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On the Separation of Timescales
in Radio-based Positioning

Markus Fröhle and Henk Wymeersch
Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden

email: {frohle,henkw}@chalmers.se

Abstract—Radio-based positioning methods are generally
based on a separation of timescales, where each position update
assumes the availability of synchronous measurements. This
approach is convenient in the design of positioning algorithms,
but fails to account for outdated information. We describe three
distinct ways how the separation of timescales can adversely
impact the design and execution of positioning methods, and
quantify the extent of these impacts analytically.

I. INTRODUCTION
The ability to position a mobile device (e.g., a mobile

phone) through radio signals has numerous applications, not
only for personal navigation, but also for location-based
services, search-and-rescue operations, crowd sourcing, and
location-aided communication. Positioning algorithms gener-
ally comprise three components: (i) a measurement stage
in which relative position measurements are collected with
respect to reference points or other mobile devices, (ii) a
position update stage in which a position estimate is computed
based on the measurements; and (iii) a prediction stage in
which a location is estimated in the absence of measurements.
The prediction stage is usually employed to track the device
while it is moving and is an integral part of model based
techniques such as, e.g., the Kalman filter.
A large part of the positioning literature has focused on

static networks, and has developed performance bounds and
sophisticated algorithms that operate close to those bounds.
However, by ignoring mobility, there is no real notion of
time, so that bounds and algorithms can perform arbitrarily
well by simply collecting more measurements and running
more complex algorithms. The aspect of time in positioning
was studied in [1] in terms of the time needed to collect
measurements. It was found that approaches which are most
attractive when ignoring time become most cumbersome when
time is accounted for. In the context of mobile networks,
techniques based on the Kalman filter and its generalizations
generally freeze time during the measurement and position
update stages, thus suffering from the same problems as static
networks. When measurements arrive out of order, the Kalman
filter must be rolled back in order to deal with out-of-sequence
measurements [2]. In [3], the effect of movement and out-
of-date measurements on the localization accuracy of mobile
agents was investigated through an additional error term in the
measurement model. It was shown that delays adversely affect
the accuracy.

In this paper, we study the impact of the assumption of
separation of timescales from three different perspectives:
1) The impact on the Cramér-Rao bound, where we show
that the separation of timescales leads to overly opti-
mistic fundamental performance bounds;

2) The impact of out of date measurements on tracking,
where we show that the separation of timescales leads
to loss of integrity for mobile devices; and

3) The impact on message scheduling in cooperative po-
sitioning, where the separation of timescales leads to
overly confident a posteriori distribution approximations.

Notation: Vectors are denoted in boldface and lower case
(e.g., x) and matrices in boldface upper case (e.g., A), IM is
a M ×M identity matrix, 1L denotes a column vector of L
ones, tr {·} denotes the trace of a matrix, ⊗ is the Kronecker
product, Δa

b
f(a,b) = ∇b∇T

a f(a,b), the �2 norm is denoted
|| · ||.

II. THE POSITIONING PROBLEM
A. General Version
We state a version of the positioning problem that encom-

passes many standard models. We consider a network with
N +M nodes, comprising N ≥ 1 mobile agents and M ≥ 3
static anchors. The state of agent n at time t is denoted by
xn(t) and is governed by the process model of the form

ẋn(t) = fn(xn(t),wn(t),un(t)), (1)

in which fn(·) is an arbitrary (possibly non-linear) function,
which can include an external control input un(t) and can
thus be time-dependent, and wn(t) is process noise, assumed
to be white in time and across nodes. Each agent n can
obtain measurements zn,k(t) with respect to another node
k. Measurements depend on the relative position between
the nodes involved, e.g., distance or orientation, and can be
expressed as

zn,k(t) = hn,k(xn(t),xk(t),nn,k(t)), (2)

in which hn,k(·) is an arbitrary (possibly non-linear) func-
tion and nn,k(t) is measurement noise. When agents collect
measurements with respect to other agents, we say that the
network is cooperative.
Given an a priori distribution at a starting time t0, say

p(xn(t0)), and the statistical models p(xn(t)|xn(t
′)) for t > t′

as well as the likelihood p(zn,k(t)|xn(t),xk(t)), our goal is978-1-4799-9858-6/15/$31.00 c©2015 IEEE



to determine p(xn(t)|Z≤t) in which Z≤t represents all the
measurements up to and including time t.

B. Simplified Version
In order to gain insights, we will also consider a simplified

scenario in which the state is the two-dimensional position
xn(t) ∈ R

2 and the process model is a constant velocity
model, whereby

ẋn(t) = v + ẇn(t), (3)

in which v is a fixed velocity vector and ẇn(t) ∼
N (0, σ2

mobI) is velocity noise. It then follows that

xn(t) = xn(t
′) + (t− t′)v +wn(t), (4)

where

wn(t) =

ˆ t

t′
ẇn(u)du (5)

∼ N (0, (t− t′)σ2
mobI). (6)

As a simplified measurement model, we consider

zn,k(t) = xn(t)− xk(t) + nn,k(t), (7)

where nn,k(t) ∼ N (0, σ2
measI). Finally, we will consider

only discrete time instants with a resolution of Ts, so that
measurements and predictions are only performed at times
t = t0 + kTs, k ∈ N>0.

III. SEQUENTIAL POSITIONING: ALGORITHM AND BOUND
In this section we describe the optimal approach to de-

termine p(xn(t)|Z≤t). We also review a fundamental perfor-
mance bound.

A. Algorithm: Bayesian Filtering

We introduce xk
n = xn(t0 + kTs), Xk = [xk

1
T
, . . . ,xk

N

T
]
T
,

and X
0:k = [X0T,X1T, . . . ,XkT]

T
. Similarly, we group

the measurements at time k into Z
k and introduce Z

1:k =

[Z1T, . . . ,ZkT]
T
. We tacitly assume that when no measure-

ments are available at epoch k, then Z
k is empty. We can

express the joint distribution of X0:k and Z
1:k as

p(X0:k,Z1:k)

= p(X0:k)p(Z1:k|X0:k) (8)

= p(X0)

k∏
j=1

p(Xj |Xj−1)p(Zj |Xj) (9)

=

N∏
n=1

p(x0
n)

k∏
j=1

p(xj
n|xj−1

n )
∏

m∈R
j
n

p(zjn,m|xj
n,x

j
m), (10)

where Rj
n is the set of measurement partners (agents or

anchors) of agent n at time j. The posterior distribution
p(Xk|Z1:k) can be expressed as [4]

p(Xk|Z1:k)

∝ p(Zk|Xk)

ˆ
p(Xk−1|Z1:k−1)p(Xk|Xk−1)dXk−1 (11)

= p(Zk|Xk)p(Xk|Z1:k−1) (12)

enabling a recursive computation with a prediction step to
determine p(Xk|Z1:k−1) followed by a correction step to
determine p(Xk|Z1:k). From p(Xk|Z1:k) one can determine
p(xk

n|Z1:k) for any particular agent n through marginalization.
Note however, that the measurements introduce a posteriori
correlation between the states, so that in general p(Xk|Z1:k) �=∏

n p(x
k
n|Z1:k).

Comments: In terms of a practical implementation, we
observe the following:

• In general, a centralized particle filter [4] can be used to
approximate p(Xk|Z1:k) numerically. The complexity of
this particle filter is expected to be high when N is large
and when agents perform measurements with respect to
other agents. When agents only measure with respect to
anchors, p(Xk|Z1:k) =

∏
n p(x

k
n|Z1:k) so that we can

run N low-dimensional particle filters, leading to a fully
decentralized solution. As an alternative to the particle
filter, a linearization of (1) and (2) allows the usage of
an extended Kalman filter.

• When the functions fn(·) and hn,k(·) are linear and the
process and measurement noise are Gaussian, a cen-
tralized high-dimensional Kalman filter will provide the
optimal solution. When agents only measure with respect
to anchors, this solution reverts to one Kalman filter per
agent.

• Distributed solutions for the case when agents cooperate
have been proposed in [5], [6]. These methods cannot
fully capture the a posteriori correlation and are necessar-
ily suboptimal. Distributed Kalman filters were proposed
in [7].

B. Bound: Cramér-Rao Bound

The Cramér-Rao bound (CRB) provides a lower bound
on the variance of an unbiased estimator. We will assume
x
k
n ∈ R

r and introduce the Fisher information matrix (FIM)
of X0:k ∈ R

1×rN(k+1) as

J
0:k = E

{
−ΔX

0:k

X0:k log(p(X
0:k,Z1:k))

}
, (13)

which is an rN(k + 1) × rN(k + 1) matrix that has the
following property [8], [9]

E

{
(X̂0:k −X

0:k)(X̂0:k −X
0:k)T

}
	 (

J
0:k

)−1 (14)

and consequently the CRB is given by

E

{∥∥X̂0:k −X
0:k

∥∥2
}
≥ tr

{(
J
0:k

)−1
}
. (15)

To determine the lower bound on the localization error of all
agents at time k, we need to compute the lower right rN ×
rN sub-matrix of (J0:k)−1, denoted by

(
J
k
E

)−1. It is termed
the equivalent Fisher information matrix (EFIM) for time k.
Using Schur’s complement, it was shown in [8] that Jk

E can
be computed recursively as

J
k
E = C−B

T(Jk−1
E +A)−1

B (16)



in which

A = E{−ΔX
k−1

Xk−1 log(p(X
k|Xk−1))} (17)

B = E{−ΔX
k

Xk−1 log(p(X
k|Xk−1))} (18)

C = E{−ΔX
k

Xk log(p(X
k|Xk−1))} (19)

+ E{−ΔX
k

Xk log(p(Z
k|Xk))}.

From J
k
E, we readily find E{∥∥X̂k − X

k
∥∥2} ≥ tr{(Jk

E

)−1}.
Under certain conditions (including A, B, and C being con-
stant over time k), a steady state EFIM J

∞
E exists, determined

by
J
∞
E = C−B

T(J∞
E +A)−1

B. (20)

Comments: In terms of computing the CRB, we note that
J
k
E is still an rN×rN matrix, which may be hard to compute
and invert for large N . As in Section III-A, simplifications are
possible under some conditions:

• When the functions fn(·) and hn,k(·) are linear and
the process and measurement noise are Gaussian, the
matrices A, B, C have easy expressions similar to those
found in the Kalman filter. In addition, the CRB will be
tight.

• When agents do not cooperate, J
k
E will be a block

diagonal matrix, comprisingN blocks of size r×r, so that
we can easily track the CRB for each agent individually.

IV. IMPACT OF TIMESCALE SEPARATION
We are now ready to quantify the impact of timescale sepa-

ration. For each of the considered impacts, we will work with
a simplified scenario that still captures the salient properties
of the impact. For ease of exposition, whenever possible, we
will drop the subscript referring to the specific agent, i.e., xk,
z
k.

A. Impact 1: Overly Optimistic CRB
We consider a non-cooperative scenario and focus on a

single agent (so that we can drop the agent index) and use
the models described in Section II-B. The agent determines
its position in two possible ways:
1) Without separation of timescales: in each period Ts,
the agent performs a measurement with respect to
one anchor and updates its posterior. In that case
log(p(xk|xk−1)) ∝ −∥∥xk − x

k−1 − vTs

∥∥2/(2σ2
mobTs)

and log(p(zk|xk)) ∝ −∥∥xk −xm

∥∥2/(2σ2
meas) in which

xm is the anchor with which the agent ranges at time
slot k. We then readily find that A = I/(σ2

mobTs),
B = −I/(σ2

mobTs), and C = I/(σ2
mobTs) + I/σ2

meas.
2) With separation of timescales: the agent collects K > 1
measurements at the end of each (longer) period of
duration KTs and performs a posterior update ev-
ery KTs. In that case log(p(xk|xk−1)) ∝ −∥∥xk −
x
k−1 − vKTs

∥∥2/(2σ2
mobKTs) and log(p(zk|xk)) ∝

−∑
m∈M

∥∥xk − xm

∥∥2/(2σ2
meas), where M denotes

the set of |M| = K anchors with which the agent
ranges at time slot k. Note that now time slots last
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Figure 1. Position error bound (PEB) as a function of α for different values
of K and σ2

meas = 0.1m2. The case K = 1 corresponds to no separation
of timescales and leads to the largest PEB.

K times longer than in the first scenario. In this case,
A = I/(σ2

mobKTs), B = −I/(σ2
mobKTs), and C =

I/(σ2
mobKTs) + IK/σ2

meas.
When the positioning process starts with a Gaussian symmetric
prior, the EFIM will always be a scaled identity matrix of the
form J

k
E = jkI. Substitution into (20) and solving for j∞

yields

j∞sts =
K

2σ2
meas

(
1 +

√
1 + 4α/K2

)
(21)

under separation of timescales, where we have introduced α =
σ2
meas/(σ

2
mobTs), and

j∞nsts =
1

2σ2
meas

(
1 +

√
1 + 4α

)
(22)

when there is no separation of timescales. Note that this latter
case corresponds to K = 1. To obtain a more intuitive result,
we introduce the position error bound (PEB), defined as P∞ =√
tr{(J∞

E )−1} =
√
2/j∞ for both cases, expressed in meters.

The PEB is shown in Fig. 1 for σ2
meas = 0.1m2 as a function

of α for different values of K . We see that the separation of
timescales leads to a lower PEB, especially for large K and
α. This means that the design of a positioning system based
on a separation of timescales will lead to an overly optimistic
performance, when in reality measurements come at a higher
rate.

B. Impact 2: Loss of Integrity

In the above analysis, when K > 1, it was assumed
that all the measurements were available at the end of the
period of duration KTs. Hence, the CRB did not capture the
impact of out of date measurements, i.e., delay between the
arrival and processing of the measurement. To address this, we
can evaluate the online estimation performance under model
mismatch, considering the simplified model from Section II-B:



1) Without separation of timescales: in each period Ts, the
agent first moves from x

k to xk+1 according to xk+1 =
x
k+vTs+w

k+1, withwk+1 ∼ N (0, σ2
mobTsI) and then

performs a measurement zk+1 = x
k+1 − xm + n

k+1,
with n

k+1 ∼ N (0, σ2
measI) with respect to an arbitrary

anchor (in this case anchor m) and updates its posterior.
2) With separation of timescales: during each epoch of
durationKTs (corresponding to t′+Ts, t

′+2Ts, . . . , t
′+

KTs for some t′), the agent collects the same mea-
surements, say z

k+1, . . . , zk+K , with z
k+l = x

k +
lvTs +

∑
k<l′≤l w

l′ − xm + n
k+l, in which w

l′ ∼
N (0, σ2

mobTsI) and n
k+l ∼ N (0, σ2

measI). However, it
only processes them at the end of the epoch. Moreover,
it treats the measurements as having been acquired at
time t′ +KTs, i.e., it assumes zk+K = x

k+K − xm +
n
k+K = x

k +KvTs + w̃
k+K − xm + n

k+K in which
w̃

k+K ∼ N (0, σ2
mobTsKI). Hence, there is a mismatch

between the actual measurement model and the assumed
model.

The model mismatch can lead to positioning errors that are
inconsistent with the true posterior distribution and thus lead
to a loss of integrity. Integrity of a positioning system refers
to the capability to provide bounds on the positioning error.
We will consider the same model as in the previous section,
which allows us to use a Kalman filter to compute the posterior
distribution at each time kTs, represented by a Gaussian
distribution with mean μ

k and covariance matrix Σ
k. An

integrity error occurs when the positioning error cannot be
reasonably explained by the state error covariance. Hence,
integrity errors happen when(

x
k − μ

k
)T (

Σ
k
)−1 (

x
k − μ

k
) ≥ γ, (23)

where γ is a threshold value. Assuming the Kalman filter has
converged, we know that the posterior covariance will be Σ =
I/j∞. Further assuming that the previous position estimate
was correct, the posterior mean when employing separation
of timescales will be1

μ
k = x

k +KvTs +K
[
Z
k −H(xk +KvTs)

]
,︸ ︷︷ ︸

error

(24)

where H = 1K ⊗ I2 is the observation matrix, K is the
(constant) Kalman gain matrix, given by

K = σ2
pH

T
(
Hσ2

pH
T + I2Kσ2

meas

)−1 (25)

=
1

K + σ2
meas/σ

2
p

H
T , (26)

in which σ2
p = σ2

mobTsK+1/j∞, and Zk is the 2K×1 vector
of stacked measurements. The expected localization error will
be the expectation w.r.t. the measurement noise of the error
e = E{K [

Z
k −H(xk +KvTs)

]}. The expectation of Zk −

1For notational convenience, we have removed the anchor locations. This
does not affect the results.
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Figure 2. ‖e‖2j∞ as a function of the velocity norm ‖v‖ for Ts = 0.1 s,
σ2
mob = 0.1m2/s, σ2

meas = 0.1m2.

H(xk +KvTs) is a vector obtained by stacking (K − 1)vTs,
(K − 2)vTs, . . ., vTs, 0. Hence,

e =
1

K + σ2
meas/σ

2
p

K(K − 1)

2
Tsv. (27)

Substituting the expected error and the steady-state covariance
in (23), we find that integrity errors occur when e

T j∞Ie =∥∥e∥∥2j∞ ≥ γ, i.e., when ∥∥v∥∥ ≥ γ′, (28)

where

γ′ =

√
γ

j∞

(
σ2
meas
σ2
p

+K

)
2

K(K − 1)Ts

. (29)

In other words, for velocities below a threshold, we expect no
integrity errors to occur. For large velocities, integrity errors
will be unavoidable. Note that for K = 1, integrity errors do
not occur. This is illustrated in Fig. 2 showing ‖e‖2j∞ as a
function of ‖v‖ for different values of K . If γ is on the order
of 10, we see that for K = 10, velocities beyond 0.6 m/s
can be supported, while for K = 20, velocities less than 0.3
m/s are required. Recall that KTs is the time between two
measurement updates.
As a numerical example, we consider the case of one anchor

and one moving agent. Movement of the agent follows (1) and
the measurement model is given by (2) with σ2

mob = 0.1m2/s,
σ2
meas = 0.1m2, and Ts = 0.1 s. Measurements arrive every Ts,
but are processed after KTs time, where K ∈ {1, 10, 20}. The
agent’s initial position is x0 ∼ N (0m, 100Im2). The anchor
is randomly positioned with position xm ∼ N (xk, 5Im2). For
a given agent velocity v, we let the filter run for 200 time-
steps, evaluate (23), and average over 1,000 Monte-Carlo runs.
In Fig. 3, distance (23) as a function of the agents velocity
is shown. For a given threshold, say γ = 10, velocities up to
0.63 m/s can be supported when K = 10, and for K = 20
velocities up to 0.23 m/s are possible. In the case of K = 1,
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no integrity errors occur and the resulting localization error is
only limited by the process and measurement noise.

C. Impact 3: Overly Confident Beliefs
The separation of timescales also has an impact on dis-

tributed algorithms for cooperative localization. In cooperative
localization, the aim is to determine an approximation of
p(xk

n|Z≤k), called the belief. For the sake of brevity, we
focus on two cooperating agents only2. Again we have two
approaches:
1) Without separation of timescales: The agents have a
priori distributions p(xk

1) and p(xk
2) and perform two

simultaneous measurements z
k
12 and z

k
21. Obtaining a

measurement generally requires a communication be-
tween the two agents. Hence, it is reasonable to assume
that zk12 is available to agent 1 while agent 2 has access
to z

k
21. This allows agent 1 to compute p(xk

1 |zk12) and
agent 2 to compute p(xk

2 |zk21). Once these computations
are completed, both agents move and interact with other
agents.

2) With separation of timescales: The agents have a priori
distributions p(xk

1) and p(xk
2) and perform two simul-

taneous measurements z
k
12 and z

k
21. The agents now

perform the SPAWN message passing algorithm [6],
where they iteratively update the beliefs b(i)(xk

1) and
b(i)(xk

2) as follows: we initialize b(0)(xk
1) = p(xk

1) and
b(0)(xk

2) = p(xk
2). Then at iteration i ≥ 1, agent 1

determines

b(i)(xk
1) ∝

ˆ
p(zk12|xk

1 ,x
k
2)b

(i−1)(xk
2)dx

k
2 (30)

and agent 2 determines

b(i)(xk
2) ∝

ˆ
p(zk21|xk

1 ,x
k
2)b

(i−1)(xk
1)dx

k
1 . (31)

2The extension of additional mobile agents and incorporation of anchors is
straightforward.
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Figure 4. Reduction of uncertainty with increasing number of iterations i in
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We execute K such iterations, after which the update is
completed and both agents move and interact with other
agents. As before, when K = 1, we revert to the case
without separation of timescales.

In order to analyze this method, we consider again the sim-
plified model from Section II-B and set p(xk

1) and p(xk
2) as

Gaussians with means μ1,prior and μ2,prior and a common
covariance σ2

priorI. Then at iteration i, b(i−1)(xk
1) will be

Gaussian with mean m
(i−1)
1 and covariance matrix σ

2,(i−1)
1 I,

and similarly for b(i−1)(xk
2). The updated belief b(i)(xk

1) is
again a Gaussian with meanm(i)

1 and covariance σ2,(i)
1 I, given

by

m
(i)
1 = σ

2,(i)
1 I

(
m

(i−1)
1

σ
2,(i−1)
1

+
z
k
12 −m

(i−1)
2

σ2
meas + σ

2,(i−1)
2

)
, (32)

σ
2,(i)
1 =

σ
2,(i−1)
1

(
σ
2,(i−1)
2 + σ2

meas

)
σ
2,(i−1)
1 + σ

2,(i−1)
2 + σ2

meas

, (33)

with similar expressions for b(i)(xk
2).

To understand the behavior of (33), we consider μ1,prior =
[0m, 0m]T, μ2,prior = [0m, 5m]T and σ2

prior = 0.1m2, and
set σ2

meas = 0.1m2 . Applying (33) leads to a reduction of
variances σ

2,(i)
1 , σ2,(i)

2 with increasing number of iterations
i. This process is visualized in Fig. 4. We observe that for
K = 1 the variances of the beliefs are overestimated, whereas
for K � 1 they are significantly underestimated. This is a
known property of the SPAWN message passing algorithm,
when the underlying factor graph contains cycles. Then the
beliefs are overly concentrated for large values of K .

V. CONCLUSIONS
In radio-based positioning of mobile nodes, the commonly

made assumption of a separation of timescales must be treated



with care. We have investigated three sources of impact when
making this assumption: on the CRB, on out-of-date measure-
ments on tracking, and on message scheduling in cooperative
positioning. We found that a positioning system designed on
the CRB will be overly optimistic, when in reality measure-
ments arrive at a higher rate. Out-of-date measurements can
lead to a loss of integrity in measurement scenarios involving
mobility of the agents. Integrity errors occur when the ve-
locity is beyond a certain quantifiable threshold. Finally, we
investigated the impact of message scheduling in cooperative
positioning, where we found that timescales play an important
role in correctly estimating the error covariance.
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