
the stationary case as

g(2)(τ) = 〈φ
−(t)φ−(t+ τ)φ+(t+ τ)φ+(t)〉

〈φ−(t)φ+(t)〉2 . (4.64)

While g(1)(τ) measures field-field correlations, g(2)(τ) instead measures
intensity-intensity correlations, which can be done with a Hanbury-Brown-
Twiss interferometer [128] (see figure 4.2). The numerator is proportional
to the two-photon coincidence rate at times t and t+ τ , or the conditional
probability rate of detecting a second photon a time τ after the first one
has been detected.

The degree of second-order coherence as defined in (4.64) can take on
a different set of values than its classical counterpart. More specifically,
g(2)(0) < 1 or g(2)(0) < g(2)(τ) indicates that the light is nonclassical.2 The
two conditions for nonclassicality indicate the presence of sub-Poissonian
fluctuations and photon antibunching, respectively, which are two distinct
but often related nonclassical phenomena. In order to understand their
meaning, let us first consider the photon number fluctuations of the field.

2A stringent definition of nonclassical light can be made in terms of quasi-probability
distributions on phase space.
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Since the field is stationary, n̂ corresponds to the number of photons per
unit time.

For a coherent state, it is easy to check that g(2)(τ) = 1 and it is thus
second-order coherent.3 As we saw in section 4.4.2, the photon number
probability distribution for a coherent state is Poissonian, with variance
∆n̂ =

√
〈n̂〉. Now, states with ∆n̂ <

√
〈n̂〉 or ∆n̂ >

√
〈n̂〉 are said to have

sub-Poissonian or super-Poissonian fluctuations, respectively. Rewriting
g(2)(0) in terms of the photon number operator, it is easy to see that these
two cases correspond to g(2)(0) < 1 and g(2)(0) > 1. Thus, states with
sub-Poissonian fluctuations are nonclassical and examples of these include
the Fock states and the squeezed states. For a thermal state, on the other
hand, we always have g(2)(0) = 2 and the photon number fluctuations are
super-Poissonian.

In a coherent state, where the photon number distribution is Poisso-
nian, the photons arrive at completely random times and this is reflected
in the fact that g(2)(τ) is constant. Having detected a photon, the prob-
ability rate of detecting a second one is independent of the delay time.
For a thermal state, g(2)(τ) is always a decreasing function of τ , so that
g(2)(0) > g(2)(τ). Thus, the two-photon detection probability is larger
for short time-delays, and the photons tend to arrive in pairs. This phe-
nomenon is known as photon bunching. The opposite situation occurs for
g(2)(0) < g(2)(τ), when the photons tend to arrive more evenly spaced.
This is known as photon antibunching and is a nonclassical effect. In Pa-
per I, we investigate the antibunched field reflected off a single artificial
atom in a coplanar waveguide.

4.6 Non-inertial frames

In section 4.1, we quantized the Klein-Gordon field in an inertial reference
frame. As we saw in (4.8)-(4.9), the solution space could be split into sets of
positive and negative frequencies, which was essential in the quantization
procedure. In this section, we discuss the conditions that must apply for
this procedure to be possible in a non-inertial frame. Having done that, we
then go on to quantize the field in a uniformly accelerated frame, mainly
following [26].

Let us start with a more general case; a possibly curved spacetime with
metric tensor gµν . A coordinate transformation that preserves the form of

3In fact, the state is coherent to all orders, hence its name.
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the metric is known as an isometry of the spacetime. For infinitesimal
transformations

xµ → xµ + εξµ(x), (4.65)

it is possible to show [28] that the condition for the transformation to be
an isometry is

gµσ(x)∂ξ
σ(x)
∂xν

+ gρν(x)∂ξ
ρ(x)
∂xµ

+ ξγ(x)∂γgµν(x) = 0. (4.66)

A vector field ξµ(x) satisfying (4.66) is known as a Killing vector. Now,
imagine a spacetime trajectory tangented by a Killing vector. For trans-
lations along this trajectory, the metric is preserved and we can thus find
a coordinate system where the metric is independent of one of the coor-
dinates. If the trajectory corresponds to the world-line of an observer,
the Killing vector is timelike. For this observer, the metric becomes time-
independent, which means that we can always split the solution set into
positive and negative frequency modes. Thus, only observers flowing along
timelike Killing vectors can in a meaningful way construct the Fock space
of the field.4

In 1 + 1-dimensional Minkowski space, (4.66) becomes

∂xξ
0 = ∂tξ

1, (4.67)

which gives us two possibilities. If the derivatives are zero, the entries in
the Killing vector are constant, giving us straight lines in Minkowski space.
The timelike straight lines are the worldlines of inertial observers. If the
derivatives are nonzero the Killing vector is of the form

ξµ ∝ (x,t). (4.68)

This is the tangent vector of a hyperbola, with the equation

x2 − c2t2 = const. (4.69)

As we saw in section 3.2, (4.69) corresponds to motion with constant proper
acceleration. Thus, the uniformly accelerated frames are the only non-
inertial frames in Minkowski space where the particle concept survives.

4There is a more operational definition of particles in the form of particle detectors
[130], but we will not consider it here.
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To quantize the Klein-Gordon field, we use the Rindler coordinates
introduced in (3.15)-(3.16). Redefining the spatial coordinate according to
(3.20), the Klein-Gordon equation simply becomes(

∂2
η − c2∂2

ξ

)
φ (η,ξ) = 0. (4.70)

Since (4.70) is of the same form as (4.1), we can proceed with the quan-
tization procedure in exactly the same way as in the inertial frame. By
doing this in open space one can derive the Unruh effect [81], which is the
prediction that an observer accelerating uniformly through the Minkowski
vacuum sees a thermal state. Via the equivalence principle, the Unruh
effect is closely related to the phenomenon of Hawking radiation [83, 84]
in black hole spacetimes.

In this thesis, however, we will instead focus on cavity modes. By
imposing the Dirichlet boundary conditions φ (η,ξl) = φ (η,ξr) = 0, we find
in exact analogue to (4.19) the normalized mode functions

vm(η,ξ) = 1√
mπ

sin
(
Ωm
c

(ξ − ξl)
)
e−iΩmη, (4.71)

with Ωm = πcm/L′ and L′ = |ξr − ξl|. The field can now be expanded as

φ(η,ξ) =
∞∑
m=1

(
bmvm(η,ξ) + b†mv

∗
m(η,ξ)

)
, (4.72)

with [bm,b†n] = δmn.
We saw in section 3.2.2 that a rigidly and uniformly accelerated rod is

static in the Rindler coordinates. Thus, (4.71) are the mode functions in a
uniformly accelerated rigid cavity. Note, however, that the proper length
is not equal to L′, but instead L = |χr − χl|. The relation between L and
L′ depends on the acceleration and can be found using (3.20). For a cavity
where the midpoint moves with proper acceleration a, we obtain

L′ = 2c2

a
arctanh

(
aL

2c2

)
, (4.73)

where we for simplicity have chosen the transformation parameter in (3.15)-
(3.16) as β = a, so that the Rindler time corresponds to the proper time
of an observer in the center of the cavity. In Papers V and VI, we use
the Rindler quantization to examine the field in a relativistically moving
cavity.
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Figure 4.3: A rigid cavity of proper length L = xr − xl starts at rest (blue). At
time t = 0 it starts to accelerate uniformly (red), with a preserved proper length
L = χr − χl.

4.7 Bogoliubov transformations

By using the mode expansion (4.71), we can describe the Klein-Gordon
field in a uniformly accelerated cavity, undergoing free time evolution in
Rindler time (3.18). This, however, is only true for a cavity that accelerates
indefinitely. Consider now instead the situation depicted in figure 4.3, with
a cavity of length L starting at rest in some inertial frame with coordinates
(t,x). At time t = 0, when the cavity starts to accelerate, the field can be
expanded both in Minkowski modes and in Rindler modes. We can thus
write

∞∑
m=1

(
bmvm(η,ξ) + b†mv

∗
m(η,ξ)

)
=
∞∑
n=1

(
anun(t,x) + a†nu

∗
n(t,x)

)
. (4.74)

Taking the Klein-Gordon inner product (4.5) with vm on both sides of
(4.74), we arrive at the Bogoliubov transformation

bm =
∞∑
n=1

(
α∗mnan − β∗mna†n

)
, (4.75)

with αmn = (vm,un) and βmn = (vm,u∗n) being known as Bogoliubov coeffi-
cients. These are inner products (4.5) between the Minkowski and Rindler
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mode functions, with the integrals being evaluated at t = 0. The off-
diagonal α-coefficients relate the annihilations operators in the two frames
and therefore account for mode-mixing. The β-coefficients, on the other
hand, relate annihilation and creation operators and thus account for par-
ticle creation. As long as βmn 6= 0, the Minkowski and Rindler frames
have different vacuum states. The DCE, the Unruh effect and Hawking
radiation can all be described by Bogoliubov transformations with nonzero
β-coefficients.

Let us now consider a rigid cavity undergoing a trajectory consisting of
segments of inertial motion and uniform acceleration. We can describe the
full evolution of the state in this cavity by applying a sequence of Bogoli-
ubov transformations (4.75) and their inverses, with free time-evolution in
Minkowski or Rindler coordinates in between [77]. This is exploited when
describing the ”twin paradox scenario” in Paper V.

Finally, we note that the Bogoliubov transformations take the same
form as (4.26), with αm = 0. This means that they map Gaussian states
into Gaussian states; a fact that is exploited in Paper VI when we inves-
tigate the precision of an accelerated clock. Recall from section 4.3 that
a transformation of this type can be represented by a symplectic opera-
tion acting on the first moments and the covariance matrix. Explicitly,
the symplectic matrix corresponding to the transformation (4.75) is con-
structed using the 2× 2-blocks [131]

Mmn =
(

Re(αmn − βmn) Im(αmn + βmn)
−Im(αmn − βmn) Re(αmn + βmn)

)
. (4.76)



Chapter 5

Open quantum systems

A closed quantum system is a system which is totally independent of its
surroundings. The dynamics of a closed system is governed by unitary evo-
lution, depending only on the system Hamiltonian H. In the Schrödinger
picture the states |Ψ(t)〉 are time-dependent and obey the Schrödinger
equation,

i~
d

dt
|Ψ(t)〉 = H |Ψ(t)〉 , (5.1)

while the operators A are time-independent. In the Heisenberg picture,
the operators A(t) are instead time-dependent and obey the Heisenberg
equation,

i~
dA(t)
dt

= [A(t), H], (5.2)

while the states |Ψ〉 are time-independent. Equations 5.1 and 5.2 give
equivalent descriptions for the dynamics of pure states. A generalization of
the pure states are the mixed states, which are statistical ensembles of pure
states. To describe mixed states, we can introduce the density operator
ρ =

∑
iwi |ψi〉 〈ψi|, where wi is the probability for the system to be in the

state |ψi〉. For a closed system, the time evolution of the density operator
is given by the Liouville-von Neumann equation,

dρ(t)
dt

= − i
~

[H, ρ(t)], (5.3)

which of course is equivalent to (5.1) in the special case of pure states.

In reality, no system can be completely isolated from the rest of the
world and the only truly closed system is the entire Universe. In some
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cases, the influence of the outside world is negligible and the equations
for a closed system are valid to a good approximation. Often, however,
the influence of some part of the external world called the environment
is important. Typically, the environment contains far more degrees of
freedom than the system of interest and is impossible to describe exactly.
This situation is treated in the formalism of open quantum systems. One
is only interested in the evolution of the system, where the influence of the
environment shows up as noise.

The density operator of an open quantum system evolves according to
a master equation, which is a generalization of (5.3). There are also cases
where the surroundings carry signals of interest, which can be modified
by interaction with the system. In those cases, the master equation is
accompanied by input-output equations. The main goal of this chapter is
to derive a master equation and input-output equations for a quantum
optical system.

In many cases, the environment of a quantum system is modeled as a
bath of harmonic oscillators linearly coupled to the system. This is known
as the Caldeira-Leggett-model [132] and works very well in quantum optics,
where the system and the environment correspond to an atom coupled
to the electromagnetic field. Using this model, we derive input-output
equations in section 5.1 and a quantum optical master equation in section
5.2. These derivations largely follow the treatment in [133].

5.1 Input-output equations

We consider a system whose free evolution is described by the arbitrary
Hamiltonian Hsys, coupled to a bath in form of a one-dimensional Klein-
Gordon field φ(t,x) at the end of a semi-infinite open space. This field can
represent a real transmission line, like the coplanar waveguide in section
2.6, but can also be used to model dissipation of the system into unknown
channels.

The total Hamiltonian can be written as H = Hsys +HB +Hint where

HB = 1
2

∫ ∞
0

dx
[
π(t,x)2 + c2 (∂xφ(t,x))2

]
, (5.4)

is the bath Hamiltonian, with π(t,x) being the canonical momentum of
φ(t,x). The interaction Hamiltonian is

Hint = X

∫ ∞
0

dxκ(x)φ̇(t,x), (5.5)
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where X is the system operator that couples to the field. The coupling
coefficient κ(x) is nonzero only in a small range around x = 0.

In contrast to the case of the open transmission line, the left and right
moving modes are not independent. Thus, dropping the wavenumber index
and the constant terms in (4.12), the bath Hamiltonian can be written as

HB = ~
∫ ∞

0
dω ωa†ωaω, (5.6)

with [
aω,a

†
ω′

]
= δ(ω − ω′). (5.7)

Similarly, the interaction Hamiltonian becomes

Hint = i

∫ ∞
0

dωκ(ω)

√
~ω
2
(
a†ω − aω

)
X, (5.8)

where κ(ω) is the Fourier transform of the coupling coefficient κ(x). We
can expand the operator X in eigenoperators of Hsys,

X =
∑
i

(
X+
i +X−i

)
, (5.9)

with [
Hsys, X

±
i

]
= ±~ωiX±i . (5.10)

In the system eigenbasis, X±i are raising and lowering operators, with ωi
being the corresponding transition frequencies.

Let us now consider the case of a system with only one transition
frequency ωs, so that X = X+ + X−, and use some approximations to
simplify the interaction Hamiltonian (5.8). Our first assumption is that
the interaction is weak, in the sense Hint � Hsys. This implies that the
time dependence of X± is approximately e±iωst. In quantum optics, the
processes of interest typically occur on a timescale much longer than 1/ωs.
On these timescales terms of the type X−a(ω), oscillating like e−i(ω+ωs)t,
average to zero and can be dropped. This is the so-called rotating wave
approximation (RWA). Moreover, the lower integration limits of (5.6) and
(5.8) can without problem formally be extended to −∞, since all the added
terms are far off resonance.

Now, employing the above approximations and defining

γ(ω) = κ(ω)
√
ω/2~ (5.11)
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we can write

HB = ~
∫ ∞
−∞

dω ωa†ωaω, (5.12)

Hint = i~
∫ ∞
−∞

dωγ(ω)
[
a†ωX

− −X+aω
]
. (5.13)

From these approximate Hamiltonians, we follow [134] to find the input-
output equations. Working in the Heisenberg picture, we use (5.2) to
obtain

ȧω = iωaω + γ(ω)X−, (5.14)

ḃ = − i
~

[b,Hsys] +
∫ ∞
−∞

dωγ(ω)
[
a†ω
[
b,X−

]
−
[
b,X+

]
aω
]
, (5.15)

where b is an arbitrary operator of the system. An operator without the
time argument explicitly written out is understood to be a Heisenberg
operator at time t. Now, solving (5.14) and inserting the solution into
(5.15) yields

ḃ = − i
~

[b,Hsys]

+
∫ ∞
−∞

dωγ(ω)
[
eiω(t−t0)a†ω(t0)

[
b,X−

]
−
[
b,X+

]
e−iω(t−t0)aω(t0)

]
(5.16)

+
∫ ∞
−∞

dωγ2(ω)
∫ t

t0
dt′
[
eiω(t−t′)X+(t′)

[
b,X−

]
−
[
b,X+

]
e−iω(t−t′)X−(t′)

]
.

Under the RWA, only terms with ω ≈ ωs contribute significantly, allowing
us to replace γ(ω) by the constant value γ(ωs). Setting

γ(ωs) =
√
η/2π, (5.17)

(5.16) is reduced to

ḃ = − i
~

[b,Hsys]−
[
b,X+

] (η
2X
− +√ηain(t)

)
+
(
η

2X
+ +√ηa†in(t)

) [
b,X−

]
,

(5.18)
where we have defined

ain(t) = 1√
2π

∫ ∞
−∞

dωe−iω(t−t0)aω(t0). (5.19)
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The relation (5.18) is known as a quantum Langevin equation for the system
operators b. Since ain(t) is the operator through which the bath affects
the system, it can be thought of as an input field. Using (5.7) we obtain[

ain(t),a†in(t′)
]

= δ(t− t′). (5.20)

To arrive at (5.18), we solved (5.14) in terms of an initial condition at
t0 < t. We can just as well, however, do it in terms of a final condition at
t1 > t. Defining

aout(t) = 1√
2π

∫ ∞
−∞

dωe−iω(t−t1)bω(t1) (5.21)

and proceeding with the same steps as above, the quantum Langevin equa-
tion can equivalently be written as

ḃ = − i
~

[b,Hsys] +
[
b,X+

] (η
2X
− −√ηaout(t)

)
−

(
η

2X
+ −√ηa†out(t)

) [
b,X−

]
. (5.22)

The operator aout(t) represents the state of the bath at future times, and
can thus be though of as an output field. Now, combining (5.18) and (5.22),
we obtain the result

aout(t) = ain(t) +√ηX−(t), (5.23)

which is the input-output equation for our setup with a system locally
coupled to a one-dimensional electromagnetic field. The input field ain(t)
can be specified independently of the system, whereas the output depends
on the input and the system operator X−(t). For a multilevel system,
(5.23) simply generalizes to

aout(t) = ain(t) +
∑
i

√
ηiX

−
i (t), (5.24)

with
ηi = πωi

~
κ2(ωi). (5.25)

As we saw in section (4.2), the quantum optical light-matter interaction is
usually described by a pointlike electric dipole coupling. This corresponds
to setting κ(x) ∝ δ(x) in (5.5), which implies that κ(ω) is constant, reduc-
ing (5.8) to the electric dipole interaction (4.25). In some cases, the system
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of interest is almost harmonic, like the transmon in section 2.7. For these
systems, the effective coupling coefficients ηi are approximately equal.

The derivations in this section can straightforwardly be modified to the
case when the system is coupled to an infinite one-dimensional space, like
an open transmission line. Here, the separate left- and right-moving fields
are related to each other by input-output equations similar to (5.23) or
(5.24). For a system coupled to several baths, we simply have a separate
input-output equation for each one.

For the input-output equations to be useful, we need to know how the
system state evolves and this is the role of the master equation, which
can in principle be derived from the Langevin equation (5.18). We will,
however, instead present a more traditional Bloch-Redfield derivation [135,
136], which gives a good insight into the physical significance of the various
approximations used.

5.2 Master equations

In section 5.1, we derived equation (5.24), relating the input and output of
a quantum system via the system operators. In order for this relation to be
useful, however, we also need to determine how the input field influences
the state of the system. This is the role of the master equation derived in
this section. The input may consist of a coherent excitation, the signal,
on top of a noise background. We first derive the master equation for
the case with only the noise background present. The signal can later
straightforwardly be added as a part of the free system Hamiltonian [133].

Let us start from a system-bath configuration with Hamiltonian H =
Hsys +HB +Hint, so that the total density operator ρ(t) evolves unitarily
according to the Liouville equation 5.3. Our aim is to find an equation for
the reduced density operator of the system, obtained by tracing out the
bath degrees of freedom,

ρsys(t) = TrB [ρ(t)] . (5.26)

Starting in the Schrödinger picture, we first transform to the interaction
picture, where an arbitrary operator is given by

Ã(t) = e
i
~ (Hsys+HB)tAe−

i
~ (Hsys+HB)t. (5.27)

It is easy to show that, in the interaction picture, time-evolution is governed
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solely by the interaction Hamiltonian,

˙̃ρ(t) = − i
~

[H̃int(t), ρ̃(t)]. (5.28)

We can integrate (5.28) to obtain

ρ̃(t) = ρ̃(0)− i

~

∫ t

0
dt′[H̃int(t′), ρ̃(t′)], (5.29)

which substituted back into (5.28) yields

˙̃ρ(t) = i

~
[H̃int(t), ρ̃(0)]− 1

~2

∫ t

0
dt′[H̃int(t), [H̃int(t′), ρ̃(t′)]]. (5.30)

Now, by tracing (5.30) over the bath variables, we arrive at an equation
for the reduced density operator in the interaction picture.

˙̃ρsys(t) = − 1
~2

∫ t

0
dt′TrB

[
[H̃int(t), [H̃int(t′), ρ̃(t′)]]

]
. (5.31)

To get rid of the first term in (5.30), we have assumed 〈H̃int(t)〉B = 0,
which can always be obtained by a redefinition of Hsys and Hint. Now, in
order to proceed from (5.31), we need to introduce some approximations.

First, we assume that the system and the bath are uncorrelated at
t = 0, so that

ρ(0) = ρ̃(0) = ρ̃sys(0)⊗ ρ̃B(0). (5.32)

The following approximation relies on the assumption that the interaction
is weak in the sense Hint � Hsys, HB, and that the bath is large compared
to the system. Under these conditions, the state of the bath is not signif-
icantly changed by the interaction, and we can take ρ̃B(t) = ρ̃B(0) ≡ ρB.
Also, the density operator remains approximately a direct product for all
times. These two assumptions can together be written as

ρ̃(t) ≈ ρ̃sys(t)⊗ ρB, (5.33)

which is known as the Born approximation. Inserting (5.33) into (5.31)
yields

˙̃ρsys(t) = − 1
~2

∫ t

0
dt′TrB

[
[H̃int(t), [H̃int(t′), ρ̃sys(t′)⊗ ρB]]

]
. (5.34)

In this equation, ˙̃ρsys(t) depends on ρ̃sys(t′) at all earlier times t′ < t.
The goal of the next approximation is to eliminate this dependence and
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turn (5.34) into a differential equation. This is achieved by making the
replacement

ρ̃(t′)→ ρ̃(t), (5.35)

known as the Markov approximation.
To motivate the Markov approximation, we first assume that we can

write the interaction Hamiltonian as a product of system and bath opera-
tors,

Hint = Asys ⊗AB. (5.36)

This is no great restriction, and our Hamiltonian (5.5) for a system coupled
to a Klein-Gordon field is of this form. Expanding the commutator in
(5.34), each term will contain a correlation function of the form

f(t− t′) ≡ TrB
[
AB(t)AB(t′)ρB

]
. (5.37)

Now, suppose that the functions (5.37) are nonzero only for delay times
t − t′ shorter than a characteristic bath correlation time τB, and ρ̃sys(t)
evolves on a characteristic timescale τsys. If τB � τsys, ρ̃sys(t) stays ap-
proximately constant during the decay time of the correlation functions
and we can safely make the Markov approximation. In practice, this is of-
ten the case since the timescale τsys is set by Hint, which is assumed to be
small. For a quantum optical system coupled to a thermal bath, τB � τsys

is typically valid down to very low temperatures. Physically, the Markov
approximation means that the bath has no memory when it comes to in-
teractions with the system. A change in the bath induced by the system
will have decayed before it can affect the system at a later time.

Applying the Markov approximation (5.35) to (5.34) and making a
variable change results in

˙̃ρsys(t) = − 1
~2

∫ ∞
0

dt′TrB
[
[H̃int(t), [H̃int(t− t′), ρ̃sys(t)⊗ ρB]]

]
, (5.38)

where we also have extended the upper integration limit to ∞, which can
be done due to the short bath correlation times. From the so-called Born-
Markov master equation (5.38), we can derive a more specific quantum
optical master equation by inserting the interaction Hamiltonian (5.8) and
making further approximations.

In the interaction picture, the interaction Hamiltonian (5.8) becomes

H̃int(t) = i

∫ ∞
0

dωκ(ω)

√
~ω
2
(
aωe
−iωt − a†ωeiωt

)∑
i

(
X+
i e

iωit +X−i e
−iωit

)
.

(5.39)



5.2 Master equations 63

Using this expression, the next step is to expand the commutator in (5.38)
and evaluate the integrals. This calculation involves correlation functions
of the bath operators. Assuming a thermal bath state, these are

〈a†ωaω′〉 = TrB
[
aωa

†
ω′ρB

]
= δ(ω − ω′)n(ω), (5.40)

〈aωa†ω′〉 = TrB
[
a†ωaω′ρB

]
= δ(ω − ω′) (n(ω) + 1) , (5.41)

where n(ω) is the mean thermal photon number (4.47) at frequency ω.
The derivation also involves integrals of the type∫ ∞

0
e−iωt

′ = πδ(ω)− iP( 1
ω

), (5.42)

where P(1/ω) gives rise to a principal value integral. In the end result,
terms of this type leads to the Lamb shift mentioned in section (4.1.1)
and the related Stark shift [137]. These are small renormalizations of the
atomic energy levels and will be neglected in our derivation. The actual
calculation is rather long and tedious and has been deferred to Appendix
A. After evaluating the integrals, employing the RWA (see section 5.1),
dropping the ’sys’-subscript and collecting the terms, we arrive at

˙̃ρ(t) = 1
2
∑
i

ηi (n(ωi) + 1)
(
2X−i ρ̃(t)X+

i − ρ̃(t)X+
i X

−
i −X

+
i X

−
i ρ̃(t)

)
+ 1

2
∑
i

ηin(ωi)
(
2X+

i ρ̃(t)X−i − ρ̃(t)X−i X
+
i −X

−
i X

+
i ρ̃(t)

)
, (5.43)

where ηi is defined by (5.25). Transforming back to the Schrödinger picture
and defining the Lindblad superoperator

D [X] ρ = XρX† − 1
2
(
X†Xρ− ρX†X

)
, (5.44)

we can write (5.43) as

ρ̇(t) = − i
~

[Hsys, ρ(t)] +
∑
i

ηi
[
(n(ωi) + 1)D[X−i ]ρ(t) + n(ωi)D[X+

i ]ρ(t)
]
.

(5.45)
The equation (5.45) can be recognized as a Lindblad master equation [138].
The Lindblad formalism is a way to construct master equations to math-
ematically guarantee that the density operator remains physical. Here,
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however, we arrived at a Lindblad equation using the more physical Bloch-
Redfield derivation. The D[X+]-term describes thermal excitations of the
system, while the D[X−]-term describes relaxation. Note that relaxation is
present also in the case of negligible temperature. This is the phenomenon
of spontaneous emission and is a consequence of the vacuum fluctuations.

Finally, let us generalize the master equation to accommodate the sit-
uation when a coherent input signal is present on top of the thermal noise.
To include the coherent part, we make the replacement aω → aω + α(ω)
in the Hamiltonian, with α(ω) = 〈aω〉. Since the resulting extra terms
contain no bath operators, they can be included in Hsys and the derivation
proceeds exactly as before. Suppose that the system is driven by a signal
close to resonance with one of the transition frequencies ωi. In this case,
after employing the RWA, the driving gives rise to the term

−√ηi
[
Ein(t)X+

i − E
∗
in(t)X−i , ρ(t)

]
(5.46)

at the right side of (5.45). Here, Ein(t) ≡ 〈ain(t)〉 is the expectation value
of the input field (5.19) and thus the Fourier transform of α(ω) at the
initial time t0. Together with the input-output equation (5.24), the mas-
ter equation specified by (5.45) and (5.46) can describe many situations
of interest in quantum optics. In Papers I-IV, we use this type of equa-
tions when investigating a transmon coupled to coplanar waveguide with
a coherent microwave driving signal.

Finally, it should be mentioned that the master equation is easily gen-
eralized to describe a system coupled to several baths. Often, in these
cases, one of the baths represents a real transmission line containing the
signal, while the remaining baths are fictional transmission lines modeling
dissipation of the system into unknown channels.

5.3 Cascaded systems

In the previous two sections, we have developed a formalism for describing
the output of a single quantum system, when the input has a coherent
signal part and a thermal noise part. In this section, we extend the analysis
to cascaded quantum systems [139, 140]. In these setups, the output of one
system is used as input to a second system, without anything going in the
reverse direction. Figure 5.1 shows a schematic sketch of two cascaded
systems. To make sure that nothing is reflected back, a circulator is used.
This is a three-port device which breaks time-reversal symmetry, so that
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Figure 5.1: Schematic sketch of two cascaded systems. In the circulator, the signal
always travels in the direction of the arrow, preventing any back-reflection from
system 2 to system 1.

the signal always travels in the direction of the arrow (see figure 5.1).
Unfortunately, the circulators in present day microwave technology are
ferromagnetic off-chip devices that are both bulky and lossy. Realization
of an efficient on-chip circulator would improve the performance of many
proposed devices in circuit QED.

Apart from configurations with two or more real systems, the formal-
ism of cascaded quantum systems can also be used to describe a single
system being driven by a nonclassical signal. In this case, one makes use
of an imaginary system producing the nonclassical output when driven by
a coherent signal. This output is then fed into the input port of the real
system under study. In Paper I, we use cascaded systems in a similar but
slightly different way. To examine the effect of finite bandwidth in the
measurement setup, we add an imaginary filter and cascade it with our
system.

In [133], a master equation and input-output equations are derived for a
setup with two cascaded systems. We will not repeat the derivations here,
but simply state the results. We assume that both systems have a single
transition around the same frequency ωs and that the first system is driven
with the coherent signal Ein(t). Subscripts 1 and 2 are used to denote
the operators and couplings of the first and second system, respectively.
Assuming no time delay for the signal to travel between the systems, the
master equation for the total density operator becomes

ρ̇(t) = − i
~

[Hsys, ρ(t)] + η1D[X−1 ]ρ(t) + η2D[X−2 ]ρ(t) (5.47)

−√η1η2
(
[X+

2 , X
−
1 ρ(t)] + [ρ(t)X+

1 , X
−
2 ]
)

+n(ωs)
2

[
[√η1X

−
1 +√η2X

−
2 , ρ(t)],√η1X

+
1 +√η2X

+
2

]
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+n(ωs)
2

[
[√η1X

+
1 +√η2X

+
2 , ρ(t)],√η1X

−
1 +√η2X

−
2

]
−Ein(t)

[√
η1X

+
1 +√η2X

+
2 , ρ(t)

]
−E∗in(t)

[√
η1X

−
1 +√η2X

−
2 , ρ(t)

]
.

The asymmetry caused by the circulator is evident in the second row of
(5.47). The output field from the second system is simply

aout(t) = ain(t) +√η1X
−
1 (t) +√η2X

−
2 (t), (5.48)

where ain(t) in the input of the first system.



Chapter 6

Paper overview

In this chapter, we summarize the content in each of the six appended
papers. Apart from stating the main ideas and results, we explain how
the papers are related to the theories and methods introduced in Chapters
2-5. Moreover, my own contribution to each paper is briefly described.

6.1 Paper I - Generation of Nonclassical Microwave
States Using an Artificial Atom in 1D Open
Space

This paper is an experimental study of a transmon (see section 2.7) coupled
to a one-dimensional open space in the form of a coplanar waveguide (see
section 2.6). The transmon is driven with a stationary coherent microwave
signal on resonance with the first transition, and the reflected and trans-
mitted fields are measured. In the low-power limit, the incident coherent
field is almost completely reflected due to destructive interference in the
forward direction between the incident and scattered field. This extinction
of the transmitted field has previously been shown with flux qubits [53,
141] and transmons [55].

In this paper, we investigate the quantum properties of the scattered
field by measuring the second-order coherence function g(2)(τ), defined in
section 4.5.1. For low incident powers, it is shown that the transmitted field
is superbunched, while the reflected field is antibunched. This means that
the single-photon component of the incident coherent state (see section
4.4.2) is enhanced (suppressed) in the reflected (transmitted) field. In this
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sense, the single artificial atom works as a photon number filter. In Paper
IV, we investigate the possibility to exploit this effect for generations of
single photons on demand.

For this paper, I contributed with the theoretical modeling of the exper-
iment. The measured values of g(2)(0) > 0.55 for the reflected field do not
correspond to the well-known perfect antibunching g(2)(0) = 0 expected
from theory. Therefore, we had to take several experimental imperfections
into account. The finite filter bandwidth in the processing of the signal
is modeled by a transmission line resonator cascaded with the transmon,
using the formalism described in section 5.3. The theoretical predictions
show good agreement with the experimental data.

6.2 Paper II - Microwave quantum optics with an
artificial atom in one-dimensional open space

This is a summary paper addressing the recent experimental advances in
Paper I and [55]. Experimental results are presented in more detail. While
both papers treat the same system, the experiments in [55] address three
levels of the transmon. The Autler-Townes splitting (see section 6.3) of
the energy levels is observed and applications for single-photon routing are
discussed.

For this paper, apart from the part already included in Paper I, I con-
tributed with assistance in some minor calculations on elastic and inelastic
scattering.

6.3 Paper III - Scattering of coherent states on a
single artificial atom

An atom coupled to a one-dimensional continuum of bosonic modes has
been studied theoretically in [51, 52, 142–144] and experimental investiga-
tions in superconducting circuits include [53–55, 141, 145]. In this paper,
we present a detailed theoretical analysis in the specific case of a transmon
coupled to a transmission line. Part of the results is used in the theoretical
modeling of the experiments in Papers I & II.

We start from a circuit model of a Cooper pair box coupled to a semi-
infinite coplanar waveguide and make use of the circuit quantization pro-
cedure described in Chapter 2. The resulting equations of motion can in
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a weak-coupling approximation be mapped onto quantum Langevin equa-
tions, from which we can derive input-output equations and a quantum
optical master equation (see section 5.2). The results are readily general-
ized to a setup with an arbitrary number of transmission lines, including
the important case of a single infinite line.

In the second part of the paper, the equations are applied to describe
scattering of coherent input fields on a transmon in an open transmission
line. Reflection and transmission coefficients are derived in the two-level
and three-level approximations. In the two-level case, perfect reflection is
approached for a resonant drive in the low-power limit. In the three-level
case, we apply two coherent drives, one probe field at the first transition
and one control field at the second transition. For large-amplitude control
fields, we see almost full transmission for a weak probe field. This effect
is due to a splitting of the atomic energy levels as a result of the driving
field and is known as Autler-Townes splitting. By turning on and off the
control field, we can switch between full reflection and full transmission for
the probe field. This is the operating principle of the single-photon router,
experimentally demonstrated in [55]. Finally, we analyze the second-order
correlations of the scattered field in the two-level case. Including the effects
of finite temperature and finite detection bandwidth, these results were
used to model the experiment in Paper I.

For this paper, I contributed with the scattering calculations, as well
as part of the derivations in the first section of the paper. I also wrote the
corresponding parts of the manuscript.

6.4 Paper IV - Scattering of coherent pulses on a
two-level system – single-photon generation

In Paper I, it was experimentally shown that scattering of a coherent field
on a single two-level atom leads to a photon number redistribution in the
scattered field. Specifically, the one-photon probability is enhanced in the
reflected field compared to the incident coherent field. This raises the
question of whether the setup can be exploited to generate single-photon
states on demand. As mentioned in section 1.1, single-photon generation in
circuit QED has been realized by using atoms coupled to cavities [63–66].
A drawback of these setups, however, is that the bandwidth of operation is
limited by the cavity. A source based on a single atom without a cavity will
not suffer from this problem and the frequency of the generated photons
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can easily be controlled by tuning the resonance frequency of the atom.

The experiment in Paper I and the theoretical analysis in Paper III were
done for stationary input fields. In order to achieve a true single-photon
output field, however, the drive must have a finite duration. Thus, in this
paper, we generalize the earlier calculations by analyzing the properties
of the scattered field when the atom is driven by a coherent pulse. We
determine the photon counting statistics of the reflected field and, specifi-
cally, the probability P1 of generating exactly one photon. This is done by
calculating higher-order correlation functions, i. e. generalizations of the
non-normalized and non-stationary versions of g(1)(τ) and g(2)(τ) defined
in section 4.5.1. The analysis does not only apply to circuit QED systems,
but to any two-level system coupled to a continuum of photonic modes. A
different example is surface plasmons in nanowires [146].

Our results show that, for pulses that are short compared to the re-
laxation time of the atom, P1 = 0.5 can be achieved for appropriate input
powers. This essentially corresponds to exciting the atom with a π-pulse
and letting the photon leak out symmetrically in both directions. For an
atom coupled to an infinite transmission line, this is the best we can do
in terms of a single-photon source. In order to achieve higher one-photon
probabilities, we can use a modified setup with two semi-infinite lines cou-
pled to the atom; one weakly coupled and one strongly coupled. After
exciting the atom with a π-pulse through the weakly coupled line, the
photon leaks out in the strongly coupled line with high probability. A
scheme of this type was later realized with a flux qubit [147].

For this paper, I performed all the calculations and wrote the manuscript.

6.5 Paper V - Twin paradox with macroscopic
clocks in superconducting circuits

We saw in section 2.6.1 that a SQUID can be used to dynamically tune
the boundary condition for the field in a coplanar waveguide, effectively
simulating a moving mirror. This trick was used in [39] for simulation of
a single oscillating mirror in order to demonstrate the dynamical Casimir
effect. As suggested in [40], a similar setup with two SQUIDs may be
used to simulate a moving cavity. By properly choosing the time-profile
of the flux modulation in each SQUID, separate trajectories for the two
mirrors can be realized in a way that corresponds to collective motion of the
cavity. Moving cavities have recently been studied in the context of RQI to
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investigate the effect of relativistic motion on entanglement and quantum
information protocols [40, 75–79]. Possibly, superconducting circuits can
serve as a platform to experimentally simulate these results.

In this paper, we propose an experiment where the moving cavity is
used as a clock to observe time dilation (see section 3.1). The idea is to
prepare the cavity field in a single-mode coherent state (see section 4.4.2).
Since free time evolution of a coherent state simply corresponds to a phase
rotation, the phase of the state can be used as a clock pointer. This requires
that the mode frequency, and thus the length of the cavity, is kept constant.
In other words, the motion of the cavity must be rigid (see section 3.2.2).
During uniform acceleration, this is achieved by moving the mirrors along
different hyperbolic trajectories. A more complicated trajectory can be
realized by patching together segments of uniform acceleration and inertial
motion.

To observe time dilation, we consider a twin paradox scenario (see
section 3.1), with the trajectory shown in figure 6.1 A signal generator
representing Alice’s clock is used to prepare Rob’s cavity clock in a coherent
state. After flux-modulating the SQUIDs to simulate the trajectory, the
field leaks out from the cavity and is mixed with the original signal. In
this way, the relative phase shift between Alice’s and Rob’s clocks can be
determined.

To compute the phase shift in Rob’s cavity we employ field quanti-
zation in Rindler coordinates (see section 4.6) together with Bogoliubov
transformation techniques (see section 4.7). Using experimentally real-
izable parameters, we find that the phase shift after a single trip is too
small to be observable. Repeating the trajectory many times, however, we
predict that accumulated phase shifts up to 130◦ can be achieved. Thus,
the time dilation associated with the twin paradox scenario should be ob-
servable in our superconducting circuit system. At the moment, work is
underway to perform the experiment at Chalmers.

The cavity clock described above can be seen as a fundamental model
of a physical clock based on quantum field theory. This allows us to in-
vestigate deviations from an ideal clock that measures proper time along
its path (see section 3.1). We find that, during the accelerated parts, the
extension of the clock results in a slower tick rate. As the cavity becomes
longer or the acceleration larger, the rate is slowed down. This effect should
be observable for realistic circuit parameters. In addition, there is also a
small deviation due to non-adiabatic effects. These depend on changes
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Figure 6.1: Cavity trajectories in the lab frame. Alice’s cavity stays static, while
Rob’s cavity undergoes a round trip composed of segments of inertial motion
(blue) and uniform acceleration (red). Figure taken from Paper V.

in acceleration and are encoded in the mode-mixing and particle creation
coefficients in the Bogoliubov transformation (see section 4.7).

When applied to the vacuum, the particle creation coefficients account
for the dynamical Casimir effect (see section 4.1.1). Since the photons
created in this way are squeezed, the first moments of the field remain
zero. When acting on a coherent state, however, the action of the β-
coefficients can be understood as parametric pumping. In this case, a
classical treatment gives the same result as the Bogoliubov transformation
as far as the first moments of the field are concerned. Genuine quantum
effects are seen in the second moments and this is investigated in Paper
VI.

For this paper, I performed all the calculations. I also wrote most of the
manuscript, with the exception of the introduction and the conclusions.

6.6 Paper VI - Motion and gravity effects in the
precision of quantum clocks

In this paper, we extend the clock model of Paper V to theoretically inves-
tigate how motion affects the precision of the clock. We allow for arbitrary
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single-mode Gaussian states (see section 4.4.4) in the cavity and use the
covariance matrix formalism (see section 4.3) to implement the Bogoliubov
transformations. Recall that both the Bogoliubov transformations and the
tracing out of the higher modes preserves the Gaussian character of the
state.

The precision is quantified by using techniques from quantum parameter
estimation [148, 149] that have not been introduced in preceding chapters.
Thus, a short introduction is in order here. Suppose that a quantity θ, not
itself an observable, parametrizes a family of states of a quantum system.
Quantum parameter estimation addresses the problem of estimating the
value of θ by performing quantum measurements on the system. If M
measurements are performed, the Cramér-Rao inequality,

∆θ ≥ 1√
MHθ

, (6.1)

gives a lower bound on the variance ∆θ in estimations of θ. Here, Hθ is
known as the quantum Fisher information (QFI).

In the case of our cavity clock, θ corresponds to the phase, parameter-
izing the family of single-mode Gaussian states. By computing the QFI
for this case, we can thus determine the precision of the clock. It is inves-
tigated how the precision is affected by motion for a number of different
initial states.

We find that the precision generally decreases as a result of non-uniform
acceleration. This is mainly because photons are transferred from the clock
mode due to mode-mixing. For a fixed number of photons, the optimal
state for phase estimation is the squeezed vacuum. For this state, however,
the degradation of the QFI due to motion is larger than for the coherent
state. For states with both displacement and squeezing, the degradation
depends on the squeezing angle. In the case of low-power initial states,
particle creation effects start to become more important. For a coherent
state with very few initial photons, the motion creates enough squeezed
photons to enhance the QFI.

Finally, we also estimate the loss of precision in the proposed exper-
iment in Paper V. When increasing the number of trajectories, we see a
larger relative phase shift between Alice’s and Rob’s clocks. For longer
travel times, however, more photons will have leaked from the cavity be-
fore the measurement takes place. This leads to a decrease of the QFI and,
thus, there is a certain number of trajectories that optimizes the signal-to-
noise ratio for phase estimation.
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For this paper, I performed all the calculations. I also wrote the
manuscript together with one of the co-authors.



Chapter 7

Summary and outlook

In this thesis, we have studied a number of systems which can be imple-
mented in superconducting microwave circuits. The work has followed two
main directions. The first is propagating microwaves interacting with arti-
ficial atoms and the second is relativistic motion of cavities, simulated by
means of SQUIDs.

Superconducting qubits embedded in cavities have in the last decade
grown into one of the main candidates for a future quantum computer.
Propagating photons strongly interacting with artificial atoms is a more
recent development with applications in quantum communication networks
and possibly in all-optical quantum computing.

Inspired by ongoing experiments, we have studied a single transmon
coupled to an open transmission line. Using the theoretical tools of cir-
cuit quantization, master equations and input-output equations, we derive
equations to describe scattering of propagating coherent signals on the
transmon. Through these calculations we are able to reproduce several
results from recent experiments with propagating microwaves. Addressing
only one transition of the transmon, we see full reflection in the low-power
limit. Driving the second transition strongly, however, full transmission at
the first transition is induced. We also see a photon number redistribution,
with antibunching in the reflected field and superbunching in the transmit-
ted field. These results agree with recent experiments and the effects all
have possible applications in quantum networks.

As the next step, we investigate the possibilities of exploiting the pho-
ton number redistribution to generate single-photon states on demand.
We find that a two-level system coupled to an open transmission line is
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not a suitable single-photon source. With an asymmetric setup using two
transmission lines, however, single-photon probabilities close to unity can
be achieved. A similar setup was later realized in experiment [147] and,
more recently, different non-cavity based single-photon sources have been
proposed [150].

A reliable single-photon generator is only one of the various tools
needed in order to realize on-chip quantum networks. Others include
photon detectors, beam-splitters and sources of entangled states. More
theoretical and experimental work with propagating microwaves coupled
to artificial atoms remains to be done to complete the toolbox.

In the second part of the thesis, we have investigated a simple model of a
fundamental clock based on quantum field theory. The clock consists of a
rigid cavity where the fundamental mode is prepared in a Gaussian state,
with a phase shift proportional to the elapsed time.

We propose an experiment where relativistic motion of the clock is sim-
ulated with SQUIDs in superconducting circuits, building on the idea used
to demonstrate the dynamical Casimir effect [39]. We find that, for real-
istic circuit parameters, time dilation should be observable for the moving
clock. The setup also lets us investigate how the rate of this macroscopic
clock deviates from the ideal clock formula. Moreover, by using quantum
estimation theory, we theoretically analyze how the accuracy of the clock
is affected by motion. In general, we find that the precision is degraded
due to non-uniform acceleration. Presently, theoretical work to model the
experiment in more detail is underway, as well as preparations to perform
the experiment.

In the future, the same experimental setup can possibly be used to sim-
ulate other results involving moving cavities, like the teleportation protocol
in [40]. A much more challenging task would be to simulate a quantum
superposition of two mirror trajectories. This can possibly be realized by
using the setup in [151], where the field in a separate cavity is used to
modulate the flux through the SQUID. By preparing the cavity field in a
superposition of two coherent states, known as a cat state, a superposition
of two flux signals tuning the SQUID can in principle be achieved. More-
over, as mentioned in section 1.2, there are also other proposals to simulate
relativistic phenomena in superconducting circuits [80, 85, 118].

To sum up, we have used superconducting circuits both for quantum op-
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tics setups aimed at quantum information technology and for simulation of
relativistic physics. Despite the recent progress in both these areas, much
is still to be explored before the full potential of superconducting circuits
is realized.





Appendix A

Master equation derivation

In this Appendix, we fill in the details left out when going from (5.38) to
(5.43) in the master equation derivation in section 5.2. Inserting the in-
teraction Hamiltonian (5.39) into the Born-Markov master equation (5.38)
yields

˙̃ρ(t) = 1
2~

∫ ∞
0

dt′
∫ ∞

0
dω

∫ ∞
0

dω′κ(ω)κ(ω′)
√
ωω′

TrB
[[(

aω(t)− a†ω(t)
)
X(t), (A.1)[(

aω′(t− t′)− a†ω′(t− t
′)
)
X(t− t′), ρ̃(t)⊗ ρB

]]]
,

with

X(t) =
∑
i

(
X−i e

−iωit +X+
i e

iωt
)

(A.2)

and

aω(t) = aωe
−iωt (A.3)

a†ω(t) = a†ωe
iωt. (A.4)

Now, when evaluating the trace, the only nonzero bath correlation func-
tions are (5.40)-(5.41). The double commutator in the the integrand be-
comes

〈aω(t)a†ω′(t− t
′)〉
(
X(t− t′)ρ̃(t)X(t)−X(t)X(t− t′)ρ̃(t)

)
+〈a†ω(t)aω′(t− t′)〉

(
X(t− t′)ρ̃(t)X(t)−X(t)X(t− t′)ρ̃(t)

)
+〈aω′(t− t′)a†ω(t)〉

(
X(t)ρ̃(t)X(t− t′)− ρ̃(t)X(t− t′)X(t)

)
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+〈a†ω′(t− t
′)aω(t)〉

(
X(t)ρ̃(t)X(t− t′)− ρ̃(t)X(t− t′)X(t)

)
, (A.5)

where we have made use of the cyclic property of the trace. Using (5.40)-
(5.41) and integrating over ω′, we obtain

e−iωt
′ (1 + n(ω))

[
X(t− t′)ρ̃(t)X(t)−X(t)X(t− t′)ρ̃(t)

]
+ eiωt

′
n(ω)

[
X(t− t′)ρ̃(t)X(t)−X(t)X(t− t′)ρ̃(t)

]
+ eiωt

′ (1 + n(ω))
[
X(t)ρ̃(t)X(t− t′)− ρ̃(t)X(t− t′)X(t)

]
+ e−iωt

′
n(ω)

[
X(t)ρ̃(t)X(t− t′)− ρ̃(t)X(t− t′)X(t)

]
. (A.6)

Next, we expand X(t− t′) according to (A.2) and integrate over t′. Using
(5.42) and neglecting the second term, the result is

π
∑
i

(1 + n(ω))
(
X−i e

−iωitδ(ω − ωi) +X+
i e

iωitδ(ω + ωi)
)
ρ̃(t)X(t)

− π
∑
i

(1 + n(ω))X(t)
(
X−i e

−iωitδ(ω − ωi) +X+
i e

iωitδ(ω + ωi)
)
ρ̃(t)

+ π
∑
i

n(ω)
(
X−i e

−iωitδ(ω + ωi) +X+
i e

iωitδ(ω − ωi)
)
ρ̃(t)X(t)

− π
∑
i

n(ω)X(t)
(
X−i e

−iωitδ(ω + ωi) +X+
i e

iωitδ(ω − ωi)
)
ρ̃(t)

+ π
∑
i

(1 + n(ω))X(t)ρ̃(t)
(
X−i e

−iωitδ(ω + ωi) +X+
i e

iωitδ(ω − ωi)
)

− π
∑
i

(1 + n(ω)) ρ̃(t)
(
X−i e

−iωitδ(ω + ωi) +X+
i e

iωitδ(ω − ωi)
)
X(t)

+ π
∑
i

n(ω)X(t)ρ̃(t)
(
X−i e

−iωitδ(ω − ωi) +X+
i e

iωitδ(ω + ωi)
)

− π
∑
i

n(ω)ρ̃(t)
(
X−i e

−iωitδ(ω − ωi) +X+
i e

iωitδ(ω + ωi)
)
X(t). (A.7)

Inserting (A.7) back into (A.1) and evaluating the ω-integral, we arrive at

˙̃ρ(t) = π

2~
∑
i

κ2(ωi)ωi (n(ωi) + 1)
[
X−i ρ̃(t)X(t)−X(t)X−i ρ̃(t)

]
e−iωit

+ π

2~
∑
i

κ2(ωi)ωin(ωi)
[
X+
i ρ̃(t)X(t)−X(t)X+

i ρ̃(t)
]
eiωit

+ π

2~
∑
i

κ2(ωi)ωi (n(ωi) + 1)
[
X(t)ρ̃(t)X+

i − ρ̃(t)X+
i X(t)

]
eiωit
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+ π

2~
∑
i

κ2(ωi)ωin(ω)
[
X(t)ρ̃(t)X−i − ρ̃(t)X−i X(t)

]
e−iωit. (A.8)

When using the expansion X(t) =
∑
i

(
X−j e

−iωjt +X+
j e

jωt
)

and employ-

ing the RWA, only terms with i = j survive as long as the transition
frequencies are not too close to each other. This finally yields

˙̃ρ(t) = π

2~
∑
i

κ2(ωi)ωi (n(ωi) + 1) (A.9)

×
(
2X−i ρ̃(t)X+

i − ρ̃(t)X+
i X

−
i −X

+
i X

−
i ρ̃(t)

)
+ π

2~
∑
i

κ2(ωi)ωin(ωi)
(
2X+

i ρ̃(t)X−i − ρ̃(t)X−i X
+
i −X

−
i X

+
i ρ̃(t)

)
,

which, by the use of (5.25), is equivalent to (5.43).
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