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We consider the Thomson scattering of an electron in an ultra-intense laser pulse. It is well known

that at high laser intensities, the frequency and brilliance of the emitted radiation will be greatly

reduced due to the electron losing energy before it reaches the peak field. In this work, we

investigate the use of a small frequency chirp in the laser pulse in order to mitigate this effect of

radiation reaction. It is found that the introduction of a negative chirp means the electron enters a

high frequency region of the field while it still has a large proportion of its original energy. This

results in a significant enhancement of the frequency and intensity of the emitted radiation as

compared to the case without chirping. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4932995]

I. INTRODUCTION

In recent decades, since the discovery of chirped pulse

amplification,1 the powers and intensities of laser facilities

around the globe have been exponentially increasing.2 The

current record of 2� 1022 W cm�2 was set in 2008 (Ref. 3),

and it is expected that this will be routinely surpassed in the

near future at new facilities such as the Vulcan 20 PW

upgrade,4 the Extreme Light Infrastructure (ELI) Facility,5

and the XCELS project.6 The widespread availability of the

current technology has driven a large field of research in

nonlinear Thomson and Compton scattering, with a view to

producing high-frequency, tuneable c-ray beams. These

sources have important applications, both for fundamental

research7 and for more practical applications, such as cancer

radiotherapy8 and the radiography of dense objects.9 Recent

experiments10,11 have been pushing the limits of peak ener-

gies and brilliances. However, working with ever-higher

laser intensities, we will soon enter a regime where radiation

reaction (RR) (and, ultimately, quantum electrodynamics

(QED) effects12,13) will start to come into play.

RR occurs when particles are accelerated so strongly by

the laser field that their resulting radiation emissions cause

significant energy losses. The result is a frictional effect,

which can significantly impact on the particle dynamics,

causing the particles to slow and reducing their energy as

they reach the peak field14,15 (see also Refs. 16 and 17). As a

consequence, the resulting emission spectrum will be

reduced in both frequency and intensity (see, e.g., Refs. 18

and 19).

Recently, a number of articles have considered the

effects of pulse chirping in laser-matter interactions. This

has been in the context of ion acceleration,20 in the Thomson

and Compton scattering of relativistic electrons in moder-

ately intense laser pulses,21–23 and in the cooling of electron

beams due to RR.24 In this paper, we show how the

introduction of a chirp into a very intense laser pulse can

help to mitigate the reduction in frequency of the emitted

radiation by allowing the electrons to probe deeper into the

laser focus before becoming susceptible to RR. The result is

a higher electron energy in the peak field, enabling a signifi-

cant increase in the frequencies and brilliances of the

Thomson radiation.

II. THEORY

We consider the interaction of a relativistic electron

with a counter-propagating chirped Gaussian laser pulse of

base frequency x0 and FWHM duration s0. We take the

direction of the laser propagation to be along the z axis, such

that the laser wave vector is k ¼ x0ẑ=c. Then, we normalize

space and time with respect to the wave vector and the base

frequency, respectively (x ! kx and t ! x0t). Defining a

chirped pulse in the same manner as a number of recent

works (see, e.g., Refs. 20–22), the vector potential can be

written as

A ¼A0 exp � fg2

s2
0

 !
d cos gþ f gð Þ

� �
ex

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2

p
sin gþ f gð Þ
� �

ey�; (1)

where A0 is the field amplitude, f ¼ 4lnð2Þ; g ¼ t� zþ /0;
/0 is a phase constant, and f(g) is the chirp function. (Note

that introducing the chirp into the vector potential will result

in different electromagnetic field components, and therefore

different particle dynamics, to those obtained by introducing

the chirp directly into the E and B fields.) The factor d deter-

mines the polarization and is set to 1 (1=
ffiffiffi
2
p

) for linear (cir-

cular) polarization. The vector potential is then normalized

as A! eA=mc, and hence, the electric field can be normal-

ized as E! eE=mx0c, where A and E are the vector poten-

tial and the corresponding electric field in SI units. We then

define the dimensionless intensity parameter a0¼ eE0/mx0c
in the usual manner, in terms of the peak fields.
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A frequency chirped pulse is one where the frequency x
changes with time. This can be achieved by the use of a set

of grating pairs,25,26 and it is now fairly trivial to introduce

chirps such that the laser frequency changes by a few percent

over the pulse duration. In our expressions, the chirping of

the laser pulse is defined by the function f(g)¼ bg2, where b
is the chirping constant. The value of b must be kept small

since the chirp is restricted by the bandwidth, and in turn the

length, of the initial generating pulse. Setting b¼ 0 will cor-

respond to the unchirped laser pulse. The relationship

between b and the instantaneous frequency of the pulse,

1þ bg, is shown in Fig. 1. We see, for example, that a chirp

constant of b¼�0.002 results in a frequency variation of

66% of the base frequency over the FWHM of the pulse. It

is important to note that the introduction of a chirp into the

laser pulse will change the pulse energy (�jEj2). In order to

compensate for this, we reduce the pulse duration

accordingly.

Having described the pulse, we now turn our attention to

the motion of the colliding electrons. Ordinarily, the particle

motion would be governed by the Lorentz equation, but in

cases where the acceleration is strong, the emission of radia-

tion can lead to a significant reduction in the particle’s energy

and momentum. The effect of this “radiation reaction” on the

particle dynamics can be included by adding a correctional

term to the Lorentz force equation. However, determining

what this correction should be is surprisingly non-trivial.

Despite having been studied for over 100 years, it remains

one of the most fundamental problems in electrodynamics. A

common starting point is to solve the coupled Lorentz and

Maxwell’s equations for the system. This results in the infa-

mous Lorentz-Abraham-Dirac equation,27–29 which suffers

from notorious defects such as pre-acceleration and (unphysi-

cal) runaway solutions. A common resolution to these prob-

lems is to adopt the perturbative approximation of Landau

and Lifshitz.30 Then, the equation of motion is given by

dp

dt
¼ fL þ fR; (2)

where fL ¼ Eþ v� B is the Lorentz force and the radiative

correction term

fR ¼�
2

3
r0

� �
c

@

@t
þ v � r

� �
Eþ v� @

@t
þ v � r

� �
B

� 	


þ fLð Þ � Bþ v � Eð ÞE� c2 fLð Þ2 � v � Eð Þ2
h i

v

h i�
; (3)

where r0 ¼ re=�k, with re¼ e2/mc2 being the classical elec-

tron radius and �k ¼ k=2p ¼ c=x0 the (reduced) base wave-

length of the field. Equation (3) is valid when the radiative

reaction force is much less than the Lorentz force in the

instantaneous rest frame of the particle. We stress that there

are a number of alternative equations in the literature (for an

overview see Refs. 31 and 32), and it is still an open problem

as to which is the correct formulation. However, it has

recently been shown that the Landau-Lifshitz equation, along

with some of the others, is consistent with quantum electro-

dynamics to the order of the fine-structure constant a.33,34

Also, we note that the first term (derivative term) of Eq. (3)

is significantly smaller than the other two, since it is only

linear in the field strength whereas the other terms are quad-

ratic. It is found that in almost all cases, the contribution

from this term is negligible and so we do not include it in

our simulations. (Indeed, it can be shown that, in cases where

classical RR is important, the derivative term is even smaller

than the electron spin force and so one could argue that it

should be neglected out of consistency.35)

Once we have calculated the particle trajectory in the

pulse, the resulting radiation emissions can be obtained via a

well-known classical formula. The energy radiated per unit

solid angle per unit frequency is given by36

d2I

dx dX
¼

ð1
�1

n� n� bð Þ � _b
h i
1� b � nð Þ2

ei s tþD tð Þ½ �dt

������
������
2

; (4)

where n is a unit vector pointing from the particle’s position

to the detector (D) located far away from the interaction, and

b and _b are, respectively, the particle’s relativistic velocity

and acceleration. In our dimensionless units, s¼x/x0 is

taken to be the harmonic of fundamental frequency. Here,

we have normalized the intensity by the factor e2/(4p2c). All

the quantities in the above equations are evaluated at the

retarded time so one can directly do the integration in some

finite limit.

III. RESULTS

Since this study is concerned with high field intensities,

it is instructive to first provide an estimate for when RR

effects become important. Using just the Lorentz force to

determine the motion (and temporarily returning to unnor-

malized quantities for the sake of clarity), the radiated power

P is given by Larmor’s formula in terms of the acceleration

P ¼ 2

3

mre€x2

c
¼ 2

3
remcx2

0a2
0c

2 1þ bð Þ2; (5)

where €x is the proper acceleration, distinct from the quantity
_b in Eq. (4). Normalizing this by c(1þb)x0mc2, we obtain

FIG. 1. Plots showing the relationship between b and the instantaneous fre-

quency of the pulse, 1þ bg.
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the energy loss per cycle in terms of the electron rest energy

mc2 (Refs. 19 and 37)

R � P

c 1þ bð Þx0mc2
¼ 2

3
r0a2

0c 1þ bð Þ: (6)

When this parameter reaches unity, we are in the “radiation-

dominated regime,”38 where the radiation damping effects

are of the same magnitude as the Lorentz force.

We will begin by studying the effects of chirping on the

Thomson spectra of a high-energy electron in a moderately

intense laser, where RR effects are not very important. To be

specific, we will consider an electron with initial c0¼ 900

(�460 MeV) brought into collision with a circularly polar-

ized laser pulse having peak amplitude a0¼ 10 (which

corresponds to 2.11� 1020 W cm�2 for an optical laser). The

duration of the unchirped (b¼ 0) laser pulse is taken to be 10

cycles and is reduced when the chirp is introduced in order

to maintain a constant energy. For these parameters, we find

R¼ 0.0027, meaning that we are in a regime where RR

effects are likely to be minimal. We first solve the Landau-

Lifshitz equation for these parameters and consider how the

c-factor changes as the electron passes through the laser

pulse. In Fig. 2(b), we compare the evolution of the c-factor

of an unchirped pulse with those of a positive and negative

chirp of b¼60.008. It can be seen that the electron in the

negatively chirped field loses energy more quickly than that

in the unchirped field and the electron in the positively

chirped field less quickly. (However, the overall energy loss

is not large, amounting to about 5% of the starting value.)

On the left hand panel, Fig. 2(a), we show the emission spec-

tra for the three cases. This has been calculated by inserting

the particle trajectories into (4). It can be seen that the elec-

trons in the two chirped pulses emit radiation of a higher

frequency, but lower amplitude than the electron in the

unchirped pulse. This is not surprising since these electrons

pass through regions of higher frequency fields than exist in

the unchirped pulse. We will discuss this in more detail

shortly. Note that the spectra for the two chirped cases are

roughly similar. Observe also that the emission spectra are

much cleaner for the electrons in the chirped pulses than in

the unchirped pulse. This is due to the changing frequency

causing an overlap of the contributing harmonics and is

discussed in Ref. 22.

Having examined this preliminary example, we now

move on to consider a case where RR effects do become

important. For the rest of this study, we will work with a cir-

cularly polarized laser pulse having peak amplitude a0¼ 200

(which corresponds to 8.56� 1022 W cm�2 for an optical

laser), which is just slightly beyond the current state of the

art. The counter propagating electron will remain at c0¼ 900

(�460 MeV). For these parameters, R¼ 1.06, placing us

within the regime where RR effects can be expected to

dominate.

We consider once again how the c-factor changes as the

electron passes through the laser pulse. In Fig. 3, we show

the evolution of c for two different chirping constants,

b¼60.002 and b¼60.008. It can be observed, just as in

the previous example, that the energy of an electron colliding

with a negatively chirped laser pulse (i.e., one where the

high frequency components hit the particle first) falls more

rapidly by virtue of RR as compared to both its positively

(low frequency components first) or unchirped pulse counter-

parts. We note that the simple analysis used in Eq. (6) is not

sufficient to explain this behaviour. There we were implicitly

assuming that the chirped frequency x and c-factor can be

approximated as constant over a laser cycle, which gives

R � rece2jEj2=xm2c3 for c � 1. Thus, according to this

simple model, increasing the pulse frequency will result in a

smaller energy loss per cycle. However, the electron will

pass through a correspondingly larger number of cycles

during a given time period, and thus, the total energy loss

over this time period will be approximately the same. Of

course, this is only a crude estimate and we find that, when

we calculate the particle motion numerically, the higher the

frequency components at the front of the pulse, the faster the

particle loses energy.

In Fig. 4, we consider the emission spectra, calculated

by inserting the particle trajectories into (4). At high inten-

sities, the total emission spectrum will be comprised of a

sum of harmonics, corresponding to multiples of the laser

FIG. 2. Plots showing the emission spectra (a), evaluated in the backscatter-

ing direction (h¼ 180	), and the time evolution of the electron c-factor (b),

for the case of chirped and unchirped pulses (chirping constant b¼60.008).

The electron has an initial c0¼ 900, and the laser is a circularly polarised

pulse of peak intensity a0¼ 10 and 10 cycles duration FWHM.

FIG. 3. Plots showing the time evolution of the electron c-factor for two dif-

ferent chirping constants. The electron has an initial c0¼ 900 and the laser is

a circularly polarised pulse of peak intensity a0¼ 200 and 10 cycles duration

FWHM.
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frequency. In the unchirped case of constant frequency, the

properties of the spectrum are well understood. From conser-

vation of momentum arguments, it can be shown that the

frequency x0n of the nth harmonic in the backscattering

direction (h¼ 180	) is given by39

x0n 

4c2nx0

1þ a2
0

: (7)

For large a0, the spectrum begins to decay after the critical

harmonic with number ncrit � 3a3
0=2,40 which for our param-

eters is ncrit� 107.

In our case, the situation is more complicated than that

of a monochromatic plane wave, but nevertheless we are

able to make some very rough analogies to help us under-

stand the physics. (For a detailed discussion of how the

monochromatic spectra relate to those of a pulsed field, we

refer the reader to Refs. 41–43.) We can reasonably assume

that the spectrum will be dominated by the emissions from

the region just to the front of the pulse peak, where both the

amplitude and the c-factor are relatively large. Assuming, for

the purposes of this heuristic argument, that the field can be

approximated over a given cycle by a monochromatic

field with the same amplitude, we can consider the above

expressions in terms of the local dimensionless intensity

a ¼ ejEj=xmc. In particular, we see that the number of har-

monics comprising the spectrum ncrit will then be dependent

on the local frequency. Thus, in the case of the positive

chirp, although the frequencies of each harmonic comprising

the spectrum will be blue shifted by the larger c-factor, the

total number of harmonics will be decreased due to the lower

frequency, resulting in a total spectrum that covers a smaller

frequency range. Similarly, in the case of the negative chirp,

the lower c-factor will red-shift the harmonic frequencies,

but the total spectrum will be composed of a larger number

of harmonics due to the higher frequency of the field. Thus,

the total spectrum will span a wider range of frequencies, as

can be seen in the plots. Finally, the faster rate of energy loss

for the negatively chirped case results in a stronger peak

signal in the spectrum.

The above argument can be supported by returning to

our initial example where RR effects were insignificant. In

this case, no matter whether the chirp was positive or nega-

tive, the electron passed through the high frequency portion

of the field with an energy comparable to its initial energy,

without having lost much energy to RR. Thus, it did not mat-

ter if it saw the high frequency part of the pulse first or later.

This is why the radiation spectra were more or less identical

for both cases (Fig. 2). Additionally, we can also consider

the current example without the effects of RR (i.e., by solv-

ing the Lorentz equation instead of the Landau-Lifshitz

equation to determine the particle dynamics). The resulting

spectra are plotted in Fig. 4(c) where it can be seen that the

positive and negative chirp parameters produce identical

spectra.

Finally, a more complete presentation of the emission

spectra is given in Fig. 5, for the chirping constant

b¼60.008. It can be seen from this figure that the spectra

mainly consist of back scattered radiation, i.e., along

h¼ 180	.
In order to illustrate the effect of the chirp more clearly,

the interaction involving a slightly higher chirping constant

(b¼60.02) is presented in Fig. 6. In panels (a) and (b), we

show how the c-factor of the electron evolves as it passes

through the laser field. It can be seen that in the case of nega-

tive chirp (panel (a)), the electron has a much higher c-factor

in the high frequency part of the field than in the case of pos-

itive chirp (panel (b)). This results in a higher frequency

emission spectrum for the negative chirp compared to the

positive chirp. (Note that the results presented in Fig. 6 are

only for the purpose of demonstrating the chirp. The energy

loss in the early stages of the interaction with the positively

chirped pulse is due to the “kink” in the tail of the field. This

is an unphysical artefact caused by our chirp being too large

in this illustrative example.)

Since the intensity we have been considering is fairly

high, it is worthwhile investigating whether it is indeed valid

to treat the system classically, or whether quantum effects

should be taken into consideration. We can measure the

importance of quantum effects by considering the dimen-

sionless “quantum efficiency parameter,”44 which with our

normalizations can be written v ¼ �hx0c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEþ v� BÞ2

q
=

mc2 � cE=ES, where ES¼ 1.3� 1016 V/cm is the QED

FIG. 4. Plots showing the emission spectra, evaluated in the backscattering

direction (h¼ 180	) for the two chirp factors (a) and (b). The emission spec-

tra without RR taken into account are also presented (c). Parameters are the

same as in Fig. 3.

FIG. 5. Angular distribution of the radiation spectra for b¼ 0 (a),

b¼�0.008 (b), and b¼ 0.008 (c). Parameters are the same as in Fig. 3.
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“critical” field (“Sauter-Schwinger” field45–47). This parame-

ter describes the work done by the laser field on the particle

over of a Compton wavelength. When v� 1 quantum effects

will start to dominate, with processes such as vacuum pair

production occurring. Not only is the calculation of this

parameter important in determining the validity of our

modelling, it is also of interest to see if the introduction of a

chirp can significantly alter its value. We have already seen

how the negative chirp results in an increase in radiated fre-

quency, and so, it is worth investigating whether the same

mechanism will increase the importance of QED effects. In

Fig. 7, we plot the evolution of the v parameter for the cases

we have been considering. It can be seen that v reaches a

peak value of roughly 0.2, meaning that we are on the thresh-

old of where QED effects are likely to be detectable, but not

significant. (Such effects are likely to include a small reduc-

tion in electron energy losses as compared to the classical

predictions,48 an increase in energy spread of the electron

beam,49,50 a diffusion of the electron beam in transverse

space,51 and a narrowing of the angular radiation spec-

trum.52) Thus, we are justified in performing our analysis

classically. We also see that, while the negative chirp does

result in a slight increase in v, the effect of chirping on QED

effects is fairly minimal. This means that chirping is unlikely

to prove a useful tool for probing intensity effects in strong

field QED.

IV. CONCLUSION

In this article, we have investigated the dynamics, and

resulting Thomson spectra, of an electron in an intense

chirped laser pulse. This work has been motivated by previ-

ous studies using unchirped fields where it has been shown

that, because of the effects of radiation reaction, the electron

loses energy quickly upon entering the pulse. As a result, by

the time the electron reaches the most intense part of the

laser field, it has a much lower energy than it began with.

This causes a significant reduction in frequency and bril-

liance of the emitted Thomson radiation, making the setup

less attractive as a c-ray source. In this work, we have tried

to mitigate this effect using a frequency chirp. By introduc-

ing a small, negative chirp into the field, we have shown that

it is possible to have the electron enter the region of the pulse

where the emissions will be strongest while it still retains a

large proportion of its initial energy. For the modest chirp

parameters that we have considered, this can result in a more

than doubling of both the maximum frequency and ampli-

tude of the radiation spectrum as compared to the case of an

unchirped field. This is of great importance in the context of

Thomson/Compton scattering experiments utilising the next

generation of ultra-intense lasers, since it will allow such

radiation sources to remain viable at the extreme end of the

intensity scale.
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