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Thesis for the degree of Doctor of Philosophy
MICHAEL SIMOEN

Department of Microtechnology and Nanoscience (MC2)
Chalmers University of Technology

ABSTRACT

In this thesis I present different experiments on superconducting circuits
exploring parametric interactions with external signals and the vacuum in the
microwave regime. These parametric processes are the result of the periodic
modulation of a property of a system which results in different interactions.
The systems used in this thesis are circuits where the nonlinear inductance
of a superconducting quantum interference device (SQUID) is parametrically
driven.

I present the first experimental observation of the dynamical Casimir
effect (DCE), since it was predicted in 1970. The DCE is an interaction
between the vacuum and a periodically modulated boundary condition of the
electromagnetic field, here implemented by a flux-tuned SQUID. In essence the
modulated boundary will parametrically amplify the vacuum fluctuations which
results in the pairwise generation of photons over a broad frequency range. I
have characterized the system and measured the statistical properties of the
emitted radiation to show that the radiation exhibits two-mode squeezing.

Next, I present measurements on a superconducting multimode resonator
containing a SQUID. T show that it is possible to get parametric amplification
by driving the SQUID at either twice the frequency of one of the modes or by
driving it at the sum of two mode frequencies. In both cases I show that it is
possible to reach quantum-limited noise performance.

In the same system I also demonstrate frequency conversion which occurs
when the system is pumped at the difference frequency between two modes.
Microwave photons are coherently transferred from one mode to the other.
I show that the coupling strength depends linearly on the applied pump
amplitude.

The thesis also contains a linearized theoretical model to describe and
analyze the flux-pumped SQUID. The model describes an equivalent circuit
element called the pumpistor, with an impedance which depends on the pump
phase. I show that under specific conditions the impedance becomes real and
negative allowing pump power to be injected into the circuit, providing gain.

Finally I also present a demonstration of an on-chip Mach-Zehnder inter-
ferometer. This experiment uses the tunability of the SQUID to provide a
controllable phase shift in one of the interferometer arms. The transmission
through the device can be modulated with a maximum change of 45 dB.

Keywords: parametric amplification, mode conversion, vacuum, dynamical
Casimir effect, multimode resonator, superconducting circuits, SQUID, circuit-
QED, pumpistor, interferometer
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SYMBOLS & ABBREVIATIONS

Abbreviations
SQUID Superconducting quantum interference device
CPW Coplanar waveguide
uv Ultraviolet
DCE Dynamical Casimir effect
OPO Optical parametric oscillator
JPA Josephson parametric amplifier
HEMT High-electron-mobility transistor
SNTJ Shot-noise tunnel junction
e Inner vacuum chamber
TMS Two-mode squeezing
AWG Arbitrary waveform generator
LO Local oscillator
IF Intermediate frequency
SNR Signal-to-noise ration
Constants
e Electron charge
h Planck constant
h Reduced Planck constant
kg Boltzmann constant
c Speed of light
Superconductivity
L4 Superconducting wave function
ny Density of Cooper pairs
0 Superconducting phase
A, Half the superconducting energy gap
A Magnetic vector potential
0] Phase difference across Josephson junction
1, Critical current of a Josephson junction
I Critical current of the SQUID
Iy Current through the SQUID
Ry Normal resistance
Ly Josephson junction inductance
Cy Josephson junction capacitance
Ly, Josephson inductance of the SQUID
Lyio Josephson inductance of the SQUID at zero flux
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(I)O
(I)DC

Pac
F
OF

SQUID capacitance

Magnetic flux

Magnetic flux quantum

DC magnetic flux

AC magnetic flux amplitude
Normalized DC magnetic flux
Normalized AC magnetic flux amplitude

Circuit parameters

Iom
fr
U’m
@
Ql
Q

Reflection coefficient

Coupling capacitor

Impedance of the coupling capacitor
Equivalent lumped element capacitor
Capacitance per unit length

Total capacitance of lumped element circuit
Equivalent lumped element inductor
Inductance per unit length

Equivalent lumped element resistor

Loss per unit length

Equivalent lumped element impedance
Characteristic impedance of the measurement line
Characteristic impedance of the CPW
SQUID inductance participation ratio
Resonator CPW length

Wavelength

Angular resonance frequency

Phase velocity

Angular wave number of mode m

Angular resonance frequency of mode m
Resonance frequency of mode m

Bare resonator frequency (without SQUID)
Envelope function of mode m

External quality factor

Internal quality factor

Total quality factor

Parametric driving

fp7 wp

Pp

fsﬂ fi

wS

0y, 05, AO
LP

Pump frequency, angular pump frequency
Pump power

Signal frequency, idler frequency

Angular signal frequency

Pump phase, signal phase, phase difference
Pumpistor
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Duffing parameter of mode m
Effective pump strength

Parametric oscillation threshold
“Mass” of mode m

Angular pump detuning

Angular signal detuning
Intra-cavity field amplitude
Incoming field amplitude

Outgoing field amplitude

Coupling rate of mode m

Internal damping rate of mode m
Total damping rate of mode m
Gain, signal gain, idler gain
Bandwidth, gain-bandwidth product
Reflection coefficient/Conversion coefficient

Mirror motion amplitude

Effective length

Effective length modulation amplitude

Thermal input field, total output photon flux density
The quadratures

Total average power in both sidebands, output power
Single-mode squeezing, two-mode squeezing
Normalized second-order correlation function

Noise Calibration

Rsnry
R,
Vo.RT
Vb,sNTI
Veo
fSaIIlI)
Arp

Ty
Ty,

Quantum limit

Noise temperature

Current noise spectral density

Total noise power

Shot-noise tunnel junction resistance

Room temperature bias resistor

Room temperature bias voltage

Bias voltage across the SNTJ

Crossover voltage between shot-noise and vacuum noise
Sampling frequency

Insertion loss factor

Noise temperature of the insertion loss element
Physical temperature of the insertion loss element
Number of added noise photons by the insertion loss element
Total noise at the output of the insertion loss element
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Physical temperature of the SNTJ

Input noise of the unbiased SNTJ

Gain of the JPA

Added noise by the JPA

Gain of the measurement chain (from JPA onwards)
Added noise by the measurement chain (from JPA onwards)
Total gain from SNTJ calibration (including insertion loss)
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1

Introduction

In 1831 Michael Faraday reported one of the first observations of a paramet-
rically driven system.® When experimenting with free liquid surfaces in a
vertically vibrating container he observed the formation of standing surface
waves. He noticed that each crest of the surface wave (referred to as a heap)
oscillated once for every two periods of the applied vibration: “Each heap
(identified by its locality) recurs or is re-formed in two complete vibrations of
the sustaining surface..”.8 It took another 52 years until Lord Raleigh provided
the first more general treatment of parametric oscillations.? !0

The first applications of parametric processes were found in the field of radio
communications. It was the Swedish electrical engineer Ernst Alexanderson who
patented the so-called magnetic amplifier, which provides gain by modulating
the inductance in an electric circuit.!! These amplifiers have been used in
transoceanic radio communication in the beginning of the twentieth century.
Since then other implementations of parametric amplifiers have appeared. In
the 1950s-1960s the varactor-based parametric amplifier was introduced. This
circuit offers low-noise performance in the microwave regime. It is based on a
variable reactance diode which is embedded in a resonant circuit, where it is
the capacitance of the varactor which is modulated in order to achieve gain.
In optics there also exist parametrically driven systems. One example is the
optical parametric oscillator which is based on the combination of a nonlinear
optical crystal and an optical cavity. A strong laser beam is used to modulate
the dielectric polarization of the crystal. This device is for instance used for
the generation of nonclassical states of light.

An everyday classic example of parametric oscillation is a child on a swing.
The swing acts as a pendulum, and its frequency depends on its length. If the
child periodically stands up and kneels down, the frequency gets modulated.
In this case the swing becomes a parametric oscillator. In order to amplify
the swing’s motion, it is needed that the child stands up when the swing
reaches its highest point and kneels down whenever the swing reaches its lowest
position. This means that the frequency of the child’s periodic motion is twice
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Figure 1.1: A child on a swing. The parametric oscillator is pumped by the periodic
motion of a child standing up and kneeling down. To amplify the swing’s motion the
pumping motion has to be done in such a way that the frequency is twice the swing’s
oscillation frequency and that the child kneels down when the swing is at its lowest
point and stands up when the swing reaches its highest point. The child can also
deamplify the motion by doing the opposite.

the oscillation frequency of the swing.

This thesis is centered around a number of experiments where we have
studied the interaction of such parametrically driven systems both with classical
signals as well as with the quantum mechanical vacuum. The experiments are
performed at very low temperatures and at microwave frequencies such that
kgT << hf.

In the first part of the thesis we look at the parametric interaction with the
vacuum. An interesting result of quantum theory is the existence of vacuum
fluctuations. These fluctuation can be thought of as the continuous creation and
annihilation of virtual particle-antiparticle pairs. Their momentary existence
is allowed by the Heisenberg uncertainty principle, even though their creation
and annihilation seems to violate the conservation of energy. The existence
of these fluctuations was first thought of as just a theoretical curiosity, but
has manifested itself in a number of observable effects such as spontaneous
emission of excited atoms and the Lamb shift.!? In 1970 is was predicted
that the parametric interaction of a boundary condition (a perfect moving
mirror) on the electromagnetic field and the vacuum could excite the virtual
particle pairs into existence, provided that the boundary condition changed at
relativistic speeds.!3 15 This was later coined the dynamical Casimir effect.!®

In Chapter 4 and in Paper A, I present the first experimental observation
of this effect, where we measured the produced broadband radiation in a
superconducting circuit where we modulated an electrical boundary condition,
rather than a real moving mirror. The modulation was achieved by means of a
superconducting quantum interference device (SQUID). We have also studied
the statistical properties of the radiation.

In a second part of the thesis I present experiments where we studied
parametric processes in another type of superconducting circuit. In this part
we will look at the interaction between the device and externally applied signals.
More specifically will we look at parametric amplification and intermode
conversion. Parametric amplification in superconducting circuits has received



considerable interest in recent years because of their promise of quantum-
limited noise performance. One possible implementation of such an amplifier
involves a superconducting resonator where the resonance frequency is made
tunable by embedding a variable inductance in the form of a SQUID in the
resonator. These SQUID based parametric amplifiers have proven to be very
successful. These devices have been used for quantum-limited measurements of
nanomechanical resonators,!” readout schemes for superconducting qubits!®-21
and quantum feedback,?? as well as for the generation and measurement of
nonclassical states of light.?3 Intermode conversion is another possibility in
these systems and has been used to put a single photon in a superposition of
two different frequencies.?* The effect has also been used for the parametric
coupling between cavities and measurement lines.2%:26

In Chapter 4 and in Paper C. I present measurements on parametric
amplification in a multimode superconducting resonator. I show that we can
have gain in a number of different pumping schemes. When using a single
mode, we pump the system at twice the mode frequency, whereas multimode
amplification requires pumping at the sum frequency of two of the modes. 1
show that we were able to get gain in all different modes and that we reach
quantum-limited noise performance. In Paper D, I present measurements
where we used frequency conversion in order to couple different modes of the
same resonator together. In this case the system is parametrically driven at
the difference frequency between two of the modes. The coupling strength is
proportional to the applied pump strength.

When a signal is applied to a parametric amplifier of half the pump fre-
quency, the gain will depend on the phase relation between the signal and the
applied pump. In terms of the child on the swing, we can understand this by
contemplating what would happen if the child bends through the knees when
the swing reaches the top, and stands up when the swing reaches the lowest
point. In that case the swing will be parametrically damped, until fully at rest.
The motion of the swing is deamplified. In Chapter 2 and Paper B, we present
a model which describes the parametrically driven SQUID, where the signal is
at half the pump frequency. The model introduces a new equivalent impedance
called the pumpistor. The exact impedance will depend on the phase between
the signal and the pump. The goal of the pumpistor is to provide a more
intuitive circuit-based picture of parametric amplification using a SQUID. The
more general case where the signal and pump are not related in frequency has
been treated elsewhere.?”

The last experiment I present is a demonstration of an on-chip Mach-
Zehnder interferometer. This type of interferometer is a well-known device
in the field of optics. It is a device in which a signal is split using a beam
splitter and fed into two different arms of the interferometer. At the other end
of the device the arms are recombined. The phase difference between the two
arms will then provide interference. These interferometers have been used, for
instance, to generate entangled radiation.?® In the experiments presented in
Chapter 4 and Paper E, we have made an on-chip microwave interferometer.
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The phase difference between the arms stems from two SQUIDs embedded in
the interferometer. We show that it is possible to get a significant reduction in
the transmission through the device, depending on the phase difference across
the SQUIDs.

The outline of the thesis is as follows: In Chapter 2, we introduce the theo-
retical background necessary to understand the results and the interpretation
of the different experiments. The derivation of the pumpistor model is also
included in this chapter. In Chapter 3 I describe the experimental techniques I
used throughout my measurements. I discuss the working principle of cryostats
and I give a detailed overview of the calibration methods used in Paper C in
order to prove the quantum-limited performance of the parametric amplifier.
In Chapter 4 I lift out the main findings of the different papers. I also include
some unpublished results to provide a little more background to the appended
papers. Finally in Chapter 5, I reiterate the main findings and provide and
outlook for future measurements and possible improvements.



2

Theory

2.1 Superconducting Circuits

Superconductivity was discovered in 1911 shortly after Helium was liquefied
for the first time. The discovery was made by Heike Kamerlingh Onnes when
he noticed that mercury looses all electrical resistivity when it is cooled below
a certain critical temperature.?? Adding impurities to the mercury did not
have any effect on the loss of resistance. The same effect was shortly after also
observed in a number of different materials such as lead and tin.

It took another 46 years, until 1957, before the first microscopic theory for
superconductivity was developed by Bardeen, Cooper and Schieffer.?® This
theory was called the BCS theory, and at the center of the theory is the
assumption that there exists an attractive force between the electrons. This
force is assumed to be mediated through the ion lattice, although the exact
source is not important for the implications of such a force. The result is
that electrons can overcome the Coulomb repulsion and pair up when the
temperature drops below a critical temperature. Such pairs of electrons are
called Cooper pairs and unlike single electrons these Cooper pairs are bosons.?!
This means that there is no Pauli exclusion principle, and condensation of the
Cooper pairs into a single quantum state is possible. This state is described
by the wave function ¥ = \/n_pew, where 6 denotes the superconducting phase
and where the amplitude is defined such that YU* = n_ is the density of
Cooper pairs.

P

2.1.1 The Josephson effect and SQUIDs

In 1962 B. Josephson theoretically predicted that a weak link between two
superconductors can still sustain a supercurrent made up of Cooper pairs albeit
one not as strong as the supercurrent in the bulk superconductors.?? In this
work the weak links are formed by tunnel junctions, where two superconducting
leads are separated by a thin insulating oxide barrier. They are referred to as
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Josephson junctions and are the main elements used in the superconducting
circuits described and studied in this thesis. The leads must be close enough
to each other such that the exponentially decaying wave function, describing
the center of mass motion of the Cooper pairs in each superconductor, overlap.
In this case the phase difference between the wave functions on each side of

the junction, ¢ = 6; — 6, will obey the following two relations:3
B\ do <I>O> 96
= (=) =X =(22) =X 2.1
(26) dt (27r ot (2.1)
I=1_sin(9), (2.2)

where we introduced ®, = h/2e as the magnetic flux quantum and I as the
critical current. These two Josephson effects describe the relation between the
voltage V' and the phase across a junction (AC Josephson effect, Eq. (2.1)) on
the one hand, and the current I through the junction and the phase difference
across the junction (DC Josephson effect, Eq. (2.2)) on the other hand. If
we have a constant phase ¢ across the junction, there will be a current given
by Eq. (2.2), without developing a voltage. The maximum value of this so
called supercurrent is +1.. The critical current,l. , of a Josephson junction
can be related to the normal state resistance Ry of the junction with the

Ambegaokar-Baratoff relation:33:34
T8 (T) A, (T)
I = 5C tanh sc
c 2eRy an ( ok T
TA,. (0)
dely A0 (2.3)

where 2A,. is the superconducting energy gap of the electrodes on either sides
of the junction.

In reality the temperature is finite, such that there will also be some
quasiparticle population in the superconductors. These quasiparticles can
tunnel trough the junction as well, giving rise to a resistance, which will be
in parallel with the ideal Josephson junction. As the junction consists of
superconducting leads, separated by only a thin oxide barrier, we also have to
take into account the capacitance. The full combination is called the RCSJ-
model, or the Resistively and Capacitively Shunted Junction model. It shows
that if we current bias the junctions that the dynamics are the same as that
of a particle confined to a tilted washboard potential, where the slope of the
washboard is set by the bias current.??

When we now assume a perfect Josephson element DC biased with a current
I, = I sin¢y < I, and we allow for small fluctuations around this current,
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we can derive the current-voltage relation as follows:

dl d 9
i I, cos (¢y,) dif =1 cos(¢,)V ((;;) (2.4)
(o)L dr_
V=(3) Temy @t = B (2.5)
@ 1
where L; = (2_7?_) W‘ (2.6)

Here we have used Eqgs. (2.1) and (2.2). We see that the ideal Josephson
junction acts as an inductor with an inductance equal to Lj. This inductance
is dependant on ¢ and thus on the bias current through the junction.

In all our experiments we use the Josephson junction in a SQUID geometry,
a superconducting loop, intersected with two junctions, see Fig. 2.1. In such
a geometry there will be a quantum interference between the supercurrents
running through each junction, where the phase difference between the junction
will be dependent on the magnetic flux. If we now take the line integral of the
superconducting phase over a contour around the ring, it is easy to understand
that the phase must have wrapped a multiple of 27 as we end up in the same
point:

C A
}ﬁve-dlz(eB—oAH/ ve.d1+(9D—90)+/ VO-dl = 2mn. (2.7)
B D

As we have chosen the contour to be deep within the superconducting material
(where the supercurrent density is zero), we can use V@ = —%A7 where A is
the magnetic vector potential. In the presence of the magnetic vector potential,
it is also necessary to redefine the phase difference across the junction as
¢ =0,—05— 2{ f12 A -dl, with the integral taken in the direction of the current.
We can then rewrite Eq. (2.7) as follows:

2¢ (B 2¢ [© 2¢ [P 2¢ A
27m:—¢1——/ A'dl——/ Aodl+¢2——/ A-dl——/ A -dl
h A h 5 h G h

D

:¢2_¢1_%?§ A-dl (2.8)

As the line integral of the magnetic vector potential around a closed contour
equals the magnetic flux through that contour, and when ignoring the multiples
of 2w, we get:
27 d
— ;= —. 2.9

¢2 ¢1 @0 ( )
The total current through the SQUID will now be the sum of the currents
through each junction:

Isq = c,l sin ¢1 + Ic,l sin ¢2- (210)
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ok @2 ).

Figure 2.1: The SQUID consisting of two Josephson junctions in parallel. (a) The
phase across the junction in the presence of a magnetic vector potential is defined as
¢p=0,—0,— % jf A -dl. (b) If we integrate the superconducting phase 6 around a
contour deep inside the superconductor (dashed line), we find that there is an quantum
interference between the supercurrent through each junctions which is described by

Gy — b1 = 27@-

®o

We can rewrite this equation using Eq. (2.9):

I, =I.,sin (¢1 + 2 @) + I, sin (¢2 + & ﬁ)

2
= (L1 + 1) sin (d)l 5 ¢2> cos <¢2 ; ¢>1>
— (Lo — I 5) cos <¢1 ;%) sin (¢’2 ¢1>

= (I, +I.,)sin ¢, cos ; — (I, —I.5) cos ¢, sin 7;)—(1),
0 0

(2.11)

where we have introduced ¢, = ¢1;¢2 as the phase difference across the SQUID.
When we maximize this with respect to the phase ¢, we see that the critical
current of the SQUID is:

2 TP
I oo(®) = \/(Iq1 —1I.5)" +4I, 1, cos? ((}T) (2.12)

0

For a symmetric SQUID (I, ; = I, = I.), Eq. (2.12) reduces to:

cos (g) ‘ . (2.13)
(%)

10

I (D) =2I

c,sq

We can then rewrite Eq. (2.11) as

I, (®,0,) =21

sq c

sin ¢. (2.14)
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/0,

Figure 2.2: The SQUID inductance is plotted versus external magnetic flux for a
Josephson junction with critical current I, = 1 nA. The inductance is periodic with
magnetic fluz and diverges at ® = (n + %)fbo, n being an integer Note that this is in
the small signal limit, ¢, << .

We can see that the SQUID acts as a single Josephson junction where the
critical current is controlled by the magnetic flux threading its loop. The
Josephson inductance of the SQUID becomes:

qu((bt (bb) =

() s
2w/ 21, ‘cos (%)‘COS (¢)

_ qu,O
B ‘cos (%)‘cos (bs) (2.15)

with Ly, o = (‘21)—7‘3) i I have plotted the SQUID inductance in Fig. 2.2 for
the small signal limit (¢, = 0).

2.1.2 Resonator

The resonators used in this work are distributed circuits. They consist of a A/4
coplanar waveguide (CPW) resonator. This circuit will have several resonances
and at frequencies close to a resonance frequency we can model the circuit as
a lumped element circuit. In this section I will derive an expression for the
reflection coefficient of the lumped element resonator and I will examine the
different coupling regimes for the resonator.

The resonator is modeled as the lumped element circuit presented in
Fig. 2.3(b). The lumped element parameters are coupled to the CPW parame-

11
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ters as follows:

d
C, = % (2.16)
8Lod
L, = Fg (2.17)
Z
R, = O(ff (2.18)

where C,, and L, are the capacitance and inductance per unit length, Zopw =
/Ly/Cy is the characteristic impedance of the CPW, ¢, describes the losses
per unit length, and d is the length of the resonator, see Fig. 2.3(a).3¢ The
internal loss in the resonator is represented with the real impedance R,. This
will give rise to the internal quality factor, Q. The coupling to the measurement
line, which has an impedance of Z;, leads to the external quality factor, Q°.
Close to the resonance frequency we can rewrite the model such that Z;, and
C, get rearranged into the new circuit elements, 2; and 6’; in parallel with
the rest of the circuit, see Fig. 2.3(c). These elements can be expressed in
terms of the coupling capacitor C, and the impedance of the measurement

line Z, ~ 502 when we are close to resonance as:3"
—~ C
C—— " __~cC (2.19)
¢ 14 w0222 ¢
~ 1+wiC2Z3 1
Zy = < ~ , 2.20
’ wyC2 2y wiC2 2, (220)

where the approximations assumes that wyZ,C, << 1, which is the case for
our resonators close to the resonance frequency. As C, = C, ends up in
parallel with C|, we have used that the angular resonance frequency w, =

1/\/L,C,o, = 1/y/L, (C, + C,). The quality factors are then:3®

N S (2.21)
L/ (G + C)

(C.+C)  (Ci+C N\ VI, ](C +Cy)
woZ,C2 C Z

C

Qi = wORrCtot = wORr (Cr + Cc) =

QR = wyZoCioy =

(2.22)

The total quality factor is then defined as 1/Q = 1/Q' + 1/Q°.
The response of the circuit is represented by the reflection coefficient I"

which is defined as follows:3®
Vo _ 4 -4
vt o Z.+ 27y

(2.23)

where V'~ and V' are the outgoing and incoming voltages respectively. From

12
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Z C ¢ Lyad

D

_— e e — — =

Figure 2.3: (a) Circuit model for a quarter-wavelength CPW transmission line
resonator. (b) Circuit model for a lumped element resonator. (c) Equivalent circuit
close to the resonance frequency.
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Fig. 2.3 we can derive the resonator impedance as:

1 1
Z, = - +
il + o 4w,

1 —w?L, (C, + C,) + iwk 220
B iwC, (1 —w?L,C,) — w2CC%. '

We can now substitute Eq. (2.24) into Eq. (2.23). We also use the definitions
for the internal and external quality factors, see Eqs. (2.21) and (2.22), and
the resonance frequency:

1-w?L, (C, +C

(1 iw (F = 2,C, (1 —w?L,C,))
1—-w?L, (C,+C, (1-22)

+
= "
+iw (F + 2,0, (1 —w?L,C,))
C,

- (2.25)

2 b
- ()i (g (2plal )

where we used that R, >> Z,. We now rewrite the expression for a small
detuning from the resonance frequency, w = wy + dw, with dw << w:

5w—i(2“Q‘2—;;5;+§5Qi)—1(2‘55, 2Qe+CCQ§Zon>
5“’”(525*5& gjg;)—l(z‘sé”x+2‘E”e—cf§fj(,)
5“"_@(262'_2“5)8):%_i<5_&)
5W_Z(2Q‘+2Q*) 2 —i(g+ o)

We can use Eq. (2.26) to fit the magnitude and the phase and three different
regimes can be recognized, see Fig. 2.4. When Q¢ > Q' the loss rate in the
resonator due to loss is larger than the coupling rate to the measurement line.
However, when Q° = @', we have the so-called critically coupled regime. When
this occurs the magnitude of the reflection coefficient drops to zero. Finally
when Q° < Q' we are in the overcoupled regime, meaning that the internal
losses are smaller than the coupling to the measurement line. This regime is
marked by the phase of the reflection coefficients which wraps a full 27 on
resonance and there is only a small magnitude response.

I =

(2.26)

2.1.3 Multimode coplanar waveguide resonator

In the previous section I analyzed the microwave response of a lumped element
resonator. This is an approximation for the response around resonance of
the coplanar waveguide resonators discussed in this thesis. Such a resonator

14
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Figure 2.4: The reflection coefficient T for the different coupling regimes. (a) The
underoupled regime, Q' < Q°. (b) The critically coupled resonator Q' = Q°. Notice
that the magnitude reaches down to zero at resonance. (c) The overcoupled regime
Q! > Q°. In this regime the phase of T wraps 360° on resonance. (d) T plotted in
the complex plane. When the resonator is overcoupled, I' will encircle the origin.
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basically consist of a coplanar waveguide (CPW) coupled to the measurement
setup through a coupling capacitor and terminated to ground at the other end
by means of a SQUID. Such a SQUID acts as a flux-tunable inductor, as we
discussed before, which will allow for frequency tuning of the resonator. As the
resonator is grounded in one end and open in the other, it is a A/4-resonator.
There will however be additional resonances at approximately all the odd
multiples of this first mode. In this section I will derive an expression for the
spectrum of the resonator, starting out from the Lagrangian of the circuit.
We give a representation of the \/4 CPW resonator in Fig. 2.5. Using this

representation and following the derivations found in Bourassa et al.3° and
Wallquist et al.*°, we start by writing down the Lagrangians for the different
parts of the circuit. The Lagrangian for the coupling capacitor at position
x = 0 is given by:

C, 2

- [ (0,6) = Vy(8)] (2.27)

where we introduce the flux notation ) (z,t) = ]joo V(x,t)dt. C, is the

L‘C:

c

C
coupling capacitance and V;(¢) is the voltage to the right of the coupling
capacitance. The Lagrangian for the SQUID at position x = d is given by:

Log = %1/}2 (d,t) + ﬁ (%)2005 (%@)
e g () [ ()

0o 2W¢(dt
> (=" ]

n=2
C
~ ;‘w? (d,t) — d(;))) (2.28)

where we Taylor expanded the cosine and neglected the higher order nonlinear-
ities and the constant term (as the latter does not add to the dynamics). In
this equation Cy, is the SQUID capacitance and L, (®), assuming the small
signal limit (¢, = 0 in Eq. (2.15)), is the SQUID inductance, which depends
on the external magnetic flux ®.

Finally the Lagrangian for the CPW is given by:

d
Lopw = /
0

where C,, and L, are the capacitance and inductance per unit length. The
CPW is superconducting and therefore we model it as a lossless transmission
line. The total Lagrangian is then simply:

C 2 [3T¢($»t)]2
94 (gc,t)—T dr, (2.29)

Liot = Lo, + Lepw + Log- (2.30)
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Figure 2.5: The \/4 coplanar waveguide resonator. The circuit consists of a CPW,
modeled by a distributed network of capacitors Cydx and inductors Loz, terminated
to ground with a SQUID at position x = d. The SQUID has a capacitance Cy, and
a fluz-dependent inductance L, (®). The coupling capacitor C is found at position
x = 0 and couples the CPW to the transmission line. The voltage at the input is
Vo(t).

As we are now interested in the normal modes of the resonator, we have to
solve the Euler-Lagrange equation of motion:

0Lt Iy
§:@<m@¢wwo_6w@w—“ (2.:31)

v=x,t

In the middle of the resonator Eq. (2.31) reduces to the standard wave equation:

12}. (z,t) = U12)3m¢ (z,t), (2.32)

which has a solution which is composed of traveling modes and is of the form:

=D b (B)uy(@). (2.33)

Note that v, = 1/4/LC} is the phase velocity of the waves in the CPW. At
the ends of the resonator, z = 0, d, we have the following boundary conditions:

qwmmmrq%w—i@wwmmmzo (2.34)

Gt + 0, (6 (@,0) |seg =0 (2.35)

o,

1
Ly (®)
We postulate that the mode envelope function u,, (x) is of the form:

U, (x) = A, sin (k,,x — ¢,,) (2.36)
where A,, is a mode-dependent normalization factor, k,, = w,,/v, is the

angular wave number of mode m, with w,,, the angular resonance frequency,
and ¢,, is the phase factor, which we can determine by substituting Eq. (2.33)

17
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into Eq. (2.34) and looking at the stationary solution (V(t) = 0):

Ak
Ccvf)Amk,?n sin ¢m = %()qum
0

—_

t = —
an G Cov2Loky,

1

m

Q

)

w.

S

Zc

)

: (2.37)
ZC‘PW

where Zo = 1/(iw,,C,) is the impedance of the coupling capacitor and
Zopw = V' Ly/Cy is the characteristic impedance of the (lossless) CPW.38
Note that ‘ZCC‘ >> |Zepw| such that ¢, ~ w/2. We can now go to the

dispersion equation for the cavity modes f,, by inserting Eq. (2.33) into
Eq. (2.35):

Ak, cos (b, d — ,,) _ [

Lo Ly (@)
—kp,d cot (ky,d — ¢,,) = —gszl (k,,d)® + Lio(‘fb)
k. dtan (k,,d) :_gsgl (k) + %7 with 6, = T
%tan (%) = —ggz (%)2 + |cos (%)‘ LLS(;C,Z’ (2.38)

where fp = wg/(2m) is the bare resonator frequency and Cyd and Lyd are
the total resonator capacitance and inductance, respectively. Note that we
explicitly broke out the flux dependence from the SQUID inductance. We also
used that k,,d = 7w,,/(2wg) = 7f,,/2fr-

Eq. (2.38) is a transcendental equation which cannot be solved analytically.
The graphical solution to Eq. (2.38) as well as the mode spectrum f,,(®) as
a function of magnetic flux is given in Fig. 2.6(a). The first mode f,(0) will
be approximately found at fg /(1 + v,/ |cos (7®/®y)|), with 7y = L, o/ Lod
the inductance participation ratio at zero flux, because of the small squid
capacitance and inductance compared to the resonator capacitance and induc-
tance. The first mode will tune to zero, when ® = ®,/2. The higher modes
are found at approximately f,,(0) =~ (2m + 1) f;(0) and they tune down to
fim(®o/2) = (2m) f,(0). This is also visible in the mode envelopes, which are
presented for the first three modes in Fig. 2.6(b).
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Figure 2.6: The multimode resonator. (a) The frequency of the first three modes of a
A/4 CPW resonator terminated to ground with an ideal SQUID as a function of the
normalized magnetic flur ®/® threading the SQUID. In this specific example the
bare resonator (neglecting the SQUID) has a fundamental mode at 1 GHz. The first
three (equidistant) modes of the bare resonator are denoted with the orange dashed
lines. Introducing the SQUID will introduce flux-tunability and make the spectrum
nonequidistant. The inductance participation ratio of SQUID vy = Ly, o/Lod = 2%
and its capacitance participation ratio can be neglected, which is typical for our devices.
The modes will tune from approzimately f,,(0) ~ (2m + 1) f,(0) at ®/P, =0 down
to fr(®o/2) = (2m) f,(0) at ®/P, = 0.5. (b) The mode envelopes of the first three
modes of the resonator for two different flux values. The coupling capacitor is found
at x = 0 and the SQUID at x = d. We see that the envelope does not quite reach
zero at x = d, which is due to the phase across the ideal SQUID. When tuning the
fluz to ®/®, = 0.5, the SQUID inductance becomes infinite, meaning that it will
essentially act as an open.
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2.2 Parametric Amplification

In this section we will look at the effect of modulating the SQUID inductance
periodically. The modulation is achieved by coupling an AC magnetic flux
pump, through the SQUID loop by means of an inductively coupled CPW in
the vicinity of the SQUID, so-called flux pumping. Such an amplifier which
uses a parametrically modulated SQUID is called a Josephson Parametric
amplifier (JPA). Note that it is also possible to modulate the SQUID using the
bias current through the SQUID, so-called current pumping, but this case will
not be treated in this thesis. It is possible to achieve parametric amplification,
when the frequency of the pump matches one of the resonance conditions in
the circuit. We can recognize two different cases for which we get amplification:
i) The case where the pump is at twice a mode frequency, so called single-mode
amplification, where any signal, in the vicinity of the mode being pump, will
get amplified, f, ~ 2 x f,,, ii) the multimode case, where the pump equals the
sum of two different modes, f, ~ f,, + f,,. In this case any signal which falls
in one of the pumped modes will be amplified.

The parametric amplification process will not only amplify a signal, but also
generate an idler, symmetrically around half the pump frequency, with respect
to the signal. For the multimode case, this means that if the signal f, ~ f,,,
that the idler will appear in the other mode, f; ~ f,. In the single-mode
case however both the idler and the signal will appear in the same mode
fs = f, = f;- Both of these processes involve three photons: a pump photon,
a signal photon and an idler photon, and are thus called three-wave mixing
processes. This has to be compared to four-wave mixing processes, involving
two pump photons, a signal photon and an idler photon. The current-pumped
JPA is an example of this.

When the signal occurs at exactly half the pump frequency then the idler
will occur at that same frequency, f; = f,/2 = f;. The signal and idler will
then interfere, where the interference condition is dependent on the pump
phase. This is so called phase-sensitive amplification (also called degenerate
amplification). However, when the signal is detuned from half the pump
frequency, f, # f,/2 # f; , then the idler can not interfere, which means that
the gain is phase-insensitive. This is so called nondegenerate amplification.
Note that the multimode case always provides nondegenerate amplification.
The minimally added noise, expressed in photon number, in this case will
follow the quantum limit:4!

1 1

where G is the gain of the parametric amplifier. This will tend to 0.5 added
noise photons when G goes to infinity. In the degenerate case however the
signal and the idler interfere to provide quadrature-dependent gain. This will
amplify one of the quadratures and deamplify the other one with the same
amount. Whichever quadrature is being amplified can be chosen by rotating
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Three-wave mixing

Four-wave mixing

Degenerate
amplification

(phase-sensitive)

fp:fs+fi7fs:fi
fp:2fS

2fp:fs+fi7 fs:fi
fp:fS

Nondegenerate

amplification

fp:fs+fi7 fs?éfi

2fp =ttt [ F i

(phase-insensitive)

Table 2.1: Comparing different ways of categorizing parametric amplification. In
three-wave mizing the signal and idler frequency add up to the pump frequency.
When the signal is at exactly half the pump frequency (degenerate amplification),
signal and idler will have the same frequency allowing them to interfere. This gives
phase-sensitive amplification. When the signal is not at half the pump frequency, the
idler ends up at a different frequency (nondegenerate amplification). In the four-wave
mizing case, the pump frequency is at half the sum of the signal and idler frequencies.
Degenerate amplification will in this case be problematic as signal, idler and pump
would all have the same frequency.

the phase between the signal and the pump. This regime allows for noiseless
amplification. We give an overview of the different regimes in Fig. 2.7. We
have also made a table, categorizing parametric amplification according to
their properties, see Table 2.1.

In the following two sections I will discuss the pumpistor model, presented
in Paper B, and a more general theory for parametric amplification. The
pumpistor provides a linearized circuit model for the flux-pumped SQUID,
providing an intuitive insight in terms of circuit analysis. In this thesis we
will derive the degenerate phase-sensitive operation scheme, but the pumpistor
model has been extended to the more general nondegenerate cases as well.2”
The more general theory will start from the equations of motion for the
amplitudes of the field in the resonator and we will derive expressions for the
gain for both the single-mode nondegenerate case and the multimode case.

2.2.1 Pumpistor

The goal of the pumpistor is to provide an analysis of the flux-pumped SQUID
in terms of an equivalent set of circuit elements. In this section we specifically
look at degenerate, phase-sensitive, parametric amplification, where the signal
is at exactly half the pump frequency so that the idler occurs at the same
frequency as the signal. As we saw before in Eq. (2.15), we know that the
SQUID acts as a nonlinear, tunable inductance. The inductance is flux-
modulated around a DC value ®p- with an AC-flux pump ®,, coupled
into the SQUID loop by means of a mutual inductance to a microwave line
nearby. In this case the SQUID can be separated into the standard Josephson
inductance, in parallel to a phase-sensitive impedance. The derivation follows
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f=2f
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Figure 2.7: The different fluz-pumped parametric amplification regimes. (a) Degener-
ate phase-sensitive parametric amplification, where f, ~2x f, and f, = f,/2 = f;,
we discuss this in Section 2.2.1. In this case the signal and idler interfere and the gain
is quadrature-dependent. (b) Nondegenerate single-mode parametric amplification,
with f, ~2x f,, and f, # f;. This is discussed in Section 2.2.2. (c) Nondegenerate
multimode parametric amplification, where f, = f,, + f,,. Any signal in mode m,
fo & fon, will be amplified and the idler will end up in mode n, f; ~ f,, or vice
versa, see Section 2.2.2.
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the one found in Paper B. We start by writing the equation for the current of
the symmetric SQUID, see Eq. (2.14), where we now insert the time-dependent
flux ®(t) = Py + Do cos (wyt +6,,):

7 |Ppc + Ppccos (w,t + 0
Ly = Ioa cos( [#pc A(EI) (o P”) sin (¢ (1)) . (2.40)
s
0 phase term

flux term

We can now Taylor expand the flux term around ®p which leads to:

7®,(t) )
I, o |cos B, ~ 1, o coS(F) — I o sin(F)df cos (wyt+6,), (2.41)
where I, = 21, is the SQUID critical current at zero DC flux. We also

introduced the normalized DC flux, F' = 7®p/®,, and AC flux amplitude,
0f = 7®@rc/Py. In a next step we assume the phase to be of the form
@4(t) = ¢y cos (wgt + ). We can insert this into the phase term of Eq. (2.40)
and perform a Fourier-Bessel expansion:*2

sin (¢ cos (wt + 6,)) = 2 Z )" a1 (dg) cos[(2n + 1) (wt + 6,)], (2.42)

where J,(¢,) is the Bessel function of the first kind. We can now multiply
Eqgs. (2.41) and (2.42) and get an approximation for the current through the
SQUID. We see that there are frequency mixing terms in the equation for
the SQUID current, and we only keep the terms I, _ at the signal frequency
ws = w,/2 The voltage across the SQUID and at the signal frequency, V,, , i
calculated by inserting ¢,(t) into the AC Josephson relation, see Eq. (2.1), and
only keeping the terms at the (positive) signal frequency, e“‘*’ . We can then
calculate the SQUID inductance at the signal frequency as:

V,

w,
L, = :
Wy -
©awgdy,

— (@0/277 csq) ¢
2J1(9,) cos(F) + 3 fsin(F) (=T, (¢,)e" % 2 + Jy (g, )’ 07 20:))
L

w, can be thought of as two inductive elements in parallel, see Fig. 2.8(a),
which are grouped by their DC-flux dependence:

. (2.43)

1 1 1
— = — 2.44
L + Ly’ ( )

Ws sq

where Josephson inductance, L, groups the terms with a cos(F) dependence:

1 2J4(0) cos(F)

= 7 (2.45)
qu qu,0¢s
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and where a new effective element called the pumpistor, Ly, groups the terms
with a sin(F') dependence:

1 8fsin(F) (=1 ()€l 20:) 4 Jy (¢, )ei(—0n202)) (2.46)
Lp qu,0¢s 7 .

where we defined L, o as in Eq. (2.15). We can now introduce the phase
difference Af = 26, — 6, and we get:

— LSCLO ¢s

Fsa = cos(F) [2J1(¢S)] (2.47)
B ez‘AG qu,o ¢s

Lp = §f sin(F) |:J3(¢S)ei2A9_J1(¢S) (2.48)

The inductance Eq. (2.47) reduces to the ordinary Josephson inductance,
Eq. (2.15), in the small signal limit. The pumpistor element, Eq. (2.48), shows
some interesting properties. The impedance of this element for a given pump
strength ¢ f will change with the phase difference Af. We have plotted Re [Lp]
and Im [Lp] as a function of Af in Fig. 2.8(b). For comparison we also plotted
Ly, For A =0, Lp will be negative and real, however when Af = 7, Lp will
be positive and real. In these cases Lp looks like a negative inductance and
positive inductance respectively. We see that at A0 = 0,7 that [Lp| >> L,
and as they add in parallel, Lp on presents a minor correction to the SQUID
inductance. When Af = 7/2,37/2, Lp will become imaginary. This means
that its impedance will be real. When Af = 7/2, the pumpistor inductance
will be imaginary and negative, meaning that its impedance, Zp = iwLp, is
positive and real such that it presents extra dissipation in the circuit. The most
interesting case however, is when Af = 37/2, then the pumpistor impedance
will be real and negative. In this case the pumpistor extracts energy from
the pump and injects it into the circuit at f,. The pumpistor presents thus
a circuit element whose behavior is periodic with A8 and can be controlled
by varying the pump phase. The model allows for a straightforward analysis
of any circuit which incorporates a SQUID, flux-pumped at twice the signal
frequency, by replacing the SQUID with the pumpistor element in the circuit
model. In Paper B, such an analysis is made for a A/4 reflection resonator,
terminated to ground with a SQUID. It is shown for degenerate parametric
amplification with f, = 2f;, that the phase dependence of the gain can be
fitted with the equivalent circuit model.

2.2.2 Nondegenerate phase-insensitive parametric
amplification

In this section we will analyze parametric amplification in the more general
sense. More specifically will we look at nondegenerate single mode amplification
and multimode amplification in a flux-pumped CPW resonator such as the one
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Figure 2.8: The pumpistor element. (a) The fluz-pumped SQUID can be approximated
as two inductive elements in parallel: the Josephson inductance L, (in red) and the
pumpistor Lp (in blue). The impedance of the latter is phase dependent. (b) The
phase dependence of the real and imaginary parts of L. At A =0 (A6 =), the
inductance Lp is real and negative (positive) . This means that it acts as a negative
(positive) inductance in parallel with L, plotted for comparison. The pumpistor
element will only be a minor correction on the Josephson inductance as |Lp| >> L.
When A6 = /2 however, Ly becomes imaginary and negative. This means that
its impedance, Zp = iwLp, will be real and positive and look thus as a resistance.
At this point the pumpistor will present extra loss. When AO = 37/2 however, Lp
becomes imaginary and positive. This means that its impedance look as a negative
resistance. At this point the pumpistor will be able to inject energy from the flux
pump to the signal frequency f,.
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found in Fig. 2.5. The formulas follow from the derivations found in Wustmann
and Shumeiko.*? for the single-mode case and have been extended for the
multimode case.** We will present the relevant formulas for the gain and discuss
the behavior of the amplifier in detail, when modulating the flux through the
SQUID around a DC flux bias ®p such that @, (t) = ®pe + Py cos (wpt).

Single-mode nondegenerate parametric amplification

We start out with the equation of motion for the intra-cavity field amplitude
A(t), in the case that the (angular) pump frequency w, is close twice to the
mode frequency of mode m and with an input field B(t). The equation of

motion in a rotating frame with frequency Wp /2 is then:
iA+0A+ €A +a,, |A? A+ile, = /2T B, (2.49)

where § = w,,/2—w,, is the pump detuning (in angular frequency) between half
the pump frequency and the mode frequency w,, = 27 f,, and I'S, = w,,,/2Q¢,
is the coupling rate of mode m to the transmission line. Note that internal
losses in the resonator are neglected. «,, is the Duffing parameter given by:

_ hcos(F) [wm cos2(k’md>]27 (2.50)

o, =
2’V/OEIL Mm(kmd)2

where ~, = LLS(‘)‘&O is the inductance participation ratio, Ey = (h/2¢)?(1/Lyd),

and M,, is the “Mass” of mode m given by:
sin(2k,,d) = 2C,

M _ =1 %9 cos? . 2.51
m + 2% d Cod cos®(k,,d) (2.51)

The effective pump strength in Eq. (2.49) is denoted by:

sin(F) w,), cos?(k,,d)

i 7 e (2.52)

We are now interested in the gain of a signal which is detuned by A =
ws—w,,/2 from half the pump frequency, by starting with an input signal B(t) =
B(A)e At 4 B(—A)e* ! and inserting it into the equation of motion, Eq. (2.49).
We will also assume that we are in the linear response regime (o, ~ 0) and

that we are below threshold (e < €,;, = /82 + I'¢,?) for parametric oscillations:

(6 FETT A ) (Aé((—Ai)) =V (B?((—AXQ B

m

or inversely:

( A(A) ): VTS, (5—A—iF$n —¢ ) ( B(A) ) (2.54)

A*(=A) D —e §+A+ire ) \ B (—A)

m
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2.2. PARAMETRIC AMPLIFICATION

where D = (T'¢, —iA)? 4 §% — €2, is the determinant of the matrix in Eq. (2.54).
We can now insert this result in the input-output relations:

(CC*((AA))) N (358&» * (7\/2\/?—1?) (Af((fi)) , (2.55)

and solve for the outgoing field C(t):

(?(@)) - % ((5_iF§i>;<;;62 n (5+i1“$2,f)1;%f<52 — 8) (BF((—AA)))

(2.56)
The signal power gain is now defined as G, = |C(A)|* /| B(A)]*:
4€Te 2
G.(8) =1+ . ;
4re ?A? 4 (I'e,? — A2 + 62 — €2)
4e2Te 2
=1+ € m (2.57)

AT 2A2 4+ (A2 4+ €2 — 2 )
whereas the idler gain G; = |C(—=A)|* /|B(A))* = G, — 1. The signal gain
has a peculiar structure. For small signal detunings 62 < €2 +T°¢,? it is single
peaked, with a maximum at A = 0. For larger detunings however, the gain
becomes smaller and double peaked.*? Close to threshold the gain function
can be approximated as a Lorentzian:

G(A)~lt — (2.58)

The bandwidth BW is now defined as:

e — th)

_(
BW = o (2.59)

The amplitude gain for zero detuning (A = 0) is then VG = ¢/(BW/2), such
that at the threshold, the gain-bandwidth product becomes:
VG -BW = 2¢,,. (2.60)

We have plotted the gain and the Lorentzian approximation in Fig. 2.9.

Multimode parametric amplification

In the case that the pump is on resonance with the sum of two modes,
W, = Wy, +w, + 24, we will have nondegenerate gain. A signal which falls in
one of the modes will be amplified, and as in the degenerate case, an idler
will be generated, but now it will end up in the other mode. The expression
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Figure 2.9: Phase-insensitive gain for single-mode parametric amplification. (a) The
gain in mode m as a function of normalized signal detuning A/T'S,, when the system
is pumped at w, = 2w,,,. The pump strength e = 0.851'7, and the pump detuning
6 = 0. The red dashed line shows the Lorentzian approximation of the gain peak.
(b) The gain in mode m as a function of normalized signal detuning AT, when
the system is pumped at w, = 2w,,, +26. The pump strength e = 0.5I'7,. We have
plotted the gain for three different pump detunings §. We see that at larger detunings
the gain becomes smaller and double peaked.
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2.2. PARAMETRIC AMPLIFICATION

for the gain can be derived in a similar way as for the single-mode case. The

equations of motion are however slightly modified:

iA +6A, +a,, A, PA, + 2 ana, |A, P A, + Al +iTe A = .\/2T¢ B,
—i A5 4+ 6A% + o, |A, P AL+ 2 /ana, A, P AL + €A, —il¢ A% = /2T B,

The Duffing parameters «,,, and «,, are defined as before, see Eq. (2.50). The
pump strength e is now redefined as:

sin(F) \/w,, cos(k,,d) \/w, cos(k,d)

270 V Mmkmd V Mnknd
Following a similar derivation as before and again in the linear response regime,
we now get the following expression for the gain as a function of the signal
detuning A = w, — (w,,, +9):

e=4f

(2.61)

4€2Te T
Gonn = Omn + 13 2 2 _ 22 e )2 7. (2:62)
(A - AO + e — 6th) + (Fm + Fn) (A - AO)
In this equation §,,,, is the Kronecker delta function, €, = /T'¢,T¢ + 62 — A,
is the threshold for parametric oscillations. A, is an asymmetry parameter
which takes the difference between the coupling rates I'j, and I, into account:

F% — F'(ren
I'e +Te,
For m = n Eq. (2.62) reduces to the single-mode result, Eq. (2.57). The
equation will also be double peaked for sufficiently large detunings, but now
the peaks are asymmetric in height, due to the difference in coupling rates.
Even for modest detunings the single peak will have an asymmetric shape.

Nevertheless, it is possible to make a Lorentzian approximation close to
threshold:

Ay =3 (2.63)

N 4e*xTe T¢
[A—Ag +2xAg (2 — fgh)]Q +x2 (0, +T5)% (2 — €?h)2 ’

(2.64)

-1
where x = [4A% +(I'e, + FZ)Q] . When we are at zero pump detuning, 6 = 0,
the bandwidth is now defined as:

BW = 2y(I'¢, +T¢)(e2 — ¢2). (2.65)

The peak amplitude gain, where A = 0, is then VG = 2e,/xT¢,T¢ /(BW/2).
e can now be replaced by e, which gives:

VG - BW = e,y /xS, TS (2.66)

It is possible to get a Lorentzian approximation and the gain-bandwith product
for the degenerate case by taking I'S, = I',. We have plotted the gain as a
function of the different detunings, as well as the Lorentzian approximations,
in Fig. 2.10
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Figure 2.10: Multimode gain. (a) The gain in mode m as a function of normalized
signal detuning A/T'S,, when the system is pumped at Wy, = W, +w,. The pump
strength € = 0.85,/I'¢. TS and the pump detuning 6 = 0. The red dashed line show the
Lorentzian approzimation of the gain peak. (b) The gain in mode m as a function of
normalized signal detuning A /T, , when the system is pumped at w, = w,, +w,, +296.
The pump strength € = 0.5,/I'¢. T'¢.. We have plotted the gain for three different
pump detunings 6. We see that at larger detunings, the gain becomes double peaked.
Note that the coupling rates for the different modes is different, I'S, ~ 0.4.T';,.
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2.3 Intermode conversion in a multimode
resonator

In this section we consider intermode conversion resulting from parametrically
driving a multimode resonator. The resonator I consider is very similar to the
one used in the parametric amplification section above and consists of a SQUID
terminated CPW resonator which is flux-pumped. Parametric amplification
occurs when the pump frequency is equal to either twice the frequency of
one of the modes, f, ~ 2 x f,, (single-mode amplification), or to the sum of
the frequencies of two of the modes, f, ~ f,, + f,, (multimode amplfication).
Intermode conversion on the other hand is possible when the pump frequency
is equal to the difference frequency between two modes, f, ~ f,, — f,, with
fn > fn- In parametric amplification there is an energy transfer from the
pump to both the signal and idler, providing gain. In intermode frequency
conversion however an excitation at the signal frequency will exchange energy
with the pump and be coherently transferred to the idler frequency and vice
versa. A continuous drive will cause the photons to oscillate between the modes
similar to Rabi oscillations for an atom. The result is an interaction where the
total number of photons at the signal and idler frequencies remain constant,
meaning that there is no power gain.

The derivation for the intermode conversion presented here follows the
work from Wustmann and Shumeiko but where the pump is now on resonance
with the difference between two of the modes w,, = w,, —w,, + 2§ (with ¢ as
before the angular pump detuning and w,, > w,,).** Any signal close to one
of the pumped modes will then be converted to the other mode. Similar to
the multimode case I start out from the equation of motion for the pumped
modes:

.4 2 2 .
ZA'HL - 6147" + a?rz |A'HL| Am + 2 V aman |A'7L| ATTL + eA’rL + ZF"LA"L = 2F$TLB7’H,
iA, 4+ 0A, +a, |A, P A, +2/aa, |A,|* A, +eA,, +il, A, =+/2I¢B,,

where A is the signal detuning from the coupled frequencies, w,, — ¢ and
w,, + d. The relation between the different detuning is shown in Fig. 2.11.
The Duffing parameters «,,, and «,, are defined as before, see Eq. (2.50). The
pump strength e is given by Eq. (2.61). Different from before is that we
now explicitly allow for internal loss. The external coupling rate is defined
as before, TS, = w,,/(2Q¢,), but I now also introduce the total damping
rate T, =TS, + T =w,. /(2Q,,). This includes the internal damping rate
rlm = wm/ (2Qin)

Similar to the derivation of the single-mode nondegenerate gain it is possible
to use the input-output relation to express the outgoing field C(t) as a function

of the incoming field B(t) in the linear response regime (a,,, = o,, = 0):

c | ACLArin,es) 2 /TRTE 5
= D D
(Cm)_ HYTLlL o 2T5(ALD, 0 (Bm)’ (2:67)
b D

n
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A w,=w -w +28

Figure 2.11: An overview of the different detunings for the intermode conversion. §
is the angular pump detuning from w,, — w,,, where w,, > w,,. The signal detuning,
A, is referred to the pumped frequencies w,, — 9 and w,, + 9.

We can now identify the reflection coefficient for modes m and n:

s - o (A—=0+i (DL, —T¢)) (A+5+4T,) — € (2.68)
"B, = (A—d0+4T,)(A+6+il,)—€ '

Gy (A=0+il,) (A+d+i(T}, —T%)) — €
S =B T Ao+l Aot e (269

The conversion between the modes is given by:

2ie/Te T
S :Cﬂzs —&: YV mon (2.70)

mn = B T B T (A—6+il, ) (A+o+il,) — e

n m

I have plotted the reflection coefficients and the conversion in , see Fig. 2.12.
It is possible to identify two distinct resonances in Eqs. (2.68) and (2.69)
when A = +4. Around mode m these resonances are found at w,, ;| = w,,
and w,, o = w,, — 24, whereas close to mode n these resonances are found
at w, 1 = w, +26 and w, » = w,,. Note that w,, ; equals w,, ; shifted by the
pump frequency, w,, ; = al)n,l — wp,, and that also w,, 5 equals w,, , shifted by
the pump frequency, w,, » = w, » —w,. The resonances w,, ; and w,, 5, and
the resonances w, ; and w, , are thus coupled by the pump, leading to the
new hybridized frequencies, see Fig. 2.12:

1

Wi = 5 (wm’l +wpo £ \/462 + (wm’l - wm)Q)z) (2.71)
1

Wy g = 3 (wml +wpo £ \/462 + (Wn71 — wn}2)2) . (2.72)

These can be rewritten as:

Wy =Wy, — 0 £ V2 + 62 (2.73)
Wpy =w, +0+Ve2 462 (2.74)

This shows that the minimum splitting is found when the pump detuning
0 = 0. At that point the splitting is equal to 2e.
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Figure 2.12: The magnitude response of the intermode conversion when pumping
the resonator at the difference frequency of modes m and n, with a pump strength
€ = 10T%,. (@) Sl = [Z2], (8) 1Sl = ||, () 1Sl = || and (d)
[Snl = |g—z|as a function of probe frequency and pump frequency. We see that the
magnitude at the mode where we send in a signal shows the largest dip when on
resonance, see panels (a) and (d). At those points we see that we get a mazimum
output in the other mode, see panels (b) and (c) respectively, showing that we have
frequency conversion there. The reflection coefficient contains two resonances when
A = +6. These resonances are shown as the dashed lines, where the red dashed line
is for A = 46 and the black dashed lines is for A = —§. When we turn on the pump
these resonances couple and hybridize into tow new resonances, marked by the full
red and black lines. The minimum splitting is reached when § = 0 and is equal to 2e.
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2.4 Dynamical Casimir Effect

2.4.1 Introduction

The Casimir force was first postulated in 1948 by the Dutch scientist H.
Casimir.*® It stated that their is an attractive force between two perfectly
conducting plates when they are brought into close proximity of one another,
even when in perfect vacuum, see Fig. 2.13(a). The effect, now called the
static Casimir effect, is a direct result from the quantized nature of the vacuum
field. Due to the Heisenberg uncertainty principle,*® the vacuum is not void
from energy, but has a so called zero-point energy. This energy is found as
so called vacuum fluctuations which can be understood as pairs of virtual
particles continuously flitting in and out of existence. As the plates pose now a
boundary condition on the vacuum modes, the number of modes able to exist
between the plates, when they are brought closely together, is smaller than the
number of modes available outside of the plates. This means that the amount
of vacuum fluctuations between the plates is lower than outside of the plates.
Due to this there will be a radiative pressure on the plates, pushing them
together. However, the forces generated are minute. Two plates of 1 m? held
at the width of a human hair (100 pm) only generates a force of approximately
13 pN between them. It took until 1997 for the first conclusive experimental
verification of the effect, when attractive force between a sphere and a plate,
held as close as 600 nm apart, was measured to within 5% of the theoretically
predicted value by S.K. Lamoreaux.”

In 1970, Gerald Moore predicted another effect which stems from the
interaction between the vacuum and a set of perfectly conducting mirrors that
make up a cavity.!® He stated that if one of the mirrors is oscillating, the
interaction between the mirror (to be more precise the boundary condition)
and the vacuum fluctuation is capable of exciting photons out of the vacuum,
see Fig. 2.13(b). The result was later generalized to the case of a single
mirror undergoing a nonuniform acceleration in vacuum.'®'. The effect
was only termed the dynamical Casimir effect (DCE) much later and there
exist still today some ambiguity about the definition.*®*° The excitations are
created due to a vacuum mode mismatch in time. As the mirror constitutes a
boundary condition on the vacuum modes, any movement of the mirror must
be accompanied with a change in the mode structure of the vacuum. Whenever
the velocity of the mirrors is small, the mode structure adapts adiabatically.
However, when the rate of change becomes appreciable to the speed of light, the
mode structure is unable to adjust and photons are excited non-adiabatically.
For the case of a single moving mirror the photon production rate has been
calculate by A. Lambrecht et al.:>°

N a2wf’) Wy, (1;)2
)

R Pz 2.
T 6mc2 67 (2.75)

c

where N is the number of photons produced in a frequency range form 0
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Action ‘ w,/2m ‘ a N/T ‘
~ 1.4 x 10~'%photons/s
Hand-waving mirror 1Hz lm ~ 10 photons in

the lifetime of the earth
~ 1.4 x 10~ "photons/s
~ 1 photon per 169 days
~ 1.15 x 10%photons/s
SQUID 10GHz | 0.5mm | ~ 145000 photons in the time
it takes to blink an eye

MEMS Oscillator 10 MHz 1pm

Table 2.2: DCE photon production N /T, where N is the number of photons produced
in a frequency range form 0 to w,, per unit time T'. For mechanical systems the
photon production rate is extremely low because the mazimum reachable velocity is
only a small fraction of the speed of light. The SQUID provides an electromagnetic
boundary condition, meaning that much larger speeds are possible. The speed of light
in the transmission line is also reduced to ~ 40 % of the speed of light in vacuum.

to w, per unit time 7". Note that this expression is valid for a double-sided
mirror (and has to be divided by two in the case of a single-sided mirror).
The trajectory of the mirror is given by acos(wpt), c is the speed of light and
v = wpa is the maximal velocity reached by the mirror. We see thus that
the photon production rate is proportional to the square of the ratio of the
maximum mirror velocity to the speed of light. This explains why it has been
so difficult to measure the DCE in mechanical systems, as it is unfeasible to
reach sufficiently high mirror velocities. We give some examples in Table 2.2.
In the results presented in Paper A, we overcome this difficulty by modulating
an effective length rather than a physical object.

There are a number of other effects which stem for the interaction with
vacuum fluctuation and which are related to the DCE, namely parametric
amplification of vacuum fluctuations,® the Unruh effect,®? and Hawking
radiation,?®?* see Fig. 2.14. 1 will briefly touch upon these other affects and
explain their relation to the DCE in a conceptual manner. For a nice review I
can recommend the paper by P.D. Nation et al..’® The relation between the
DCE and parametric amplification of the vacuum has also been treated in
another paper.®S

Parametric amplification of vacuum fluctuation and the DCE are closely
related and the exact differences between the two effects are still debated.
Both effects will excite photons out of the vacuum, by modulating the mode
structure of the vacuum in a non-adiabatic way. We distinguish two different
methods of modulating the mode structure. In the original proposals, the
position of a mirror was modulated, which is the modulation of a boundary
condition on the mode structure. I assume a boundary condition to be much
smaller than the wavelength. Another option is the modulation of a bulk
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(a) (b)

F=

—> <« >

Figure 2.13: The static and dynamical Casmir effect. (a) The static Casmir effect is
described as the attractive force between two plates when they are held closely together.
This is due to a spatial mismatch in the mode structure of the vacuum. (b) The
dynamical Casimir effect is the excitation of vacuum fluctuations out of the vacuum
due to a mismatch of the mode structure of the vacuum in time. The case shown
here is a cavity where one of the mirror is oscillating.

property of the nonlinear medium, essentially modulating the speed of light.
This has been done in superconducting circuits by the flux-modulation of a
Josphson metamaterial in a cavity setup.’” In quantum optics it is often the
polarization of an optical nonlinear crystal which is modulated, such as in an
optical parametric oscillator (OPO). Another way of categorizing these effects
is by the use of a resonant cavity or not. The shape of the spectrum of the
produced radiation will depend strongly on the presence of such a cavity. In
a cavity setup the quality factor of the cavity will now reshape the output
spectrum of the generated photons to a peaked spectrum whose shape depends
on the detuning between the cavity and half the pump frequency. In the case
that the pump is on resonance with twice the cavity frequency, the spectrum
will exhibit a single peak centered at half the pump frequency. A detuning
will make the spectrum double peaked. In the absence of a cavity, such as in
the single mirror setup, there will be broadband photon generation instead,
which is parabolic of shape and centered around half the pump frequency.
We have categorized some experimental implementations in Table 2.3. In all
cases shown in Table 2.3, the process will produce photons in correlated pairs
(due to down-conversion from the pump) and this means that the spectrum
will exhibit two-mode squeezing (TMS). I will discuss the properties of TMS
more in detail below, but one important attribute is that if one measures the
statistics of only one of the two-mode squeezed modes, that mode will appear
to be in a thermal state.

The Unruh effect on the other hand states that a continuously accelerating
observer, will observe the quantum vacuum as a thermal state, with a tempera-
ture proportional to his acceleration. This is because if we convert the vacuum
modes from the inertial reference frame to the accelerating reference frame
of the observer that each vacuum mode is rewritten as a two-mode squeezed
state, where the two modes are lying on the opposite sides of the event horizon.
This means that the observer is only able to sample one of the modes (the
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Figure 2.14: An illustration of interaction with the vacuum. (a) Parametric am-
plification of vacuum fluctuations occurs in a resonant setup. Represented here is
the case where one of the mirror of a cavity is modulated, generating two-mode
squeezed radiation (depicted with the blue and red arrows). These modes share strong
correlations of their noise properties. The spectrum is peaked and enhanced by the
quality factor of the cavity. (b) The DCE in the single-mirror setup also generates
two-mode squeezed radiation. The output spectrum is now parabolic in shape and
has a mazimum at half the oscillation frequency. (c) The Unruh effect is where a
continuously accelerating observer (depicted here by the black arrow) will observe the
inertial vacuum as a thermal state in his reference frame. This is because each vacuum
mode in the inertial frame will be a two-mode squeezed state in the observer’s frame,
where one of the two modes lies on the other side of the event horizon (red dashed
lines) in a part of space-time which is out of causal contact with the observer (grey
area). This means that the observer only has access to one mode which then appears
as a thermal state, with a temperature proportional to the acceleration. (d) Hawking
radiation is the black body radiation of a black hole. This occurs because virtual
particle-antiparticle pairs which are formed everywhere (depicted by the connected
dots) can have one of the particles appear across the event horizon of the black hole
(red dashed line) before they can annihilate. This leaves the remaining particle free to
reach an observer at infinity. As the modes of the virtual pair which was excited are
also two-mode squeezed, and only one of the two is observable, the radiation will look
thermal with a temperature proportional to the surface gravity of the black hole.
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Open space Cavity Setup
Modulated SQUID terminated Flux-pumped JPA
boundary transmission line! Thin Crystal OPO?®
Modulated Spontaneous parametric | Josephson metamaterial®”
speed of light down-conversion general OPO

Table 2.3: Comparing different implementations which provide parametric amplifica-
tion of vacuum fluctuation. The experimental observation of the DCE described in
this thesis uses a SQUID terminated transmission line.

one on his side of the event horizon). Just as we explained above, that mode
(which is part of a two-mode squeezed pair of modes) will now appear to be in
a thermal state.

Finally Hawking radiation is also connected to the DCE in a similar way.
Hawking radiation is the thermal blackbody radiation which is measured by an
observer at infinity, when looking at a black hole. The temperature measured
will now be proportional to the surface gravity of the black hole. A toy model
to explain Hawking radiation uses the virtual particle pair interpretation of
quantum vacuum fluctuation. A virtual photon pair close to the event horizon
of a black hole has a chance that one the virtual photons will be trapped in the
black hole, before they can annihilate again. In that case the remaining photon
will be free to reach the observer. As the photons were initially two-mode
squeezed, the radiation reaching the observer will now appear again as a
thermal stated.

2.4.2 SQUID as tunable boundary condition

In the measurements presented in the Paper A, we have a system which
reproducing the single-mirror DCE. The system consists of a CPW transmission
line which is terminated to ground by a SQUID. The SQUID will have an
inductance, which is modulated by an external magnetic flux. The SQUID
poses a boundary condition on the vacuum modes similar to Eq. (2.35). By
inserting the proper equation for the wave function in terms of input and
output operators (and neglecting the term proportional to Cy,) it is possible
to map the SQUID inductance to an effective length L, (®):%
L. (D)

Lug(e) = 2242, .70

where L, (®) is the flux dependent SQUID inductance and Ly is the inductance
per unit length of the CPW, see Fig. 2.15. It is now easy to understand that
periodically modulating the flux through the SQUID around a DC value, allows
us to periodically modulate the effective length, thereby virtually moving the
point at which the transmission line is shorted. As we are not changing a
physical length the maximum velocities that can be reached are much higher
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by means of the external magnetic flur we change the phase difference across the
SQUID (purple square). The colored lines is the voltage envelope for three different
flux values. We can convert this modulation of inductance to an effective length
modulation by dividing the change in inductance by the inductance per unit length of

the CPW transmission line.
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than in mechanical systems, and can in fact reach an appreciable fraction of

the speed of light. For a small-amplitude harmonic modulation of the effective

length, 6L, the output photon flux density can then be calculated to be:>%:59

2
nott = pit 4 (—5563) w |w, — Wl ﬁfjlp,w—f-
) (2.77)
oL
(,U—:ff> w(wp—w)@ [wp—w] )

where 7} = 1/ [exp (hw/kgT) — 1] is the thermal input field, v, is the phase
velocity in the CPW (the speed of light), w,, is the pump frequency and ©
denotes the Heaviside Step function. In our CPW transmission lines v, is
~ 40 % of the speed of light in vacuum. The first term in this equation is the
reflection of the thermal input field. The second therm is the up-conversion of
the thermal input field to the pump frequency and the last term is the DCE
radiation. If we integrate the DCE part over frequency from zero to the pump
frequency w,, we recover Eq. (2.75) (actually with a factor of 1/2, because we

have a single-sided mirror). We plot the result of Eq. (2.77) in Fig. 2.16

2.4.3 Two-mode squeezing and second-order coherence

The photons in the DCE are created in pairs such that their frequencies add
up to the pump frequency. This is reflected in the parabolic spectrum which
is symmetric around w,, /2. Two photon processes are know to generate a
two-mode squeezed state, which in this case means that there are strong
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Figure 2.16: The output photon fluxr density of a pumped SQUID at the end of a
CPW transmission line. The blue line denotes the thermal contribution, with the
reflection of the thermal input field at low frequencies and the upconverted thermal
noise to the pump frequency (first term and second term in Eq. (2.75) respectively).
The red parabola denotes the DCE radiation (third term in Eq. (2.75)). The green
line is the then the total output amount of output photons per Hertz bandwidth and
per second.

correlations between the photons symmetric around half the pump frequency.
The two-mode squeezing is theoretically treated by Caves and SchumakerS°.

The two-mode squeezing can be expressed in terms of the quadrature
voltages at the two sidebands (I, ,Q, at the upper sideband and I_,Q_ at
the lower sideband), which are the quantities we measure experimentally. The
two-mode squeezing is defined in terms of these quantities as:

_ L) —(Q.Q)
09 = P 5

avg

(2.78)

where () stands for the mean and P,,, is the total averaged power in the two
sidebands:

Pag = 5 (1) +(12) + (@) +(Q2) (279

Note that Eq. (2.78) assumes that a proper angle has been chosen, such that
(I,Q_) = (I_Q,) = 0. Furthermore the specific structure of the two-mode
squeezing requires that (I, I ) = —(Q,.Q_) and that (I, Q_) = (I_Q,). It is
important to realize that the individual sidebands remain unsqueezed, which
is quantified by their single-mode squeezing;:

@)
L)+ (@)

This means that each individual sideband will appear as a thermal state. An
overview of the different squeezing parameters can be found in Fig. 2.17.
Finally I introduce another statistical property of the radiation. Because
DCE photons are created pairwise, the output radiation should also exhibit pho-
ton number correlations between the symmetrically offset frequencies around

(2.80)
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Figure 2.17: Noise quadrature squeezing. (a) Single-mode squeezing manifests itself
as a difference in the noise of the different quadratures of a single mode. The noise in
one quadrature will be suppressed whereas the noise in the other gets equally larger. (b)
Two-mode squeezing will keep the individual modes at the upper and lower sidebands
unsqueezed (top two panels). There will however be strong correlations between the
noise of the two modes. In two-mode squeezed radiation (I, I_) = —(Q,Q_), whereas

<I+Q—> = <I—Q+>'

half the pump, w,/2 — dw and w,/2 + dw, where dw < w,/2. In the time-
domain this meas that the radiation should exhibit photon-bunching. This
is because the probability to detect two photons simultaneously, one at each
symmetrically offset frequency, is the same as the probability to detect just one
photon (in the absence of noise). These correlations are expressed using the
normalized second-order correlation function, gfl (7). We can express g(fl (1)
in terms of the measured powers as:%6:61

4 () =1 4 PP+ 1) — (P (1) (P(t+7))
- (P () = (P4 (1)) ((P_(1)) = (Px,—(1)))’

where 7 is the time delay between the detectors, P, = Ii + Qi is the output
power measured at the symmetric offset frequencies, w, /2 + 0w and Py , is
the output power at those frequencies when the pump is turned off, such that
we measure just the amplifier noise.

(2.81)

2.5 On-chip Mach-Zehnder interferometer

The Mach-Zehnder interferometer is a device which was proposed by Ludwig
Zehnder in 1891 and improved by Ludwig Mach in 1892.92:63 Tt is a relatively
simple device which allows for the measurement of the relative phase shift
between the light traveling in two paths. To do so the light interferes by
division-of-amplitude. Note that this is different from interference by the
division-of-wavefront, such as in Young-s double slit experiment, where it is
also the relative phase difference between two paths which is measured.%*
The working principle of the Mach-Zehnder interferometer is explained in
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Fig. 2.18(a). We analyze the case where the path lengths are equal and where
the additional phase shift ¢ in the bottom path is 0. The collimated light
from the source falls onto a 50/50 beamsplitter, A. When following the upper
arm, it then reflects of mirror B’ and falls onto beamsplitter C. At this point,
the phase of the light has picked up a phase 27 (a 7 shift for each reflection
at A and B’), where we neglect the phase due to the path length as this is
the same for both arms. The light following the bottom path goes straight
through beamsplitter A, and reflects of mirror C, picking up a phase shift of 7
(again neglecting the path length phase). When we now look at the light going
to detector 1, then the light form the top arm goes through the beamsplitter,
meaning that the total additional phase remains 27. The light from the bottom
arm makes an addition reflection and picks up an additional 7, such that the
light from both arms constructively interferes (the light picked up a phase of
27 in both arms). The situation for detector 2 is different as the light reaching
detector 2 from the bottom arm retains it 7 phase shift, whereas the light
from the upper arm retains it 27 phase shift. This is because the reflection
of the glass-dielectric interface does not pick up an additional 7. This means
that the light from both arms has a phase difference of 7, causing destructive
interference. Any additional phase shift ¢ in the bottom arm will now change
the interference conditions at both detectors allowing to measure the phase
difference.

The device found in the Paper E is a Mach-Zehnder-type on-chip inter-
ferometer, which works at microwave frequencies, see Fig. 2.18(b). In this
device a signal is split equally using an on-chip power splitter. Half of the
signal is sent down a fixed length arm, where the length of the arm has been
designed such that the phase shift in this arm is 7 for the frequency of interest.
The upper arm contains a SQUID (or actually two SQUIDs in series). The
inductance of the SQUIDs of the SQUID can be tuned, such that the phase
shift in the upper arm can be changed.

The power splitters/combiners used on the chip have been designed such
that they divide the power equally between the two arms. The choice was
made to use a loss-less, non-resonant design, which minimizes the reflections
at the input and output ports. This means that the splitter/combiner can
not be matched at all three ports. This is because three-port networks can
never be made loss-less, reciprocal and matched at the same time (one of these
has to be sacrificed for the others). To match the 50 input line, the arms
of the interferometer have been designed to have a characteristic impedance
Zopw = VLg/Cy = 100Q2. When the lines recombine at the output of
the interferometer there will however be reflections as each arm will see the
other arm (100€2) in parallel with the output line (50€2), which looks like
an impedance of 33.33€). This results in a reflection coefficient I' = —0.5,
see Eq. (2.23). The reflections at the power combiner will lead to additional
resonances.
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Source

Source

Figure 2.18: The Mach-Zehnder interferometer. (a) The optical Mach-Zehnder
interferometer allows for a measurement of the phase shift ¢ between the two arms by
measuring the output of the two detectors. The light is split with a 50/50 beamsplitter
(labeled A) before it reflects of the mirrors B and B’ The light is then sent through
a second beamsplitter C. (b) The on-chip Mach-Zehnder interferometer. In this
setup the incoming signal is split using a power splitter. The bottom arm of the
interferometer is designed to have a phase shift of 7 at the frequency of interest. The
phase shift in the top arm depends on the flux tunable SQUID inductance in that arm.
The two arms are recombined in another power splitter, allowing for interference
between the arms.
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Experimental techniques

A variety of different techniques are used, both during the fabrication of the
samples as well as for the measurements performed on the samples. In the first
section of this chapter I describe three key processes used in the fabrication of
the samples. The detailed recipes can be found in Appendix A. In the second
section I describe the working principle behind the dilution refrigerator and
pulse tube coolers used to cool the samples down to their working temperature
of 10mK. T also give some pointers on how to design a microwave measurement
setup. Finally in the last section I give a detailed explanation of the noise
calibrations which were performed in some of the measurements.

3.1 Sample fabrication

The samples in this thesis are fabricated in the cleanroom of the MC2 de-
partment at Chalmers. This facility is a state-of-the-art cleanroom with a
total floor space of 1240 m? divided into a class 10-100 and a class 1000-10000
section. A wide range of lithography equipment, evaporators, sputtering ma-
chines and characterization tools are available to the users. The samples are
made on intrinsic silicon wafers using the techniques described below. The
detailed fabrication recipes for the samples used in this thesis can be found in
Appendix A.

3.1.1 Photolithography

Photolithography is used to make structures down to approximately 1pm.
Smaller feature sizes are technically possible, but alignment becomes progres-
sively harder and more advanced equipment is needed. In a photolithographic
process a pattern is transferred from a so called photomask onto a photosen-
sitive resist film on the wafer by means of UV light, see Fig. 3.1. First the
resist is spin-coated onto the wafer with a spinner. The thickness of the film is
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tailored, by choosing the appropriate rotation speed and duration. It has to
be chosen such that the film is robust enough for processing, while still being
thin enough to achieve the desired resolution. After this, the wafer is baked to
stabilize the resist layer. The pattern, which needs to be transferred, has first
been written onto a photomask by means of electron-beam lithography. I used
soda-lime masks, with a chromium pattern deposited onto it. The transfer of
the pattern is done with a mask aligner. This device contains a stage which can
be used to carefully align the wafer with the mask, after which the resist can
be exposed by the UV light of an Hg lamp. The resist is a polymer which will
be modified by the UV light, after which it becomes more (positive resist) or
less (negative resist) soluble in a chemical called the developer. The developer
will thus remove the exposed parts of the resist for a positive resist and the
unexposed parts when a negative resist is used. After these steps the pattern
(or the inverted pattern) is transferred onto the resist, where it can be used
for further processing.

In my sample designs I have used a variation on this technique, where
two resists are deposited on top of each other. The top resist (S1813) is
used for patterning, as described above. The bottom resist (LOR3B) is a
so-called lift-off resist. It will also dissolve during the developing step, but at
a larger rate than the top resist, creating an undercut, see Fig. 3.1(d-f). After
development a thin layer of metal is deposited onto the wafer, and then the
resist is stripped off the wafer with a solvent called the remover. This process
will take off the metal which was deposited onto the resist layer, leaving the
metal on the waver behind. The undercut will help facilitate lift-off, because
it causes the metal deposited onto the wafer surface and the metal deposited
onto the resist to disconnect.

3.1.2 Electron-beam lithography

The smaller features in my design were fabricated with electron-beam lithogra-
phy. This techniques allows for much smaller feature sizes (with a spot size
down to 4nm for the JEOL JBX-9300FS system installed in the Chalmers
cleanroom) and larger flexibility, as no separate mask need to be fabricated.
The process is very similar to photolithography, but instead of exposing the
resist with UV light, the resist gets exposed by the electron beam. The beam
uses an acceleration voltage of 100 kV and can be positioned and focused to
the desired position on the wafer using a set of electrostatic and magnetic
“lenses”. The resist (ZEP-520A) is exposed with a dose of 150 1C cm 2. The
writing process is divided into to different steps during which a different spot
size and current is used. The larger parts are written with a relatively large
spot size and a current of 70nA. The structure where a better resolution is
needed, use a small spot size and a current of 2nA is used. Given that we
need to reach a fixed dose, it is easy to understand that the smaller current
and step size will be slower to write, so the pattern has to be divided properly
in order to minimize the total write time.
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Figure 3.1: Cross-sectional view of the photolithography lift-off process. (a) Two
layers of resist are deposited, a layer of lift-off resist (yellow) and a layer of photoresist
(green). (b) A Chromium mask is used to selectively expose the resist. (c) The exposed
resist now has the pattern transferred onto it. (d) The developer dissolves the exposed
resist because a positive resist is used. The bottom resist dissolves at a larger rate
creating an undercut. (e) Metal is evaporated on the wafer. (f) The remaining resist
is stripped using a remover to lift-off the excess metal. The final remaining structure
is the copy of the photomask because we used a positive resist and a lift-off process.
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We also have to take care of the proximity effect which will limit the
achievable resolution by partially exposing unwanted areas near the edges of
the pattern due to electron backscattering. Conversely parts in the middle of
the pattern will receive a larger than expected dose due to the accumulated
electron backscattering of the regions around it. These effects are mitigated by
dividing the pattern into a grid and using a script (PROXECCO) to vary the
deposited dose for each grid element, such that the proximity effect is correctly
accounted for.%®> After the exposure step, processing is very similar as for
photolithography, with a development step and further processing consisting
of deposition or etching steps.

3.1.3 Two-angle evaporation

The experiments in this thesis depend strongly on the Josephson junction,
as discussed in the previous chapter. The Josephson junction is a weak
link between two superconductors. We use a technique called the two-angle
evaporation (also known as shadow evaporation or Dolan bridge technique) to
fabricate Josephson junctions, and by extension SQUIDs.% It is a variation of
the lift-off process described before and is shown in Fig. 3.2. We start with a
double resist layer as before and we use electron-beam lithography to expose
the desired pattern. The pattern will now contain narrow lines in the top resist,
which after development will be free hanging due to the large undercut. In the
next step we evaporate the first metal layer (aluminium in my case) under an
angle. This will have as a result that the free hanging bridges create a shadow
which is offset from the original pattern. The aluminium is then exposed to
oxygen, such that an oxide layer, covering the aluminium, is formed. We then
evaporate aluminium under the opposite angle, displacing the pattern in the
opposite direction. Finally the resist is removed and the unwanted metal is
lifted off. In Fig. 3.2(h), we see a blowup of the junction itself. We can see
that there is an overlap between the two metal layers, with a layer of oxide
between the two. By varying the angle of evaporation and the height of the
bottom resist we can control the overlap of the junctions and thus also their
area. The oxidation parameters can in addition to the area be used to adjust
the junction resistance. Note that the size of the SQUID loop will also depend
on the evaporation angle and the pattern has to be adjusted accordingly. Care
has to be taken such that the evaporation angle isn’t too large for a given
undercut, avoiding that metal is evaporated on the sidewalls of the bottom
resist.
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Figure 3.2: Cross-sectional view of the electron-beam lithography and two-angle
evaporation process. (a) Two layers of resist are deposited, a layer of lift-off resist
(yellow) and a layer of photoresist (dark green). (b) The pattern is written using a
focused beam of electrons. (c) The exposed resist now has the pattern transferred onto
it. (d) The developer dissolves the exposed positive resist. The bottom resist dissolves
at a larger rate creating an undercut. (e) Aluminium is evaporated on the wafer using
a positive angle (marked by the arrow). (f) The aluminium is ozidized (red layer).
(9) The second layer of alumium is evaporated using a negative angle (marked by the
arrow), creating an overlap. (h) The remaining resist is stripped using a remover to
lift-off the excess metal. The blow up shows the Josephson junction, formed by the
two aluminium layers separated by the oxide.

49



3. EXPERIMENTAL TECHNIQUES

3.2 Measurement techniques

3.2.1 Cryogenics
Dilution Cryostat

All the measurements presented in this thesis are performed at cryogenic
temperatures. The sample is typically cooled to approximately 10 to 50 mK.
A dilution cryostat is used to achieve these low temperatures. The cooling
process in a dilution cryostat is based on the phase separation which occurs
in a 3He/*He-mixture, when it is cooled down below 0.7 K, see Fig. 3.3.97
This phase separation divides the liquid in a nearly pure 3He-phase (the
concentrated phase) and a denser *He-poor phase (the dilute phase) that
consists of 6.6% 3He and 93.4% “He at 0K. The two phases behave similar
as oil on water, with the concentrated phase “floating” on top of the dilute
phase. The cooling process happens in the mixing chamber, by “evaporation’
of 3He across the phase boundary from the concentrated phase into the dilute
phase. This process is driven by the continuous removal of 3He from the dilute
phase, by means of a distillation process, occurring in the still. The still is
connected to the dilute phase in the mixing chamber by a small tube. The still
is electrically heated to around 0.7 K and because of the much larger vapor
pressure of 3He to *He mostly >He will evaporate from the still. This will
disturb the concentration balance in the dilute phase and *He will be forced
to cross the phase boundary, to replenish the *He removed from the still. To
ensure the continuity of the cooling process we have to replace the 3He in the
concentrated phase. This is done by circulating the *He which is removed
at the still, to the cryostat. The gas is first cooled to around 4 K and then
reliquefied by either a *He bath and a 1K pot (in a wet cryostat) or by a
pulse-tube cryocooler (in a dry cryostat). It is then cooled further on its way
down to the mixing chamber by heat exchangers at the different temperature
stages. At the still a flow impedance is installed in the He down line in order
for the 3He pressure to be high enough for condensing.

The primary cooling of the reintroduced *He gas is thus achieved by a 1K
pot in a wet cryostat. This works by the evaporative cooling of *He. The *He
is funneled into the 1K pot from the surrounding *He bath and then a pump
is used to lower the pressure and achieve the forced evaporation. The flow into
the 1K pot is controlled by means of a needle valve. The sample and dilution
unit are isolated from the environment by the surrounding bath of *He and
the inner vacuum chamber (IVC).

)

Pulse tube cryocooler

In a dry cryostat the primary cooling comes is provided by a pulse tube
cryocooler, see Fig. 3.4.%%9 The working principle of a cryocooler is explained
in Fig. 3.4(a) and is based on the adiabatic compression and expansion of *He.
A pulse tube consists of a number of different parts. From left to right we
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Figure 3.3: The dilution cryostat. Our experiments are performed at approxrimately
10mK. In order to achieve these temperatures a 3 He/* He-mizture is circulated in
a closed loop in the dilution unit. The circulation works as follows. In the still,
3 He is pumped out of the dilute phase in a distillation process. This will disturb the
concentration balance in the dilute phase and force 3 He to cross from the concentrated-
to the dilute phase in the mizing chamber. This “evaporation” across the phase
boundary costs energy and provides thus cooling power at the mixing chamber. The
3 He which is pumped out at the still is then circulated as gas at the other side
of the dilution unit. In a wet cryostat the gas is first cooled by the *He bath and
then recondensed in the 1K pot. The liquid 3 He is then cooled further using heat
exchangers before it reaches the mizing chamber again. A flow impedance is installed
at the still to ensure that the 2 He pressure is high enough for condensing. The cooling
power at the 1 K pot is the result of the evaporative cooling of * He which is funneled
out of the surrounding bath. The flow is controlled by means of a needle valve. The
dilution unit is isolated from the bath by the inner vacuum chamber (IVC).
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have a warm heat exchanger (X;), a regenerator, a cold heat exchanger (X,),
a thermally isolated tube, called the pulse tube, another warm heat exchanger
(X3), an orifice, and a buffer tank. The system is driven by oscillating the
pressure (P, ..) at the warm side of the regenerator. This can either be done by
a moving piston or by a rotating valve which connects the system alternatingly
between the high and low pressure side of a compressor. The former is called a
Stirling-type pulse tube, whereas the latter is called a Gifford-McMahon-type

pulse tube.

The cooling process in a pulse tube can be explained as follows. First we
look at the region around heat exchanger X5, including the buffer. At this heat
exchanger gas will only enter the pulse tube when the pressure in the pulse
tube is smaller than the pressure in the buffer, P, < P,. The gas entering the
pulse tube will now be at temperature 73;. When the pressure is increased
at the other side of the pulse tube, gas will keep entering the tube until the
pressure equals the buffer pressure, P, = P,. As the pressure keeps rising, gas
will flow back into the buffer. The temperature of the gas leaving the tube
will now be higher, T' > T}, as the gas entered the tube with a temperature
Ty when P, < P, and leaves the tube when P, > P,. As a result heat will
be given of in X3 to the environment. We can give a similar explanation for
the region around heat exchanger X,. Here gas will enter the pulse tube at a
temperature 77, from the regenerator and leave the tube when the pressure is
decreased. As a result the gas flowing out will be colder, T' < T3, and heat is
absorbed from the heat exchanger, providing cooling. It can be shown that the
heat flow into X, equals the heat flow out of X;. For X, the heat exchanger
on the warm side of the regenerator, it can be show that the heat flow out
equals the power input to the compressor. Note that heat exchanger X, in a
Gifford-McMahon-type pulse tube is dissipated in the compressor in the form
of water cooling.

A regenerator consists of a porous matrix through which gas can flow. Its
function is to gradually cool down the gas flowing from the warm to the cold
side during compression, by absorbing and storing the heat. Similarly the gas
flowing in the other direction during the other half of the cycle is heated up by
releasing the stored heat. For this purpose an ideal regenerator tries to match
the following conditions as well as possible: the flow impedance should be close
to zero; the heat capacity per unit volume should be much larger than that of
the gas; the heat contact between the gas and the regenerator should be as
high as possible; and the heat conduction in the matrix in the direction of the
flow should be zero. These partly conflicting requirements are difficult to meet
and subject to advanced study. The function of the orifice and buffer is to
allow for a flow into and out of the pulse tube at the warm side. Without this
the cooling during the adiabatic expansion at the cold side would be canceled
out during the compression part of the cycle. The orifice restricts the flow
and ensures a nearly constant pressure in the buffer. Finally the task of the
pulse tube is to isolate the cooling process at its cold side from the heating
process at its warm side. To this effect the pulse tube is dimensioned such
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that the gas cell in the middle of the tube (marked by the green dashed box
in Fig. 3.4(a)) never comes in contact with either ends. The gas cell plays a
similar role to the displacer in a Gifford-McMahon cooler. It is important the
there is no turbulence in the tube to ensure the isolation effect.

In order to reach temperatures low enough for the condensation of the
mixture a double-stage Gifford-McMahon-type pulse tube cryocooler is used in
our dry dilution cryostats, see Fig. 3.4(b). The pressure oscillation comes from
a rotating valve, operating between 1 Hz and 2 Hz, connecting the regenerator
to the compressor. It uses two pulse tubes working in parallel, which share
a regenerator. The middle of the regenerator is anchored at the lowest tem-
perature of the first pulse tube (approximately 50 K). This reduces the heat
load of the regenerator on the second pulse tube, allowing it to reach lower
temperatures (approximately 3 K). Note that the hot ends of both pulse tubes
are at room temperature, such that the hot end of the second tube second tube
doesn’t present a heat load on the first one. In practical systems a secondary
orifice is installed between the compressor side and the hot side of each pulse
tube. This is to counteract the phase difference in the pressure oscillation
between both sides of the pulse tube. This phase difference comes from the
compressibility of the gas in the pulse tube.

When condensing, the *He/*He-mixture is brought into thermal contact
with the cryocooler at different levels. As the final temperature of the pulse
tube cryocooler is at a higher than the temperatures reached in a 1K pot
found in a wet cryostat, a higher condensation pressure is needed in order to
condense the *He/*He-mixture.

3.2.2 Microwave measurements

The measurements I have performed are all in the microwave domain. We
install the sample in a reflectometry setup at the mixing chamber stage of
our cryostat. A typical setup is shown in Fig. 3.5. The setups were very
similar in the two different cryostats that were used. These setups require a
careful design of the microwave lines to manage the noise seen by the sample.
For this purpose a series of attenuators are installed, distributed over the
different temperature stages. This way the black-body radiation from the
higher temperatures stages will be attenuated down the lines. The attenuators
of course inject noise into the line, but only at a power proportional to their
temperature. The attenuators also dissipate the signal on the way down and
the dissipated power will act as a thermal load on the cryostat. The available
cooling power at each stage as well as the temperature difference between the
stages will be different. Keeping these constraints in mind it is still possible to
distribute the attenuators over the different stages, such that the noise in the
line is approximately equal to the vacuum noise at the sample without heating
up the different temperature stages significantly. The microwaves lines on the
way down are UT-034 cables (with an outer diameter of 0.86 mm). The inner
conductor is silver-plated CuNi and the outer conductor is CulNi.
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Figure 3.4: The pulse tube cryocooler. (a) Schematic overview of a pulse tube. A
pulse tube consists of a number of different parts. From left to right we have a warm
heat exchanger (X, ), a regenerator, a cold heat exchanger (X,), a thermally isolated
tube, called the pulse tube, another warm heat exchanger (X;), an orifice, and a
buffer tank. The green dashed volume of gas never leaves the pulse tube and thus
isolates the processes at the ends. (b) The double-stage Gifford-McMahon-type pulse
tube cryocooler, as used in most commercial dry dilution cryostats. Note that the hot
ends of both pulse tubes are at room temperature, such that the second tube doesn’t
present a heat load on the first one. The secondary orifices, installed between the
compressor side and the hot side of each pulse tube, are present to counteract the
phase difference in the pressure oscillation between both sides of the pulse tube
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Figure 3.5: A detailed view of a reflection measurement setup. This setup is the
one used in the parametric amplification results, a very similar setup without the
SNTJ was used for the experiments on the DCE. The microwave frequency signals
are sent down the cryostat with coazial lines. These lines are attenuated at the
different temperature stages in order reduce the room temperature radiation and to
thermalize the cables to the different temperature. The incoming and outgoing signals
are separated from each other with a circulator. A second circulator is terminated with
a 502 and isolates the sample from any radiation coming down from the low-noise
HEMT amplifier. To allow for a noise calibration the output of a SNTJ, colored blue,
is combined with the incoming signal in a directional coupler, colored red. The SNTJ
is biased with a filtered superconducting twisted pair and bias-T. Another twisted pair
is used to DC flux bias the experiment. A third microwave line, labeled flux pump, is
used to modulate the flux through the SQUID in the experiments.
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In a reflectometry measurement a signal is reflected off the sample and the
reflection coefficient is analyzed. We typically use a 4 to 8 GHz circulator to
separate the incoming and outgoing signal. A second circulator, terminated
with 50 €2, is installed between the sample and the cryogenic low noise HEMT
amplifier (a Low Noise Factory LNF-LNC4_8A with a factory measured
noise temperature Ty = 1.8 K) at the 3 K/4.2 K-stage, in order to absorb any
radiation coming down the amplifier line. Additional filtering is installed in
the form of an 8 GHz low-pass filter installed in front of the sample, with the
goal to filter out any noise above the cutoff frequency of the circulators. When
the signal is taken out of the cryostat, additional room temperature amplifiers
are used before we feed the signal into the measurement equipment. The noise
performance of amplifiers can be expressed by their noise temperature. This is
the temperature a 50 2 input resistor would need to have to produce the same
noise power at the output of amplifier, assuming the amplifier is perfect. The
low-noise HEMT amplifier has a noise temperature ~ 2 K. This is important
as the noise performance of a chain of amplifiers is largely determined by the
first amplifier:3®

TN 2 N,3
Taopn = Tog g + 2 4 N3 3.1
N,chain N,1 + Gl + G1G2 + ( )

This means that the following amplifiers only contribute to the total noise
temperature, with their noise temperature divided by the power gain of the am-
plifiers preceding it. This also shows that it is imperative that the attenuation
between the sample and the amplifier is kept to an absolute minimum. Any
attenuation will raise the total noise temperature as it will act as an amplifier
with a gain G < 1. For this reason the coax cable up to the first amplifier are
made of superconducting NbTi.

In Paper A, I present measurements on the statistical properties of the
produced radiation resulting from the dynamical Casimir effect. To do this it
is necessary to measure the quadratures of the field at two different frequencies
simultaneously. To achieve this we split the microwave signal coming out
of the cryostat after amplification and feed it into two Aeroflex microwave
digitizers. These digitizers perform a heterodyne measurement to measure the
I and @ quadrature. Inside the digitizer the signal gets mixed down with a
local oscillator to an IF frequency of fip = 187.5 MHz. For experiments on
the dynamical Casimir effect it is crucial that only the frequency content of
symmetrically offset frequencies from half the pump are measured. To filter
out the response at the image frequency we use an image-rejection filter (a
sharp bandpass filter) on the input. This setup relies on the fact that the
amplifier noise is uncorrelated between different frequencies. The setup is
shown in Fig. 3.6.
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Figure 3.6: (a) The room temperature two-mode squeezing setup. The signal gets
split after amplification before being fed into two digitizers. Two image rejection
filters, filter out the unwanted part of the noise. (b) When mizing with a frequency
fro = fs + fir any signal at frequency fy gets mized down to the IF frequency. The
noise at fr,o + fip will however also end up at the IF frequency. The image-rejection
filter is a sharp bandpass filter installed at the input of the digitizer to filter out the
unwanted noise before mixing.
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3. EXPERIMENTAL TECHNIQUES

3.3 Noise calibration

If we are interested in the noise performance of a device, it is needed to calibrate
the microwave measurement setup, such that the noise generated by the device
can be separated from the system noise. The system noise, which is the noise
added by the setup, can be calibrated with the use of a controlled primary noise
source. Such a noise source injects a well defined amount of noise depending
on a user-controllable parameter. It is possible to separate the system noise
from the noise injected by the noise source, if we then measure the noise at the
output of the measurement setup as a function of this parameter. At the same
time it is possible to calibrate the gain of the measurement setup. One example
of such a primary noise source is the so-called hot-cold load. A switch is used
to connect one of two matched impedances, which are kept at two different
well-defined temperatures, to the input of the measurement setup. The noise
injected by these impedances is Johnson-Nyquist noise, which depends on the
temperature. If the temperature of the impedances is know accurately, it is
possible to use such loads to calibrate the measurement setup. This method is
also referred to as a Y-factor method.?® In our measurements, see Paper C,
we have used another primary noise source, known as a Shot-Noise Tunnel
Junction (SNTJ).

3.3.1 Noise calibration setup

The SNTJ is a 50 aluminum-aluminum oxide-aluminum junction. The
junction is kept normal by means of a permanent magnet installed in the
enclosure of the juntion.” The calibration relies on the principle of measuring
the noise of such a junction as a function of the bias voltage applied to the
junction. More specifically we are interested in measuring the current noise
spectral density S;(V,T) as it crosses over from the Johnson-Nyquist regime
(where S; = 4k5T /Ry, for V = 0) to the shot noise regime (where S; = 2el,
for eV >> kzT). The full expression of the current noise spectral density at
low frequency is:"°

2
S, V.1 = =2V coth [ =) = 2ercoth (=22 ), (3.2)

where Rgynpy is the resistance of the SNTJ, T is the temperature and V is
the voltage across the junction. Measuring the noise at zero bias and at least
in 2 points in the shot-noise dominated regime, will allow us to calibrate the
gain and noise temperature of the measurement chain, making shot noise
thermometry a good primary thermometry technique.

However, as we are dealing with temperatures T' << %, where f is the
measurement frequency, we will need to account for the zero-point fluctuations.
The formula for the current spectral density of the noise of the SN'T becomes
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then: ™!
S,(f,V,T) = ((6V+hf) coth (M)
RSNTJ 2kBT (33)
+ (eV — hf) coth (ﬂf)) .
B

From here on we will use Eq. (3.3) to calculate the noise.
We measure the power at room temperature with a chain of amplifiers and
a digitizer. The complete expression for the total noise power becomes:

Py(f,V,T) =G -BW - kg l:TN_F}%S%J'SI:l
B

1
=G -BW kg |Tx + — | (eV + hf) coth
thg

sev—npeorn ()]

Here G is the gain of the measurement chain, BW is the measurement band-
width, Ty is the noise temperature of the measurement chain. Note that in
Eq. (3.4) we assumed that the SNTJ impedance is perfectly matched with the
measurement setup. I have plotted this expression and the simplified classical
version, derived using Eq. (3.2), in Fig. 3.7.

The SNTJ is biased with a filtered twisted pair of DC wires using a bias-T.
At room temperature there is a bias resistor of Ry = 100k in series with the
twisted pair. Given that this resistance is much higher than the resistance
of the junction, one can calculate the bias current across the junction I, as
follows:

6V—|—hf>

2kpT
B (3.4)

VorT

R, ’
where Vj, g is the bias voltage set at room temperature. The bias voltage
across the junction Vj, gnpy is then simply calculated as follows:

Vb,SNTJ = IbRSNTJ' (36)

The resistance of the SNTJ was measured in a separate 4-probe measurement
and was found to be 52.5 . The necessity of a separate measurement of the
SNTJ resistance can be avoided by using a 4-probe setup when performing
the noise calibration, which allows for a direct measurement of Vi, gy

To calibrate the actual setup, we have to inject the generated noise into
the measurement line. This can be done with a microwave switch, where
the measurement line with the low-noise amplifier can be connected to either
the sample or the SNTJ. In our experiments we have chosen to combine the
output of the SNTJ with the incoming signal in a 20 dB-directional coupler,
see Fig. 3.5, before reflecting the signal off the sample and sending it up the
measurement line. During the calibration procedure, we make sure that the

I, = (3.5)
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Figure 3.7: A calculation of the noise generated by the SNTJ as a function of the
bias voltage, Vi, snrg, for a temperature T'=20mK, a SNT resistance of 502 and
a measurement frequency of 5 GHz. These calculations include no contribution of
the measurement chain (assuming G = 1 and Ty = 0). Both the classical result and
the quantum result, Eq. (3.4), are plotted.
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3.3. NOISE CALIBRATION

resonance frequency of the sample is tuned out of the band of interest, such
that it reflects all the generated noise to the amplifier.

The measurement setup used at room temperature is described in Fig. 3.8(a).
We bias the SNTJ using an arbitrary wave generator (AWG), and we sweep
the voltage with a triangle wave at a frequency of 123 Hz. This allows us to
average the measured noise curves, by triggering on the start of the waveform.
The noise power generated by the SNTJ is amplified at room temperature
with two amplifiers before passing an image-rejection filter. As described in
the previous section, the digitizer performs a heterodyne measurement of the
incoming signal by mixing the signal down with a local oscillator to an IF
frequency of fip = 187.5 MHz. The image-rejection filter is then responsible
to filter out the image frequency. The power measured by the digitizer follows
Eq. (3.4), but as positive and negative bias voltages give the same noise power,
the result is frequency doubled compared to the applied triangle wave, see
Fig. 3.8.

Each triangle period is sampled with 4000 points, which gives a sampling
frequency fump = BW = 4000 x 123 Hz = 492kHz. Note that the bandwidth
BW is the same as fg,,,, because we sample both quadratures. This means
that positive and negative frequencies can be distinguished. For each measure-
ment frequency I average 25000 periods together to get one noise power curve.
We extract the Gain G, noise temperature Ty and temperature 1" as a function
of frequency, by measuring these noise power curves at different measurement
frequencies of interest (spaced 500 kHz apart) and fitting them using Eq. (3.4).
Note that the BW is chosen to be smaller than the step in measurement
frequency. The peak-to-peak amplitude of the bias voltage triangle wave is
Vi, = 1V at the output of the AWG. This should give a peak-to-peak bias
voltage on the SNT of V; gyry = 1V/2000 = 500 V. This is significantly
larger than the voltage, V., at which the transition between the zero-point
fluctuations and the shot-noise regime occurs, see Fig. 3.7:

h h x 5GH

.
~2SNT — 950 . (3.7)

3.3.2 Calculation of the added noise

The noise calibration was used to quantify the noise performance of the
multimode parametric amplifier, see Paper C. In principle we now have all the
tools needed to calculate the amount of noise which the JPA adds. I will do
this rigorously in number of photons, approximating the measurement chain
according to Fig. 3.9. The components between the SNTJ and the JPA are
represented as a single element with insertion loss factor Ay, = 1/Gyp, > 1.
The noise temperature (Ty j;,) and the number of added noise photons (Vyy,)
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Figure 3.8: The waveform from the AWG is sent through a 100 kQ bias resistor, via a
twisted pair and a bias-T. The RF measurement line coming from the cryostat is am-
plified with two room temperature amplifiers. We perform a heterodyne measurement
with an Aeroflex digitizer and calculate the emitted shot-noise power. In order to filter
out the image frequencies from the downconversion process in the digitizer we have
used an image-rejection bandpass filter. The AWG and the digitizer share a 10 MHz
reference and the AWG waveform trigger is also supplied to the digitizer to trigger
the capture. The AWG is set to generate a triangle wave with a frequency of 123 Hz.
The SNT will however generate noise curves at double this frequency (both positive
and negative bias voltages generate the same output noise power). The digitizer is
triggered on the rising edge of the AWG trigger signal and captures 4000 points per
period, giving a sampling frequency of 4000 x 123 Hz = 492kHz. This will be the
bandwidth value used when fitting the noise power curves. For each measurement
frequency I average 25000 periods together.
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3.3. NOISE CALIBRATION

of such an element is given by:38

TN,IL = TIL (AIL - 1) (38)
1 hf
NIL = 5 coth <m) (AIL — 1), (39)

where 177, is the physical temperature of the components causing the insertion
loss. The JPA contributes to the chain with a gain G5 and added noise number
Nj. When the JPA is turned off, G; = 1 and Nj = 0 (this does assume that
the unpumped JPA is strongly overcoupled). The effect of the rest of the
measurement chain is abstracted in the element labeled “System”, with a total
gain Ggyg and added noise of Ngyg.

We can now make an analysis of the signal-to-noise ratio (SNR) for the setup,
both with the JPA turned on and off. The input noise into the measurement
line is the noise generated by the unbiased SNTJ, which is essentially vacuum
noise (IV;,, = %coth (%) ~ 0.5). As the insertion loss element is at the
same physical temperature as the SNTJ, the total noise at the output of the
insertion loss element, N, 11, is thus:

%coth (L) + Ny,

2k T
Nout,IL = E;l:;TJ
1 h 1 h
_ 2 coth <2kBT£NTJ) T3 coth (Qk‘BJ;IL) (AIL —1)
AIL
_ Nin + Nin (AIL B 1)
AIL
=N,. (3.10)

The effect is thus that the noise is unchanged, but any signal which has passed
will be attenuated with a factor 1/Ay; .
We can now calculate the output signal level (S,,,) and output noise level

(Nyyt) at the output of the whole chain, with the JPA off:
Sout,0 = Gsys - L. Sin
i Ar
Nout.o = Gsys (NSYS + ALIL (N, + Nin>>
= Gsys (Nsys + Nin) - (3.11)
We can do the same with the JPA on:

1
Sout,JPA = GSYS ' GJ : A—IL : Sin

1
Noue gpa = Gsys (NSYS + Gy (NJ + Ay (Nyp, + Nin)>>

= Ggys (Ngys + Gy (N; + N,,)) . (3.12)
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Figure 3.9: Simplified schematic of the measurement chain and an analogue represen-
tation. We represent the loss of the components between the SNTJ and the sample by
means of the insertion loss A,. The insertion loss will also add noise, represented
by Nyp,, which is referred to its input. The noise generated by the unbiased SNTJ is
vacuum noise, represented by N, , as the temperature of the SNTJ was calibrated to
be close to 10mK. The input signal is labelled as S;,,. The JPA is has a gain Gy and
an added noise, referred to its input, of Ny. Finally the rest of the measurement chain
is represented by the gain Ggvg and the added noise Ngvq. These two quantities
are quantified in the noise calibration.
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3.3. NOISE CALIBRATION

Here S, represents the input signal. From Egs. (3.11) and (3.12), we can
calculate the output SNR (SNR_,):

1
GSYS ' A ' Sin

SNR,, o =
%07 Ggys (Ngys + Niy)
1
_ A_IL " Pin
Ngyg + Ny,
GSYS 'GJ ! AL ! Sin
SNROut,JPA = =

Ggys (Nsys + Gy (Ny + Nyy,))
1
_ Gy 28 |
Ngys + Gy (Ny + Nyy,)

(3.13)

The SNR improvement ASNR is then:

SNRout,JPA
SNRout,O
_ Gy (Nsys + Niy)
Ngys + Gy (Ny + Nyy)
Ngyg + Niy

- . 3.14
Nevs 4 Ny + N, (3:.14)
J b

ASNR =

An example of how the signal and noise levels as well as the SNR evolves
throughout the measurement chain, both with the JPA turned on and off,
is shown in Fig. 3.10(a) and Fig. 3.10(b) respectively. The maximum SNR
improvement possible happens when the Gy — oo (Ny — 0.5) and the input
Tonty = 0 (N, = 0.5). In this case ASNR — 0.5 + Ngyyg.

The input noise Ny, is a quantity we get from the SNTJ calibration. The
ASNR and the gain of the JPA are quantities which are extracted from the
measurements. Ngyg is calculated from Eq. (3.11) using the measured value

of Nout,():

Nout,o = Gsys (Nsys + Niy)
Nout,O

G(SYS

Ggyg = A, - Gpor is calculated from the total gain of the measurement chain
Gror (from the SNTJ calibration, with the JPA turned off) and the insertion
loss Ajp,. With these numbers the noise added by the JPA can be calculated

as.
1 1 1
Ny = Nevs (ASNR_G_J) N (ASNR_1> (3.16)
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Figure 3.10: Evolution of (a) the signal and noise level and (b) the SNR throughout
the measurement chain. The input SNR is 20dB. Ggyg = 80dB and G; = 25dB.
The JPA is assumed to be quantum limited, Ny = 0.5, and Ngyg = 20.8. The
insertion loss is 1 dB. We used an input noise level set by the temperature of 20 mK,
a bandwidth of 50 Hz and a frequency of 5 GHz, when calculating the power levels.
We assume that the JPA is quantum limited. The ASNR is marked in panel (b) and
is 13.02dB (< ASNR =13.28dB).
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4

Results

I have theoretically discussed the different parametric effects in Chapter 2. In
this chapter I present the results of the appended papers, where I first discuss
the dynamical Casimir effect. Next I discuss the parametric amplification
where I show that we can reach quantum-limited performance for both the
single-mode pumping scheme and the multimode pumping scheme. I also
present some data where the pump is on resonance with mode 2, 3 and 4
at the same time. I then continue to present our first measurements on the
intermode conversion in a multimode resonator, where the pump frequency
is at the difference frequency of two modes, inducing a beam splitter like
interaction between the modes. Finally I also discuss the measurements on the
Mach-Zehnder interferometer, showing that the device performs qualitatively
the same as in our simulations, with an on-off ratio as large as 45 dB.

4.1 The dynamical Casimir effect

The DCE has eluded experimental verification for more than 40 years, since
the first proposals in 1970.'® A number of theoretical derivations have been
made and I have discussed these in Section 2.4. In this section I will take a
look at the experimental realization of the DCE and I will discuss the results
found in Paper A a bit more in detail.

We have measured and observed the DCE in two different samples. These
samples are made on a Si substrate, which is covered by a 400 nm thick layer
of thermally grown SiO,. The metal layer is all aluminum and is deposited
in a two-angle evaporation process after patterning the double resist layer
with e-beam lithography, see also Section 3.1. The two samples consist of a
coplanar-waveguide transmission line which is shorted to ground by means
of a SQUID. The length of the transmission line, counted from the taper
onto the chip to the SQUID is different for the two samples and was 43 mm
for sample 1 and 0.1 mm for sample 2. The difference is chosen to prevent
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possible problem with stray resonances formed between the bonding wires and
the SQUID. For these lengths, these resonances would fall firmly outside of
the available measurement band of our setup. The normal resistance of the
SQUID is 170 Q and 218 for samples 1 and 2 respectively. This gives an
Ly, = 180pH for sample 1 and 230 pH for sample 2. The inductance of the
SQUID can be modulated using an on-chip tuning line, which is shorted on
the sample 20 pm from the SQUID. The samples where bonded into a sample
holder onto which an external coil was mounted for DC flux tuning. We have
also checked that there is an isolation between the on-chip tuning line and the
transmission line, which is terminated by the SQUID, which is larger than
50 dB.

The samples were installed in a wet dilution refrigerator (an Oxford Instru-
ments Kelvinox-400 High Access) at the mixing chamber. The base temperature
of the cryostat was approximately 25 mK. The samples are connected with
a well-filtered superconducting coax line to the low-noise cryogenic HEMT
amplifier (a Low Noise Factory LNF-LNC4_8A). The noise temperature of the
setup has been verified in a separate measurement to be approximately 6 K.
There is a well attenuated probe line for characterization of the sample, which
is separated from the measurement line by means of a circulator. Another
circulator installed between the sample and the amplifier is terminated with
502 in order to provide extra isolation. We know from previous experiments
that the radiation temperature at the sample is comparable with the physical
temperature of the cryostat. The full setup is shown in Fig. 4.1.

The first measurements which are performed are reflection measurements
on the SQUID as a function of DC magnetic flux. As the inductance of the
SQUID changes periodically with flux, we look for a periodic pattern in the
phase of the reflection coefficient, see Fig. 1 in the supplementary material of
Paper A. We biased the SQUID at®pc = —0.35®.

The next step is to modulate the SQUID inductance sinusoidally with a
pump frequency f,. We know from Eq. (2.77) that the maximum output power
is expected at f,/2, so to find a good pump frequency we record the output
power at f, /2 as a function of pump power, P,, and frequency. This data is
presented in Fig. 2 of the supplementary material of Paper A. Essentially we
see that there is radiation produced over the whole available measurement
band. In the results presented here the pump frequency was fixed at 10.3 GHz.

At this pump frequency we then proceed to measure the DCE radiation
as a function of the detuning from half the pump frequency. We do this
by sweeping the analysis frequency and record the output power with two
digitizers simultaneously at symmetric frequencies around f,,/2, and this at
different F,. These outputs were measured up to a detuning of +850 MHz
(up to the maximum frequency of our digitizers of 6 GHz) is presented in
Fig. 4.2. We can see that there is a clear symmetry in the output photon flux
density between the positive and negative detuned frequencies. This is to be
expected according to Eq. (2.77). The output does not show the expected
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Flux Pump  Output Input DC flux bias

11

~

Figure 4.1: The microwave measurement setup. The DCE samples were installed at
the mixing chamber of a wet dilution cryostat. The probe line down to the sample
is attenuated with —56 dB. It is separated from the output by a circulator. An
additional circulator, terminated with 50 2, provides isolation from the noise of the
amplifier line. There are filters installed to filter out any radiation falling outside of
the circulator band. The amplifier is a cryogenic low-noise HEMT amplifier. Fluz
modulation of the SQUID at high frequency is done by means of an on-chip CPW
transmission line shorted to ground 20 nm from the SQUID. External DC flux biasing
is dome by means of an external coil mounted on the sample holder. The micrograph
shows one of the samples with a 43 mm long transmission line. The center line is
marked in blue, whereas the flux tuning line is marked red.
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Figure 4.2: Photon generation by the dynamical Casimir effect. These panels show
the output photon flur density as a function of detuning from f_ /2 and pump
power, P,. The SQUID is modulated with f, = 10.3GHz and the radiation is
produced symmetrically around f, /2. The upper panel show the measured photon flux
density for negative detunings while the bottom panels show the results for positive
detunings. The symmetry in the outpul spectrum with respect to f,/2 is clearly
visible. The corrugated structure can be explained by spurious resonance present in
the measurement line.

parabolic shape of the output spectrum. The reason for this is twofold. First,
the measurement band of 1.7 GHz only a small region around the top of the
parabola. On top of that we also see that there is clearly a corrugated structure
in the output spectrum. This is because the mode density of the transmission
line varies due to stray resonances in the transmission line. The parabolic
shape is only valid when the mode density is flat, which is the case for an
ideal transmission line. The output photon flux density increases with F,.
For pump powers, P, larger than 100 pW (referred to the sample) the output
saturates. We assume that this is the point where the Josephson inductance
saturates because the AC flux amplitude reaches 0.15®, such that the sum of
the DC and AC flux reaches 0.5®,, see Fig. 2e in Paper A.

Another signature of the DCE is two-mode squeezing. In Section 2.4.3 1
discuss two-mode squeezing a bit more in detail. To calculate the amount
of squeezing, we measure the quadratures at frequencies symmetric around
f»/2. We do this by splitting the signal after amplification in two different
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microwave digitizers. When we do this we make use of the fact the noise
of the amplifiers is uncorrelated between different frequencies An important
property is that the even though the two-mode squeezing increases with P,
the individual modes remain unsqueezed. This is shown in Fig. 4.3(a) for
a detuning of 588 MHz from f,/2. The two-mode squeezing has a specific
structure for the voltage correlators where (I, I_) = —(Q,Q_), see Fig. 4.3(b)
and (I, Q_) = (I_Q,). The latter cross collerator can be made equal to zero
by changing the pump phase. We have also measured the two-mode squeezing
as a function of temperature and this for three different detunings from f,,/2
and a pump power of 100 pW.

Finally we have also measured the normalized second-order correlation
function gfl, see Eq. (2.81). In Fig. 4.5, we measure g(fl as a function of
pump power. The first digitizer is then set to f, /2 — 712 MHz and the second
digitizer is set to f,/2 4 712 MHz. We then offset the second digitizer from

this symmetric frequency to see gfl disappear. This shows that there is
photon bunching between symmetric frequencies around f,, /2. The width of
the peak is set by the bandwidth of the digitizers (10 MHz). Even though we
see bunching, gfl never becomes larger than two, meaning that we have not
observed the expected superbunching.

In conclusion we have measured the DCE in a transmission line terminated
to ground with a SQUID. We observed broadband generation of radiation in a
frequency span of 1.7 GHz centered around half the pump frequency. We have
also measured the correlations in the noise measured symmetrically around
f»/2 and we have shown that the noise exhibits two-mode squeezing. These
measurements are clear signatures of the DCE. What remains is to explicitly
prove the non-classicality of the radiation and show the parabolic spectrum of
the radiation.™

4.2 Parametric amplification in a multimode
resonator

In this section I will present the results from Paper C. In Section 2.2 I have
treated phase-insensitive parametric amplification for both the degenerate and
the nondegenerate case theoretically. We have performed careful noise calibra-
tions to characterize the performance of the measurement chain according to
the procedures described in Section 3.3

The parametric amplifier we used in Paper C is a quarter-wavelength
resonator, terminated to ground using a SQUID. The CPW resonator has
a length of 3cm, giving it a bare resonance frequency (meaning neglecting
the SQUID) of 959 MHz. This is substantially lower than the lower cutoff of
our measurement setup, which is 4 GHz. The frequency was chosen such that
several higher modes of the resonator fall within the bandwidth, allowing us to
study multimode parametric effects. The spectrum of the resonator follows the
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Figure 4.3: Two-mode squeezing of the DCE radiation. (a) The two-mode squeezing
of the field, measured with a detuning from f,/2 equal to 588 MHz, as a function of
P,. The SQUID is pumped at f, =10.3 GHz. We see that the two-mode squeezing
increases with pump power, while the individual modes remain unsqueezed. (b)
The normalized cross-correlation (I, 1) /P, . and (Q,Q_)/P,,,, measured al a
detuning from fp/2 equal to 833 MHz. The cross-correlation reaches as high as 25 %
and clearly shows that (I, 1_) = —(Q,_Q_) as predicted.
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Figure 4.4: Two-mode squeezing as a function of temperature. The two-mode
squeezing of the field measured for three different detunings from f,/2 as a function
of temperature. The SQID is pumped at f, = 10.3 GHz with a pump power of
100 pW. With increasing temperature, the two-mode squeezing starts to drop off.
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Figure 4.5: The normalized second-order correlation function. We have performed
measurements of the g(f,) function as a function of pump power and offset between
the digitizers. At zero offset, the digitizers are detuned from f, /2 = 5.15 GHz by
+712MHz. We then offset one of the digitizers from this symmetric frequency. This
will lower the measured g(f,) and the width of the peak will be the bandwidth of the
digitizers, 10 MHz. When increasing the pump power gfl rises, and although the
radiation shows bunching it never becomes larger than two.
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Figure 4.6: Measured resonance frequencies of the different modes (m =2,3) as a
function of DC magnetic flur P (red circles). At zero DC flux bias, the resonance
frequencies of modes 2 and 3 are, respectively, 4.713 GHz and 6.588 GHz. The blue
line is a fit to the mode resonance frequencies f,,(Ppc). The resonances were fit
simultaneously by numerically solving the characteristic Equation, see FEq. (2.38).
Our Josephson parametric amplifier is operated by magnetic flux-pumping. This is
achieved by applying an AC tone to the on-chip flur line, while keeping the DC flux
constant at a fired nonzero value. Our measurements are performed around a DC
flur of —0.44®, denoted by the green dashed line.

dispersion relation, see Eq. (2.38). The SQUID has a critical current of 1.65 pA
which translates into a Josephson inductance of 200 pH. We have two modes,
m = 2,3, accessible in the measurement bandwidth and the dependance of the
mode frequencies on the DC magnetic flux is shown in Fig. 4.6. Fitting the
spectrum numerically with the dispersion relation allows us to extract a SQUID
inductance participation ratio v = Ly, o/ (Lod) = 1.76%. The capacitance
participation ratio, G,/ (Cyd), was found to be negligible. The resonator is
coupled to the measurement line with an interdigitated coupling capacitor
of C, = 53fF. The internal damping rate of the resonator was found to be
significantly lower than the coupling rate to the measurement line, meaning
that the resonator is firmly overcoupled. The internal quality factor, Q' was
approximately 3750, independent of the mode number, whereas the external
quality factor, @° was about 500 for mode 2 and 460 for mode 3. The sample
was fabricated using the same techniques as the DCE samples. The sample
consist of two-angle evaporated aluminum on top of intrinsic silicon. The
patterning was done using electron-beam lithography, for more details see
Section 3.1.

The sample was installed at the mixing chamber stage of a dry dilution
cryostat (a Bluefors LD250) with a base temperature < 10 mK. The measure-
ment setup is shown in Fig. 3.5 and discussed in Section 3.2.2. The DC flux
biasing is achieved in the same way as in the DCE measurements, using a
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superconducting external coil mounted on the sample holder. For the AC flux
tuning there is an on-chip transmission line which couples inductively to the
SQUID. This flux pump line is terminated off-chip using a 502 load. The

line is also attenuated with 40 dB and filtered with an 18 GHz low-pass filter.

The shot-noise calibration setup consists of a SNT.J mounted on the mixing
chamber. It is combined with the signal line, which is attenuated with 40dB
on its way down to the mixing chamber, in a 20dB directional coupler. The
SNTJ is biased with a superconducting twisted pair through a Bias-T. The
microwave-frequency noise is then fed into the directional coupler. The twisted
pairs for the SNTJ and the DC flux biasing are filtered at the 3 K stage with
a copper-powder filter.

When we perform the shot-noise calibration we are able to quantify the
performance of the measurement chains in terms of its added noise and the
total gain. We follow the method set out in Section 3.3 and we have extracted
the added noise referred to the input of the JPA. As described above, the
components between the SNTJ and the input of the JPA need to be taken into
account. We have measured the attenuation of these components in a separate
measurement and found it to be 1.75 £+ 0.4 dB for the frequency range around
mode 2 and 2.25 4+ 0.4 dB for the frequency range around mode 3. We present
the added noise referred to the input of the JPA, Ngyg, and the gain, Ggyg of
the measurement setup in Fig. 4.7. These have been measured with the JPA
turned off and tuned out of the frequency band of interest. We use the results
of these measurements to analyze the performance of the JPA.

4.2.1 Single-mode parametric amplification

For the single-mode parametric amplification we have measured the gain, Gj,
the signal-to-noise improvement, ASNR, and the change in the noise floor as
a function of pump frequency, f,,, and pump power, F,. The circuit is flux
biased at & = —0.449, so that the resonance frequency of mode 2 is tuned
down to 4.420 GHz. We measure the power spectrum in a 100 kHz wide band
centered around our signal which is offset from f,/2 with 100 kHz, so that we
have nondegenerate amplification. Because of the offset between the signal
frequency and f, /2 this will be single-mode, phase-insensitive parametric
amplification. We measure the signal gain, as well as the increase in the noise
floor. Using these we can calculate the ASNR. We present G5, ASNR and
the minimum added noise Nj as a function of G5 in Fig. 4.8. We do this by
calculating the added noise for each point in Fig. 4.8(a) and then retaining the

points with the lowest noise for each 0.1 dB wide range of gain in Fig. 4.8(c).

The maximum ASNR we reach is 10.5dB. We see that the noise follows the
quantum limit, see Eq. (2.39), nicely and that the added noise drops below
0.5 photons for low gain. The error bars are the result of the uncertainty on
the insertion loss of the components between the SNTJ and the JPA.

We have also measured the G; as a function of signal frequency with a
vector network analyzer sweeping f, and F,. For each pump setting we sweep
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Figure 4.7: Measurement setup performance. (a) The gain, Ggvg, of the measurement
setup in a frequency band around mode 2 (at a DC flur bias of —0.44® ), from the
input of the JPA onwards. (b) Ggyg, of the measurement setup in a frequency band
around mode 3. (c¢) The added noise, Ngyg, of the measurement setup, referred
to the input of the JPA, around mode 2. (d) Ngyg around mode 3. These have
been measured using the method described in Section 3.3. We have measured the
combined insertion loss of these components in a separate measurement and found it
to be 1.75 £ 0.4dB for the frequency range around mode 2 and 2.25 4+ 0.4dB for
the frequency range around mode 3. The error bars reflect the uncertainty of the
insertion loss for the components between the SNTJ and the input of the JPA.
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Figure 4.8: Single-mode pumping of mode 2. (a) Power gain, (b) SNR improvement,
ASNR, observed at fp/2 + 100kHz. The optimal point of operation is where the
mazimum ASNR is achieved, which is 10.5dB in this case. The black line in panel
(b) marks the points with a mazimum ASNR as a function of pump power. Panel
(c) shows the minimum added noise as a function of gain (in 0.1 dB wide bins). The
error bars reflect the uncertainty on the insertion loss of the components installed
between the SNTJ and the sample (1.75+0.4dB). The blue line marks the quantum
limit as a function of gain, see Eq. (2.39). The orange line shows the ASNR as a
function of gain taken along the black line in panel (b).
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Figure 4.9: Gain compression in mode 2. We show the gain as a function of signal
power, when the circuit was biased for a power gain of 10.5dB. As the signal power
increases the gain will start to drop off. The 1dB compression point (at which the
gain is reduced with 1dB) is found to be at a signal power of -133.5dBm, referred
to the input of the sample. This is to be compared to a 1dB compression point of
-133dBm and -131dBm for modes 2 and 3, when using the multimode pumping
scheme and when the gain was 11dB.

the signal frequency and record G;. This allows us to extract the bandwidth
of the JPA, which we do by fitting a Lorentzian to the response, see Fig 6(b) in
Paper C. With increasing pump power we can then see that the gain-bandwidth
product, vGBW, shows a plateau at 12 MHz. For the higher pump powers
(when Gy > 20dB), VGBW starts to drop off, which is most likely due to the
crossover into the parametric oscillation regime.

Finally, we have also measured the gain compression. We have done this
for a moderate gain, G5 ~ 10.5dB. We do this by biasing the pump for
the desired gain and then sweep the signal power. The gain compression is
characterized by the 1dB compression point, the signal power for which the
gain is compressed with 1dB. This occurred at a signal power of -133.5 dBm,
referred to the input of the sample. We show the gain as a function of signal
power in Fig. 4.9.

4.2.2 Multimode parametric amplification

Two-mode parametric amplification

As T have described in Section 2.2 there exist another operation scheme where
the pump is on resonance with the sum of two modes. We again DC flux
bias the circuit at ®pc = —0.44®,. At this flux bias the mode frequencies
are f, = 4.420 GHz and f; = 6.219 GHz. We have measured the gain G; and
the increase in the noise floor in a similar way as in the single-mode case.
We sweep the pump frequency, f,, and pump power tracking the pump at
fp/2 £ 899 MHz, such that the signal ends up in either mode 2 or 3, with a
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signal offset A = +500kHz. We then measure the power spectrum in a 100 kHz
bandwidth around the signal. The G; and ASNR are shown in Fig. 4.10. The
maximum ASNR is 9.5dB and 10.5dB for modes 2 and 3, respectively. We
also extracted the minimum added noise as a function of gain in a similar
fashion as in the single-mode case. For low gain, the added noise closely follows
the quantum limit, but for higher gains the added noise starts to increase.
We also recorded the gain as a function of signal frequency, where we fixed
the pump frequency and amplitude. This allowed us to extract the maximum
gain and the bandwidth. The gain-bandwidth product vGBW as a function
of P, is presented in Fig. 8 in Paper C. For low gain, we find VGBW plateaus
at 17.5 MHz for both modes. When increasing P,, VGBW starts to drop off
when the gain surpasses 20dB. As before this is most likely when we enter the

parametric oscillation regime. Finally we also present the gain compression.

We have biased the circuit such that we have approximately 11dB of gain. We
then increased the signal power and the point at which the gain was compressed
by 1dB was -133 dBm and -131 dBm for modes 2 and 3 respectively.

Simultaneous single-mode and two-mode parametric amplification

Finally we also present some measurements where the pump is on resonance
with twice the frequency of mode 3. Interestingly, the pump is that at the
same time on resonance with sum of the frequencies of mode 2 and mode
4. This is because the spectrum is fairly equidistant due to the limited
SQUID participation ratio. Furthermore the widths of the resonances are
relatively large due to the modest quality factors. For the flux bias point of
Oy = —0.445®, the modes are found at 4.398 GHz for mode 2, 6.197 GHz
for mode 3 and 8.006 GHz for mode 4. We present measurements of G5 and
ASNR as a function of f;, and P,. To measure the response in modes 2 and

4 we track the pump at f,/2 + 1.8005 GHz, which gives a A = +3.5 MHz.
Note that this is significantly larger than the signal detunings used before.

As an effect this will lower the maximum gain we can reach. For mode 3 the
data is taken at f,/2 + 100kHz (A = 100kHz.). The results are shown in
Fig. 4.11, where we reach a maximum SNR improvement of ASNR, = 6.7 dB
and ASNR = 11.7 dB for modes 2 and 4 respectively. In mode 3 the maximum
SNR improvement was ASNR = 11 dB. Unfortunately it was very difficult to
get an accurate calibration of the added noise and the gain of the measurement
chain as mode 4 ended up close to the edge of the measurement band (which
is 8 GHz). This means that it is impossible to report accurate numbers for the
noise performance of this pumping scheme. Nevertheless the reported ASNR
is similar as for the other pumping schemes.

In conclusion, we have measured parametric amplification in a multimode
CPW resonator. We have performed a careful calibration of the measurement
setup using a SNTJ. We have shown that we can reach quantum-limited
performance in both the single-mode operation scheme as well as in the
multimode operation scheme. The optimal point of operation is the point
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Figure 4.10: Multimode pumping at the sum frequency of modes 2 and 3. (a) and
(b) Power gain and (c) and (d) improvement in SNR observed at f,/2 — 899 MHz
(mode 2, left column) and at f,/2 + 899 MHz (mode 3, right column). The optimal
point of operation gives a mazimal ASNR of 9.5dB and 10.5dB for modes 2 and
3 respectively. Panels (e) and (f) show the minimum added noise as a function of
gain (in 0.1dB wide bins). The error bars reflect the uncertainty on the insertion
loss of the components installed between the SNTJ and the sample (1.75 4+ 0.4dB
for mode 2 and 2.25 £ 0.4dB for mode 3). The blue line marks the quantum limit,
see Eq. (2.39).
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Figure 4.11: Multimode pumping at twice the frequency of mode 3. (a), (c) and
(e) Power gain and (b), (d), (f) improvement in SNR for modes 2, 3 and 4 re-
spectively. The response is measured al f,/2 — 1.8005 GHz (mode 2, top row) ,
fp/2 +1.8005 GHz (mode 4, bottom row) and f,/2 + 100kHz (mode 3, middle
row). The optimal point of operation gives a mazimal ASNR of 6.7dB, 11dB and
11.7dB for modes 2, 3 and j respectively. Note that the optimal point of operation
is not the same for the combination of modes 2 and 4, compared to mode 3.
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with the largest SNR improvement. In the single-mode operation scheme, we
reach a ASNR = 10.5dB. At that point the parametric amplifier adds about
0.7 photons, which translates in a total noise referred to the SN'TJ of 1.5 photons
(including the noise form the insertion loss and the following amplifiers). In the
multimode operation scheme (when pumping at the sum frequency of modes
2 and 3), the maximum ASNR = 9.5dB for mode 2 and ASNR = 10.5dB
for mode 3. This translates to an added noise by the parametric amplifier of
1.0 photons and 0.7 photons form modes 2 and 3 respectively. Translated to the
SNTJ this gives a total noise of 2.59 photons and 1.76 photons. Finally I also
presented results where we pump the amplifier at twice the frequency of mode 3.
Because of the spectrum is fairly equidistant, we also see amplification in mode
2 and 4 at this point because 2f; ~ f, + f,. The maximal ASNR = 6.7dB for
mode 2, ASNR = 11dB for mode 3 and ASNR = 11.7dB for mode 4. It was
not possible to do a full noise calibration for mode 4 as the mode frequency
was on the edge of the available measurement band.

4.3 Intermode conversion in a multimode
resonator

In this section I present my measurements on the intermode conversion between
different pairs of modes. I discuss the results found in Paper D and also show
some preliminary results where we couple three different modes using two
pump frequencies simultaneously.

The sample used in Paper D consists of a quarter-wavelength CPW trans-
mission line resonator with a length of 3cm, terminated to ground in one
end using a SQUID. The inductance of the SQUID at zero magnetic flux,
was found to be 223 pH, from a normal resistance measurement resulting in
Ry = 213€Q. This means that the critical current is 1.48 pA. We estimate
the SQUID participation ratio 7, = 1.95%. At the other side of the CPW
the resonator is coupled to the measurement line by means of an interdigi-
tated coupling capacitance of 53 fF. The resonator was designed such that
the fundamental resonance frequency is close to 1 GHz, just as in the sample
used for the parametric amplification measurements presented in Paper C. In
order to provide sufficient selectivity between the different pairs of modes, we
have used a stepped impedance design. We have divided the resonator into
six equal sections. We vary the impedance between the sections by changing
the ratio between the width of the center conductor, Wpyw, and the gap
between the ground planes and the center conductor, Gcpy. This is done in
such a way that the distance between the ground planes remains constant,
(2Gepw + Wepw = 27 pm), see Fig. 4.12. The exact dimensions were deter-
mined by means of a microwave simulation using Microwave Office, where
the geometry was optimized to spread out the frequency difference between
neighboring modes as far as possible. The resulting design is presented in
Table II in Paper D.
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Figure 4.12: A microscope image of the stepped impedance CPW transmission line
resonator. The sample consists of a 3cm long transmission line divided into six
sections. The impedance of each section is varied by changing the ratio between the
width of the center conductor, Wpw, and the gap between the ground planes and the
center conductor, Gpyw. This is done in such a way that the distance between the
ground planes remains constant, (2Gcpw + Wepw = 271nm). The bottom left panel
shows an SEM image of the taper between the sections. The resonator is coupled to
the measurement line by means of an interdigitated coupling capacitance of 53 fF,
which is shown in the bottom right panel.
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The sample is installed at the mixing chamber of a dry dilution cryostat
(a Bluefors LD250), with a base temperature of approximately 10 mK, and is
measured using a microwave reflectometry setup. In contrast to the setups
used in the DCE and parametric amplification measurements, this setup
used a wideband cryogenic low-noise HEMT amplifier (a low noise factory
LNF_LNC1_12A with a bandwidth of 1 to 12GHz). The input signal is
separated from the output by means of a 20dB directional coupler. In order
to isolate the sample from any noise coming down the amplifier line we have
installed two 3 to 12 GHz isolators. This means that we have access to six
different modes in the available bandwidth. There is an on-chip tuning line
for modulating the magnetic flux through the SQUID loop and an external
superconducting coil mounted on the sample holder for DC flux tuning. The
measurement setup is given in Fig. 1 in Paper D.

We start out by measuring the spectrum of the resonator as a function
of applied magnetic DC flux ®, see Fig. 4.13. I compare the measured
resonance positions with the result of the microwave simulations and we see
that even though there is an offset between the results and the simulations, the
frequency difference between neighboring modes corresponds quite well with
the simulations. The exact resonance positions as well as the quality factors of
the different modes are given in Table I in Paper D.

We have measured the intermode conversion between modes 2 and 3 and
between modes 3 and 4 for different pump frequencies and pump strengths. The
measurements are performed at the DC flux bias of ®pc = 0.45®, where the
modes are found at 4.439 GHz, 6.44 GHz and 8.138 GHz. We have measured
the reflection coefficient in a frequency range around each of the pumped
modes with a vector network analyzer. The phase response of the reflection
coefficients are presented in Fig. 4.14 for a pump strength of -42dBm. Similar
to Fig. 2.11 in Section 2.3 we see that we get an avoided level crossing when the
pump is exactly on resonance with the difference frequency of the two modes.
We have fitted a linecut of the phase response using Eqgs. (2.68) and (2.69)
where the pump detuning is approximately zero.

We have extracted the coupling between the modes as a function of RMS
pump current, see Fig. 4.15. The coupling equals the effective pump strength e.
We see that the coupling scales linearly with the RMS pump amplitude. Using
Eq. (2.61) we have calculated the AC flux amplitude as a function of RMS
pump current, see Fig. 5(b) in Paper D. This shows that we get a maximum
coupling of 44 MHz for an AC flux amplitude of 3.5% of a ®,. From these
values we extract a mutual inductance of 2.3 pH between the on-chip flux pump
line and the SQUID loop, at f, ~ 2 GHz.

Finally in Fig. 4.16, I also present some preliminary data where we simul-
taneously apply two pump tones to the sample. The circuit is again biased at
®pc = 0.45®,. The first pump tone has a frequency of 1.704 GHz, which is
close to the difference frequency between modes 3 and 4. The pump strength
is -51dBm. This pump hybridizes modes 3 and 4. We then sweep another
pump tone in a region around 2 GHz. This pump tone also has a strength of
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Figure 4.13: The fluz tuning of the resonator modes (red full line). The resonator has
a fundamental mode of approximately 1 GHz. This gives us access to modes 1 to 5 in
the available measurement bandwidth of 3 to 12 GHz. The frequency of the modes can
be tuned by means of modulating the magnetic flux through the SQUID. The frequency
tuning is periodic with a fluz quantum, ®, = h/2e. To be able to address individual
pairs of modes, the spectrum needs to be sufficiently non-equidistant with respect to the
width of the modes. This has been achieved by varying the characteristic impedance of
the CPW throughout the resonator, see Table I in Paper D. The simulation results (for
O = 0) are plotted with the blue dashed line. We see that the frequency difference is
matched relatively well even though there is an offset between the measured frequencies
and the simulation results.
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Figure 4.14: Parametric coupling for a pump power of -42dBm (corresponding to a
RMS current of 18 1A ). (a) The coupling of modes 2 and 8. (b) A linecut of the
phase response along the blue dashed line in panels (a). The phase response is fitted
using Egs. (2.68) and (2.69) and is given by the blue line. (c) The coupling of modes
3 and 4. (d) A linecut of the phase response along the blue dashed line in panels (c).
The phase response is fitted using Eqs. (2.68) and (2.69) and is given by the blue line.
The modes are tuned down with a DC magnetic flux, & = 0.45P,, such that the
modes end up at 4.439 GHz, 6.44 GHz and 8.138 GHz. In both panels the white
dashed lines represent the uncoupled resonances. These resonances get hybridized
when the parametric coupling is introduced, see Eq. (2.74) and are represented by the
green dashed lines. The minimum splitting as a function of pump frequency is equal
to twice the effective pump strength, 2¢/2m ~ 70 MHz
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=~ Coupling modes 3 &4
: —6— Coupling modes 2 & 3 |
| | | | |
0 5 10 15 20 25

Pump RMS Current [uA]

Pump Strength & /27t [MHz]

Figure 4.15: The effective pump strength. We have extracted the effective pump
strength, €, as a function of applied pump amplitude for modes 2 and 3 and for
modes 8 and 4. To show that € scales linearly with pump amplitude, we have added a
linear fit (the black dashed line). The mazimum effective pump strength achievable is
44 MHz.

-51dBm. We see that when this second pump is on resonance with modes 2
and 3 that a double avoided level crossing occurs indicating the coupling of all
three modes.

In conclusion, I have presented the first preliminary measurements on the
intermode frequency conversion between the modes of a multimode resonator.
The resonator was designed using microwave simulation in order to tailor
the spectrum and make it more nonequidistant. This is necessary to provide
sufficient selectivity between neighboring pairs of modes. We have shown
that we can couple different pairs of modes together with a coupling strength
proportional to the pump amplitude. We achieve a maximum coupling strength
of 44 MHz for an AC flux modulation amplitude of 3.5 % of a ®,. This allows
us to determine a mutual inductance of 2.3 pH between the flux pump line
and the SQUID loop. Lastly, I have also shown some first preliminary data
on the mode coupling between three different modes, using 2 pump tones
simultaneously.

4.4 On-chip Mach-Zehnder interferometer

The on-chip-Mach-Zehnder interferometer is a relatively simple device consist-
ing of a 502 CPW line which is split using a power divider into two 100 (2
lines. The electrical length of one of these lines is designed such that it has a
phase shift of 7 (for a signal around 5 GHz) compared to the other arm, when
they are recombined at the second power splitter (acting as a combiner now).
Two SQUIDs in series are embedded into the shorter arm of the two. The
SQUID inductance (of one SQUID) at zero flux is estimated to be 0.36 nH
from a measurement of the SQUID normal resistance. By tuning the magnetic
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Figure 4.16: Parametric coupling with two pump tones. (a) The reflection coefficient
at mode 2. (b) The reflection coefficient at mode 3 (c) The reflection coefficient at
mode 4. (d) The modes are tuned down with a DC magnetic fluz, ®pc = 0.45P,),
such that the modes end up at 4.439 GHz, 6.44 GHz and 8.138 GHz. The first
pump tone is applied at 1.704 GHz with a pump strength of -51dBm. This pump
tone will couple modes 3 and 4 together. We then sweep a second pump tone in
a region around 2 GHz (also with a strength of -51dBm). When this pump is on
resonance with modes 2 and 3, we couple all three modes together resulting in a double
avoided level crossing.
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DC flux through the SQUIDs we can change the SQUID inductance. This
results in a phase difference across the SQUID and thus a phase difference
between the arms, changing the interference condition at the power combiner.
As T discussed in Section 2.5, the power dividers consist of a simple T-junction,
which was simulated using Microwave Office. Because the divider is meant to
work broadband and lossless, it can not be matched at all three ports and as a
result we expect reflections to occur in the interferometer setup.

The sample is cooled down in a *He-cryostat with a base temperature of
300mK. The signal is attenuated on the way down with 50dB and filtered
using an 8 GHz low-pass filter. After the sample there is a circulator installed
which is terminated with 50 2, and another 8 GHz low-pass filter, to isolate the
sample from noise coming down the amplifier line. At the 4 K stage we have a
cryogenic low-noise HEMT amplifier of the same type as the ones used in the
previous sections. There was an external superconducting coil installed on the
sample holder in order to tune the DC magnetic flux. All the measurements
were performed using a vector network analyzer to measure the modulation of
the transmission coefficient as a function of the applied flux. We present the
measurement setup and a picture of the device in Fig. 4.17.

We start by examining the transmission coefficient, S,;, as a function of
frequency and magnetic flux. We have made microwave simulations, showing
the modulation of the transmission through the interferometer, see Fig. 4.18(a).
We see that we have a double-dip response, for a low SQUID inductance
(0.7nH). When increasing the inductance, the dips merge together into a
single dip around 6.095 MHz. The maximum depth of —56 dB is reached at a
SQUID inductance of 2.13nH. When increasing the inductance even further,
the dip levels.

When we measure the actual transmission of the device we see a modulation
over a large range of frequencies, the strongest modulation is observed around
6.095 GHz which corresponds well with the simulations, see Fig. 4.18(b). When
tuning the SQUID inductance to the minimum value (& = 0), we do not
recover the full well-separated double-dip structure as in the simulations
though. This seems to suggest that there is some additional inductance present
in the interferometer arm with the SQUID, limiting how far we can lower
the inductance in that arm. Lastly we also look at the periodicity of the
modulation. We extract the transmission at 6.095 GHz for several flux bias
points. These are denoted with the red dots in Fig. 4.18(c). We were not able
to make a lot of measurements at large flux values as this requires running
large currents through the external coil, which would warm up the cryostat. In
order to check the periodicity we have added the dashed line, which is a trace
of the measured points (between —0.5®, and 0.5 @) shifted with +®,. We
see that the few points at larger flux values indeed end up on the dashed line.
An interesting observation is that the transmission modulation has a peculiar
structure, having a maximum around 0 and around 0.5 ®,. This essentially
tells us that the initial phase difference between the two arms is different from
7. This means that when we tune the SQUID inductance, and thus the phase
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(a) Output Input DC flux bias

Figure 4.17: Measurement setup and microscope image of the Mach-Zehnder inter-
ferometer. (a) The sample is measured using a 3 He-cryostat with a base temperature
of 300 mK. The sample is measured using a transmission setup. The input line is
attenuated on the way down with 50 dB and filtered with an 8 GHz low-pass filter
before being fed into the sample. On the output line we have a 502 terminated
circulator providing isolation for any noise coming down the amplifier line. An
additional 8 GHz low-pass filter takes care of noise outside of the circulator band.
The output is then amplified using a cryogenic low-noise HEMT amplifier of the
same type as used in the previously discussed results. The magnetic flux through the
SQUID loop is tuned by means of an external superconducting coil mounted on the
sample holder. (b) A microscope image of the interferometer. The electrical length
of the long arm is designed such that it has a phase shift of w (for a signal around
5GHz) compared to the shorter arm. Two SQUIDs in series are embedded into the
shorter arm of the two. These are shown in the right panel. By tuning the magnetic
DC fluzx through the SQUIDs we can change the SQUID inductance. This results in
a phase difference across the SQUID and thus a phase difference between the arms,
changing the interference condition at the power combiner.
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difference, we first have a drop in the transmission coefficient (when the phase
difference reaches 7), before it starts rising again. We see that we reach a
phase difference between the arms for a DC magnetic flux value of 0.15 ®,.

In conclusion, we have designed and performed measurements on a Mach-
Zehnder interferometer in the microwave regime. The design showed a behavior
similar to the simulations although there seems to be both an offset in the
inductance and the initial phase difference between the arms. Interestingly,
the difference between the minimal and maximal transmission reaches over
45 dB, which is close to the simulations. We note that any effects limiting the
maximum inductance the SQUID can reach, such as junction asymmetry, was
not taken into account in the simulations. Neither was the SQUID capacitance
taken into account. Most likely there are significant ring resonances in the
interferometer which could be mitigated by designing the power splitters such
that all ports are matched.
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Figure 4.18: Transmission of the Mach-Zehnder interferometer. (a) Simulations show
that the transmission is tunable with changing SQUID inductance. For low inductance
values the response shows a double dip. Increasing the inductance merges the dips
together. The minimum transmission is found at 6.095 GHz. (b) The measured
response of the interferometer, in the region around 6.095 GHz, marked with the
black dashed line. The results follow the simulation qualitatively with a maximum
difference of 45dB. The splitting of the dips is not as large as in the simulations
which suggests the presence of some extra inductance in the arm containing the
SQUID. (c) The periodicity of the transmission at 6.095 GHz, emphasized by the
added the blue dashed line, which is the measured response between —0.5 P, and
0.5 & shifted with £®,. The dip at n 4 0.15 &, shows that the phase difference
between the arms is 7 at these points.
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5

Conclusions and outlook

In this thesis, I have presented a series of experiments studying the interaction
between a parametrically driven system on the one hand and externally applied
signals or the vacuum on the other. The experiments were performed at very
low temperatures and at microwave frequencies.

I started with the first experimental observation of the dynamical Casimir
effect. I have shown that we observed broadband radiation from a SQUID
terminated CPW transmission line. This radiation is the result of the paramet-
ric amplification of vacuum fluctuations by means of a modulated boundary
condition on the electromagnetic field. The dynamical Casimir effect produces
photons in pairs, which manifests itself in correlations of the radiation gen-
erated symmetrically around half the pump frequency. We have investigated
these correlations in the form of two-mode squeezing and second-order photon
correlations. Theory states that the photons produced at these symmetric
frequencies should also be entangled. In future work I think it is necessary to
explicitly prove that the radiation is entangled, by sufficiently squeezing the
output radiation.” Further experiments are also needed to show the parabolic
shape of the spectrum of the produced radiation. For this measurement a
wideband setup will be required.

I have also presented measurements on the interaction of a parametri-
cally pumped multimode resonator with classical signals. We have used the
parametric amplifier both in the single-mode operation scheme, where signals
falling within a single mode will be amplified, as well as in the multimode
operation scheme, where the circuit is modulated at the sum of two mode
frequencies. In both cases we have shown, after a careful calibration of the
measurement setup, that we reached quantum-limited noise performance. I
have presented measurements of the gain and bandwidth of the amplifier. The
1 dB-compression power was found to be very modest, and in future work it
could be valuable to try to improve the compression point by for instance
changing the critical current of the SQUID.

We have used a similar multimode resonator to measure the frequency
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conversion between two of the modes, when the system is pumped at the
difference frequency of two modes. The resonator was modified using a stepped-
impedance design in order to make the spectrum less equidistant. As a result
we were able to selectively couple individual pairs of neighboring modes. I
have presented some preliminary results showing the avoided level crossing
resulting from the intermode conversion by measuring the reflection coefficient
of the coupled modes. I have extracted the coupling strength as a function
of applied pump amplitude and shown a linear dependence. This has allowed
me to extract the mutual inductance between the on-chip flux line and the
SQUID loop. I also present some measurements where we applied two different
pump tones, coupling three different modes together. What remains to be done
are measurements where the output of one of the coupled modes is recorded
when applying a signal to the other one, which would be a direct measurement
of the intermode conversion. I believe that these different parametric effects
(amplification and intermode conversion) can potentially be useful for the
distribution of entangled radiation over several modes of the same resonator.
This could potentially be used to measure multipartite entanglement and is a
possible candidate for continuous-variable quantum computing using cluster
states.”™

In Chapter 2, I have presented a theoretical model which can be used to
study parametric amplification using a parametrically modulated SQUID. I
have treated the case of degenerate amplification, where the signal is at half
the pump frequency. In that case the signal and idler interfere with each other
providing quadrature dependent gain. This so called pumpistor model provides
an intuitive equivalent circuit which will contain a “pumpistor” element which
has an impedance depending on the pump phase. This model has been shown
to work well for a degenerately pumped parametric amplifier, and it has also
been extended to nondegenerate amplification in more recent work.?”

Finally, we have also measured a Mach-Zehnder interferometer in the
microwave regime. This circuit uses the variable inductance of the SQUID in
one of the arms to change the phase difference between the arms. In doing
so the interference conditions can be changed yielding a maximum change in
transmission through the interferometer of 45dB. The device uses a simple
design of a power splitter which is hampered by the fact that it is not matched
at all three ports. This will result in a large amount of internal reflection.
As the length of the fixed arm of the interferometer is designed for a specific
frequency, it should be possible to redesign the power splitters opting instead
for a more complicated microwave coupler such that the internal reflection can
be reduced.
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Appendix A

Recipes for sample
fabrication

A.1 Wafer cleaning

1.

2.

Dip the wafer in 1165 remover at 60 to 70°C for 10 min.

Place the wafer, in a beaker of 1165 remover, in an ultrasonic bath at
maximum power for 1 min.

Place the wafer in a bath of IPA for 2 min.
Dip the wafer in the QDR bath.
Blow dry the wafer.

Plasma etch with the Batchtop: 40sccm O, at a pressure of 500mT and
a plasma power of 250 W for 1 min.

Optionally: Dip the wafer in and HF bath for 30 s and blow dry.

A.2 Photolithography for lift-off

. Prebake the wafer for 1 min at 110°C.

Spin resist LOR3B: acceleration time 1.5s to 3000 rpm for 1 min.
Bake the wafer for 5min at 200 °C.
Spin resist S1813: acceleration time 1.5s to 3000 rpm for 1min.

Bake the wafer for 2min at 110°C.
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6. Expose with the MA6 mask aligner: Lo-Vac Mode (0.4 mbar) for 8.5s.
7. Develop using MF319 for 45s.

8. Ash using the Batchtop: 10sccm O, at a pressure of 250 mT and a
plasma power of 50 W for 10s.

A.3 Deposition of the contact pads

1. Using the Lesker evaporator:

+ Deposit 30 A of Ti at 1A/s.
« Deposit 800 A of Au at 1to 2A/s.
« Deposit 100 A of Pd at 1A/s.

2. Lift-off using remover 1165 at 70 °C for approximately 30 min.

A.4 Protective resist and dicing

1. Spin resist S1813: acceleration time 1s to 2000 rpm for 1 min.

Bake the wafer for 2min at 110 °C.

W

Dice the wafer from the backside leaving approximately 170 pm.

e~

Dip the wafer in 1165 remover at 60 to 70°C for 15 min.
5. Place the wafer in a bath of IPA for 2 min.
6. Dip the wafer in the QDR bath.

7. Blow dry the wafer.

A.5 Electron-beam lithography for lift-off

1. Spin resist EL10: acceleration time 2s to 500rpm for 5s and then
acceleration time 0.5s to 2000 rpm for 45s.

2. Softbake the wafer for 5min at 170°C.

3. Spin resist ZEP520A (1:1 dilution): acceleration time 0.5s, 3000 rpm for
45 min.

4. Softbake the wafer for 5min at 160°C.
5. Expose the wafer using an electron-beam lithography system.

6. Develop the top resist using o-Xylene for 2 min.
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10.
11.

Dip briefly in TPA.

Blow dry the wafer and divide into individual chips.

Develop the bottom layer using an H,O:TPA solution (1:4 dilution).
Rinse in TPA.

Blow dry gently.

A.6 Two-angle evaporation and lift-off

1.

A

Ash using the Batchtop: 10 sccm O, at a pressure of 250 mT and a
plasma power of 50 W for 10s.

. Two-angle evaporation using the Plassys (exact parameters need to be

tweaked for correct junction resistance):

« Deposit 40nm of Al at 0.5 A /s at an angle of 28°.
o Dynamic oxidation using Oy at 0.2mbar for 30 min.
e Deposit 50nm of Al at 0.5 A/s at an angle of —28°.

o Static oxidation using 100 sccm of O, at 10 mbar for 4 min.
Lift-off using remover 1165 at 70 °C for approximately 15 min.
Rinse in TPA.

Rinse in Methanol.

Blow dry.
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