
Franca IDL C Code Generator
Development and Evaluation of New Tools for Franca IDL
Master of Science Thesis in the Programme

Computer Science – Algorithms, Languages and Logic

JESPER LUNDQVIST

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, October 2015

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Franca IDL C Code Generator
Development and Evaluation of New Tools for Franca IDL

JESPER LUNDQVIST

© JESPER LUNDQVIST, October 2015.
© Pelagicore AB

Examiner: PATRIK JANSSON

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden October 2015

Abstract

Franca IDL is an interface description language, commonly used in the auto-
motive infotainment industry to define the interfaces of software components
in a language-independent way. Code generators for the language are avail-
able, which convert Franca IDL interface files to server stub and proxy code
in an implementation language, using the Remote Procedure Call paradigm
and the D-Bus Inter-Process Communication system to enable communica-
tion between them.

The present code generators available for Franca IDL have several prob-
lems which affect the productivity of companies using them. These problems
consist of heavyweight software dependencies, both in regard to the code
generators and to the implementation code generated by them. The code
generators also give very low-quality build feedback when used in automated
build systems, making it difficult to find errors in the code.

In this thesis, FrancaCCG, a set of open source prototype code generators
developed as part of this thesis work, is presented and evaluated. The pro-
totypes successfully solve the identified problems of the old code generators,
due to giving build feedback of better quality and having a minimum of ex-
ternal software dependencies. The code generated by FrancaCCG is runtime
compatible with the code generated by the old code generators. FrancaCCG
currently supports a subset of the Franca IDL and can be further developed
to include more features of Franca IDL, further increasing its usefulness.

Keywords: Franca IDL, code generation, Interface Description Language,
D-Bus, Inter-Process Communication, build feedback, automotive infotain-
ment.

iii

Acknowledgements

The author would like to express his sincere gratitude to his supervisor at
Chalmers University of Technology, Mary Sheeran, for all her help and quality
feedback given during the creation of this thesis. In addition, the author
would like to thank his examiner, Patrik Jansson, for the valuable feedback
provided. Furthermore, the author wish to express his utmost appreciation
to his industry supervisors at Pelagicore, Jonatan P̊alsson and Erik Botö,
for all their invaluable help and advice given during the development and
evaluation process of the software created as part of this thesis work. Finally,
the author would like to give a heartfelt thank you to the rest of the employees
at Pelagicore for all their support.

Jesper Lundqvist, Gothenburg, October 10, 2015

v

Contents

1 Introduction 1
1.1 Current Franca IDL tooling 1
1.2 Aim of this thesis work . 2
1.3 Report structure . 2

2 Background 4
2.1 Interface Definition Languages 4
2.2 Advantages and disadvantages of using an IDL 6
2.3 IDL annotations . 6
2.4 Franca IDL . 7
2.5 The D-Bus IPC . 9
2.6 D-Bus XML Introspection . 10
2.7 CommonAPI . 11
2.8 Other code generators using Franca IDL 12

2.8.1 Default D-Bus XML Introspection 12
2.8.2 ipc-quartztime . 13

3 Problems with current tools 14
3.1 Software dependencies of the tool 14

3.1.1 Proposed metric . 15
3.2 Error feedback in automated build systems 16

3.2.1 Proposed metric . 18

4 Development of FrancaCCG 22
4.1 Case study Franca IDL files 23
4.2 Development of first code generator 25

4.2.1 Annotations added to D-Bus XML Introspection 26
4.2.2 Output of first code generator 27

4.3 Development of second code generator 28
4.3.1 Software base of the code generator 28
4.3.2 D-Bus implementation choice 28

vii

4.3.3 Enumerations in the second code generator 29
4.3.4 Output of second code generator 30

4.4 Compatibility with the CommonAPI tool 31
4.5 Resulting software suite . 31
4.6 Code structure of FIDLtoXML 32
4.7 Code structure of XMLtoC . 36
4.8 Testing of generated code . 39

5 Results 41
5.1 P1: Software dependencies . 41

5.1.1 Runtime dependencies of code generated by CommonAPI 41
5.1.2 Runtime dependencies of code generated by FrancaCCG 42
5.1.3 Runtime dependencies of the CommonAPI code gen-

erator . 44
5.1.4 Runtime dependencies of the FrancaCCG code generator 45

5.2 P2: Error feedback . 46
5.2.1 Summary . 46
5.2.2 Test case 1: Missing or additional curly bracket 48
5.2.3 Test case 2: Import of non-existing file 49
5.2.4 Test case 3: Franca file structured wrong 49
5.2.5 Test case 4: Misspelled language construct 50
5.2.6 Test case 5: Usage of non-existing data type 50
5.2.7 Test case 6: Extension loop 51
5.2.8 Test case 7: More than one ”out” section 51
5.2.9 Test case 8: No version defined 51

5.3 Compatibility with CommonAPI generated code 52
5.4 Assessment of FrancaCCG by Pelagicore 52

6 Discussion 55
6.1 Evaluation of the software dependencies of the tools 55

6.1.1 Runtime dependencies of the generated code 55
6.1.2 Runtime dependencies of the code generators 56

6.2 Evaluation of the error feedback of the tools 57
6.3 Evaluation of the compatibility with CommonAPI generated

code . 58
6.4 Future work . 58

7 Conclusion 60
7.1 Resulting code generators . 60
7.2 Personal experience . 61
7.3 Availability and future of FrancaCCG 61

viii

References 66

A Source code for the test suite I
A.1 Original, error-free files . II
A.2 Case 1: Missing curly bracket III
A.3 Case 2: Import of non-existing file III
A.4 Case 3: File structured wrong III
A.5 Case 4: Misspelled language construct III
A.6 Case 5: Usage of non-existing data type IV
A.7 Case 6: Circular dependency in extensions IV
A.8 Case 7: Several “out” sections in method definition IV
A.9 Case 8: No version defined . V

B BNF grammar for a subset of Franca IDL VI

C Error feedback from test suite X
C.1 Test case 1: Missing curly bracket X
C.2 Test case 2: Import of non-existing file XII
C.3 Test case 3: File structured wrong XIII
C.4 Test case 4: Misspelled language construct XIV
C.5 Test case 5: Usage of non-existing data type XV
C.6 Test case 6: Circular dependency in extensions XVII
C.7 Test case 7: Several “out” sections in method definition XVIII
C.8 Test case 8: No version defined XIX

D Code generated by FrancaCCG from case study Franca IDL
interface XX
D.1 MediaTypes.fidl . XX
D.2 MediaIndexer.fidl . XXI
D.3 MediaIndexer.xml . XXII
D.4 MediaIndexer common.h . XXIII
D.5 MediaIndexer proxy.h . XXIV
D.6 MediaIndexer proxy.c . XXV
D.7 MediaIndexer stub.h . XXVIII
D.8 MediaIndexer stub.c . XXIX
D.9 MediaIndexer proxyImplementation.c XXXII
D.10 MediaIndexer stubImplementation.c XXXIV

ix

Chapter 1

Introduction

An Interface Definition Language (IDL) is a type of specification language
which is used to describe the interfaces of a software component, in a way that
is independent of the actual implementation language used. Code generators
can then be used to generate implementations of the interface detailed in the
IDL files. There exist a large number of IDLs, both general and domain spe-
cific. In the automotive industry, the Franca IDL is widely used to describe
component interfaces of infotainment systems. It has been proposed as an
industry standard by the GENIVI Alliance, a grouping of over 150 compa-
nies working together to create an open-source, standardized, infotainment
system platform [1]. GENIVI groups companies from the entire production
chain of infotainment systems; from Original Equipment Manufacturers such
as the BMW Group and the Volvo Car Corporation, to software developers
such as Pelagicore and silicon manufacturers such as Intel.

1.1 Current Franca IDL tooling

Currently, the tooling of Franca IDL consists of an Eclipse toolkit installation
in which C++11 code can be generated from Franca IDL files, using the Com-
monAPI tool [3]. This code corresponds to a server stub and proxy based on
the Remote Procedure Call (RPC) concept of inter-process communication
[9], using D-Bus [19] as Inter-Process Communication (IPC) system.

While Franca IDL is widely used by GENIVI Alliance members, its

1

present tooling makes the language cumbersome to use due to several factors.
It has very heavy-weight software dependencies due to requiring a specific in-
stallation of the Java Eclipse toolkit [7] as well as the CommonAPI tool. The
requirement of having to use the Eclipse toolkit also makes it very difficult
to use Franca IDL in automated build environments. The current automated
building solution gives build feedback, such as compiler errors or warnings,
of very low quality, making it hard for the user to find errors in the code.

1.2 Aim of this thesis work

The work conducted in this thesis aims to make Franca IDL more useful
and easier to use, thus increasing productivity of GENIVI companies that
make use of the language and its tooling. To accomplish this, a new set
of tools for the Franca IDL will be developed, which should be affected as
little as possible by the current problems described in this thesis. This set of
tools will consist of new prototype code generators, runnable from the Linux
terminal with a minimum of external dependencies. They should output C
stub and proxy code using the D-Bus IPC. To preserve compatibility, the
resulting code should be compatible at the D-Bus level with the code from
the present CommonAPI code generator.

To evaluate the extent to which the tools developed as part of this thesis
solve the identified problems of the CommonAPI tool, methods of evaluation
of each of the problems will be defined. The new tools and the currently
existing CommonAPI tool will then be evaluated using these methods.

This thesis work was conducted at Pelagicore, a Gothenburg/Munich
company developing infotainment systems for the automotive industry and a
member company of the GENIVI Alliance. Pelagicore employees use Franca
IDL and its present tools on a daily basis in their workflow.

1.3 Report structure

The rest of the report is organized as follows. In the Background chapter
following this introduction, the technical background of this thesis work is
given. The following Problems with current tools chapter details the iden-
tified problems with the current tools and describes methods to evaluate

2

potential new tools against these problems. The subsequent chapter named
Development of FrancaCCG details the development of a new set of tools for
Franca IDL. The Result chapter describes and evaluates the resulting code
generators developed during this thesis work, as well as the old code genera-
tors, in regard to the identified problems. The following Discussion chapter
provides further thoughts about the usefulness of the code generators and
suggests potential future courses of action. Finally, the Conclusion chapter
sums up this thesis work and its result.

3

Chapter 2

Background

2.1 Interface Definition Languages

Interface Definition Languages, also known as Interface Description Lan-
guages, are a family of specification languages used in software development
to describe an interface independently of any implementation language or
target system. They do not compile to executable code, in contrast to reg-
ular programming languages such as C or Java. Instead, there often exist
several different compilers or code generators for a particular IDL, which
produce server and client stub code corresponding to the interface file in
the chosen implementation language [12]. These stubs enable communica-
tion over an Inter-Process Communication (IPC) system according to the
interface specifications.

The notion of IDLs is not new; the first IDL was proposed in 1981 [27].
Since then, a multitude of IDLs have been developed. Today there exist
many different IDLs, ranging from very general ones, such as Apache Thrift
[14] and OMG IDL [22], to IDLs specific to a certain domain or industry.

The workflow of using interface definitions to generate server and client
stub code using the Remote Procedure Call paradigm has also been well
established for a long time [9] and is widely used. While the semantics of
the generated stubs differ between different IDLs and IPCs, the general idea
is the same. The same interface definition file (IDL file) is used to generate
a server stub and server proxy. These use an Inter-Process Communication
(IPC) system to communicate with each other. On the client side, a remote

4

procedure call initialized by the client application will be directed to the local
server proxy generated from the IDL file. This local proxy will then make
use of an IPC to remotely communicate with the generated stub code on the
server side. The stub on the server side will then relay the procedure call
locally to the server application.

Figure 2.1: Flowchart depicting a typical Remote Procedure Call setup with
server stub and proxy code, generated from an IDL file, using an IPC system
to communicate. The server application and the client application will only
communicate with the local server stub and proxy, respectively, and will thus
be unaware of the IPC system.

5

2.2 Advantages and disadvantages of using

an IDL

The main reason to use an IDL in your workflow is to allow for easier inter-
process or inter-system communication, since an IDL allows an interface to
be described independently of any implementation language or target system.

A major advantage of the server and client stub code generated from an
IDL file is that both the client and the server application will be unaware
of the remote nature of a remote procedure call. They will only communi-
cate locally with the server proxy and stub, which then in turn handle all
remote communication details. Thus, one could for example switch server
implementation language without having to make any changes in any of the
clients, as long as the new implementation of the server corresponds to the
same IDL specification.

While there are many advantages of using an IDL in the workflow of soft-
ware development, it imposes a significant increase in tool chain complexity
[13]. It is thus important that the tools related to the IDL, such as the code
generators, are easy to use and that they can be implemented in the workflow
in a natural and non-obtrusive way.

The generality of IDLs can also be a source of problems [24]. While this
generality is the main reason IDLs enable inter-system communication, it also
places heavy limitations on the features that can be included in the IDL. Any
interface specified in the IDL needs to be able to be properly expressed in
one or more target implementation languages. Thus a more feature rich IDL
puts greater constraints on which target languages it can potentially support.

2.3 IDL annotations

To preserve generality but still allow language-specific features, some IDLs
are extended in their functionality by adding annotations or structured com-
ments to the IDL code. These annotations can then be processed during
code generation, and they essentially add functionality not present in the
non-annotated form of the IDL. A similar approach is to ”hide” extra in-
formation in the identifiers of IDL constructs such as parameters or meth-
ods. Both these approaches have the advantage that old code generators,

6

unaware of the meaning of the annotations, can still process the code and
maintain some degree of compatibility [23]. Such code generators will simply
ignore these annotations, structured comments, and identifier names when
processing the IDL code. Code generators that support the annotations will
recognize them and process them during code generation.

Features such as documentation or version information are often added as
annotations. Such annotations do not add any concrete functionality to the
code, but rather help the user with tasks such as making the resulting code
compatible with old versions of the interface, or generating documentation for
the code. An example of such an annotation is presented in Figure 2.2. Here,
a method definition in a Franca IDL file is marked with the @deprecated :

<explanation string> annotation. Code generators aware of the meaning
of the annotation can, for example, print an error message based on the
explanation string each time the method is used, letting the user know the
method is deprecated.

Figure 2.2: A simple example of an annotation added to a method definition
in the Franca IDL.

Other annotations add or change functionality of the resulting code. An
example of this is the org.freedesktop.DBus.Method.NoReply annotation
used in the D-Bus XML Introspection [30]. If this annotation is set to True

in a method definition, the resulting method generated by a code generator
aware of the annotation will not produce a reply when called.

2.4 Franca IDL

Franca IDL is primarily used in the automotive infotainment industry, where
it has been proposed as a standard by the GENIVI Alliance [8]. However,
it is a general IDL and its features are not domain specific. It can thus be
used for a multitude of different projects and on many platforms. Developing
interfaces in Franca IDL is primarily done in a special version of the Eclipse

7

Java toolkit. The file extension for Franca IDL interface files is *.fidl.

The initial release of Franca IDL was made in November 2011 [6]. As of
August 2015, the language has been continuously developed from its initial
release. Today, Franca IDL contains many advanced features, such as support
for advanced data types and external type collections, as well as contracts
describing the dynamic behavior of interfaces. The latest version of the
language, 0.10.0, was released in July 2015 [5], fixing bugs and adding new
features.

Figure 2.3: A simple example of a complete Franca IDL interface, containing
several methods and broadcasts for a Power Management component.

An example of a complete Franca IDL interface file can be seen in Fig-
ure 2.3. Here, an interface for a Power Management component is defined.
The interface, belonging to the org.example package, begins with its cur-
rent major and minor version, which is required to be stated in all Franca

8

IDL interface definitions. Afterwards, the five methods of the interface are
detailed. None of these methods take any in-parameters, and all but one
return no out-parameters. The GetLowBattery method has a boolean out-
parameter. Finally, two broadcasts (or signals) are defined for the interface.
These both broadcast a boolean value.

2.5 The D-Bus IPC

Inter-Process Communication systems, IPCs, are used to facilitate commu-
nication between two processes in a computer system. These processes can
either both exist on a local machine, or they can communicate with each
other over a network. There are a number of fundamentally different ways
an IPC can work. For example, a process writing to a file in memory which
another process subsequently reads from is one simple type of IPC system.
Another option is to let the processes communicate using network sockets or
using shared memory [41].

The D-Bus IPC is a popular IPC used in a multitude of projects, such as
the GNOME project [35]. It uses several message buses to facilitate inter-
process communication [26]. Daemon processes are used to control the buses.
By contacting the daemon process, applications on the system can connect to
the buses and create services on the bus in question, which other applications
then can connect to. D-Bus services currently running on the system can be
explored and listed by using the d-feet tool in Linux, shown in Figure 2.4.
This can be used as a debugging tool when developing software using the
D-Bus IPC, to make sure that a D-Bus service is running correctly.

9

Figure 2.4: Screenshot showing the d-feet tool, used to inspect running D-Bus
services.

2.6 D-Bus XML Introspection

The D-Bus IPC protocol includes D-Bus XML Introspection, which is a way
to describe the behavior of a D-Bus interface. D-Bus Introspection can be
seen as an IDL of sorts, since it specifies a D-Bus interface without any
implementation details. There are several code generators for D-Bus XML
Introspection available, for example nih-dbus-tool [40] and gdbus-codegen

[34]. These output code for D-Bus stubs and proxies corresponding to the
interface detailed in the introspection data, in different target implementation
languages depending on the code generator used.

10

Figure 2.5: A simple example of D-Bus XML Introspection data, correspond-
ing to the same interface as the Franca IDL interface in Figure 2.3

2.7 CommonAPI

CommonAPI is a software library developed by GENIVI, working as a com-
munication middle layer between the IPC and the application using the li-
brary. Letting the application communicate with the CommonAPI library
and not with the IPC directly makes the application IPC agnostic; you can
dynamically switch the IPC used, without having to recompile the applica-
tion.

In addition to this software library, CommonAPI also refers to a code
generator for Franca IDL. This code generator is runnable from the Eclipse
toolkit, and can produce both IPC agnostic code and code using the D-Bus
IPC. Both versions produce C++11 code which uses the CommonAPI library.
For the purposes of this thesis, the IPC agnostic version is not considered,
since the D-Bus version of the code generator is used at Pelagicore. While
the CommonAPI code generator supports most features of the Franca IDL
language, advanced Franca IDL features such as contracts are not presently
supported.

11

The CommonAPI code generator produces a set of C++ files correspond-
ing to server stub and proxy code for the interface detailed in the Franca IDL
file. This code can then be used to implement servers and clients for the in-
terface. An example of a simple server implementation using this generated
code can be found in Figure 2.6.

In this thesis, CommonAPI will refer to the CommonAPI D-Bus code
generator, unless explicitly stated otherwise.

#include <iostream>

#include <thread>

#include <CommonAPI/CommonAPI.h>

#include "IndexerStubDefault.h"

int main(int argc, char** argv) {

std::shared_ptr<CommonAPI::Runtime> runtime = CommonAPI::Runtime::load();

std::shared_ptr<CommonAPI::Factory> factory = runtime->createFactory();

std::shared_ptr<CommonAPI::ServicePublisher> servicePublisher = runtime->getServicePublisher();

const std::string& serviceAddress = "local:org.genivi.mediamanager.Indexer:org.genivi.mediamanager.Indexer";

std::shared_ptr<org::genivi::mediamanager::IndexerStubDefault> myService = std::make_shared<org::genivi::mediamanager

::IndexerStubDefault>();

servicePublisher->registerService(myService, serviceAddress, factory);

while(true) {

std::cout << "Waiting for calls... (Abort with CTRL+C)" << std::endl;

std::this_thread::sleep_for(std::chrono::seconds(60));

}

}

Figure 2.6: Sample C++ code showing a simple server implementation using
CommonAPI generated files.

2.8 Other code generators using Franca IDL

In this section, the most widely used code generators currently available for
Franca IDL, other than the CommonAPI code generator described above,
will be briefly presented.

2.8.1 Default D-Bus XML Introspection

The standard Franca IDL Eclipse installation includes a code generator ca-
pable of converting a Franca IDL file to a D-Bus XML Introspection file.
This can be useful, since D-Bus is much more broadly used than Franca IDL
and thus there are more code generators available for the language, capable
of generating stubs and proxies in many different target languages. How-

12

ever, D-Bus XML Introspection only supports a subset of the Franca IDL
language; many of Franca IDLs advanced features (such as contracts) are
not available in D-Bus XML Introspection, and they are ignored by the code
generator when processing a Franca IDL file. This, in combination with the
code generator being runnable only from within the Eclipse toolkit, makes it
have rather limited practical use.

2.8.2 ipc-quartztime

ipc-quartztime is an IPC library based on shared memory, mutual exclusion
and signals [42]. It includes a code generator capable of parsing a subset of
Franca IDL, producing client proxy and server stub code using the included
IPC library. This resulting code is written in C. Due to using another IPC
than D-Bus, the resulting code is not compatible with the code from the
CommonAPI tool.

13

Chapter 3

Problems with current tools

In the pre-study of this thesis, two major problems with the CommonAPI
code generation tool were identified by users of CommonAPI at Pelagicore:
Its software dependencies are large, and it gives build feedback of very low
quality in automated build systems. These problems affect the usability of
the tool as well as the usefulness of the resulting code generated. Since there
are no relevant alternatives to the CommonAPI tool currently available, the
productivity of companies using Franca and the CommonAPI tool in their
workflow can be negatively influenced [10]. Therefore, an alternative to the
CommonAPI tool, such as the software developed as part of this thesis work,
should be as little influenced by these two problems as possible, to increase
productivity.

In this chapter, the two major problems identified in the pre-study will be
presented, along with methodology for evaluating Franca IDL code generators
against the problems.

3.1 Software dependencies of the tool

The first problem of the CommonAPI tool identified in the pre-study is
defined as follows:

P1. The runtime dependencies for the CommonAPI code generator
and its generated code have large sizes in kB.

14

Like most software, the CommonAPI tool uses and requires other software
libraries to install and to use. However, in the case of CommonAPI, this set
of additional software needed has a very large installation size, due to several
factors. One such factor is the dependency on a heavy-weight Java and
Eclipse toolkit installation. In some companies using the CommonAPI tool,
such as Pelagicore, Java is not used for any other projects. This leads to a
Java installation being required for the CommonAPI tool only.

While the problem P1 only states the size in kilobytes of additional soft-
ware dependencies as a problem, it is also worth noting the general difficulty
of installing the additional software needed. If the software dependencies of
a tool are very difficult to install, it will impact productivity and in some
cases might make the user choose another, inferior, tool instead. It is, how-
ever, very hard to measure the difficulty of installing a particular software,
due to differences in the experience of the user installing the software as well
as hardware and software differences of target computer systems. For the
purpose of this thesis, only a general description of the difficulty of installing
the software dependencies of a particular tool will be given when discussing
said tool.

Related to the run-time software dependencies of the actual code gen-
erators is the required run-time dependencies of the output code generated
by the code generators. Since Franca IDL is mainly used in the automotive
infotainment industry, it is often used in embedded systems. This places
heavy limits on the size of the additional software needed, since embedded
systems often have limited physical memory. Thus, it is important that the
additional software required by the code produced by a code generator for
Franca IDL is lightweight and small.

3.1.1 Proposed metric

Finding the dependencies of a Linux binary file can be done with the ldd

<filename> command, which produces a list of all additional libraries needed
by the binary in question. This list can then be studied in detail and the
command du <filename> can be used to find out the size of each software
library.

The total number of kilobytes of software dependencies can be found
by summing the size of all individual libraries in this way. However, there
are some libraries that might be very large in size, but are universally used

15

by a large number of applications, such as the libc library. Since it is
likely that such a library will already exist on the target system due to some
other already installed software using it, its inclusion in the metric can make
such code seem more heavyweight than it actually is on the target system.
Therefore, in addition to stating the total size of all necessary libraries, the
larger ones should be separately discussed to determine if they are likely to
be common to other applications running on the system. This should then
be considered when comparing two different code generators.

However, this approach can only be taken on binary files, making it suit-
able to measure the dependencies of the code generated by the code gen-
erators in this way. The dependencies of the actual code generators can
not always be measured in this way, though. This is due to some of them
not being available as standalone binaries, but rather as applications writ-
ten in interpreted languages such as Python, or available as plugins to other
software, such as the CommonAPI code generator available as an Eclipse
plugin. In these cases, the installation size of this software can be measured,
and whether it is likely or not that the software is already available on the
target system should be noted.

3.2 Error feedback in automated build sys-

tems

The second problem identified in the pre-study of this thesis is defined as
follows:

P2. Automated building of Franca interfaces with the CommonAPI
code generator is very difficult, and gives very low-quality feedback.

Writing code in any programming language is error prone. Thus it is
important that any syntax errors in the code are caught by compilers or code
generators. In contrast to compilers, code generators also need to handle run
time errors such as a source file referring to a non-existing external file. When
an error is found by a code generator, code generation is normally aborted,
and an error message is given. To help the programmer identify the error, the
error message given should contain enough information about the error so
that it can easily be found and corrected by the programmer. For example,

16

if some piece of code is missing a semi colon or a curly bracket, this should
be indicated by the error message along with the location (e.g. line number)
of the error.

These types of syntax errors are easily found and corrected when using
the Eclipse toolkit to define Franca IDL interfaces, since they are clearly
described to the user in a graphical way, as seen in Figure 3.1. However,
it is not possible to use the graphical Eclipse toolkit to generate code in an
automated build system, such as Yocto [38] or Jenkins [37]. In such a system,
the tools used must be runnable from the command line, since the entire build
process is automated. It is then important that any errors occurring during
the build process can be easily found and logged.

Figure 3.1: Error feedback given in the Eclipe Toolkit when a bracket is
missing from a method declaration. Note that both the nature of the error
and its exact location are shown.

The CommonAPI code generation tool is designed to be used from within
the Eclipse Editor, and is normally not runnable at the command line. Since
a command line interface is required to include CommonAPI in an auto-
mated build environment, a command line ”hack” for CommonAPI has been
developed by Pelagicore which is able to generate code from Franca IDL
files [29]. However, this software is difficult to set up, and still requires the
Eclipse toolkit installed on the machine. Furthermore, the build feedback
given when using this command line version of CommonAPI is of very low
quality, due to error messages and warnings normally visible in the Eclipse
Editor not showing in the command line interface. Often, only a Java stack
trace is given, which does not contain any useful information about the error.
See Figure 3.2 for an example of such an error message.

It is therefore very hard for a programmer using the CommonAPI com-
mand line tool to debug the faulty code, since often the only information
given is that there is at least one error somewhere in the code, but not its
location or exact nature. When developing complex interfaces, finding such

17

an unidentified error can be time consuming and impact productivity. For
some errors, no error feedback at all is given, and faulty output files are gen-
erated. In this case, it is likely that the programmer does not even realize
that an error has occurred during code generation, which can have disastrous
consequences, unless the resulting code is properly tested.

For a Franca IDL code generator to be usable in an automated build
environment it should be runnable from the command line, and it should
output useful build feedback. This feedback should be accessible on the
stderr and stdout streams, which often correspond to the terminal window
the code generator was run from [21].

3.2.1 Proposed metric

To measure the quality of the error feedback of a Franca IDL code generator,
a test suite of eight faulty Franca IDL interface files was created. These files
contained common syntax and run time errors. They were chosen based on
common mistakes made when designing interfaces in Franca IDL, identified
in collaboration with an employee at Pelagicore proficient in the use of Franca
IDL [39]. For a complete list of these errors and a brief description of each,
see Table 3.1. Each error was added to the case study interface defined in
the Development of FrancaCCG section and saved separately, producing a
set of eight Franca IDL interface files. The complete Franca IDL source code
for each of these eight test cases is given in Appendix A.

What constitutes good build feedback is subjective. For the purpose of
this thesis, the error message produced by a code generator when processing
a faulty file is considered good enough if the nature of the error (e.g. ”syntax
error”) is stated, along with the line number of the error, if applicable. The
location of some errors in the code, such as ”missing external file”, is easily
found due to the reference to the file being in one location only. Other errors,
such as ”missing curly bracket”, have many possible locations in the code,
and therefore the line number of the error should be given. Many syntax
errors affect the subsequent line of code and not the actual line of the error.
Thus, a fault marginal of ±1 lines of code was allowed on the line number
given, to allow for such an error message to still be considered good enough.

The total number of good error messages reported when running the test
suite on a particular code generator for Franca IDL is proposed as a metric
of the quality of the error feedback given for that particular code generator.

18

Figure 3.2: Error feedback from the command line CommonAPI tool, corre-
sponding to the same syntax error as in Figure 3.1. Note that neither the
nature of the error (missing bracket) nor its location in the code is given in
the verbose error message, thus making it difficult to find the error in the
source code.

19

Table 3.1: List of common Franca IDL syntax and runtime errors

1. Missing or ad-
ditional curly
bracket.

Like many other programming lan-
guages, Franca IDL uses curly brack-
ets to define the scope of language con-
structs. Missing a closing bracket is a
common programming error.

2. Import of non-
existing file.

You can import e.g. a type collection
from an external Franca IDL file, but
there might be errors during the pro-
cess, such as when no file with the spec-
ified name is found.

3. Franca file struc-
tured wrong.

Franca IDL file are required to have a
certain structure. An example of this
is that type definitions are required to
be placed at the very end of a Franca
IDL interface file, after any methods or
attributes.

4. Misspelled lan-
guage construct.

This happens, for example, when the
programmer writes ”nethod” instead of
the correct syntax ”method”.

5. Usage of non-
existing data
type.

Using a non-existent type could both
be caused by the programmer mis-
spelling a built-in data type, or the pro-
grammer forgetting to include or define
a custom data type.

6. Extension loop
for e.g. enumer-
ations.

An extension loop happens when e.g.
an enumeration definition extends an-
other enumeration, which in turn ex-
tends the original one.

7. More than one
“out” section in
method

A method definition in Franca is re-
quired to have at most one “out” sec-
tion describing the return parameters
of the method.

8. No version de-
fined.

All Franca IDL interfaces are required
to include their major and minor ver-
sion in the IDL file.

20

While very simple, this metric makes it straightforward to compare the error
quality feedback of two different Franca IDL code generators in an objective
way. In addition to this, cases where a code generator fails to find an error
should be noted. This can be a serious problem, especially if faulty files are
generated without giving any error message.

21

Chapter 4

Development of FrancaCCG

As part of this thesis work, a new set of code generators for Franca IDL was
developed, with the aim that the identified problems of the old tools are not
present in the new ones. In this chapter, the steps and decisions taken during
the development of these new code generators are discussed.

The desired target implementation language of the code from the devel-
oped code generator was identified in the pre-study of this thesis as the C
language, due to it being almost universally used, and easier to connect to
components written in other language than the C++ language used in the
CommonAPI code generator. However, to increase the general usefulness
of the tools developed, the decision was taken to include D-Bus XML In-
trospection as an interim language. This would give two major advantages
compared to developing only one code generator from Franca IDL directly
to C. It would allow greater freedom in the use of the tools, since one could,
for example, use another D-Bus XML Introspection code generator to out-
put code in another implementation language, if desired. It would also allow
the re-use of already existing code to parse D-Bus XML Introspection and
generate code from it.

Thus, two independent code generators were to be developed; one that
reads Franca IDL files and outputs D-Bus XML Introspection, and one that
reads D-Bus XML Introspection and outputs C stub and proxy code. These
were to be fully compatible with each other, i.e. the output of the first code
generator must be valid as input to the second one. FrancaCCG (short for
Franca IDL C Code Generator) was chosen as the name of this software suite.

22

4.1 Case study Franca IDL files

Franca IDL is a complex language with many features. Thus, it was not
deemed practical to develop a set of new code generators capable of parsing
and generating code for the entire Franca IDL in the limited time frame of this
thesis work. Rather, a subset of Franca IDL was considered. This subset was
defined based on a case study interface, used in a previous GENIVI project
(see Figure 4.1). When the code generators could successfully process this
case study, they were deemed feature complete, even though they did not
support all features and constructs of Franca IDL. This scope was chosen
so that the prototype code generators could be evaluated in regard to an
actual industry project, while still being simple enough to be developed in
the limited time frame of the thesis work.

The following features and constructs of Franca IDL were identified in
the case study interface files. These were to be supported by the developed
Franca IDL to D-Bus XML Introspection code generator. Features in italics
were not present in the case study interface files, but were deemed critical
enough to still warrant support in the code generators.

23

MediaTypes.fidl:

package org.genivi.mediamanager

typeCollection MediaTypes {

enumeration BackendError extends MediaManagerError {

BACKEND_UNREACHABLE }

enumeration MediaManagerError { NO_ERROR }

}

MediaIndexer.fidl:

package org.genivi.mediamanager

import org.genivi.mediamanager.MediaTypes.* from "MediaTypes.fidl"

interface Indexer {

version {

major 1

minor 0

}

<** @description: Example comment**>

attribute IndexerStatus indexerStatus readonly noSubscriptions

method getDatabasePath {

out {

String output

IndexerError e

}

}

method stopIndexing {

out { IndexerError e }

}

method startIndexing {

out { IndexerError e }

}

enumeration IndexerStatus {

RUNNING

STOPPED

IDLE

}

typedef IndexerError is BackendError

}

Figure 4.1: Franca IDL case study files, used to limit the scope of the features
in the code generators.

24

• Type collections

• Package names

• .fidl file import

• Structured Comments

– @description

• Regular comments

• Primitive types

• Interfaces

– Interface version (major/minor)

– Methods

∗ Without in- or out-parameter(s)

∗ With only in- parameter(s)

∗ With only out- parameter(s)

∗ With both in- and out-parameter(s)

• Enumerations

– Extending enumerations

• Attributes

– Flags on attributes

∗ readOnly

∗ noSubscription

• Type definitions

4.2 Development of first code generator

The first code generator was to be based on the BNFC software suite [25],
which takes a grammar file for a language as input, producing a parser,

25

lexer, and skeleton code for a compiler for the language. The decision to use
this software suite was made due to it being relatively easy to use and due to
previous experience with the software. A Backus-Naur form (BNF) grammar
for the subset of Franca IDL was constructed and can be found in Appendix
B. Based on this grammar, skeleton code for a code generator was generated
by BNFC. This code used the visitor pattern [28] to traverse a Franca IDL
source file, and by modifying this skeleton code a code generator producing
annotated D-Bus XML Introspection files was developed. BNFC supports
several target languages of the generated skeleton code. C++ was chosen as
a target language, due to it being the most time-efficient choice. Note that
this language choice only affects the source code of the code generator, and
not the code generated by it.

4.2.1 Annotations added to D-Bus XML Introspection

Most of the language features of the subset of Franca IDL in the case study
files were supported by the standard D-Bus XML Introspection language.
However, D-Bus lacks support for enumerations, and support for these was
added to the language as annotations. The decision to add these features as
annotations, and not as new XML tags, was made to preserve compatibility
with other code generators unaware of these features. This essentially created
a new dialect of D-Bus XML Introspection; there are other dialects available
that are used in other projects, such as eggdbus [43].

An annotation in D-Bus XML Introspection is defined as a tuple consist-
ing of a name string and a value string, in the form
<annotation name="" value=""/>. As the name string,
com.pelagicore.FrancaCCodeGen.Enum.X.Y was decided, with X being the
name of the enumeration, and Y being the name of the enumeration member.
The value was defined as the integer value corresponding to that particular
enumeration member. See Figure 4.2 for an example of such an annotation.

26

Figure 4.2: Example of a method specified in D-Bus XML, where one of the
arguments is an enumeration. Note that the argument is annotated with all
allowed enumeration values.

Enumerations are commonly defined in implementation languages as non-
negative integers. To prevent any ambiguity, the annotations were designed
so that the integer value of each enumeration member is explicitly given. In
Franca IDL, enumeration members can optionally be given an explicit inte-
ger value. In the Franca IDL to D-Bus XML Introspection code generator
developed, enumeration members are given integer values starting at 0 and in-
crementing, skipping values that are either already given or explicitly defined
in the Franca IDL file. During code generation, if an attribute or method
argument is defined as an enumeration, that argument or attribute tag in
the resulting D-Bus XML Introspection file is annotated with all possible
enumeration values. While this approach creates some degrees of repetition
in the D-Bus XML file if the same enumeration is used in multiple locations,
it makes it very clear which enumeration members and values are supported
each time an enumeration is used.

4.2.2 Output of first code generator

The FIDLtoXML code generator described above outputs one file when run.
This file is an *.xml file containing the interface of the Franca IDL file used
as input, converted to the D-Bus XML Introspection format. See Appendix
D for an example of such a pair of a Franca IDL file and XML file generated
from it.

27

4.3 Development of second code generator

4.3.1 Software base of the code generator

The second code generator developed as part of this thesis takes D-Bus XML
Introspection files as input, outputting server stub and proxy code in the C
language. Since D-Bus is a widely used IPC, a survey of existing code gener-
ators for D-Bus XML Introspection was conducted. The code generator was
required to support the new annotations defined above, making it impossible
to use an existing code generator without implementing support for these
new annotations in it. Based on the survey, it was decided not to extend any
existing code generator with new functionality, due to no suitable such code
generators being identified in the survey. However, a code generator named
gdbus-codegen-glibmm, developed in Python by Pelagicore employees and
based on the gdbus-codegen code generator [34], was decided to form a code
base for the second code generator. This code generator outputs C++ code
using the glibmm library.

A major advantage of this choice to base the code generator on an existing
code base was that an XML parser, as well as many helper functions, was
given in the code base and could easily be reused in this project. In essence,
only the actual code generated by the code generator had to be changed.
Since the software was developed at Pelagicore, the readily available expertise
there during this thesis work was another major advantage.

4.3.2 D-Bus implementation choice

While there exists an official D-Bus reference implementation and library,
there are many alternatives available [20]. Some of these alternatives are
bindings to the official library, libdbus. Others are independent implemen-
tations, sharing only the D-Bus protocol and technical specifications. When
developing software using D-Bus, one must thus choose a suitable binding
or reimplementation and this choice depends primarily on the programming
language that will be used. For example, to implement D-Bus in a Haskell
application, the dbus-core library can be used.

For this thesis work, a D-Bus implementation for the C language had to
be chosen. Several candidates were identified.

28

• libdbus, the official D-Bus library. However, it is recommended not
to use it in applications due to it being very low-level and cumbersome
to use [19], and rather choose a binding for it instead [18].

• GDBus, which is an independent implementation of the D-Bus protocol
developed by the GNOME foundation as part of the GLib library. It
is highly documented and provides both high-level and low-level APIs
[36].

• DBus-GLib, which is an older, deprecated D-Bus binding, also part of
the GLib library [33].

• libsystemd-bus, the userspace version of the kdbus project, which
aims to integrate D-Bus into the Linux kernel. It is an independent
implementation of the D-Bus protocol, currently only available as part
of systemd [31].

Chosen library

For this thesis work, the GDBus library was chosen as the D-Bus library to
use for the C code of the second code generator. This library was chosen
due to it having an active community of developers working on it, as well as
being documented in a thorough way, making implementation easier.

4.3.3 Enumerations in the second code generator

No support for enumerations exists in the standard D-Bus XML Introspec-
tion format. Rather, an enumeration is normally defined as a regular integer
by tools such as the Franca IDL to D-Bus XML Introspection code gen-
erator found in the standard Franca IDL installation. Using such tools, if
an attribute or an method parameter in the Franca IDL file is defined as a
enumeration, any integer will be allowed in the resulting code, not only the
integers corresponding to the enumeration members of the enumeration type.
This can lead to crashes or undefined behavior when using the generated code
in an implementation.

By supporting enumerations in FrancaCCG and by giving the enumer-
ation members explicit values, the programmer implementing the client or
server of the interface can clearly see which integer values that are supported,

29

and their corresponding enumeration name. The C code generated by the
second code generator of FrancaCCG does not allow any other integer to be
sent than the integers corresponding to the enumeration type in question.

4.3.4 Output of second code generator

The second code generator, XMLtoC, will generate seven files containing C
code corresponding to the interface of the D-Bus XML Introspection file when
run. These include a common header file, as well as three files correspond-
ing to header, source and example implementation of the server stub used
by the server, and three files corresponding to header, source and example
implementation of the server proxy used by the client. These files, and their
use, are specified in Table 4.1.

Table 4.1: Output C files from FrancaCCG

File name (prefixed by
name of interface)

Description

common.h Common header file used by both proxy
and stub, containing enumeration type
definitions.

stub.h Header file used by the stub.

stub.c Stub code, used by server implementa-
tions of the interface.

stubImplementation.c Sample server implementation using the
stub code generated. Can be used as skele-
ton code to build a functional server.

proxy.h Header file used by the proxy.

proxy.c Proxy code, used by client implementa-
tions of the interface.

proxyImplementation.c Sample client implementation using the
proxy code generated. Can be used as
skeleton code to build a functional client.

30

4.4 Compatibility with the CommonAPI tool

Since the D-Bus IPC is used both by the CommonAPI code generator and
by FrancaCCG, compatibility of the resulting code of the code generators
essentially means conforming to the same D-Bus interface as the code gen-
erated by CommonAPI. To check that the code is indeed compatible, the
same Franca IDL *.fidl file can be used as an input to both code gener-
ators, producing two sets of stub and proxy server code. These two sets of
code are written in different implementation languages, but are conforming
to the same Franca IDL interface. By connecting the server stub generated
by CommonAPI to the server proxy generated by FrancaCCG, compatibility
can be easily checked, since the D-Bus daemon will not allow this connection
unless they conform to the same D-Bus interface.

4.5 Resulting software suite

The two code generators described above together form the FrancaCCG soft-
ware suite.

Included in the software suite is a shell script which can be used with
a Franca IDL *.fidl file and optionally an output folder path as parame-
ters. This shell script will then run FIDLtoXML on the Franca IDL interface
file, converting it to a D-Bus XML Introspection file, annotated with new
functionality not in the standard D-Bus XML Introspection. This *.xml file,
and optionally the specified output folder path, will when be passed on to
the XMLtoC code generator. This code generator parses the XML file and
generates seven C files as output. Please see Appendix D for a example of
such generated code, corresponding to the case study Franca IDL interface
in Figure 4.1. Finally, the shell script will report the success of the code
generation to the user by means of a message to the stdout stream.

In the case of an error during this process, code generation will be aborted,
and the user will be alerted to the error by a message to the stderr error
stream. The error feedback of FrancaCCG will be further discussed in the
Results section.

Included in the FrancaCCG suite are also two shell scripts that are used
to compile the code generators, as well as to clean up the folders after com-

31

Figure 4.3: Files and folders making up the FrancaCCG code generator suite.

pilation. These scrips are named compile.sh and cleanup.sh, respectively.
For a complete list of the files and folders of the FrancaCCG software suite,
see Figure 4.3.

4.6 Code structure of FIDLtoXML

CustomType.{cpp|h} contain a class definition for a custom Franca type,
which can currently be either an enumeration or type definition. It stores
information about the custom type, such as enumeration members and their
values, and also stores the D-Bus type signature corresponding to the custom
Franca IDL type.

GenerateXML.cpp contains the main function of FIDLtoXML. This func-
tion will start by trying to read a *.fidl file specified as input. If successful,
the file will be parsed by a parser for Franca IDL automatically generated by
the BNFC suite, generating a parse tree. This tree is then used as input to
the findCustomTypes function in CustomTypesParser.{cpp|h}. This func-
tion will traverse the parse tree, using the Visitor pattern, and create a list
of all custom Franca IDL types defined in the file, as well as those defined in

32

any imported files. The list of custom Franca IDL types is then parsed and
processed, returning a list of CustomType objects, containing the D-Bus sig-
nature of each custom type. If a custom type cannot be successfully parsed,
an error message is given and code generation is aborted. This can hap-
pen, for example, if an enumeration is extending another enumeration which
cannot be found in the file.

If the automatically generated parser encounters any parse errors, for ex-
ample due to syntax errors in the *.fidl file, it will give an error message
listing the line number of the error using the standard cout function. To cre-
ate more useful build feedback from this information, the output of the parser
is redirected from stdout to a string, and the line number is subsequently
saved. Afterwards, the output is redirected back to stdout, and the line of
code corresponding to the given line number is found in the *.fidl file. This
line of code is then printed to the stderr stream. This approach, shown in
Figure 4.4, allows the programmer to easily see the line of code corresponding
to the syntax error, without making any changes to the error feedback code
of the automatically generated parser, which will be re-generated each time
the code generator is built.

After producing the list of custom types, the parse tree is given as input
to the generate function of XMLGenerator.{cpp|h}. This file is similar in
structure to CustomTypesParser.{cpp|h}, using the same Visitor pattern
to traverse the parse tree. In this file, the actual code generation from each
Franca IDL contruct to its corresponding D-Bus XML Introspection data
is done, using the list of custom Franca IDL types produced earlier as a
dictionary when the D-Bus XML signature for a specific custom Franca IDL
type is required. If a custom type is not found in this list, it has not been
defined and an error message detailing this is given, and code generation is
aborted.

The actual code generation to D-Bus XML is straightforward, due to the
two IDL’s sharing many features, and their general structure being the same.
An example of this can be seen in Figure 4.5, which details the visitor func-
tions used to generate code when processing a method definition in Franca
IDL.

If the code generation is successful, the generated code will be saved to
file, and the code generator will exit.

33

// Temporarily redirect cout during parsing, so that we can save

the line number of any parse error.

std::streambuf* oldCoutStreamBuf = std::cout.rdbuf();

std::ostringstream strCout;

std::cout.rdbuf(strCout.rdbuf());

// Parse the fidl file

Program *parse_tree = pProgram(input);

// Restore old cout and save the contents of temp cout.

std::cout.rdbuf(oldCoutStreamBuf);

std::string parserOutput = strCout.str();

if (parse_tree) {

// Generate XML file

GenerateDBusXML *g2 = new GenerateDBusXML();

g2->createCustomTypesList(parse_tree, pathToImportFile);

output << g2->generate(parse_tree, pathToImportFile);

output.close();

std::cout << "FIDLtoXML successfully finished generating D-

Bus XML Introspection for Franca IDL file " << argv[1] <<

std::endl;

} else {

// If there are parse errors, find the line number of the

parse error and print that line

size_t indexOfLineNbr = parserOutput.rfind("line ");

if (indexOfLineNbr != -1) {

// An error message containing a line number was found.

Save the line number.

std::string lineNbrStr = parserOutput.substr(

indexOfLineNbr + 5, parserOutput.length());

int lineNbr;

std::istringstream (lineNbrStr) >> lineNbr;

Figure 4.4: Part of GenerateXML.cpp, showing code for redirecting cout to
save output from automatically generated parser, and subsequently calling
the createCustomTypesList and generate functions to generate XML code,
if the parser did not produce any errors.

34

void GenerateDBusXML::visitDInMethod(DInMethod* p) {

render("<method name=\"");

visitIdent(p->id_);

render("\">");

increaseIndent();

newIndLine();

if (p->listinvari_) {

p->listinvari_->accept(this);

}

removeLine();

decreaseIndent();

newIndLine();

render("</method>");

newIndLine();

}

void GenerateDBusXML::visitDInVar(DInVar* p) {

render("<arg direction=\"in\" name=\"");

visitIdent(p->id_);

render("\" type=\"");

p->type_->accept(this);

render("\">");

increaseIndent();

newIndLine();

renderEnumMembersIfNeeded();

removeLine();

decreaseIndent();

newIndLine();

render("</arg>");

newIndLine();

}

Figure 4.5: Part of XMLGenerator.cpp, showing the visitor function for a
Franca IDL method with in-parameters, as well as the visitor function for the
actual in-parameters. Helper functions are used to keep indendation correct
in the resulting D-Bus XML Introspection.

35

4.7 Code structure of XMLtoC

The XMLtoC code generator is based on the gdbus-codegen-glibmm code
generator developed by Pelagicore, which in turn is based on the gdbus-godegen
code generator available as part of the glib package. It is a Python appli-
cation consisting of seven files.

config.py, init .py, parser.py, utils.py contain functions for
parsing the XML file, as well as helper and initialization functions. Only
minor changes to the gdbus-codegen-glibmm version of these files has been
made.

dbustypes.py contain Python classes for the different constructs of the
D-Bus XML Introspection format, such as methods, arguments, or interfaces.
The tree-like structure of a D-Bus XML file is preserved due to each interface
keeping a list of all methods and signals in the interface. An example of this
can be seen in Figure 4.6. In the same way, methods keep a list of all
arguments of the method in question.

class Interface:

def __init__(self, name):

self.name = name

self.methods = []

self.signals = []

self.properties = []

self.annotations = []

Figure 4.6: Code showing the init method of the interface class, initial-
izing the lists of different constructs.

The main reason to save the constructs of the D-Bus XML Introspection
file in this way is to provide an easy way to save implementation informa-
tion about the construct, such as the C type corresponding to a particular
argument in a method. It also allows easy iteration over, for example, all
methods in an interface. This is very useful during code generation, when for
example some code needs to be generated for each method in an interface.

Each class contain a post-process function which is called on all instances
of the class before code generation. The post-process methods parse infor-
mation about the D-Bus types into data useful during code generation. An
example of this is the signature of methods. During code generation, the ar-
guments of a method needs to be described in different ways, such as a string
of comma-separated out-parameters or a concatenated string of the D-Bus
signature of each in-argument. See Figure 4.7 for an example of the post-

36

processing code for methods. By creating such strings in the post-process
method, the actual code generation code is made cleaner and easier to follow.

sigListIn = []

sigListOut = []

argList = []

outArgList = []

inArgList = []

inArgSig = ""

outArgSig = ""

implSig = []

pointerSig = []

proxyHeaderInArgs = [""]

proxyHeaderOutArgs = [""]

proxyImplResults = [""]

for a in self.in_args:

sigListIn.append(a.signature)

argList.append(a.nameWithIndex)

inArgSig = inArgSig + a.signature

implSig.append(a.ctype_in + " " + a.nameWithIndex)

pointerSig.append(a.ctype_in)

proxyHeaderInArgs.append(a.ctype_in + " arg_" + a.name)

inArgList.append("arg_" + a.name)

for a in self.out_args:

sigListOut.append(a.signature)

argList.append("&" + a.nameWithIndex)

outArgList.append(a.nameWithIndex)

outArgSig = outArgSig + a.signature

implSig.append(a.ctype_out + " *" + a.nameWithIndex)

pointerSig.append(a.ctype_out + "*")

proxyHeaderOutArgs.append(a.ctype_out + " *out_" + a.nameWithIndex)

proxyImplResults.append("&" + a.nameWithIndex + "_result")

sigStr = "__" + "_".join(sigListIn) + "__" + "_".join(sigListOut)

self.proxy_results_addresses = ", ".join(proxyImplResults)

self.proxy_header_inarg_string = ", ".join(proxyHeaderInArgs)

self.proxy_header_outarg_string = ", ".join(proxyHeaderOutArgs)

self.pointer_signature = ", ".join(pointerSig)

self.implementation_signature = ", ".join(implSig)

self.argument_string = ", ".join(argList)

self.camel_name_with_dbus_signature = self.name + sigStr

self.capital_name_with_dbus_signature = self.name.upper() + sigStr.upper()

Figure 4.7: Code snipped showing part of the post-processing code for meth-
ods. Here, different string representations of the method is created, and
subsequently used during code generation.

Since the output language is changed to C, dbustypes.py is heavily
rewritten compared to the gdbus-codegen-glibmm version, which is used
to output C++ code and thus contains C++ data about the D-Bus types
instead.

codegen.py contains the actual code generation methods. This file is
almost completely rewritten and only shares its general structure and some
helper functions with the gdbus-codegen-glibmm version. The file contains
a code generation method for each of the seven output files, and a general
generate method which will call each of the seven file-specific methods in
turn.

The code generation methods all share the same general structure. Each
output file is generated from top to bottom, using the interface instances

37

generated by the parser earlier as input. By iterating over the constructs
of the interfaces, all methods, arguments, properties, and signals can be
accessed. By using the format(**locals()) pattern to enable the post-
processed data to be easily used. See Figure 4.8 for an example showing part
of the proxy code generation method.

def generate_proxy_c(self):

headerFileName = self.proxy_h.name.rsplit("/", 1)[1]

self.emit_c_p (dedent(’’’\

#include "%s"

#include <stdio.h>

#include <stdlib.h>

’’’ % headerFileName))

for i in self.ifaces:

for m in i.methods:

self.emit_c_p(dedent(’’’

void {i.camel_name}_{m.camel_name_with_dbus_signature}(GDBusProxy *proxy{m.proxy_header_inarg_string},

const GAsyncReadyCallback callback) {{

g_dbus_proxy_call(

proxy,

"{m.name}",

{m.new_in_arguments_gvariant},

G_DBUS_CALL_FLAGS_NONE,

-1,

NULL,

callback,

NULL);

}}

void {i.camel_name}_{m.camel_name_with_dbus_signature}_finish (GDBusProxy *proxy{m.

proxy_header_outarg_string}, GAsyncResult *result, gboolean *success) {{

// Get result from method call from d-bus proxy

GVariant *wrapped;

GError *error = NULL;

wrapped = g_dbus_proxy_call_finish(proxy, result, &error);

if (error != NULL) {{

printf("WARNING: Method call to {m.camel_name_with_dbus_signature} did not succeed.\\nGError content

: %s\\n", error->message);

*success = FALSE;

}} else {{

// Put results from method call in parameter

’’’).format(**locals()))

for a in m.out_args:

indexOfArg = str(m.out_args.index(a))

self.emit_c_p(’’’ GVariant *{a.nameWithIndex}_variant;’’’.format(**locals()))

self.emit_c_p(’’’ {a.nameWithIndex}_variant = g_variant_get_child_value(wrapped, {indexOfArg});’’’.

format(**locals()))

self.emit_c_p(’’’ *out_{a.nameWithIndex} = {a.g_variant_getter}({a.nameWithIndex}_variant{a.

g_variant_getter_extra_arguments});’’’.format(**locals()))

self.emit_c_p(’’’’’’.format(**locals()))

self.emit_c_p(’’’ *success = TRUE;’’’.format(**locals()))

self.emit_c_p(’’’ }’’’)

self.emit_c_p(’’’}’’’)

Figure 4.8: Part of the code generation method for the server proxy file. Note
the usage of post-processed data in the strings emitted.

codegen main.py contains the main function of XMLtoC. Here, the spec-
ified XML files are first parsed, creating a list of interfaces, using the inter-
face class from dbustypes.py. Afterwards, the interfaces are post-processed,
which also post-processes the methods, arguments, and signals. Afterwards,
the seven output C files are opened, and the generate function of codegen.py
is called, generating the C code into the opened files. If successful, the files

38

are closed, and the application exits. Code generation using the FrancaCCG
suite is then completed.

4.8 Testing of generated code

The design of the code generated by XMLtoC was an important part of
the development process of FrancaCCG. The generated code should be func-
tional and free from any bugs or errors, and the server proxy code generated
should be fully compatible with the server stub code generated from the
same interface file. During the development of XMLtoC, the correctness of
the generated code was tested by implementing support for D-Bus constructs
and features in an iterative way, creating test cases to make sure each new
feature worked well before adding support for another feature.

The XML file corresponding to the Franca IDL case study interface was
generated by the FIDLtoXML code generator, and the D-Bus features present
in the file were identified and roughly sorted by order of implementation
complexity. The list of identified D-Bus features in the case study file is
presented in Figure 4.9. However, care was taken to expand some features
that were deemed too simple in the case study file. For example, no method
in the case study file had any in-arguments, and support for such methods
was deemed important even though they were absent in the case study file.
Thus, the feature was added to the list.

39

• Empty D-Bus interfaces

• Primitive types

• Methods without arguments

• Methods with in-arguments

• Methods with out-arguments

• Properties

• Property access modifiers

• Annotation: NoSubscriptions on properties

• Annotation: Enumerations

Figure 4.9: D-Bus features to be supported by the XMLtoC code generator.

Code generation support for a new construct or feature in this list was
then added to the XMLtoC code generator, and test D-Bus XML Introspec-
tion files containing these constructs were manually created. Afterwards, the
XMLtoC code generator was run using the test files as input, and simple de-
bug code was added to the generated implementation files to provide visual
feedback showing if the new feature was working as intended or not. After
compiling and running the generated server and client implementations, the
visual feedback was studied. If the new feature was working as intended, an-
other feature was implemented using the same procedure, until all features
identified in the case study XML file had been added.

While this made sure all features in the case study interface were sup-
ported, it is possible that edge cases were not covered well enough, since test
files were manually created for each new feature. Other test solutions were
considered, such as automated generation of test cases by applications such
as QuickCheck [11]. However, while such an approach would have been use-
ful, the limited manual testing was deemed enough to cover the scope of this
thesis, in which support for the case study interface was most important.

40

Chapter 5

Results

In this chapter, the results of the evaluation of the CommonAPI code gen-
erator and the code generator suite developed as part of this thesis work,
FrancaCCG, is presented. The code generators are evaluated against the
two identified problems described in the Problems with current tools chap-
ter. At the end of this chapter, an assessment of FrancaCCG made by a
Pelagicore employee is presented.

The results in this chapter were produced on a Linux system running the
Debian version 8.1 64-bit operating system.

5.1 P1: Software dependencies

5.1.1 Runtime dependencies of code generated by Com-
monAPI

The ldd command was executed on a simple binary implementation of the
files generated by the CommonAPI command line tool. The results can
be seen in Figure 5.1. For each entry in the list shown, the command du

<library name> was used to find out the size of each library. The resulting
list of libraries with their size in kilobytes can be seen in Table 5.1. Some
libraries were found to be common to both code generators; these are marked
in italics. The total sum in kilobytes for the runtime dependencies of this im-
plementation was found to be 11116 kB, with the two CommonAPI libraries

41

contributing to 6736 of these kB.

linux-vdso.so.1 (0x00007ffc36367000)

libCommonAPI.so.3 => /usr/local/lib/libCommonAPI.so.3 (0x00007f7dccfb6000)

libCommonAPI-DBus.so.3 => /usr/local/lib/libCommonAPI-DBus.so.3 (0x00007f7dcc9e2000)

libstdc++.so.6 => /usr/lib/x86_64-linux-gnu/libstdc++.so.6 (0x00007f7dcc6d7000)

libgcc_s.so.1 => /lib/x86_64-linux-gnu/libgcc_s.so.1 (0x00007f7dcc4c1000)

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f7dcc118000)

libdl.so.2 => /lib/x86_64-linux-gnu/libdl.so.2 (0x00007f7dcbf14000)

libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007f7dcbc13000)

libdbus-1.so.3 => /lib/x86_64-linux-gnu/libdbus-1.so.3 (0x00007f7dcb9ca000)

/lib64/ld-linux-x86-64.so.2 (0x00007f7dcd20f000)

libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007f7dcb7ad000)

Figure 5.1: Example output of ldd on a generated binary from CommonAPI.

Table 5.1: Size of runtime dependencies of CommonAPI generated files

Library name Size in kB

libCommonAPI.so.3 536

libCommonAPI-DBus.so.3 6200

libstdc++.so.6 988

libgcc s.so.1 88

libm.so.6 1028

libdbus-1.so.3 292

libc.so.6 1692

libdl.so.2 16

ld-linux-x86-64.so.2 140

libpthread.so.0 136

TOTAL 11116

5.1.2 Runtime dependencies of code generated by Fran-
caCCG

As for the CommonAPI tool, the ldd command was executed on a simple
implementation generated by FrancaCCG for the same case study interface.
The results can be seen in Figure 5.2. For each entry in the list shown, the

42

command du <library name> was used to find out the size of each library.
The resulting list of libraries with their size in kilobytes can be seen in Table
5.2. Libraries common to both CommonAPI and FrancaCCG generated code
are marked in italics. The total sum in kilobytes for the runtime dependencies
of this implementation was found to be 5720 kB.

linux-vdso.so.1 (0x00007fffa13e5000)

libgio-2.0.so.0 => /usr/lib/x86_64-linux-gnu/libgio-2.0.so.0 (0x00007f3bdc0da000)

libgobject-2.0.so.0 => /usr/lib/x86_64-linux-gnu/libgobject-2.0.so.0 (0x00007f3bdbe88000)

libglib-2.0.so.0 => /lib/x86_64-linux-gnu/libglib-2.0.so.0 (0x00007f3bdbb79000)

libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007f3bdb95c000)

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f3bdb5b3000)

libgmodule-2.0.so.0 => /usr/lib/x86_64-linux-gnu/libgmodule-2.0.so.0 (0x00007f3bdb3af000)

libz.so.1 => /lib/x86_64-linux-gnu/libz.so.1 (0x00007f3bdb194000)

libselinux.so.1 => /lib/x86_64-linux-gnu/libselinux.so.1 (0x00007f3bdaf6f000)

libresolv.so.2 => /lib/x86_64-linux-gnu/libresolv.so.2 (0x00007f3bdad58000)

libffi.so.6 => /usr/lib/x86_64-linux-gnu/libffi.so.6 (0x00007f3bdab50000)

libpcre.so.3 => /lib/x86_64-linux-gnu/libpcre.so.3 (0x00007f3bda8e2000)

/lib64/ld-linux-x86-64.so.2 (0x00007f3bdc453000)

libdl.so.2 => /lib/x86_64-linux-gnu/libdl.so.2 (0x00007f3bda6de000)

Figure 5.2: Example output of ldd on a generated binary from FrancaCCG.

43

Table 5.2: Size of runtime dependencies of FrancaCCG generated files

Library name Size in kB

libgio-2.0.so.0 1504

libgobject-2.0.so.0 328

libglib-2.0.so.0 1084

libgmodule-2.0.so.0 16

libz.so.1 108

libselinux.so.1 140

libresolv.so.2 84

libffi.so.6 32

libpcre.so.3 440

libpthread.so.0 136

libc.so.6 1692

ld-linux-x86-64.so.2 140

libdl.so.2 16

TOTAL 5720

5.1.3 Runtime dependencies of the CommonAPI code
generator

Due to not being available as a standalone binary, but rather as a plugin to
a specific edition of the Eclipse Toolkit, the ldd approach can not be taken
when measuring the runtime dependencies of the CommonAPI code genera-
tor. Instead, one can study the Eclipse Toolkit used. For many companies
using Franca IDL, an Eclipse and Java installation is only used to run the
CommonAPI code generator and no other software.

A fresh Eclipse Toolkit installation with the CommonAPI code generator
was made on the target system, following the installation instructions in the
CommonAPI Tutorial [2]. The size of the installation folder of Eclipse was

44

then found to be 550328 kB.

5.1.4 Runtime dependencies of the FrancaCCG code
generator

linux-vdso.so.1 (0x00007fff15bfb000)

libstdc++.so.6 => /usr/lib/x86_64-linux-gnu/libstdc++.so.6 (0x00007f3a3af3c000)

libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007f3a3ac3b000)

libgcc_s.so.1 => /lib/x86_64-linux-gnu/libgcc_s.so.1 (0x00007f3a3aa25000)

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f3a3a67c000)

/lib64/ld-linux-x86-64.so.2 (0x00007f3a3b247000)

Figure 5.3: Example output of ldd on the FIDLtoXML binary included in
FrancaCCG.

Table 5.3: Size of runtime dependencies of the FIDLtoXML code generator
part of FrancaCCG

Library name Size in kB

libstdc++.so.6 988

libm.so.6 1028

libgcc s.so.1 88

libc.so.6 1692

ld-linux-x86-64.so.2 140

TOTAL 3936

The size of the FrancaCCG suite, with source code, binaries, and helper shell
scripts, was found to be 4844 kB.

FrancaCCG consists of two code generators. As seen in Table 5.3, the
runtime dependencies of the FIDLtoXML part of the FrancaCCG software
suite is very small, with only a few libraries needed, totaling 3936 kB. In
addition, these libraries are standard libraries used by most Linux binaries
written in C++.

FrancaCCG includes a second code generator, XMLtoC, written in Python.
Due to Python being an interpreted language, no binary is available for this

45

code generator. Instead, one can look at the installation size of a normal
Python installation. Version 2.7 of Python for the AMD64 architecture was
studied, and its installation size was found to be 8841 kB [32].

5.2 P2: Error feedback

The test suite of eight faulty Franca IDL files, described in Chapter 3, was run
on both the CommonAPI command line tool and on FrancaCCG. For each
test case, the resulting error feedback given was studied to determine if it was
deemed good enough, meaning the nature of the error and the approximate
location of the error was detailed by the error message.

5.2.1 Summary

Table 5.4: Results of running test suite

CommonAPI FrancaCCG

Cases with good error feedback 2 6

Cases with insufficient error feedback 5 0

Cases where error was not found,

and faulty files were generated
1 0

Cases where error was not found,

and correct files were generated
0 2

In Table 5.4, the results of running the test suite on both code generators
are summarized. Running the test case suite with the CommonAPI tool
produced two good error messages. In addition, one of the errors in the test
suite, ”File structured wrong”, was not found by the tool, silently producing
faulty generated files without any error message. These files were missing
large parts of the code corresponding to the correct Franca IDL file.

FrancaCCG, the code generator developed as part of this thesis work,
produced six good error messages when running the test suite. In two cases,

46

the error of the test case file was not found. However, in both of these cases,
the code produced was identical to the code produced when using non-faulty
input files.

Please see Appendix C for complete listing of the resulting error feedback
for each test case.

47

5.2.2 Test case 1: Missing or additional curly bracket

Loading main class : org.genivi.commonapi.cmdline.StandaloneGen

Sat Aug 08 14:00:40 CEST 2015 - [main] Product-specified preferences called before plugin is started

0 ERROR StandaloneGen - Exception occurred !

java.lang.NullPointerException

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.getRelativeNameReference(FrancaGeneratorExtensions

.java:265)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.getNameReference(FrancaGeneratorExtensions.java

:1484)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.getTypeName(FrancaGeneratorExtensions.java:1410)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions$5.apply(FrancaGeneratorExtensions.java:564)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions$5.apply(FrancaGeneratorExtensions.java:1)

at org.eclipse.xtext.xbase.lib.internal.FunctionDelegate.apply(FunctionDelegate.java:41)

at com.google.common.collect.Lists$TransformingRandomAccessList.get(Lists.java:491)

at java.util.AbstractList$Itr.next(AbstractList.java:358)

at com.google.common.base.Joiner.appendTo(Joiner.java:128)

at com.google.common.base.Joiner.appendTo(Joiner.java:186)

at com.google.common.base.Joiner.join(Joiner.java:243)

at com.google.common.base.Joiner.join(Joiner.java:232)

at org.eclipse.xtext.xbase.lib.IterableExtensions.join(IterableExtensions.java:450)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.generateDefinitionSignature(

FrancaGeneratorExtensions.java:572)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.generateDefinitionWithin(FrancaGeneratorExtensions

.java:515)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.generateDefinition(FrancaGeneratorExtensions.java

:493)

at org.genivi.commonapi.dbus.generator.FInterfaceDBusProxyGenerator.generateDBusProxyHeader(

FInterfaceDBusProxyGenerator.java:240)

at org.genivi.commonapi.dbus.generator.FInterfaceDBusProxyGenerator.generateDBusProxy(FInterfaceDBusProxyGenerator.

java:54)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator$1.apply(FrancaDBusGenerator.java:246)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator$1.apply(FrancaDBusGenerator.java:1)

at org.eclipse.xtext.xbase.lib.IterableExtensions.forEach(IterableExtensions.java:399)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator.doGenerateDBusComponents(FrancaDBusGenerator.java:308)

at org.genivi.commonapi.dbus.Generator.generate(Generator.java:21)

at org.genivi.commonapi.cmdline.StandaloneGen.run(StandaloneGen.java:299)

at org.genivi.commonapi.cmdline.StandaloneGen.go(StandaloneGen.java:82)

at org.genivi.commonapi.cmdline.main.Main.main(Main.java:80)

java.lang.NullPointerException

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.getRelativeNameReference(FrancaGeneratorExtensions

.java:265)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.getNameReference(FrancaGeneratorExtensions.java

:1484)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.getTypeName(FrancaGeneratorExtensions.java:1410)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions$5.apply(FrancaGeneratorExtensions.java:564)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions$5.apply(FrancaGeneratorExtensions.java:1)

at org.eclipse.xtext.xbase.lib.internal.FunctionDelegate.apply(FunctionDelegate.java:41)

at com.google.common.collect.Lists$TransformingRandomAccessList.get(Lists.java:491)

at java.util.AbstractList$Itr.next(AbstractList.java:358)

at com.google.common.base.Joiner.appendTo(Joiner.java:128)

at com.google.common.base.Joiner.appendTo(Joiner.java:186)

at com.google.common.base.Joiner.join(Joiner.java:243)

at com.google.common.base.Joiner.join(Joiner.java:232)

at org.eclipse.xtext.xbase.lib.IterableExtensions.join(IterableExtensions.java:450)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.generateDefinitionSignature(

FrancaGeneratorExtensions.java:572)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.generateDefinitionWithin(FrancaGeneratorExtensions

.java:515)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.generateDefinition(FrancaGeneratorExtensions.java

:493)

at org.genivi.commonapi.dbus.generator.FInterfaceDBusProxyGenerator.generateDBusProxyHeader(

FInterfaceDBusProxyGenerator.java:240)

at org.genivi.commonapi.dbus.generator.FInterfaceDBusProxyGenerator.generateDBusProxy(FInterfaceDBusProxyGenerator.

java:54)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator$1.apply(FrancaDBusGenerator.java:246)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator$1.apply(FrancaDBusGenerator.java:1)

at org.eclipse.xtext.xbase.lib.IterableExtensions.forEach(IterableExtensions.java:399)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator.doGenerateDBusComponents(FrancaDBusGenerator.java:308)

at org.genivi.commonapi.dbus.Generator.generate(Generator.java:21)

at org.genivi.commonapi.cmdline.StandaloneGen.run(StandaloneGen.java:299)

at org.genivi.commonapi.cmdline.StandaloneGen.go(StandaloneGen.java:82)

at org.genivi.commonapi.cmdline.main.Main.main(Main.java:80)

Figure 5.4: Error feedback generated by CommonAPI when processing test
case 1.

48

The CommonAPI tool successfully finds the error, however the verbose error
message, seen in Figure 5.4, does not contain any information about the
nature of the error or its location. FrancaCCG correctly identifies the error
as a syntax error and reports the approximate location of it in the code.

5.2.3 Test case 2: Import of non-existing file

Both code generators were able to correctly identify the error. While the
error feedback from the CommonAPI code generator is verbose and hard to
read, it states very early in the message that the error is caused by a missing
file, and also states the path to the file. The error message from FrancaCCG
is shorter and simply states that the file could not be imported.

5.2.4 Test case 3: Franca file structured wrong

Loading main class : org.genivi.commonapi.cmdline.StandaloneGen

Sat Aug 08 14:08:34 CEST 2015 - [main] Product-specified preferences called before plugin is started

0 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/3FileStructuredWrong/

output_commonapi/org/genivi/mediamanager/IndexerDBusProxy.h

3 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/3FileStructuredWrong/

output_commonapi/org/genivi/mediamanager/IndexerDBusProxy.cpp

4 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/3FileStructuredWrong/

output_commonapi/org/genivi/mediamanager/IndexerDBusStubAdapter.h

17 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/3FileStructuredWrong/

output_commonapi/org/genivi/mediamanager/IndexerDBusStubAdapter.cpp

48 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/3FileStructuredWrong/

output_commonapi/org/genivi/mediamanager/MediaTypes.h

50 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/3FileStructuredWrong/

output_commonapi/org/genivi/mediamanager/Indexer.h

55 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/3FileStructuredWrong/

output_commonapi/org/genivi/mediamanager/Indexer.h

56 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/3FileStructuredWrong/

output_commonapi/org/genivi/mediamanager/Indexer.cpp

62 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/3FileStructuredWrong/

output_commonapi/org/genivi/mediamanager/IndexerProxyBase.h

63 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/3FileStructuredWrong/

output_commonapi/org/genivi/mediamanager/IndexerProxy.h

65 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/3FileStructuredWrong/

output_commonapi/org/genivi/mediamanager/IndexerStub.h

67 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/3FileStructuredWrong/

output_commonapi/org/genivi/mediamanager/IndexerStubDefault.h

67 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/3FileStructuredWrong/

output_commonapi/org/genivi/mediamanager/IndexerStubDefault.cpp

68 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/3FileStructuredWrong/

output_commonapi/org/genivi/mediamanager/IndexerServiceAbstract.h

68 INFO StandaloneGen - FrancaStandaloneGen done.

Figure 5.5: Error feedback generated by CommonAPI when processing test
case 3.

None of the code generators were able to find this error. However, while the
CommonAPI command line tool reports no error (see Figure 5.5), the files

49

generated by the CommonAPI tool were faulty. This will be further discussed
in the Discussion chapter. The files generated by FrancaCCG were identical
to the files generated from a Franca file with the same content but correct
structure.

5.2.5 Test case 4: Misspelled language construct

error: parse error

Syntax error at line 10:

nethod getDatabasePath {

Aborting code generation.

ERROR: FIDLtoXML code generator failed. Code generation aborted.

Figure 5.6: Error feedback generated by FrancaCCG when processing test
case 4.

Both code generators found the error. The error message from the Com-
monAPI tool does not state the nature or location of the error in the code,
while this was clearly stated in the error feedback from FrancaCCG, shown
in Figure 5.6.

5.2.6 Test case 5: Usage of non-existing data type

Both code generators found the error. The error message from the Common-
API tool does not state the nature or location of the error, while this was
clearly stated in the error feedback from FrancaCCG.

50

5.2.7 Test case 6: Extension loop

ERROR: Custom Franca types cannot be resolved:

NAME: BackendError

TYPE: ENUMERATION

D-BUS SIGNATURE:

EXTENDS: MediaManagerError

ENUM MEMBER: BACKEND_UNREACHABLE =

NAME: MediaManagerError

TYPE: ENUMERATION

D-BUS SIGNATURE:

EXTENDS: BackendError

ENUM MEMBER: NO_ERROR =

NAME: IndexerError

TYPE: TYPEDEF

D-BUS SIGNATURE:

VALUE: BackendError

Aborting code generation.

ERROR: FIDLtoXML code generator failed. Code generation aborted.

Figure 5.7: Error feedback generated by FrancaCCG when processing test
case 6.

This error was found by both code generators. They both correctly describe
the nature of the error, and its approximate location in the code. The error
feedback from FrancaCCG can be seen in Figure 5.7

5.2.8 Test case 7: More than one ”out” section

Both code generators found this error. The error is not identifiable by reading
the feedback from the CommonAPI tool, while it is clearly stated in the
feedback from FrancaCCG.

5.2.9 Test case 8: No version defined

This error is found by the CommonAPI tool, producing an error message in
which the error is not correctly stated. FrancaCCG does not find this error,
and outputs code equivalent to the code outputted from correct Franca files,
with version defined in them. This is further discussed in the Discussion
chapter.

51

5.3 Compatibility with CommonAPI gener-

ated code

The compatibility of the code produced by the two code generators was tested
by running both the FrancaCCG code generator suite and the CommonAPI
code generator, with the case study Franca IDL files described in Figure 4.1
as input. This produced two sets of server proxies and server stubs. A simple
server implementation using the server stub generated by CommonAPI was
then written.

By compiling and executing this server implementation, a D-Bus service
is published on the system, and can subsequently be studied by using the
d-feet tool. A client application trying to connect to this service is required
by the D-Bus daemon to conform to the same D-Bus interface as the server
application. Simple debug code to provide visual feedback on successful con-
nection and successful method calls was added to the client implementation
generated by FrancaCCG. This client implementation was then compiled and
run, and was found to successfully connect to the D-Bus service published
by the server implementation. Likewise, method calls initiated by the client
were successfully received and handled by the server, and the corresponding
method call responses by the server were successfully received by the client.

The code generated by FrancaCCG and CommonAPI for the case study
Franca IDL interface is thus compatible on the D-Bus level. The compatibil-
ity of other Franca IDL interfaces was not tested, due to the limited scope
of this thesis.

5.4 Assessment of FrancaCCG by Pelagicore

At the end of this thesis work, the FrancaCCG code generator suite was
demonstrated at Pelagicore. Below, an assessment of FrancaCCG is pre-
sented, made by a Pelagicore employee very proficient in the use of Franca
IDL and the CommonAPI code generator.

“The set-up process of the code generator is much simpler than the Com-
monAPI code generator which is based on Eclipse and Xtend/Xtext. One
of the reasons why FrancaCCG is easier to set up is because the dependency
chain is simpler. Where FrancaCCG depends on tools commonly installable

52

via Linux package managers, such as bnfc, flex and bison, the Common-
API code generator depends on Eclipse plugins which often have version
mismatches and can be difficult to install.

The most common use case for using Franca code generators is to auto-
matically generate code within build systems (primarily Yocto). These build
systems typically run on build servers, and always build without manual in-
tervention. A major issue with the current Franca code generator for Com-
monAPI has been that there is no good command-line code generator, capable
of building outside Eclipse. Pelagicore has created crude wrappers around the
core libraries of the Eclipse code generator in order to run it outside Eclipse,
but these wrappers lack user feedback, since the user feedback of the core li-
braries is intended to be displayed in the Eclipse UI, which has been stripped
away by using the wrappers.

The user feedback is important to have in the automated build system,
since the build system can be configured to alert developers of errors, based
on this feedback. The developer introducing an erroneous FIDL-file can, for
instance, have an email sent to him/her with the git commit introducing the
error, and also the error output. Not all of these errors appear on developer
machines, so this is a very important feature.

A major benefit of using FrancaCCG is thus that we can easily use it
in our automated build systems due to the availability of user feedback. In
terms of improvement, the feedback from FrancaCCG could be formatted in
a standard form easily parsed by the automated build system (Jenkins in our
case) - but we consider this a very minor change/improvement.

The code outputted by the code generator is C code, and relies only on
the Glib and GIO standard libraries. By compiling the code generated from
FrancaCCG into shared objects, we can easily interact with the generated
code from other languages (such as Python). This has been an issue with
the Franca CommonAPI code generator, mostly since it outputs C++ code,
which is typically not as well supported for binding in other languages. Due to
time constraints in the thesis project, the bindings for other languages have
not been created, but based on previous experience and by the looks of the
generated code, I would assume that this is rather trivial.

I believe that the straight-forward design of the FrancaCCG code generator
lends it well for adding more features, which will be necessary in order to cover
the same feature scope as the Franca CommonAPI code generator covers.

53

This project has been a success, since it has shown that the features of the
Franca CommonAPI code generator can be implemented in a much simpler
and cleaner way than they have been in previous projects.”

- Jonatan P̊alsson, Software Engineer at Pelagicore

54

Chapter 6

Discussion

In this chapter, the results presented in the previous chapter are discussed,
and a comparison of the CommonAPI code generator and FrancaCCG is
made for each of the two identified problems stated in Chapter 3.

6.1 Evaluation of the software dependencies

of the tools

6.1.1 Runtime dependencies of the generated code

The implementations using code generated from FrancaCCG had much more
lightweight runtime dependencies, with the dependencies being roughly half
the size in kB compared to the runtime dependencies of an implementation
using CommonAPI generated code.

There were four libraries used by both implementations. Removing these
from consideration leaves 3736 kB of dependencies for FrancaCCG and 9132
kB for CommonAPI, further increasing the gap between the code generators.

Worth noting is that a large part of the total size of the dependencies
of the CommonAPI generated code is due to the two CommonAPI libraries,
with a total size of 6736 kB. Thus, on a target system already running other
CommonAPI components, the additional runtime dependencies of the Com-

55

monAPI generated code are much smaller compared to a system not already
running CommonAPI.

For FrancaCCG generated code, the largest runtime libraries not shared
with the CommonAPI generated code are libglib, libgio and libgobject.
These are all part of the glib package, a collection of low-level system li-
braries which is included in most Linux distributions. Thus, on most target
systems of FrancaCCG, these runtime dependencies are already installed and
used, and can be disregarded from the measurement of runtime dependencies.

Thus, it is my opinion that FrancaCCG solves the problem P1 in regard
to the runtime dependencies of the generated code, especially in cases where
the CommonAPI libraries are not already present on the target system.

6.1.2 Runtime dependencies of the code generators

The runtime dependencies of the actual code generators was harder to mea-
sure than the runtime dependencies of the generated code, due to the code
generators not being available as binary files. Instead the installation size of
the tools used to run them was measured.

The CommonAPI code generator was found to have an installation size
as large as 550328 kB. This extremely large installation size is due to the
Eclipse Toolkit being used and required by the code generator.

FrancaCCG was found to have a runtime dependency of 17621 kB. This
includes the source code and binaries of both code generators, as well as
libraries needed to run the binary of the first code generator, FIDLtoXML,
and the Python library needed to run the second code generator, XMLtoC.
However, this measurement does not take into account potential dependen-
cies of the Python library that are not already installed. This set of libraries
highly depend on the target system, since they are system libraries widely
used, and it is not feasible to assess which are likely to be already installed
and which are not. Though it is not feasible to measure the exact size of the
set of additional libraries needed by the Python library, it is highly unlikely
that this set is larger than the installation size of the CommonAPI code
generator.

Thus, I believe that on most target systems the size of the runtime de-
pendencies of the FrancaCCG code generator suite are much smaller than

56

the size of the runtime dependencies of the CommonAPI code generator.

6.2 Evaluation of the error feedback of the

tools

FrancaCCG, the code generator developed as part of this thesis work, gave
error feedback of much better quality when processing files with common
Franca IDL errors, compared to the CommonAPI command line tool. Out
of the eight test cases, FrancaCCG gave error feedback good enough to easily
identify the error in six cases, compared to CommonAPI which gave good
error feedback in two cases only.

There were two test cases in which FrancaCCG did not find the error in
the files. While this is still a shortcoming of the code generator, it is not
critical, since these errors correspond to the limits of the currently available
code generators, and to a lesser extent the design choices of Franca IDL.
There were no differences in the code generated by FrancaCCG for these
error cases and the code generated from the original, error-free case. Still, it
would have been advantageous if the code generator gave a warning message
when parsing these two error cases, since they will most likely not work on
other code generators for Franca IDL. This functionality can easily be added
to FrancaCCG in the future, without having to make drastic changes to the
source code of the code generators.

While the eight test cases do not fully cover all error cases possible when
defining interfaces in Franca IDL, they were designed in collaboration with
a Franca IDL professional to be general enough to cover most such possible
error cases. In addition, basing the first code generator on the BNFC suite
gives good coverage of syntax errors of many kinds. This is due to the
preciseness needed when designing the grammar file used as input for the
BNFC suite; the generated parser and lexer will not accept Franca files with
language constructs not found in the grammar file (see Appendix B). This
is demonstrated in error cases such as ”missing curly bracket” from the test
suite. Here, the parser will not explicitly check if there are any missing
brackets. Instead, it will check so that the file conforms to the Franca IDL
grammar, which includes the number and possible locations of curly brackets,
and many more possible error cases not in the test suite. Thus, it is my belief
that most of the possible error cases are indeed found by FrancaCCG. This

57

BNF grammar file for the subset of Franca IDL could be published separately
and used in other projects, for example as basis for other code generators
using the BNFC suite.

The CommonAPI command line tool was not able to handle the test case
containing a Franca file with the wrong internal structure. In this file, a type
definition was placed early on in the file, instead of in the end as the Franca
IDL specification requires. The CommonAPI tool did not report any error in
this test case, and its output build feedback was indistinguishable from the
output given when processing error-free files. However, the resulting code
generated contained large differences from code generated from a correct file.
All mentions of the type definition had been removed, greatly changing the
interface of the file. This is a serious problem, since it is very hard for a
programmer using the tool to notice such an error when no error feedback at
all is given.

Thus, due to the greatly increased quality of the error feedback and to
the lack of faulty generated files, the problem P2 is in my opinion successfully
solved by FrancaCCG.

6.3 Evaluation of the compatibility with Com-

monAPI generated code

The server stubs and proxies generated by FrancaCCG were found to be
compatible to the stubs and proxies generated by the CommonAPI code gen-
erator. This can be very useful. One could, for example, use FrancaCCG to
generate a new client implementation of a Franca IDL interface which already
has a working server implementation written using CommonAPI generated
code, without making any changes to the server implementation.

6.4 Future work

At the present time, FrancaCCG does not support the entire Franca IDL
language. Rather, only the Franca IDL features used in the case study files
are supported. The current version of FrancaCCG is thus a prototype, which
needs to be further developed to be of true practical use. However, adding

58

support for all advanced features of the Franca IDL language, such as con-
tracts, is not needed. These features are not currently supported by the
existing CommonAPI code generator. At a minimum though, features such
as signals and container data types should be added to FrancaCCG, if more
advanced Franca IDL files are to be supported. Adding these features is
however very possible to do, either by myself, Pelagicore employees, or other
developers.

FrancaCCG solves the two identified problems of the old code generators
in a good way, in my opinion. Therefore, it is my recommendation to keep
developing FrancaCCG, by adding more Franca IDL features to the code
generators. Even if it does not fully replace the command line CommonAPI
code generator in all use cases, it can be a valuable tool for Franca IDL de-
velopment, not only by Pelagicore but also by other companies using Franca
IDL in their workflow.

Both the FrancaCCG code generator suite and the code generated by it
would benefit from more thorough testing and debugging. Since the input of
the code generators can vary in a multitude of ways, a system with automat-
ically generated input would be very useful, since it is not feasible to cover
all test cases by manual design. Thus it would be advantageous to make
use of an automatic test system such as QuickCheck, which has been proven
successful in testing other automotive industry software [4].

An potential future course of action is to integrate FrancaCCG into the
Eclipse Toolkit. This allows developers currently using the Eclipse Toolkit
to develop Franca IDL interfaces to easily try FrancaCCG out, while still
retaining advantages of the Eclipse Toolkit such as syntax highlighting. This
can be an efficient work flow for some use cases, such as when generating
a server stub using CommonAPI and a server proxy using FrancaCCG for
the same Franca IDL interface. FrancaCCG can be integrated to the Eclipse
Toolkit either as an external tool [16], or as a plug-in using the Plug-in
Development Environment [17].

59

Chapter 7

Conclusion

In this chapter, the conclusions learned during this thesis work is presented.

7.1 Resulting code generators

During this thesis work a software suite, FrancaCCG, consisting of prototypes
of new code generators for Franca IDL, was developed. FrancaCCG was then
evaluated against two known problems of the old code generators.

The first problem stated that the present code generators available had
very large runtime dependencies, both in regard to the code generator itself
and to the code generated by it. FrancaCCG was found to have a installation
size in the order of one tenth of the installation size of the old CommonAPI
code generator. Also, it was found to have a runtime dependency size of the
generated code roughly half of the size of the dependencies corresponding to
CommonAPI generated code. Thus, FrancaCCG was deemed successful in
regard of solving the problem of the size of the runtime dependencies.

The second problem described the difficulty of using the old tools in au-
tomated build systems, mainly due to the lack of good error feedback. A
test suite of eight faulty Franca IDL interface files was given as input to
both code generators. The command line version of the CommonAPI code
generator produced feedback deemed good enough to find the error in two
cases, while FrancaCCG produced such error feedback in six cases. In addi-
tion, CommonAPI produced faulty output files but reported no error in one

60

case, making the error very difficult to find. Based on this, FrancaCCG was
deemed to give build feedback of better quality than the old code generators.

7.2 Personal experience

During this thesis work, a variety of different programming and scripting
languages were used, including C, C++, Python, Franca IDL, D-Bus XML
Introspection, Makefile, and BNF. Getting practical experience working with
all these languages in a software project was very rewarding on a personal
level. Working in collaboration with industry professionals at a small soft-
ware development company such as Pelagicore was also a very positive and
rewarding experience.

Were I to re-do this thesis work, I would have put a larger focus on
finding working examples right away when learning how to implement new
libraries, such as the GDBus library used in the resulting code of the second
code generator developed. Much time was spent during this thesis work
studying the documentation of such libraries, and I believe it would have
been more efficient to rather find a working example of code right away, and
subsequently study the documentation.

7.3 Availability and future of FrancaCCG

The code generators of FrancaCCG presently only support a subset of all
features of Franca IDL. While FrancaCCG is useful even though not all fea-
tures of Franca IDL are supported, some features such as support for con-
tainer types would greatly increase its usefulness. A suitable goal for further
development would be to add support in the code generators for all features
in the standard D-Bus XML Introspection format. This would enable the
second code generator, XMLtoC, to be used in other D-Bus projects not us-
ing Franca IDL. The main features of D-Bus XML Introspection currently
missing for this to work are support for container types and variants, which
can be added to the software suite.

After this thesis work, I plan to continue development of FrancaCCG,
with the goal of adding support for all features in the D-Bus XML Intro-
spection in both code generators. This would increase the size of the subset

61

of Franca IDL supported, reaching a level of support close to the current
CommonAPI code generator.

FrancaCCG is freely available on Pelagicore’s public GitHub page1, as
open source software using the GPL2 licence [15]. Interested readers are en-
couraged to download FrancaCCG, try it out, and contribute to the project.
Included in the git repository of FrancaCCG is a number of example *.fidl

files, including the test suite of eight faulty Franca IDL files used in this
thesis.

1https://github.com/Pelagicore/FrancaCCG

62

References

[1] GENIVI Alliance. About the Alliance. url: http://www.genivi.org/
(Visited in June 2015).

[2] GENIVI Alliance. CommonAPI C++ Tutorial. url: http://docs.
projects . genivi . org / ipc . common - api - tools / 2 . 1 . 6 / pdf /

Tutorial.pdf (Visited in July 2015).

[3] GENIVI Alliance. IPC CommonAPI C++. url: http://projects.
genivi.org/commonapi/home (Visited in June 2015).

[4] T. Arts et al. “Testing AUTOSAR software with QuickCheck”. In:
Software Testing, Verification and Validation Workshops (ICSTW),
2015 IEEE Eighth International Conference on. 2015, pp. 1–4. doi:
10.1109/ICSTW.2015.7107466.

[5] Klaus Birken. Franca 0.10.0 available. url: http://lists.genivi.
org/pipermail/genivi-projects/2015-July/000594.html (Visited
in July 2015).

[6] Klaus Birken. Franca Introduction 1.0. url: https://code.google.
com / a / eclipselabs . org / p / franca / downloads / detail ? name =

Franca_Introduction_v1_0_121002.pdf (Visited in Aug. 2015).

[7] Klaus Birken. Franca Quick Install Guide. url: https://code.google.
com/a/eclipselabs.org/p/franca/wiki/FrancaQuickInstallGuide

(Visited in June 2015).

[8] Klaus Birken, Tamas Szabo, and Steffen Weik. Franca. url: http://
eclipse.org/proposals/modeling.franca/ (Visited in June 2015).

[9] Andrew D. Birrell and Bruce Jay Nelson. “Implementing Remote Pro-
cedure Calls”. In: SIGOPS Oper. Syst. Rev. 17.5 (Oct. 1983), pp. 3–.
issn: 0163-5980. doi: 10.1145/773379.806609. url: http://doi.
acm.org.proxy.lib.chalmers.se/10.1145/773379.806609.

[10] Erik Botö and Jonatan P̊alsson. Private interview conducted at Pelagi-
core. 2015.

63

http://www.genivi.org/
http://docs.projects.genivi.org/ipc.common-api-tools/2.1.6/pdf/Tutorial.pdf
http://docs.projects.genivi.org/ipc.common-api-tools/2.1.6/pdf/Tutorial.pdf
http://docs.projects.genivi.org/ipc.common-api-tools/2.1.6/pdf/Tutorial.pdf
http://projects.genivi.org/commonapi/home
http://projects.genivi.org/commonapi/home
http://dx.doi.org/10.1109/ICSTW.2015.7107466
http://lists.genivi.org/pipermail/genivi-projects/2015-July/000594.html
http://lists.genivi.org/pipermail/genivi-projects/2015-July/000594.html
https://code.google.com/a/eclipselabs.org/p/franca/downloads/detail?name=Franca_Introduction_v1_0_121002.pdf
https://code.google.com/a/eclipselabs.org/p/franca/downloads/detail?name=Franca_Introduction_v1_0_121002.pdf
https://code.google.com/a/eclipselabs.org/p/franca/downloads/detail?name=Franca_Introduction_v1_0_121002.pdf
https://code.google.com/a/eclipselabs.org/p/franca/wiki/FrancaQuickInstallGuide
https://code.google.com/a/eclipselabs.org/p/franca/wiki/FrancaQuickInstallGuide
http://eclipse.org/proposals/modeling.franca/
http://eclipse.org/proposals/modeling.franca/
http://dx.doi.org/10.1145/773379.806609
http://doi.acm.org.proxy.lib.chalmers.se/10.1145/773379.806609
http://doi.acm.org.proxy.lib.chalmers.se/10.1145/773379.806609

[11] Koen Claessen and John Hughes. “QuickCheck: A Lightweight Tool
for Random Testing of Haskell Programs”. In: Proceedings of the Fifth
ACM SIGPLAN International Conference on Functional Programming.
ICFP ’00. New York, NY, USA: ACM, 2000, pp. 268–279. isbn: 1-
58113-202-6. doi: 10.1145/351240.351266. url: http://doi.acm.
org/10.1145/351240.351266.

[12] Eric Eide et al. “Flick: A Flexible, Optimizing IDL Compiler”. In:
SIGPLAN Not. 32.5 (May 1997), pp. 44–56. issn: 0362-1340. doi: 10.
1145/258916.258921. url: http://doi.acm.org.proxy.lib.

chalmers.se/10.1145/258916.258921.

[13] Norman Feske. “A Case Study on the Cost and Benefit of Dynamic
RPC Marshalling for Low-level System Components”. In: SIGOPS
Oper. Syst. Rev. 41.4 (July 2007), pp. 40–48. issn: 0163-5980. doi:
10.1145/1278901.1278908. url: http://doi.acm.org.proxy.lib.
chalmers.se/10.1145/1278901.1278908.

[14] Apache Software Foundation. Apache Thrift - Inderface Description
Language (IDL). url: https://thrift.apache.org/docs/idl (Vis-
ited in Aug. 2015).

[15] Free Software Foundation. GNU General Public Licence v2.0. url:
http://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

(Visited in Aug. 2015).

[16] The Eclipse Foundation. Help - Eclipse Platform. url: http://help.
eclipse.org/mars/index.jsp?topic=%2Forg.eclipse.platform.

doc.user%2FgettingStarted%2Fqs-97_standalone_ets.htm (Vis-
ited in Aug. 2015).

[17] The Eclipse Foundation. PDE. url: http://www.eclipse.org/pde/
(Visited in Aug. 2015).

[18] freedesktop.org. D-Bus: Main Page. url: http://dbus.freedesktop.
org/doc/api/html/index.html (Visited in June 2015).

[19] freedesktop.org. dbus. url: http://www.freedesktop.org/wiki/

Software/dbus/ (Visited in June 2015).

[20] freedesktop.org. DBusBindings. url: http://www.freedesktop.org/
wiki/Software/DBusBindings/ (Visited in June 2015).

[21] David A. Holland. stdin(3) - Linux manual page. url: http://man7.
org/linux/man-pages/man3/stdout.3.html (Visited in Aug. 2015).

[22] Object Management Group Inc. OMG IDL. url: http://www.omg.
org/gettingstarted/omg_idl.htm (Visited in Aug. 2015).

64

http://dx.doi.org/10.1145/351240.351266
http://doi.acm.org/10.1145/351240.351266
http://doi.acm.org/10.1145/351240.351266
http://dx.doi.org/10.1145/258916.258921
http://dx.doi.org/10.1145/258916.258921
http://doi.acm.org.proxy.lib.chalmers.se/10.1145/258916.258921
http://doi.acm.org.proxy.lib.chalmers.se/10.1145/258916.258921
http://dx.doi.org/10.1145/1278901.1278908
http://doi.acm.org.proxy.lib.chalmers.se/10.1145/1278901.1278908
http://doi.acm.org.proxy.lib.chalmers.se/10.1145/1278901.1278908
https://thrift.apache.org/docs/idl
http://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
http://help.eclipse.org/mars/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2FgettingStarted%2Fqs-97_standalone_ets.htm
http://help.eclipse.org/mars/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2FgettingStarted%2Fqs-97_standalone_ets.htm
http://help.eclipse.org/mars/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2FgettingStarted%2Fqs-97_standalone_ets.htm
http://www.eclipse.org/pde/
http://dbus.freedesktop.org/doc/api/html/index.html
http://dbus.freedesktop.org/doc/api/html/index.html
http://www.freedesktop.org/wiki/Software/dbus/
http://www.freedesktop.org/wiki/Software/dbus/
http://www.freedesktop.org/wiki/Software/DBusBindings/
http://www.freedesktop.org/wiki/Software/DBusBindings/
http://man7.org/linux/man-pages/man3/stdout.3.html
http://man7.org/linux/man-pages/man3/stdout.3.html
http://www.omg.org/gettingstarted/omg_idl.htm
http://www.omg.org/gettingstarted/omg_idl.htm

[23] H.-A. Jacobsen and B.J. Kramer. “Modeling interface definition lan-
guage extensions”. In: Technology of Object-Oriented Languages and
Systems, 2000. TOOLS-Pacific 2000. Proceedings. 37th International
Conference on. 2000, pp. 242–252. doi: 10.1109/TOOLS.2000.891373.

[24] A. Kaplan, J. Ridgway, and J. C. Wileden. “Why IDLs Are Not Ideal”.
In: Proceedings of the 9th International Workshop on Software Speci-
fication and Design. IWSSD ’98. Washington, DC, USA: IEEE Com-
puter Society, 1998, pp. 2–. isbn: 0-8186-8439-9. url: http://dl.acm.
org.proxy.lib.chalmers.se/citation.cfm?id=857205.858288.

[25] Centre for Language Technology. The BNF Converter. url: http:

//bnfc.digitalgrammars.com/ (Visited in Aug. 2015).

[26] Robert Love. “Get on the D-BUS”. In: Linux J. 2005.130 (Feb. 2005),
pp. 3–. issn: 1075-3583. url: http://dl.acm.org.proxy.lib.

chalmers.se/citation.cfm?id=1048011.1048014.

[27] John R Nestor, William A Wulf, and David A Lamb. IDL-Interface
description language: Formal description. Carnegie-Mellon University.
Department of Computer Science, 1981.

[28] J. Palsberg and C.B. Jay. “The essence of the Visitor pattern”. In:
Computer Software and Applications Conference, 1998. COMPSAC
’98. Proceedings. The Twenty-Second Annual International. 1998, pp. 9–
15. doi: 10.1109/CMPSAC.1998.716629.

[29] Pelagicore/common-api-cmdline - Github. url: https://github.com/
Pelagicore/common-api-cmdline (Visited in July 2015).

[30] Havoc Pennington et al. D-Bus specification. url: http : / / dbus .

freedesktop.org/doc/dbus-specification.html#introspection-

format (Visited in July 2015).

[31] Lennart Poettering. [systemd-devel] [HEADSUP] libsystemd-bus + kd-
bus plans. url: http://lists.freedesktop.org/archives/systemd-
devel/2013-March/009797.html (Visited in July 2015).

[32] The Debian Project. Debian – Details of package python2.7 in wheezy.
url: https://packages.debian.org/wheezy/python2.7 (Visited in
Aug. 2015).

[33] The GNOME Project. D-Bus GLib bindings - Reference Manual. url:
https://developer.gnome.org/dbus-glib/unstable/ (Visited in
July 2015).

65

http://dx.doi.org/10.1109/TOOLS.2000.891373
http://dl.acm.org.proxy.lib.chalmers.se/citation.cfm?id=857205.858288
http://dl.acm.org.proxy.lib.chalmers.se/citation.cfm?id=857205.858288
http://bnfc.digitalgrammars.com/
http://bnfc.digitalgrammars.com/
http://dl.acm.org.proxy.lib.chalmers.se/citation.cfm?id=1048011.1048014
http://dl.acm.org.proxy.lib.chalmers.se/citation.cfm?id=1048011.1048014
http://dx.doi.org/10.1109/CMPSAC.1998.716629
https://github.com/Pelagicore/common-api-cmdline
https://github.com/Pelagicore/common-api-cmdline
http://dbus.freedesktop.org/doc/dbus-specification.html#introspection-format
http://dbus.freedesktop.org/doc/dbus-specification.html#introspection-format
http://dbus.freedesktop.org/doc/dbus-specification.html#introspection-format
http://lists.freedesktop.org/archives/systemd-devel/2013-March/009797.html
http://lists.freedesktop.org/archives/systemd-devel/2013-March/009797.html
https://packages.debian.org/wheezy/python2.7
https://developer.gnome.org/dbus-glib/unstable/

[34] The GNOME Project. gdbus-codegen: GIO Reference Manual. url:
https://developer.gnome.org/gio/stable/gdbus-codegen.html

(Visited in July 2015).

[35] The GNOME Project. GNOME. url: https : / / www . gnome . org/

(Visited in July 2015).

[36] The GNOME Project. Migrating to GDBus: GIO Reference Manual.
url: https://developer.gnome.org/gio/unstable//ch35.html
(Visited in July 2015).

[37] The Jenkins Project. Welcome to Jenkins CI! url: https://jenkins-
ci.org/ (Visited in Aug. 2015).

[38] Yocto Project. Yocto Project — Open Source embedded Linux build
system, package metadata and SDK generator. url: https://www.
yoctoproject.org/ (Visited in Aug. 2015).

[39] Jonatan P̊alsson. Private interview conducted at Pelagicore. 2015.

[40] Scott James Remnant. Ubuntu Manpage: nih-dbus-tool - D-Bus bind-
ing code generator. url: http://manpages.ubuntu.com/manpages/
karmic/man1/nih-dbus-tool.1.html (Visited in July 2015).

[41] David A Rusling. Interprocess Communication Mechanisms. url: http:
//www.tldp.org/LDP/tlk/tlk.html (Visited in Aug. 2015).

[42] Andreas Warnke. ipc-quartztime: Main Page. url: http://andreaswarnke.
de/ipc-quartztime/html/index.html (Visited in July 2015).

[43] David Zeuthen. FreshPorts – devel/eggdbus. url: http://www.freshports.
org/devel/eggdbus/ (Visited in July 2015).

66

https://developer.gnome.org/gio/stable/gdbus-codegen.html
https://www.gnome.org/
https://developer.gnome.org/gio/unstable//ch35.html
https://jenkins-ci.org/
https://jenkins-ci.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
http://manpages.ubuntu.com/manpages/karmic/man1/nih-dbus-tool.1.html
http://manpages.ubuntu.com/manpages/karmic/man1/nih-dbus-tool.1.html
http://www.tldp.org/LDP/tlk/tlk.html
http://www.tldp.org/LDP/tlk/tlk.html
http://andreaswarnke.de/ipc-quartztime/html/index.html
http://andreaswarnke.de/ipc-quartztime/html/index.html
http://www.freshports.org/devel/eggdbus/
http://www.freshports.org/devel/eggdbus/

Appendix A

Source code for the test suite

In this appendix, the source code for the eight faulty Franca IDL files used in
the evaluation of P2 is presented. The source code for the original, error-free
Franca interface which each error case is based on is given. For each of the
eight test cases, the lines of code differing from the original file is shown, and
the location of the error is marked in red in the code.

I

A.1 Original, error-free files

MediaTypes.fidl:

1 package org.genivi.mediamanager

2 typeCollection MediaTypes {

3 enumeration BackendError extends MediaManagerError {

BACKEND_UNREACHABLE }

4 enumeration MediaManagerError { NO_ERROR }

5 }

MediaIndexer.fidl:

1 package org.genivi.mediamanager

2 import org.genivi.mediamanager.MediaTypes.* from "MediaTypes.fidl"

3 interface Indexer {

4 version {

5 major 1

6 minor 0

7 }

8 <** @description: Example comment**>

9 attribute IndexerStatus indexerStatus readonly noSubscriptions

10 method getDatabasePath {

11 out {

12 String output

13 IndexerError e

14 }

15 }

16 method stopIndexing {

17 out { IndexerError e }

18 }

19

20 method startIndexing {

21 out { IndexerError e }

22 }

23 enumeration IndexerStatus {

24 RUNNING

25 STOPPED

26 IDLE

27 }

28 typedef IndexerError is BackendError

29 }

II

A.2 Case 1: Missing curly bracket

MediaIndexer.fidl:

15 }

16 method stopIndexing

17 out { IndexerError e }

A.3 Case 2: Import of non-existing file

MediaIndexer.fidl:

1 package org.genivi.mediamanager

2 import org.genivi.mediamanager.MediaTypes.* from "MediaType.fidl"

3 interface Indexer {

A.4 Case 3: File structured wrong

MediaIndexer.fidl:

3 interface Indexer {

4 version {

5 major 1

6 minor 0

7 }

8 typedef IndexerError is BackendError

9 <** @description: Example comment**>

10 attribute IndexerStatus indexerStatus readonly noSubscriptions

A.5 Case 4: Misspelled language construct

MediaIndexer.fidl:

9 attribute IndexerStatus indexerStatus readonly noSubscriptions

10 nethod getDatabasePath {

11 out {

III

A.6 Case 5: Usage of non-existing data type

MediaIndexer.fidl:

16 method stopIndexing {

17 out { IndexError e }

18 }

A.7 Case 6: Circular dependency in exten-

sions

MediaTypes.fidl:

2 typeCollection MediaTypes {

3 enumeration BackendError extends MediaManagerError{

BACKEND_UNREACHABLE }

4 enumeration MediaManagerError extends BackendError{ NO_ERROR }

5 }

A.8 Case 7: Several “out” sections in method

definition

MediaIndexer.fidl:

10 method getDatabasePath {

11 out {
12 String output

13 }
14 out {
15 IndexerError e

16 }
17 }

IV

A.9 Case 8: No version defined

MediaIndexer.fidl:

2 import org.genivi.mediamanager.MediaTypes.* from "MediaTypes.fidl"

3 interface Indexer {
4

5 <** @description: Example comment**>

V

Appendix B

BNF grammar for a subset of
Franca IDL

-- Franca IDL grammar file

-- BNF grammar for subset of Franca IDL

-- Author Jesper Lundqvist

-- Version 0.3

-- Usage: Use with BNFC software suite.

-- definitions

Prog. Program ::= [Def] ;

-- A Franca IDL file consist of a series of definitions.

DPackage. Def ::= "package" PackageName ;

DPackageName. PackageName ::= [NamespaceID] ;

DInterface. Def ::= "interface" Id "{" IBody "}" ;

terminator Def "" ;

-- I define a type collection in the same way as an interface.

-- This is to avoid having separate definitions for the same

structure,

-- e.g. Enumerations as IBodyItem and TypeCollectionItem.

DTypeCollection. Def ::= "typeCollection" Id "{" IBody "}" ;

VI

-- Import from another Franca file.

DImport. Def ::= "import" Namespace "from" "\""

FileName "\"" ;

-- DImport. Def ::= "import" Namespace ".*" "from" "\""

FileName "\"" ;

DFileName. FileName ::= Id "." FileEnding ;

DFileNameNoEnd. FileName ::= Id ;

DFileEnding. FileEnding ::= Id ;

DNamespace. Namespace ::= [NamespaceID] ;

DNamespaceID. NamespaceID ::= Id ;

DNamespaceIDAll. NamespaceID ::= "*" ;

separator NamespaceID "." ;

-- Interfaces consist of a number of interface body items.

DIBody. IBody ::= [IBodyItem] ;

terminator IBodyItem "" ;

--separator IBodyItem "" ;

-- Methods are one kind of interface body item. They can have

either

-- in- or out-parameters, both, or none.

DMethod. IBodyItem ::= "method" Id "{" "}" ;

DInMethod. IBodyItem ::= "method" Id "{" "in" "{" [InVari

] "}" "}" ;

DOutMethod. IBodyItem ::= "method" Id "{" "out" "{" [

OutVari] "}" "}" ;

DIOMethod. IBodyItem ::= "method" Id "{" "in" "{" [InVari

] "}" "out" "{" [OutVari] "}" "}" ;

-- Version is another interface body item.

DVersion. IBodyItem ::= "version" "{" "major" Integer "

minor" Integer "}" ;

-- Attributes are also an interface body item.

-- Due to only two attribute flags being possible, the combinations

are

-- listed here separately to make code generation easier.

VII

DAttrib. IBodyItem ::= "attribute" Type Id ;

DAttribReadOnly. IBodyItem ::= "attribute" Type Id "readonly" ;

DAttribNoSub. IBodyItem ::= "attribute" Type Id "

noSubscriptions" ;

DAttribRONS. IBodyItem ::= "attribute" Type Id "readonly" "

noSubscriptions" ;

-- Parameters consist of a type and an id.

DInVar. InVari ::= Type Id ;

DOutVar. OutVari ::= Type Id ;

--DInVarCustomType. InVari ::= CustomType Id ;

DVar. Vari ::= Type Id ;

--DVarArr. Vari ::= Type "[]" Id ;

terminator Vari "" ;

terminator InVari "" ;

terminator OutVari "" ;

-- Enumerations (interface body item)

DEnumDef. IBodyItem ::= "enumeration" Id "{" EnumList

"}" ;

DExEnumDef. IBodyItem ::= "enumeration" EnumId "extends" Id "{"

EnumList "}" ;

DEnumIdent. EnumId ::= Id ;

DEnumList. EnumList ::= [Enum] ;

terminator Enum "" ;

DEnum. Enum ::= Id ;

DEnumValue. Enum ::= Id "=" Integer ;

-- Typedefs

DTypeDef. IBodyItem ::= "typedef" TypeDefId "is" Type ;

DTypeDefCustom. IBodyItem ::= "typedef" TypeDefId "is" Id ;

DTypeDefIdent. TypeDefId ::= Id ;

-- Franca IDL types

DUIntEight. Type ::= "UInt8" ;

VIII

DIntEight. Type ::= "Int8" ;

DUIntSixteen. Type ::= "UInt16" ;

DIntSixteen. Type ::= "Int16" ;

DUIntThirtyTwo. Type ::= "UInt32" ;

DIntThirtyTwo. Type ::= "Int32" ;

DUIntSixtyFour. Type ::= "UInt64" ;

DIntSixtyFour. Type ::= "Int64" ;

DBoolean. Type ::= "Boolean" ;

DFloat. Type ::= "Float" ;

DDouble. Type ::= "Double" ;

DString. Type ::= "String" ;

DByteBuffer. Type ::= "ByteBuffer" ;

DCustomType. Type ::= Id ;

-- Identifiers

token Id (letter (letter | digit | ’_’)*) ;

-- Regular comments

comment "//" ;

comment "/*" "*/" ;

-- Structured comments. These can be further implemented;

-- for now they are defined as regular comments.

comment "<**" "**>" ;

IX

Appendix C

Error feedback from test suite

In this appendix, the resulting error feedback from running each test case
Franca IDL file with both the CommonAPI command line tool, and the
FrancaCCG tool, is presented.

C.1 Test case 1: Missing curly bracket

3.1.1 CommonAPI error feedback

Loading main class : org.genivi.commonapi.cmdline.StandaloneGen

Sat Aug 08 14:00:40 CEST 2015 - [main] Product-specified preferences called before plugin is started

0 ERROR StandaloneGen - Exception occurred !

java.lang.NullPointerException

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.getRelativeNameReference(FrancaGeneratorExtensions

.java:265)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.getNameReference(FrancaGeneratorExtensions.java

:1484)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.getTypeName(FrancaGeneratorExtensions.java:1410)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions$5.apply(FrancaGeneratorExtensions.java:564)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions$5.apply(FrancaGeneratorExtensions.java:1)

at org.eclipse.xtext.xbase.lib.internal.FunctionDelegate.apply(FunctionDelegate.java:41)

at com.google.common.collect.Lists$TransformingRandomAccessList.get(Lists.java:491)

at java.util.AbstractList$Itr.next(AbstractList.java:358)

at com.google.common.base.Joiner.appendTo(Joiner.java:128)

at com.google.common.base.Joiner.appendTo(Joiner.java:186)

at com.google.common.base.Joiner.join(Joiner.java:243)

at com.google.common.base.Joiner.join(Joiner.java:232)

at org.eclipse.xtext.xbase.lib.IterableExtensions.join(IterableExtensions.java:450)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.generateDefinitionSignature(

FrancaGeneratorExtensions.java:572)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.generateDefinitionWithin(FrancaGeneratorExtensions

.java:515)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.generateDefinition(FrancaGeneratorExtensions.java

:493)

at org.genivi.commonapi.dbus.generator.FInterfaceDBusProxyGenerator.generateDBusProxyHeader(

FInterfaceDBusProxyGenerator.java:240)

at org.genivi.commonapi.dbus.generator.FInterfaceDBusProxyGenerator.generateDBusProxy(FInterfaceDBusProxyGenerator.

java:54)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator$1.apply(FrancaDBusGenerator.java:246)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator$1.apply(FrancaDBusGenerator.java:1)

at org.eclipse.xtext.xbase.lib.IterableExtensions.forEach(IterableExtensions.java:399)

X

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator.doGenerateDBusComponents(FrancaDBusGenerator.java:308)

at org.genivi.commonapi.dbus.Generator.generate(Generator.java:21)

at org.genivi.commonapi.cmdline.StandaloneGen.run(StandaloneGen.java:299)

at org.genivi.commonapi.cmdline.StandaloneGen.go(StandaloneGen.java:82)

at org.genivi.commonapi.cmdline.main.Main.main(Main.java:80)

java.lang.NullPointerException

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.getRelativeNameReference(FrancaGeneratorExtensions

.java:265)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.getNameReference(FrancaGeneratorExtensions.java

:1484)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.getTypeName(FrancaGeneratorExtensions.java:1410)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions$5.apply(FrancaGeneratorExtensions.java:564)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions$5.apply(FrancaGeneratorExtensions.java:1)

at org.eclipse.xtext.xbase.lib.internal.FunctionDelegate.apply(FunctionDelegate.java:41)

at com.google.common.collect.Lists$TransformingRandomAccessList.get(Lists.java:491)

at java.util.AbstractList$Itr.next(AbstractList.java:358)

at com.google.common.base.Joiner.appendTo(Joiner.java:128)

at com.google.common.base.Joiner.appendTo(Joiner.java:186)

at com.google.common.base.Joiner.join(Joiner.java:243)

at com.google.common.base.Joiner.join(Joiner.java:232)

at org.eclipse.xtext.xbase.lib.IterableExtensions.join(IterableExtensions.java:450)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.generateDefinitionSignature(

FrancaGeneratorExtensions.java:572)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.generateDefinitionWithin(FrancaGeneratorExtensions

.java:515)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.generateDefinition(FrancaGeneratorExtensions.java

:493)

at org.genivi.commonapi.dbus.generator.FInterfaceDBusProxyGenerator.generateDBusProxyHeader(

FInterfaceDBusProxyGenerator.java:240)

at org.genivi.commonapi.dbus.generator.FInterfaceDBusProxyGenerator.generateDBusProxy(FInterfaceDBusProxyGenerator.

java:54)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator$1.apply(FrancaDBusGenerator.java:246)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator$1.apply(FrancaDBusGenerator.java:1)

at org.eclipse.xtext.xbase.lib.IterableExtensions.forEach(IterableExtensions.java:399)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator.doGenerateDBusComponents(FrancaDBusGenerator.java:308)

at org.genivi.commonapi.dbus.Generator.generate(Generator.java:21)

at org.genivi.commonapi.cmdline.StandaloneGen.run(StandaloneGen.java:299)

at org.genivi.commonapi.cmdline.StandaloneGen.go(StandaloneGen.java:82)

at org.genivi.commonapi.cmdline.main.Main.main(Main.java:80)

3.1.2 FrancaCCG error feedback

error: parse error

Syntax error at line 17:

out { IndexerError e }

Aborting code generation.

ERROR: FIDLtoXML code generator failed. Code generation aborted.

XI

C.2 Test case 2: Import of non-existing file

3.2.1 CommonAPI error feedback

Loading main class : org.genivi.commonapi.cmdline.StandaloneGen

1 ERROR StandaloneGen - Exception occurred !

org.eclipse.emf.ecore.resource.impl.ResourceSetImpl$1DiagnosticWrappedException: java.io.FileNotFoundException: /home/

jesper/Documents/francaccodegen/testsuite/2ImportOfNonexistingFile/MediaType.fidl (No such file or directory)

at org.eclipse.emf.ecore.resource.impl.ResourceSetImpl.handleDemandLoadException(ResourceSetImpl.java:319)

at org.eclipse.emf.ecore.resource.impl.ResourceSetImpl.demandLoadHelper(ResourceSetImpl.java:278)

at org.eclipse.xtext.resource.XtextResourceSet.getResource(XtextResourceSet.java:201)

at org.eclipse.xtext.resource.SynchronizedXtextResourceSet.getResource(SynchronizedXtextResourceSet.java:26)

at org.franca.core.utils.ModelPersistenceHandler.loadModel(ModelPersistenceHandler.java:77)

at org.franca.core.utils.ModelPersistenceHandler.loadModel(ModelPersistenceHandler.java:94)

at org.franca.core.utils.ModelPersistenceHandler.loadModel(ModelPersistenceHandler.java:94)

at org.franca.deploymodel.dsl.FDeployPersistenceManager.loadModel(FDeployPersistenceManager.java:74)

at org.genivi.commonapi.cmdline.StandaloneGen.run(StandaloneGen.java:162)

at org.genivi.commonapi.cmdline.StandaloneGen.go(StandaloneGen.java:82)

at org.genivi.commonapi.cmdline.main.Main.main(Main.java:80)

Caused by: java.io.FileNotFoundException: /home/jesper/Documents/francaccodegen/testsuite/2ImportOfNonexistingFile/

MediaType.fidl (No such file or directory)

at java.io.FileInputStream.open(Native Method)

at java.io.FileInputStream.<init>(FileInputStream.java:146)

at org.eclipse.emf.ecore.resource.impl.FileURIHandlerImpl.createInputStream(FileURIHandlerImpl.java:99)

at org.eclipse.emf.ecore.resource.impl.ExtensibleURIConverterImpl.createInputStream(ExtensibleURIConverterImpl.java

:360)

at org.eclipse.xtext.resource.XtextResourceSet$1.createInputStream(XtextResourceSet.java:230)

at org.eclipse.emf.ecore.resource.impl.ResourceImpl.load(ResourceImpl.java:1269)

at org.eclipse.emf.ecore.resource.impl.ResourceSetImpl.demandLoad(ResourceSetImpl.java:259)

at org.eclipse.emf.ecore.resource.impl.ResourceSetImpl.demandLoadHelper(ResourceSetImpl.java:274)

... 9 more

org.eclipse.emf.ecore.resource.impl.ResourceSetImpl$1DiagnosticWrappedException: java.io.FileNotFoundException: /home/

jesper/Documents/francaccodegen/testsuite/2ImportOfNonexistingFile/MediaType.fidl (No such file or directory)

at org.eclipse.emf.ecore.resource.impl.ResourceSetImpl.handleDemandLoadException(ResourceSetImpl.java:319)

at org.eclipse.emf.ecore.resource.impl.ResourceSetImpl.demandLoadHelper(ResourceSetImpl.java:278)

at org.eclipse.xtext.resource.XtextResourceSet.getResource(XtextResourceSet.java:201)

at org.eclipse.xtext.resource.SynchronizedXtextResourceSet.getResource(SynchronizedXtextResourceSet.java:26)

at org.franca.core.utils.ModelPersistenceHandler.loadModel(ModelPersistenceHandler.java:77)

at org.franca.core.utils.ModelPersistenceHandler.loadModel(ModelPersistenceHandler.java:94)

at org.franca.core.utils.ModelPersistenceHandler.loadModel(ModelPersistenceHandler.java:94)

at org.franca.deploymodel.dsl.FDeployPersistenceManager.loadModel(FDeployPersistenceManager.java:74)

at org.genivi.commonapi.cmdline.StandaloneGen.run(StandaloneGen.java:162)

at org.genivi.commonapi.cmdline.StandaloneGen.go(StandaloneGen.java:82)

at org.genivi.commonapi.cmdline.main.Main.main(Main.java:80)

Caused by: java.io.FileNotFoundException: /home/jesper/Documents/francaccodegen/testsuite/2ImportOfNonexistingFile/

MediaType.fidl (No such file or directory)

at java.io.FileInputStream.open(Native Method)

at java.io.FileInputStream.<init>(FileInputStream.java:146)

at org.eclipse.emf.ecore.resource.impl.FileURIHandlerImpl.createInputStream(FileURIHandlerImpl.java:99)

at org.eclipse.emf.ecore.resource.impl.ExtensibleURIConverterImpl.createInputStream(ExtensibleURIConverterImpl.java

:360)

at org.eclipse.xtext.resource.XtextResourceSet$1.createInputStream(XtextResourceSet.java:230)

at org.eclipse.emf.ecore.resource.impl.ResourceImpl.load(ResourceImpl.java:1269)

at org.eclipse.emf.ecore.resource.impl.ResourceSetImpl.demandLoad(ResourceSetImpl.java:259)

at org.eclipse.emf.ecore.resource.impl.ResourceSetImpl.demandLoadHelper(ResourceSetImpl.java:274)

... 9 more

3.2.2 FrancaCCG error feedback

Error opening fidl file from import statement: MediaType.fidl

ERROR: FIDLtoXML code generator failed. Code generation aborted.

XII

C.3 Test case 3: File structured wrong

3.3.1 CommonAPI error feedback

Loading main class : org.genivi.commonapi.cmdline.StandaloneGen

Sat Aug 08 14:08:34 CEST 2015 - [main] Product-specified preferences called before plugin is started

0 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/3FileStructuredWrong/

output_commonapi/org/genivi/mediamanager/IndexerDBusProxy.h

3 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/3FileStructuredWrong/

output_commonapi/org/genivi/mediamanager/IndexerDBusProxy.cpp

4 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/3FileStructuredWrong/

output_commonapi/org/genivi/mediamanager/IndexerDBusStubAdapter.h

17 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/3FileStructuredWrong/

output_commonapi/org/genivi/mediamanager/IndexerDBusStubAdapter.cpp

48 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/3FileStructuredWrong/

output_commonapi/org/genivi/mediamanager/MediaTypes.h

50 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/3FileStructuredWrong/

output_commonapi/org/genivi/mediamanager/Indexer.h

55 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/3FileStructuredWrong/

output_commonapi/org/genivi/mediamanager/Indexer.h

56 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/3FileStructuredWrong/

output_commonapi/org/genivi/mediamanager/Indexer.cpp

62 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/3FileStructuredWrong/

output_commonapi/org/genivi/mediamanager/IndexerProxyBase.h

63 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/3FileStructuredWrong/

output_commonapi/org/genivi/mediamanager/IndexerProxy.h

65 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/3FileStructuredWrong/

output_commonapi/org/genivi/mediamanager/IndexerStub.h

67 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/3FileStructuredWrong/

output_commonapi/org/genivi/mediamanager/IndexerStubDefault.h

67 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/3FileStructuredWrong/

output_commonapi/org/genivi/mediamanager/IndexerStubDefault.cpp

68 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/3FileStructuredWrong/

output_commonapi/org/genivi/mediamanager/IndexerServiceAbstract.h

68 INFO StandaloneGen - FrancaStandaloneGen done.

3.3.2 FrancaCCG error feedback

FIDLtoXML successfully finished generating D-Bus XML Introspection for Franca IDL file ../testsuite/3FileStructuredWrong/

MediaIndexer.fidl

XMLtoC successfully finished generating C server proxy and stub for D-Bus XML file testsuite/3FileStructuredWrong/

MediaIndexer.xml

Code generation for Franca IDL file testsuite/3FileStructuredWrong/MediaIndexer.fidl was successful.

XIII

C.4 Test case 4: Misspelled language con-

struct

3.4.1 CommonAPI error feedback

Loading main class : org.genivi.commonapi.cmdline.StandaloneGen

Sat Aug 08 14:12:44 CEST 2015 - [main] Product-specified preferences called before plugin is started

1 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/4MisspelledLanguageConstruct/

output_commonapi/org/genivi/mediamanager/IndexerDBusProxy.h

18 ERROR StandaloneGen - Exception occurred !

java.lang.NullPointerException

at org.genivi.commonapi.dbus.generator.FrancaDBusGeneratorExtensions.dbusSignature(FrancaDBusGeneratorExtensions.

java:150)

at org.genivi.commonapi.dbus.generator.FrancaDBusGeneratorExtensions._dbusFTypeSignature(

FrancaDBusGeneratorExtensions.java:167)

at org.genivi.commonapi.dbus.generator.FrancaDBusGeneratorExtensions.dbusFTypeSignature(

FrancaDBusGeneratorExtensions.java:360)

at org.genivi.commonapi.dbus.generator.FrancaDBusGeneratorExtensions.dbusSignature(FrancaDBusGeneratorExtensions.

java:154)

at org.genivi.commonapi.dbus.generator.FrancaDBusGeneratorExtensions.getTypeDbusSignature(

FrancaDBusGeneratorExtensions.java:145)

at org.genivi.commonapi.dbus.generator.FrancaDBusGeneratorExtensions.dbusSignature(FrancaDBusGeneratorExtensions.

java:119)

at org.genivi.commonapi.dbus.generator.FInterfaceDBusProxyGenerator.generateDBusVariableInit(

FInterfaceDBusProxyGenerator.java:972)

at org.genivi.commonapi.dbus.generator.FInterfaceDBusProxyGenerator.generateDBusProxySource(

FInterfaceDBusProxyGenerator.java:481)

at org.genivi.commonapi.dbus.generator.FInterfaceDBusProxyGenerator.generateDBusProxy(FInterfaceDBusProxyGenerator.

java:57)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator$1.apply(FrancaDBusGenerator.java:246)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator$1.apply(FrancaDBusGenerator.java:1)

at org.eclipse.xtext.xbase.lib.IterableExtensions.forEach(IterableExtensions.java:399)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator.doGenerateDBusComponents(FrancaDBusGenerator.java:308)

at org.genivi.commonapi.dbus.Generator.generate(Generator.java:21)

at org.genivi.commonapi.cmdline.StandaloneGen.run(StandaloneGen.java:299)

at org.genivi.commonapi.cmdline.StandaloneGen.go(StandaloneGen.java:82)

at org.genivi.commonapi.cmdline.main.Main.main(Main.java:80)

java.lang.NullPointerException

at org.genivi.commonapi.dbus.generator.FrancaDBusGeneratorExtensions.dbusSignature(FrancaDBusGeneratorExtensions.

java:150)

at org.genivi.commonapi.dbus.generator.FrancaDBusGeneratorExtensions._dbusFTypeSignature(

FrancaDBusGeneratorExtensions.java:167)

at org.genivi.commonapi.dbus.generator.FrancaDBusGeneratorExtensions.dbusFTypeSignature(

FrancaDBusGeneratorExtensions.java:360)

at org.genivi.commonapi.dbus.generator.FrancaDBusGeneratorExtensions.dbusSignature(FrancaDBusGeneratorExtensions.

java:154)

at org.genivi.commonapi.dbus.generator.FrancaDBusGeneratorExtensions.getTypeDbusSignature(

FrancaDBusGeneratorExtensions.java:145)

at org.genivi.commonapi.dbus.generator.FrancaDBusGeneratorExtensions.dbusSignature(FrancaDBusGeneratorExtensions.

java:119)

at org.genivi.commonapi.dbus.generator.FInterfaceDBusProxyGenerator.generateDBusVariableInit(

FInterfaceDBusProxyGenerator.java:972)

at org.genivi.commonapi.dbus.generator.FInterfaceDBusProxyGenerator.generateDBusProxySource(

FInterfaceDBusProxyGenerator.java:481)

at org.genivi.commonapi.dbus.generator.FInterfaceDBusProxyGenerator.generateDBusProxy(FInterfaceDBusProxyGenerator.

java:57)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator$1.apply(FrancaDBusGenerator.java:246)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator$1.apply(FrancaDBusGenerator.java:1)

at org.eclipse.xtext.xbase.lib.IterableExtensions.forEach(IterableExtensions.java:399)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator.doGenerateDBusComponents(FrancaDBusGenerator.java:308)

at org.genivi.commonapi.dbus.Generator.generate(Generator.java:21)

at org.genivi.commonapi.cmdline.StandaloneGen.run(StandaloneGen.java:299)

at org.genivi.commonapi.cmdline.StandaloneGen.go(StandaloneGen.java:82)

at org.genivi.commonapi.cmdline.main.Main.main(Main.java:80)

3.4.2 FrancaCCG error feedback

error: parse error

Syntax error at line 10:

nethod getDatabasePath {

Aborting code generation.

ERROR: FIDLtoXML code generator failed. Code generation aborted.

XIV

C.5 Test case 5: Usage of non-existing data

type

3.5.1 CommonAPI error feedback

Loading main class : org.genivi.commonapi.cmdline.StandaloneGen

Sat Aug 08 14:14:41 CEST 2015 - [main] Product-specified preferences called before plugin is started

0 ERROR StandaloneGen - Exception occurred !

java.lang.NullPointerException

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.getRelativeNameReference(FrancaGeneratorExtensions

.java:265)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.getNameReference(FrancaGeneratorExtensions.java

:1484)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.getTypeName(FrancaGeneratorExtensions.java:1410)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions$5.apply(FrancaGeneratorExtensions.java:564)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions$5.apply(FrancaGeneratorExtensions.java:1)

at org.eclipse.xtext.xbase.lib.internal.FunctionDelegate.apply(FunctionDelegate.java:41)

at com.google.common.collect.Lists$TransformingRandomAccessList.get(Lists.java:491)

at java.util.AbstractList$Itr.next(AbstractList.java:358)

at com.google.common.base.Joiner.appendTo(Joiner.java:125)

at com.google.common.base.Joiner.appendTo(Joiner.java:186)

at com.google.common.base.Joiner.join(Joiner.java:243)

at com.google.common.base.Joiner.join(Joiner.java:232)

at org.eclipse.xtext.xbase.lib.IterableExtensions.join(IterableExtensions.java:450)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.generateDefinitionSignature(

FrancaGeneratorExtensions.java:572)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.generateDefinitionWithin(FrancaGeneratorExtensions

.java:515)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.generateDefinition(FrancaGeneratorExtensions.java

:493)

at org.genivi.commonapi.dbus.generator.FInterfaceDBusProxyGenerator.generateDBusProxyHeader(

FInterfaceDBusProxyGenerator.java:240)

at org.genivi.commonapi.dbus.generator.FInterfaceDBusProxyGenerator.generateDBusProxy(FInterfaceDBusProxyGenerator.

java:54)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator$1.apply(FrancaDBusGenerator.java:246)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator$1.apply(FrancaDBusGenerator.java:1)

at org.eclipse.xtext.xbase.lib.IterableExtensions.forEach(IterableExtensions.java:399)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator.doGenerateDBusComponents(FrancaDBusGenerator.java:308)

at org.genivi.commonapi.dbus.Generator.generate(Generator.java:21)

at org.genivi.commonapi.cmdline.StandaloneGen.run(StandaloneGen.java:299)

at org.genivi.commonapi.cmdline.StandaloneGen.go(StandaloneGen.java:82)

at org.genivi.commonapi.cmdline.main.Main.main(Main.java:80)

java.lang.NullPointerException

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.getRelativeNameReference(FrancaGeneratorExtensions

.java:265)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.getNameReference(FrancaGeneratorExtensions.java

:1484)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.getTypeName(FrancaGeneratorExtensions.java:1410)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions$5.apply(FrancaGeneratorExtensions.java:564)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions$5.apply(FrancaGeneratorExtensions.java:1)

at org.eclipse.xtext.xbase.lib.internal.FunctionDelegate.apply(FunctionDelegate.java:41)

at com.google.common.collect.Lists$TransformingRandomAccessList.get(Lists.java:491)

at java.util.AbstractList$Itr.next(AbstractList.java:358)

at com.google.common.base.Joiner.appendTo(Joiner.java:125)

at com.google.common.base.Joiner.appendTo(Joiner.java:186)

at com.google.common.base.Joiner.join(Joiner.java:243)

at com.google.common.base.Joiner.join(Joiner.java:232)

at org.eclipse.xtext.xbase.lib.IterableExtensions.join(IterableExtensions.java:450)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.generateDefinitionSignature(

FrancaGeneratorExtensions.java:572)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.generateDefinitionWithin(FrancaGeneratorExtensions

.java:515)

at org.genivi.commonapi.core.generator.FrancaGeneratorExtensions.generateDefinition(FrancaGeneratorExtensions.java

:493)

at org.genivi.commonapi.dbus.generator.FInterfaceDBusProxyGenerator.generateDBusProxyHeader(

FInterfaceDBusProxyGenerator.java:240)

at org.genivi.commonapi.dbus.generator.FInterfaceDBusProxyGenerator.generateDBusProxy(FInterfaceDBusProxyGenerator.

java:54)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator$1.apply(FrancaDBusGenerator.java:246)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator$1.apply(FrancaDBusGenerator.java:1)

at org.eclipse.xtext.xbase.lib.IterableExtensions.forEach(IterableExtensions.java:399)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator.doGenerateDBusComponents(FrancaDBusGenerator.java:308)

at org.genivi.commonapi.dbus.Generator.generate(Generator.java:21)

at org.genivi.commonapi.cmdline.StandaloneGen.run(StandaloneGen.java:299)

at org.genivi.commonapi.cmdline.StandaloneGen.go(StandaloneGen.java:82)

at org.genivi.commonapi.cmdline.main.Main.main(Main.java:80)

XV

3.5.2 FrancaCCG error feedback

ERROR: Custom Franca type ’IndexError’ has not been defined.

Aborting code generation.

ERROR: FIDLtoXML code generator failed. Code generation aborted.

XVI

C.6 Test case 6: Circular dependency in ex-

tensions

3.6.1 CommonAPI error feedback

Loading main class : org.genivi.commonapi.cmdline.StandaloneGen

Sat Aug 08 14:17:04 CEST 2015 - [main] Product-specified preferences called before plugin is started

1 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/6ExtensionLoop/output_commonapi/

org/genivi/mediamanager/IndexerDBusProxy.h

12 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/6ExtensionLoop/output_commonapi/

org/genivi/mediamanager/IndexerDBusProxy.cpp

15 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/6ExtensionLoop/output_commonapi/

org/genivi/mediamanager/IndexerDBusStubAdapter.h

21 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/6ExtensionLoop/output_commonapi/

org/genivi/mediamanager/IndexerDBusStubAdapter.cpp

36 ERROR StandaloneGen - Exception occurred !

java.lang.IllegalArgumentException: FTypeCollection or FInterface has circular dependencies: org.franca.core.franca.impl.

FTypeCollectionImpl@1dfd9611 (name: MediaTypes)

at com.google.common.base.Preconditions.checkArgument(Preconditions.java:92)

at org.genivi.commonapi.core.generator.FTypeGenerator.sortTypes(FTypeGenerator.java:453)

at org.genivi.commonapi.core.generator.FTypeGenerator.generateFTypeDeclarations(FTypeGenerator.java:411)

at org.genivi.commonapi.core.generator.FTypeCollectionGenerator.generateHeader(FTypeCollectionGenerator.java:132)

at org.genivi.commonapi.core.generator.FTypeCollectionGenerator.generate(FTypeCollectionGenerator.java:53)

at org.genivi.commonapi.core.generator.FrancaGenerator$5.apply(FrancaGenerator.java:261)

at org.genivi.commonapi.core.generator.FrancaGenerator$5.apply(FrancaGenerator.java:1)

at org.eclipse.xtext.xbase.lib.IterableExtensions.forEach(IterableExtensions.java:399)

at org.genivi.commonapi.core.generator.FrancaGenerator.doGenerateComponents(FrancaGenerator.java:264)

at org.genivi.commonapi.core.Generator.generate(Generator.java:21)

at org.genivi.commonapi.cmdline.StandaloneGen.run(StandaloneGen.java:299)

at org.genivi.commonapi.cmdline.StandaloneGen.go(StandaloneGen.java:82)

at org.genivi.commonapi.cmdline.main.Main.main(Main.java:80)

java.lang.IllegalArgumentException: FTypeCollection or FInterface has circular dependencies: org.franca.core.franca.impl.

FTypeCollectionImpl@1dfd9611 (name: MediaTypes)

at com.google.common.base.Preconditions.checkArgument(Preconditions.java:92)

at org.genivi.commonapi.core.generator.FTypeGenerator.sortTypes(FTypeGenerator.java:453)

at org.genivi.commonapi.core.generator.FTypeGenerator.generateFTypeDeclarations(FTypeGenerator.java:411)

at org.genivi.commonapi.core.generator.FTypeCollectionGenerator.generateHeader(FTypeCollectionGenerator.java:132)

at org.genivi.commonapi.core.generator.FTypeCollectionGenerator.generate(FTypeCollectionGenerator.java:53)

at org.genivi.commonapi.core.generator.FrancaGenerator$5.apply(FrancaGenerator.java:261)

at org.genivi.commonapi.core.generator.FrancaGenerator$5.apply(FrancaGenerator.java:1)

at org.eclipse.xtext.xbase.lib.IterableExtensions.forEach(IterableExtensions.java:399)

at org.genivi.commonapi.core.generator.FrancaGenerator.doGenerateComponents(FrancaGenerator.java:264)

at org.genivi.commonapi.core.Generator.generate(Generator.java:21)

at org.genivi.commonapi.cmdline.StandaloneGen.run(StandaloneGen.java:299)

at org.genivi.commonapi.cmdline.StandaloneGen.go(StandaloneGen.java:82)

at org.genivi.commonapi.cmdline.main.Main.main(Main.java:80)

3.6.2 FrancaCCG error feedback

ERROR: Custom Franca types cannot be resolved:

NAME: BackendError

TYPE: ENUMERATION

D-BUS SIGNATURE:

EXTENDS: MediaManagerError

ENUM MEMBER: BACKEND_UNREACHABLE =

NAME: MediaManagerError

TYPE: ENUMERATION

D-BUS SIGNATURE:

EXTENDS: BackendError

ENUM MEMBER: NO_ERROR =

NAME: IndexerError

TYPE: TYPEDEF

D-BUS SIGNATURE:

VALUE: BackendError

Aborting code generation.

ERROR: FIDLtoXML code generator failed. Code generation aborted.

XVII

C.7 Test case 7: Several “out” sections in

method definition

3.7.1 CommonAPI error feedback

Loading main class : org.genivi.commonapi.cmdline.StandaloneGen

Sat Aug 08 14:20:07 CEST 2015 - [main] Product-specified preferences called before plugin is started

0 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/7SeveralOutSections/

output_commonapi/org/genivi/mediamanager/IndexerDBusProxy.h

17 ERROR StandaloneGen - Exception occurred !

java.lang.NullPointerException

at org.genivi.commonapi.dbus.generator.FrancaDBusGeneratorExtensions.dbusSignature(FrancaDBusGeneratorExtensions.

java:150)

at org.genivi.commonapi.dbus.generator.FrancaDBusGeneratorExtensions._dbusFTypeSignature(

FrancaDBusGeneratorExtensions.java:167)

at org.genivi.commonapi.dbus.generator.FrancaDBusGeneratorExtensions.dbusFTypeSignature(

FrancaDBusGeneratorExtensions.java:360)

at org.genivi.commonapi.dbus.generator.FrancaDBusGeneratorExtensions.dbusSignature(FrancaDBusGeneratorExtensions.

java:154)

at org.genivi.commonapi.dbus.generator.FrancaDBusGeneratorExtensions.getTypeDbusSignature(

FrancaDBusGeneratorExtensions.java:145)

at org.genivi.commonapi.dbus.generator.FrancaDBusGeneratorExtensions.dbusSignature(FrancaDBusGeneratorExtensions.

java:119)

at org.genivi.commonapi.dbus.generator.FInterfaceDBusProxyGenerator.generateDBusVariableInit(

FInterfaceDBusProxyGenerator.java:972)

at org.genivi.commonapi.dbus.generator.FInterfaceDBusProxyGenerator.generateDBusProxySource(

FInterfaceDBusProxyGenerator.java:481)

at org.genivi.commonapi.dbus.generator.FInterfaceDBusProxyGenerator.generateDBusProxy(FInterfaceDBusProxyGenerator.

java:57)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator$1.apply(FrancaDBusGenerator.java:246)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator$1.apply(FrancaDBusGenerator.java:1)

at org.eclipse.xtext.xbase.lib.IterableExtensions.forEach(IterableExtensions.java:399)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator.doGenerateDBusComponents(FrancaDBusGenerator.java:308)

at org.genivi.commonapi.dbus.Generator.generate(Generator.java:21)

at org.genivi.commonapi.cmdline.StandaloneGen.run(StandaloneGen.java:299)

at org.genivi.commonapi.cmdline.StandaloneGen.go(StandaloneGen.java:82)

at org.genivi.commonapi.cmdline.main.Main.main(Main.java:80)

java.lang.NullPointerException

at org.genivi.commonapi.dbus.generator.FrancaDBusGeneratorExtensions.dbusSignature(FrancaDBusGeneratorExtensions.

java:150)

at org.genivi.commonapi.dbus.generator.FrancaDBusGeneratorExtensions._dbusFTypeSignature(

FrancaDBusGeneratorExtensions.java:167)

at org.genivi.commonapi.dbus.generator.FrancaDBusGeneratorExtensions.dbusFTypeSignature(

FrancaDBusGeneratorExtensions.java:360)

at org.genivi.commonapi.dbus.generator.FrancaDBusGeneratorExtensions.dbusSignature(FrancaDBusGeneratorExtensions.

java:154)

at org.genivi.commonapi.dbus.generator.FrancaDBusGeneratorExtensions.getTypeDbusSignature(

FrancaDBusGeneratorExtensions.java:145)

at org.genivi.commonapi.dbus.generator.FrancaDBusGeneratorExtensions.dbusSignature(FrancaDBusGeneratorExtensions.

java:119)

at org.genivi.commonapi.dbus.generator.FInterfaceDBusProxyGenerator.generateDBusVariableInit(

FInterfaceDBusProxyGenerator.java:972)

at org.genivi.commonapi.dbus.generator.FInterfaceDBusProxyGenerator.generateDBusProxySource(

FInterfaceDBusProxyGenerator.java:481)

at org.genivi.commonapi.dbus.generator.FInterfaceDBusProxyGenerator.generateDBusProxy(FInterfaceDBusProxyGenerator.

java:57)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator$1.apply(FrancaDBusGenerator.java:246)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator$1.apply(FrancaDBusGenerator.java:1)

at org.eclipse.xtext.xbase.lib.IterableExtensions.forEach(IterableExtensions.java:399)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator.doGenerateDBusComponents(FrancaDBusGenerator.java:308)

at org.genivi.commonapi.dbus.Generator.generate(Generator.java:21)

at org.genivi.commonapi.cmdline.StandaloneGen.run(StandaloneGen.java:299)

at org.genivi.commonapi.cmdline.StandaloneGen.go(StandaloneGen.java:82)

at org.genivi.commonapi.cmdline.main.Main.main(Main.java:80)

3.7.2 FrancaCCG error feedback

error: parse error

Syntax error at line 14:

out {

Aborting code generation.

ERROR: FIDLtoXML code generator failed. Code generation aborted.

XVIII

C.8 Test case 8: No version defined

3.8.1 CommonAPI error feedback

Loading main class : org.genivi.commonapi.cmdline.StandaloneGen

Sat Aug 08 14:21:31 CEST 2015 - [main] Product-specified preferences called before plugin is started

0 INFO StandaloneGen$1 - Writing file /home/jesper/Documents/francaccodegen/testsuite/8NoVersionDefined/

output_commonapi/org/genivi/mediamanager/IndexerDBusProxy.h

10 ERROR StandaloneGen - Exception occurred !

java.lang.NullPointerException

at org.genivi.commonapi.dbus.generator.FInterfaceDBusProxyGenerator.generateDBusProxySource(

FInterfaceDBusProxyGenerator.java:745)

at org.genivi.commonapi.dbus.generator.FInterfaceDBusProxyGenerator.generateDBusProxy(FInterfaceDBusProxyGenerator.

java:57)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator$1.apply(FrancaDBusGenerator.java:246)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator$1.apply(FrancaDBusGenerator.java:1)

at org.eclipse.xtext.xbase.lib.IterableExtensions.forEach(IterableExtensions.java:399)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator.doGenerateDBusComponents(FrancaDBusGenerator.java:308)

at org.genivi.commonapi.dbus.Generator.generate(Generator.java:21)

at org.genivi.commonapi.cmdline.StandaloneGen.run(StandaloneGen.java:299)

at org.genivi.commonapi.cmdline.StandaloneGen.go(StandaloneGen.java:82)

at org.genivi.commonapi.cmdline.main.Main.main(Main.java:80)

java.lang.NullPointerException

at org.genivi.commonapi.dbus.generator.FInterfaceDBusProxyGenerator.generateDBusProxySource(

FInterfaceDBusProxyGenerator.java:745)

at org.genivi.commonapi.dbus.generator.FInterfaceDBusProxyGenerator.generateDBusProxy(FInterfaceDBusProxyGenerator.

java:57)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator$1.apply(FrancaDBusGenerator.java:246)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator$1.apply(FrancaDBusGenerator.java:1)

at org.eclipse.xtext.xbase.lib.IterableExtensions.forEach(IterableExtensions.java:399)

at org.genivi.commonapi.dbus.generator.FrancaDBusGenerator.doGenerateDBusComponents(FrancaDBusGenerator.java:308)

at org.genivi.commonapi.dbus.Generator.generate(Generator.java:21)

at org.genivi.commonapi.cmdline.StandaloneGen.run(StandaloneGen.java:299)

at org.genivi.commonapi.cmdline.StandaloneGen.go(StandaloneGen.java:82)

at org.genivi.commonapi.cmdline.main.Main.main(Main.java:80)

3.8.2 FrancaCCG error feedback

FIDLtoXML successfully finished generating D-Bus XML Introspection for Franca IDL file ../testsuite/8NoVersionDefined/

MediaIndexer.fidl

XMLtoC successfully finished generating C server proxy and stub for D-Bus XML file testsuite/8NoVersionDefined/

MediaIndexer.xml

Code generation for Franca IDL file testsuite/8NoVersionDefined/MediaIndexer.fidl was successful.

XIX

Appendix D

Code generated by FrancaCCG
from case study Franca IDL
interface

In this appendix, an example of the code generated by FrancaCCG is pre-
sented. First, the two Franca IDL *.fidl files used as input to FrancaCCG
is presented. Subsequently, the D-Bus XML Introspection file generated by
FrancaCCG is shown. Finally, the seven files containing C code generated by
FrancaCCG corresponding to the interface is presented. These correspond to
a common header file, as well as three files corresponding to header, source
and example implementation of the server stub used by the server, and three
files corresponding to header, source and example implementation of the
server proxy used by the client.

D.1 MediaTypes.fidl

package org.genivi.mediamanager

typeCollection MediaTypes {

enumeration BackendError extends MediaManagerError { BACKEND_UNREACHABLE }

enumeration MediaManagerError { NO_ERROR }

}

XX

D.2 MediaIndexer.fidl

package org.genivi.mediamanager

import org.genivi.mediamanager.MediaTypes.* from "MediaTypes.fidl"

interface Indexer {

version {

major 1

minor 0

}

<** @description: Example comment**>

attribute IndexerStatus indexerStatus readonly noSubscriptions

method getDatabasePath {

out {

String output

IndexerError e

}

}

method stopIndexing {

out { IndexerError e }

}

method startIndexing {

out { IndexerError e }

}

enumeration IndexerStatus {

RUNNING

STOPPED

IDLE

}

typedef IndexerError is BackendError

}

XXI

D.3 MediaIndexer.xml

<!DOCTYPE node PUBLIC "-//freedesktop//DTD D-BUS Object Introspection 1.0//EN"

"http://www.freedesktop.org/standards/dbus/1.0/introspect.dtd">

<node name="org.genivi.mediamanager">

<interface name="org.genivi.mediamanager.Indexer">

<property access="read" name="indexerStatus" type="u">

<annotation name="com.pelagicore.FrancaCCodeGen.Enum.IndexerStatus.RUNNING" value="0"/>

<annotation name="com.pelagicore.FrancaCCodeGen.Enum.IndexerStatus.STOPPED" value="1"/>

<annotation name="com.pelagicore.FrancaCCodeGen.Enum.IndexerStatus.IDLE" value="2"/>

<annotation name="com.pelagicore.FrancaCCodeGen.NoSubscriptions" value="True"/>

</property>

<method name="getDatabasePath">

<arg direction="out" name="output" type="s">

</arg>

<arg direction="out" name="e" type="u">

<annotation name="com.pelagicore.FrancaCCodeGen.Enum.IndexerError.BACKEND_UNREACHABLE" value="0"/>

<annotation name="com.pelagicore.FrancaCCodeGen.Enum.IndexerError.NO_ERROR" value="1"/>

</arg>

</method>

<method name="stopIndexing">

<arg direction="out" name="e" type="u">

<annotation name="com.pelagicore.FrancaCCodeGen.Enum.IndexerError.BACKEND_UNREACHABLE" value="0"/>

<annotation name="com.pelagicore.FrancaCCodeGen.Enum.IndexerError.NO_ERROR" value="1"/>

</arg>

</method>

<method name="startIndexing">

<arg direction="out" name="e" type="u">

<annotation name="com.pelagicore.FrancaCCodeGen.Enum.IndexerError.BACKEND_UNREACHABLE" value="0"/>

<annotation name="com.pelagicore.FrancaCCodeGen.Enum.IndexerError.NO_ERROR" value="1"/>

</arg>

</method>

</interface>

</node>

XXII

D.4 MediaIndexer common.h

typedef enum {

IndexerError_BACKEND_UNREACHABLE = 0,

IndexerError_NO_ERROR = 1,

} IndexerError_type;

typedef enum {

IndexerStatus_RUNNING = 0,

IndexerStatus_STOPPED = 1,

IndexerStatus_IDLE = 2,

} IndexerStatus_type;

XXIII

D.5 MediaIndexer proxy.h

#include "MediaIndexer_common.h"

#include <glib.h>

#include <gio/gio.h>

void OrgGeniviMediamanagerIndexer_createForBus (GBusType bus_type, GDBusProxyFlags flags, const gchar *name, const gchar *

objectPath, const GAsyncReadyCallback slot);

GDBusProxy* OrgGeniviMediamanagerIndexer_createforBusFinish(GAsyncResult* result);

void OrgGeniviMediamanagerIndexer_connectToPropertiesChanged(GDBusProxy *proxy, void(*callback)(GDBusProxy*, GVariant*,

const gchar* const*, gpointer));

void OrgGeniviMediamanagerIndexer_getDatabasePath____s_u(GDBusProxy *proxy, const GAsyncReadyCallback callback);

void OrgGeniviMediamanagerIndexer_getDatabasePath____s_u_finish(GDBusProxy *proxy, const gchar * *out_output_out0,

IndexerError_type *out_e_out1, GAsyncResult *result, gboolean *success);

void OrgGeniviMediamanagerIndexer_stopIndexing____u(GDBusProxy *proxy, const GAsyncReadyCallback callback);

void OrgGeniviMediamanagerIndexer_stopIndexing____u_finish(GDBusProxy *proxy, IndexerError_type *out_e_out0, GAsyncResult

*result, gboolean *success);

void OrgGeniviMediamanagerIndexer_startIndexing____u(GDBusProxy *proxy, const GAsyncReadyCallback callback);

void OrgGeniviMediamanagerIndexer_startIndexing____u_finish(GDBusProxy *proxy, IndexerError_type *out_e_out0, GAsyncResult

*result, gboolean *success);

void OrgGeniviMediamanagerIndexer_indexerStatus_u_set(GDBusProxy *proxy, IndexerStatus_type value, const

GAsyncReadyCallback callback);

void OrgGeniviMediamanagerIndexer_indexerStatus_u_set_finish(GDBusProxy *proxy, GAsyncResult *result, gboolean *success);

void OrgGeniviMediamanagerIndexer_indexerStatus_u_get(GDBusProxy *proxy, const GAsyncReadyCallback callback);

void OrgGeniviMediamanagerIndexer_indexerStatus_u_get_finish(GDBusProxy *proxy, IndexerStatus_type *value, GAsyncResult *

result, gboolean *success);

XXIV

D.6 MediaIndexer proxy.c

#include "MediaIndexer_proxy.h"

#include <stdio.h>

#include <stdlib.h>

void OrgGeniviMediamanagerIndexer_getDatabasePath____s_u(GDBusProxy *proxy, const GAsyncReadyCallback callback) {

g_dbus_proxy_call(

proxy,

"getDatabasePath",

NULL,

G_DBUS_CALL_FLAGS_NONE,

-1,

NULL,

callback,

NULL);

}

void OrgGeniviMediamanagerIndexer_getDatabasePath____s_u_finish (GDBusProxy *proxy, const gchar * *out_output_out0,

IndexerError_type *out_e_out1, GAsyncResult *result, gboolean *success) {

// Get result from method call from d-bus proxy

GVariant *wrapped;

GError *error = NULL;

wrapped = g_dbus_proxy_call_finish(proxy, result, &error);

if (error != NULL) {

printf("WARNING: Method call to getDatabasePath____s_u did not succeed.\nGError content: %s\n", error->message);

*success = FALSE;

} else {

// Put results from method call in parameter

GVariant *output_out0_variant;

output_out0_variant = g_variant_get_child_value(wrapped, 0);

*out_output_out0 = g_variant_get_string(output_out0_variant, NULL);

GVariant *e_out1_variant;

e_out1_variant = g_variant_get_child_value(wrapped, 1);

*out_e_out1 = g_variant_get_uint32(e_out1_variant);

*success = TRUE;

}

}

void OrgGeniviMediamanagerIndexer_stopIndexing____u(GDBusProxy *proxy, const GAsyncReadyCallback callback) {

g_dbus_proxy_call(

proxy,

"stopIndexing",

NULL,

G_DBUS_CALL_FLAGS_NONE,

-1,

NULL,

callback,

NULL);

}

void OrgGeniviMediamanagerIndexer_stopIndexing____u_finish (GDBusProxy *proxy, IndexerError_type *out_e_out0, GAsyncResult

*result, gboolean *success) {

// Get result from method call from d-bus proxy

GVariant *wrapped;

GError *error = NULL;

wrapped = g_dbus_proxy_call_finish(proxy, result, &error);

if (error != NULL) {

printf("WARNING: Method call to stopIndexing____u did not succeed.\nGError content: %s\n", error->message);

*success = FALSE;

} else {

// Put results from method call in parameter

GVariant *e_out0_variant;

e_out0_variant = g_variant_get_child_value(wrapped, 0);

*out_e_out0 = g_variant_get_uint32(e_out0_variant);

*success = TRUE;

}

}

void OrgGeniviMediamanagerIndexer_startIndexing____u(GDBusProxy *proxy, const GAsyncReadyCallback callback) {

XXV

g_dbus_proxy_call(

proxy,

"startIndexing",

NULL,

G_DBUS_CALL_FLAGS_NONE,

-1,

NULL,

callback,

NULL);

}

void OrgGeniviMediamanagerIndexer_startIndexing____u_finish (GDBusProxy *proxy, IndexerError_type *out_e_out0,

GAsyncResult *result, gboolean *success) {

// Get result from method call from d-bus proxy

GVariant *wrapped;

GError *error = NULL;

wrapped = g_dbus_proxy_call_finish(proxy, result, &error);

if (error != NULL) {

printf("WARNING: Method call to startIndexing____u did not succeed.\nGError content: %s\n", error->message);

*success = FALSE;

} else {

// Put results from method call in parameter

GVariant *e_out0_variant;

e_out0_variant = g_variant_get_child_value(wrapped, 0);

*out_e_out0 = g_variant_get_uint32(e_out0_variant);

*success = TRUE;

}

}

// This function is called from implementation to create a proxy for the specified D-bus service

void OrgGeniviMediamanagerIndexer_createForBus (GBusType bus_type, GDBusProxyFlags flags, const gchar *name, const gchar *

objectPath, const GAsyncReadyCallback slot) {

g_dbus_proxy_new_for_bus (

bus_type,

flags,

NULL,

name,

objectPath,

"org.genivi.mediamanager.Indexer",

NULL, //Gcancellable

slot, // GAsyncReadyCallback callback

NULL); // gpointer user_data

}

// This function is called from implementation to finish creating proxy

GDBusProxy* OrgGeniviMediamanagerIndexer_createforBusFinish(GAsyncResult* result) {

GError *error = NULL;

GDBusProxy* proxy = g_dbus_proxy_new_for_bus_finish(result, &error);

if (error == NULL) {

return proxy;

} else {

printf("ERROR: Cannot create proxy. Server stub is possibly offline.\nGError content: %s\nClosing proxy...\n",

error->message);

exit(1);

return NULL;

}

}

void OrgGeniviMediamanagerIndexer_connectToPropertiesChanged(GDBusProxy *proxy, void(*callback)(GDBusProxy*, GVariant*,

const gchar* const*, gpointer)) {

g_signal_connect (proxy,

"g-properties-changed",

G_CALLBACK(callback),

NULL);

}

void OrgGeniviMediamanagerIndexer_indexerStatus_u_set(GDBusProxy *proxy, IndexerStatus_type value, const

GAsyncReadyCallback callback) {

g_dbus_proxy_call(

proxy,

"org.freedesktop.DBus.Properties.Set",

g_variant_new ("(ssv)", "org.genivi.mediamanager.Indexer", "indexerStatus", g_variant_new_uint32(value)),

G_DBUS_CALL_FLAGS_NONE,

-1,

XXVI

NULL,

callback,

NULL);

}

void OrgGeniviMediamanagerIndexer_indexerStatus_u_set_finish (GDBusProxy *proxy, GAsyncResult *result, gboolean *success)

{

// Get result from method call from d-bus proxy

GVariant *wrapped;

GError *error = NULL;

wrapped = g_dbus_proxy_call_finish(proxy, result, &error);

if (error != NULL) {

printf("WARNING: Method call to indexerStatus_u_set did not succeed.\nGError content: %s\n", error->message);

*success = FALSE;

} else {

*success = TRUE;

}

}

void OrgGeniviMediamanagerIndexer_indexerStatus_u_get(GDBusProxy *proxy, const GAsyncReadyCallback callback) {

g_dbus_proxy_call(

proxy,

"org.freedesktop.DBus.Properties.Get",

g_variant_new ("(ss)", "org.genivi.mediamanager.Indexer", "indexerStatus"),

G_DBUS_CALL_FLAGS_NONE,

-1,

NULL,

callback,

NULL);

}

void OrgGeniviMediamanagerIndexer_indexerStatus_u_get_finish(GDBusProxy *proxy, IndexerStatus_type *value, GAsyncResult *

result, gboolean *success) {

// Get result from method call from d-bus proxy

GVariant *wrapped;

GError *error = NULL;

wrapped = g_dbus_proxy_call_finish(proxy, result, &error);

if (error != NULL) {

printf("WARNING: Method call to indexerStatus_u_get did not succeed.\nGError content: %s\n", error->message);

*success = FALSE;

} else {

GVariant *value_variant;

value_variant = g_variant_get_child_value(wrapped, 0);

*value = g_variant_get_uint32(g_variant_get_variant(value_variant));

*success = TRUE;

}

}

XXVII

D.7 MediaIndexer stub.h

#include "MediaIndexer_common.h"

#include <glib.h>

#include <gio/gio.h>

static const char interfaceXml0[] = { Hex code for D-Bus XML Introspection redacted

};

typedef void(*getDatabasePath____s_uSignature)(const gchar **, IndexerError_type*);

typedef void(*stopIndexing____uSignature)(IndexerError_type*);

typedef void(*startIndexing____uSignature)(IndexerError_type*);

typedef struct

{

getDatabasePath____s_uSignature getDatabasePath____s_uHandler;

stopIndexing____uSignature stopIndexing____uHandler;

startIndexing____uSignature startIndexing____uHandler;

} Handlers_struct;

typedef enum HandlersEnum

{

GETDATABASEPATH____S_U, STOPINDEXING____U, STARTINDEXING____U

} Handlers_enum;

GDBusNodeInfo *nodeinfo;

guint owner_id;

Handlers_struct methodsStruct;

IndexerStatus_type indexerStatus_u;

void OrgGeniviMediamanagerIndexer_connect(GBusType bustype);

void OrgGeniviMediamanagerIndexer_dereference();

void OrgGeniviMediamanagerIndexer_on_method_call(

GDBusConnection *connection,

const gchar *sender,

const gchar *object_path,

const gchar *interface_name,

const gchar *method_name,

GVariant *parameters,

GDBusMethodInvocation *invocation,

gpointer user_data);

void OrgGeniviMediamanagerIndexer_on_bus_acquired(GDBusConnection *connection, const gchar *name, gpointer user_data);

void OrgGeniviMediamanagerIndexer_on_name_acquired(GDBusConnection *connection, const gchar *name, gpointer user_data);

void OrgGeniviMediamanagerIndexer_on_name_lost(GDBusConnection *connection, const gchar *name, gpointer user_data);

void register_handler(Handlers_enum e, void* f);

GVariant* OrgGeniviMediamanagerIndexer_on_get_property (

GDBusConnection *connection,

const gchar *sender,

const gchar *object_path,

const gchar *interface_name,

const gchar *property_name,

GError **error,

gpointer user_data);

gboolean OrgGeniviMediamanagerIndexer_on_set_property (

GDBusConnection *connection,

const gchar *sender,

const gchar *object_path,

const gchar *interface_name,

const gchar *property_name,

GVariant *value,

GError **error,

gpointer user_data);

XXVIII

D.8 MediaIndexer stub.c

#include "MediaIndexer_stub.h"

#include <stdio.h>

#include <stdlib.h>

void OrgGeniviMediamanagerIndexer_connect(GBusType bustype) {

// Create D-Bus Introspection structure from XML

nodeinfo = g_dbus_node_info_new_for_xml(interfaceXml0, NULL);

if (nodeinfo == NULL) {

printf("ERROR: Couldn’t create introspection data structures from XML: \n%s\n", interfaceXml0);

exit(1);

}

// Start D-Bus service

owner_id = g_bus_own_name (bustype,

"org.genivi.mediamanager.Indexer",

G_BUS_NAME_OWNER_FLAGS_NONE,

OrgGeniviMediamanagerIndexer_on_bus_acquired,

OrgGeniviMediamanagerIndexer_on_name_acquired,

OrgGeniviMediamanagerIndexer_on_name_lost,

NULL,

NULL);

}

void OrgGeniviMediamanagerIndexer_dereference() {

g_bus_unown_name (owner_id);

g_dbus_node_info_unref (nodeinfo);

}

// When bus acquired, register interface in the d-bus connection

void OrgGeniviMediamanagerIndexer_on_bus_acquired(GDBusConnection *connection, const gchar *name, gpointer user_data){

guint registration_id;

static const GDBusInterfaceVTable interface_vtable =

{

OrgGeniviMediamanagerIndexer_on_method_call,

OrgGeniviMediamanagerIndexer_on_get_property,

OrgGeniviMediamanagerIndexer_on_set_property

};

registration_id = g_dbus_connection_register_object (connection,

"/org/genivi/mediamanager/Indexer",

nodeinfo->interfaces[0],

&interface_vtable,

NULL, /* user_data */

NULL, /* user_data_free_func */

NULL); /* GError** */

g_assert (registration_id > 0);

}

// The following functions needs to be here. They do nothing (except printing errors) for now.

void OrgGeniviMediamanagerIndexer_on_name_acquired(GDBusConnection *connection, const gchar *name, gpointer user_data){

}

void OrgGeniviMediamanagerIndexer_on_name_lost(GDBusConnection *connection, const gchar *name, gpointer user_data){

printf("ERROR: Lost D-Bus name: %s\n", name);

exit(1);

}

GVariant* OrgGeniviMediamanagerIndexer_on_get_property (GDBusConnection *connection,

const gchar *sender,

const gchar *object_path,

const gchar *interface_name,

const gchar *property_name,

GError **error,

gpointer user_data){

// TODO error handling, should use the gerror since it is already here

GVariant *ret;

ret = NULL;

if (g_strcmp0 (property_name, "indexerStatus") == 0) {

ret = g_variant_new_uint32(indexerStatus_u);

} else

XXIX

{

printf("ERROR: Interface does not contain property: %s\n", property_name);

exit(1);

}

return ret;

}

gboolean OrgGeniviMediamanagerIndexer_on_set_property (GDBusConnection *connection,

const gchar *sender,

const gchar *object_path,

const gchar *interface_name,

const gchar *property_name,

GVariant *value,

GError **error,

gpointer user_data){

if (g_strcmp0 (property_name, "indexerStatus") == 0)

{

if (indexerStatus_u != g_variant_get_uint32(value))

{

indexerStatus_u = g_variant_get_uint32(value);

// Unless com.pelagicore.FrancaCCodeGen.Enum.NoSubscriptions annotation is set to true, send PropertiesChanged

signal

// Annotation is set to TRUE. Do not send signal.

}

} else

{

printf("ERROR: Interface does not contain property: %s\n", property_name);

exit(1);

}

return *error == NULL;

}

// Register method handler function

void register_handler(Handlers_enum e, void* f){

switch (e)

{

case GETDATABASEPATH____S_U:

methodsStruct.getDatabasePath____s_uHandler = (getDatabasePath____s_uSignature)f;

break;

case STOPINDEXING____U:

methodsStruct.stopIndexing____uHandler = (stopIndexing____uSignature)f;

break;

case STARTINDEXING____U:

methodsStruct.startIndexing____uHandler = (startIndexing____uSignature)f;

break;

default:

printf("ERROR: No such handler enum defined: %u\n", e);

exit(1);

}

}

// Handle method calls

void OrgGeniviMediamanagerIndexer_on_method_call(GDBusConnection *connection,

const gchar *sender,

const gchar *object_path,

const gchar *interface_name,

const gchar *method_name,

GVariant *parameters,

GDBusMethodInvocation *invocation,

gpointer user_data){

// TODO needs to compare on other stuff (ie signature) than name, can be collisions

if (g_strcmp0 (method_name, "getDatabasePath") == 0)

{

const gchar * output_out0;

IndexerError_type e_out1;

// Call the registered method handler, if one is registered.

if (methodsStruct.getDatabasePath____s_uHandler != NULL) {

methodsStruct.getDatabasePath____s_uHandler(&output_out0, &e_out1);

} else {

printf("ERROR: No method handler function registered for method: %s\n", method_name);

exit(1);

}

//Return

g_dbus_method_invocation_return_value (invocation, g_variant_new ("(su)", output_out0, e_out1));

} else

if (g_strcmp0 (method_name, "stopIndexing") == 0)

{

IndexerError_type e_out0;

// Call the registered method handler, if one is registered.

if (methodsStruct.stopIndexing____uHandler != NULL) {

XXX

methodsStruct.stopIndexing____uHandler(&e_out0);

} else {

printf("ERROR: No method handler function registered for method: %s\n", method_name);

exit(1);

}

//Return

g_dbus_method_invocation_return_value (invocation, g_variant_new ("(u)", e_out0));

} else

if (g_strcmp0 (method_name, "startIndexing") == 0)

{

IndexerError_type e_out0;

// Call the registered method handler, if one is registered.

if (methodsStruct.startIndexing____uHandler != NULL) {

methodsStruct.startIndexing____uHandler(&e_out0);

} else {

printf("ERROR: No method handler function registered for method: %s\n", method_name);

exit(1);

}

//Return

g_dbus_method_invocation_return_value (invocation, g_variant_new ("(u)", e_out0));

} else

{

printf("ERROR: No such method in registered D-Bus interface. Method name: %s\n", method_name);

exit(1);

}

}

XXXI

D.9 MediaIndexer proxyImplementation.c

#include "MediaIndexer_proxy.h"

#include <stdio.h>

GDBusProxy* proxy;

// This function is called from simpleFranca_proxy when method call is finished.

// It must have same signature as a GAsyncReadyCallback! void function_name(GObject *source_object, GAsyncResult *res,

gpointer user_data)

void on_getDatabasePath____s_u_finished(GObject *obj, GAsyncResult *result, gpointer userdata) {

const gchar * output_out0_result;

IndexerError_type e_out1_result;

gboolean success = FALSE;

OrgGeniviMediamanagerIndexer_getDatabasePath____s_u_finish(proxy, &output_out0_result, &e_out1_result, result, &

success);

// success now contains whether method call was successful or not

// _result variables now contains the results of the method call.

// Implementation goes here

}

// This function is called from simpleFranca_proxy when method call is finished.

// It must have same signature as a GAsyncReadyCallback! void function_name(GObject *source_object, GAsyncResult *res,

gpointer user_data)

void on_stopIndexing____u_finished(GObject *obj, GAsyncResult *result, gpointer userdata) {

IndexerError_type e_out0_result;

gboolean success = FALSE;

OrgGeniviMediamanagerIndexer_stopIndexing____u_finish(proxy, &e_out0_result, result, &success);

// success now contains whether method call was successful or not

// _result variables now contains the results of the method call.

// Implementation goes here

}

// This function is called from simpleFranca_proxy when method call is finished.

// It must have same signature as a GAsyncReadyCallback! void function_name(GObject *source_object, GAsyncResult *res,

gpointer user_data)

void on_startIndexing____u_finished(GObject *obj, GAsyncResult *result, gpointer userdata) {

IndexerError_type e_out0_result;

gboolean success = FALSE;

OrgGeniviMediamanagerIndexer_startIndexing____u_finish(proxy, &e_out0_result, result, &success);

// success now contains whether method call was successful or not

// _result variables now contains the results of the method call.

// Implementation goes here

}

void on_OrgGeniviMediamanagerIndexer_indexerStatus_u_set_finished(GObject *obj, GAsyncResult *result, gpointer userdata) {

gboolean success = FALSE;

OrgGeniviMediamanagerIndexer_indexerStatus_u_set_finish(proxy, result, &success);

// success now contains whether method call was successful or not

}

void on_OrgGeniviMediamanagerIndexer_indexerStatus_u_get_finished(GObject *obj, GAsyncResult *result, gpointer userdata) {

IndexerStatus_type indexerStatus_u;

gboolean success = FALSE;

OrgGeniviMediamanagerIndexer_indexerStatus_u_get_finish(proxy, &indexerStatus_u, result, &success);

// success now contains whether method call was successful or not

// indexerStatus_u now contains current value of property.

// Implementation goes here

}

void on_properties_changed (GDBusProxy *proxy,

GVariant *changed_properties,

const gchar* const *invalidated_properties,

gpointer user_data)

{

// Implementation of the handling of the PropertiesChanged signal is done here.

// Note that local cache is automatically updated and needs not to be implemented here.

}

// This function is called from OrgGeniviMediamanagerIndexer_proxy when proxy has been created.

XXXII

// It must have same signature as a GAsyncReadyCallback! void function_name(GObject *source_object, GAsyncResult *res,

gpointer user_data)

void proxy_created(GObject *obj, GAsyncResult *result, gpointer userdata) {

proxy = OrgGeniviMediamanagerIndexer_createforBusFinish(result);

// Proxy has been created.

// Connect to signal handler.

OrgGeniviMediamanagerIndexer_connectToPropertiesChanged(proxy, &on_properties_changed);

}

int main(int argc, char **argv) {

// Create pointer to function to call when proxy has been created.

GAsyncReadyCallback proxycreated_pointer = &proxy_created;

// Connect to D-Bus service.

OrgGeniviMediamanagerIndexer_createForBus(G_BUS_TYPE_SESSION, G_DBUS_PROXY_FLAGS_NONE, "org.genivi.mediamanager.

Indexer", "/org/genivi/mediamanager/Indexer", proxycreated_pointer);

// Run main loop.

GMainLoop *mainloop = g_main_loop_new(NULL, FALSE);

g_main_run(mainloop);

return 0;

}

XXXIII

D.10 MediaIndexer stubImplementation.c

#include "MediaIndexer_stub.h"

void getDatabasePath____s_uImplementation(const gchar * *output_out0, IndexerError_type *e_out1){

// Implementation of method getDatabasePath goes here

}

void stopIndexing____uImplementation(IndexerError_type *e_out0){

// Implementation of method stopIndexing goes here

}

void startIndexing____uImplementation(IndexerError_type *e_out0){

// Implementation of method startIndexing goes here

}

int main(int argc, char **argv) {

// Register method callback functions

getDatabasePath____s_uSignature getDatabasePath____s_u_pointer = &getDatabasePath____s_uImplementation;

register_handler(GETDATABASEPATH____S_U, getDatabasePath____s_u_pointer);

stopIndexing____uSignature stopIndexing____u_pointer = &stopIndexing____uImplementation;

register_handler(STOPINDEXING____U, stopIndexing____u_pointer);

startIndexing____uSignature startIndexing____u_pointer = &startIndexing____uImplementation;

register_handler(STARTINDEXING____U, startIndexing____u_pointer);

// Create D-Bus service

OrgGeniviMediamanagerIndexer_connect(G_BUS_TYPE_SESSION);

// Create and run main loop

GMainLoop *mainloop = g_main_loop_new(NULL, FALSE);

g_main_loop_run (mainloop);

OrgGeniviMediamanagerIndexer_dereference();

return 0;

}

XXXIV

	Introduction
	Current Franca IDL tooling
	Aim of this thesis work
	Report structure

	Background
	Interface Definition Languages
	Advantages and disadvantages of using an IDL
	IDL annotations
	Franca IDL
	The D-Bus IPC
	D-Bus XML Introspection
	CommonAPI
	Other code generators using Franca IDL
	Default D-Bus XML Introspection
	ipc-quartztime

	Problems with current tools
	Software dependencies of the tool
	Proposed metric

	Error feedback in automated build systems
	Proposed metric

	Development of FrancaCCG
	Case study Franca IDL files
	Development of first code generator
	Annotations added to D-Bus XML Introspection
	Output of first code generator

	Development of second code generator
	Software base of the code generator
	D-Bus implementation choice
	Enumerations in the second code generator
	Output of second code generator

	Compatibility with the CommonAPI tool
	Resulting software suite
	Code structure of FIDLtoXML
	Code structure of XMLtoC
	Testing of generated code

	Results
	P1: Software dependencies
	Runtime dependencies of code generated by CommonAPI
	Runtime dependencies of code generated by FrancaCCG
	Runtime dependencies of the CommonAPI code generator
	Runtime dependencies of the FrancaCCG code generator

	P2: Error feedback
	Summary
	Test case 1: Missing or additional curly bracket
	Test case 2: Import of non-existing file
	Test case 3: Franca file structured wrong
	Test case 4: Misspelled language construct
	Test case 5: Usage of non-existing data type
	Test case 6: Extension loop
	Test case 7: More than one "out" section
	Test case 8: No version defined

	Compatibility with CommonAPI generated code
	Assessment of FrancaCCG by Pelagicore

	Discussion
	Evaluation of the software dependencies of the tools
	Runtime dependencies of the generated code
	Runtime dependencies of the code generators

	Evaluation of the error feedback of the tools
	Evaluation of the compatibility with CommonAPI generated code
	Future work

	Conclusion
	Resulting code generators
	Personal experience
	Availability and future of FrancaCCG

	References
	Source code for the test suite
	Original, error-free files
	Case 1: Missing curly bracket
	Case 2: Import of non-existing file
	Case 3: File structured wrong
	Case 4: Misspelled language construct
	Case 5: Usage of non-existing data type
	Case 6: Circular dependency in extensions
	Case 7: Several ``out'' sections in method definition
	Case 8: No version defined

	BNF grammar for a subset of Franca IDL
	Error feedback from test suite
	Test case 1: Missing curly bracket
	Test case 2: Import of non-existing file
	Test case 3: File structured wrong
	Test case 4: Misspelled language construct
	Test case 5: Usage of non-existing data type
	Test case 6: Circular dependency in extensions
	Test case 7: Several ``out'' sections in method definition
	Test case 8: No version defined

	Code generated by FrancaCCG from case study Franca IDL interface
	MediaTypes.fidl
	MediaIndexer.fidl
	MediaIndexer.xml
	MediaIndexer_common.h
	MediaIndexer_proxy.h
	MediaIndexer_proxy.c
	MediaIndexer_stub.h
	MediaIndexer_stub.c
	MediaIndexer_proxyImplementation.c
	MediaIndexer_stubImplementation.c

