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Abstract

Hipster is a tool for theory exploration and automation of inductive proofs
for the proof assistant Isabelle/HOL. The purpose of theory exploration is to
automate the discovery (and proof) of new lemmas of interest within a theory
development, enriching the background theory and providing necessary missing
lemmas that might be required for other automated tactics to succeed.

Hipster has so far succeeded in incorporating automated discovery of equa-
tional conjectures and lemmas. This work presents an extension of Hipster
adding support for conditional lemmas, required, for example, when reasoning
about sorting algorithms and treating different branches of a proof along with
their specific conditions.

The main focus is the implementation of a tactic for automated inductive
proving via recursion induction, accompanied by an evaluation of the tool’s
capabilities. Recursion induction succeeds at automatically proving many of
the discovered conditional conjectures, whereas a previously existing tactic was
unable to. Additionally, recursion induction manages to set up inductive steps in
a proof to render more immediately realisable subgoals by following computation
order. Results show proving capabilities are increased not only with respect to
conditional lemmas but also for more general equational lemmas.

Keywords: conditional lemmas, theory exploration, inductive theorem prov-
ing.

Topics: logic, functional programming.
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Chapter 1

Introduction

Often, when proving a theorem, one finds oneself proving a separate, smaller
lemma that will help complete the original theorem. But it might not be until
deep into the proof that there is a need for an auxiliary lemma; other times the
lemma required is not immediately obvious from the development of the proof.

Take for instance the definition of insertion sort isort:

fun insert :: "Nat ) Nat List ) Nat List" where

"insert x [] = x # []"

| "insert x (z # xs) =

(if x  z

then x # (z # xs)

else z # (insert x xs))"

fun isort :: "Nat List ) Nat List" where

"isort [] = []"

| "isort (y # xs) = insert y (isort xs)"

And say we try to prove the correctness of part of its specification, that
applying it to an input argument does indeed result in a list with elements in
increasing order:

fun sorted :: "Nat List ) Bool" where

"sorted [] = True"

| "sorted (_ # []) = True"

| "sorted (r # (t # ts)) = (r  t ^ sorted (t # ts))"

theorem isortSorts: "sorted (isort ts)"

However, to be able to prove this, we need to be able to conjecture and prove
an auxiliary lemma:

lemma isortInvariant : "sorted ys =) sorted (insert x ys)"

Conditional lemmas like this one appear often in proofs for algorithm correct-
ness and in propositions characterising the behaviour of operators and programs
like the ones involved in insertion sort.

1



CHAPTER 1. INTRODUCTION 2

When using interactive computer systems to mechanise proof checking or
aid in developing proofs, automatically generating side lemmas can help the
working user and expand the background knowledge for some theory, easing
automation of theorem proving. Automated conjecture and proof of conditional
lemmas poses itself as a problem to be solved.

1.1 The objective

Hipster [27] is a tool designed for theory exploration for inductive theories in the
proof assistant Isabelle/HOL. Its aim is to discover lemmas of interest and prove
them within a formal system to achieve inductive theorem proving automation.

The original implementation of Hipster succeeded at discovering and proving
equations about inductive datatypes. This work extends Hipster to add support
for conditional lemmas.

With the discovery of conditional lemmas, propositions like insertion sort’s
correctness and many others could be postulated and proven automatically,
becoming part of a theory knowledge and enabling the automation of other
proofs.

1.2 Method

To improve Hipster’s proof automation, not only for conditional lemmas but
also for equational ones, recursion induction has been incorporated in the new
automated proof procedure. Previously, its inductive proving employed struc-
tural induction. By applying recursion induction, that which follows the order
of computation of function definitions, we achieve a structural setup of proofs,
case distinctions and inductive steps more closely tailored to the problem to
solve, whilst saving the automated generation of (generic) pre-defined induction
schemata that could be followed.

Discovering conditional lemmas is possible via underlying components to
Hipster’s architecture, namely HipSpec [13] and QuickSpec [15]. HipSpec is a
tool for automated derivation and proof of properties about functional programs
(for the Haskell language) whilst QuickSpec generates possible specifications
of Haskell programs. To be noted is that Hipster produces all of its proofs
autonomously within Isabelle, whereas it uses QuickSpec’s discovery features
via HipSpec.

1.3 Scope and boundaries of the work

The domain of application of Hipster is that of inductive, algebraic datatypes
and functions defined over them, most commonly recursive in structure.

Hipster’s tactics can be used standalone in Isabelle/HOL proofs, without
explicit exploration of a theory. Constructing proofs within a verified, formal
system such as Isabelle guarantees their soundness.
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The intended use of Hipster is during an interactive session, where the user
specifies which functions, constants and predicates should be provided to the
theory exploration process. Implicitly, this means the tactics count on theory
exploration to have been performed previously or there existing part of a theory
already developed in order to be able to obtain proofs to theorems in increasing
degree of complexity.

Given its use of QuickSpec’s capabilities, the generation of conjectures is
bound to QuickSpec’s coverage and efficiency.

1.4 Experiments

To evaluate Hipster’s performance, use-cases in an interactive setting have been
developed, of which we present a case study on insertion sort’s correctness.

But to closely examine the new tactic’s proving capability, tests from the re-
cently released benchmark set Tons of Inductive Problems [14] (TIP) have been
performed. Since we assume the tactic to be used along with exploration, these
tests are run accordingly, counting on the possibility of exploring a problem’s
theory before proving it.

1.5 Outline

Chapter 2 gives an overview of theorem proving, with a focus on interactive
settings and the benefit of them integrating automated reasoning tools. We
introduce Hipster’s architecture, its prior state of development and its work-
ing environment in Chapter 3, only giving an overview of relevant aspects of
Isabelle/HOL to the rest of this text.

Next, we describe and discuss the use of recursion induction in the new
tactic, and its relation to supporting conditional lemmas in Chapter 4. Chapter
5 presents Hipster’s tactic as a whole and new options it supports, followed
by an overview of the theory exploration process from Hipster’s perspective in
Chapter 6.

Experiments and their evaluation results are detailed in Chapter 7, both an
account of the interactive development of a proof for insertion sort’s correctness
with Hipster and performance on a subset of TIP. A detailed discussion of the
results and gains of recursion induction as well as other aspects of automating
discovery and proof of lemmas in our setting is given in Chapter 8 along with
future work to focus on in the development of Hipster.

Chapter 9 gives an overview of related work and we conclude in Chapter 10
with an overall view of Hipster’s improvement and insight gained during this
thesis’ work.



Chapter 2

Theorem Proving Systems: A
Survey

2.1 Formal science

The formalisation of mathematics in computerised systems is a long-standing
problem in science, as is the development of approaches and tools towards au-
tomated reasoning. Amongst the first successful incursions into automating
reasoning in a computer was the development of GPS (General Problem Solver)
[35], dating as far back as 1957.

The significance of this line of work for software verification and proof check-
ing has been great, both within science and already in the industry as well.
Formalising mathematics allows for implementing and automating mathemat-
ical proofs achieving, for example, guarantees of correctness of software and
protocols. Tools for software verification, such as KeY for Java [1], serve as a
bridge between research development in automated reasoning and real world
applications. Whereas developments like the proof for loop freedom of the
AODV routing protocol, produced by means of the interactive theorem prover
Isabelle/HOL [5], not only portray an important application but also serve as a
testimonial of the benefits of mechanising proofs in theorem provers.

The importance of formalising mathematics transcends applications within
software development: the collection of all mathematical works is extremely
large and formalising it in a computer system with an appropriate represen-
tation would increase its availability for use in computer software and in the
development of mathematics. More importantly, mathematical formalisation
and mechanisation contributes to ensuring no mistakes are made in proofs, and
has already been known to detect mistakes in known results, such as Fleuriot
and Paulson’s work did with Newton’s development of the Kepler Problem [20].

Choosing how to formalise mathematics becomes complicated having to con-
sider various aspects such as achieving a compromise between ease of automated
handling of objects (for which generalisation of problem representation has been
a question since the early days of GPS [19]) and readability of the presentation

4



CHAPTER 2. THEOREM PROVING SYSTEMS: A SURVEY 5

given to a human user.

2.2 Interactive Theorem Proving

In particular, interactive theorem proving (ITP), performed within a proof as-
sistant, can become a great tool for not only computer scientists but also for
working mathematicians in their theory developments. By providing an environ-
ment where one gradually defines a theory context and explores properties, they
give a basic setting similar to the one in which mathematics is developed whilst
their formal setting ensures correctness. Mechanised proofs such as Gonthier’s
for the Four Colour Theorem [21] produced in the proof assistant Coq serve as
evidence of interactive theorem proving’s importance in proof checking of large
and complicated mathematical results.

Different interactive theorem provers achieve formalisation and correctness
in different ways. Some are strongly based on programming languages. Such is
the case of Agda [38], a dependently typed functional language in which proofs
are built by program construction, and ACL2 [28], a formal system based on
first-order logic. Other systems are built atop a small, certified kernel. Such is
the case for the aforementioned Coq, which is based on the Calculus of Construc-
tions [16] (a type theory), and for a large family of provers based on Milner’s
LCF [33] (Logic for Computable Functions) theorem prover and the associated
programming language ML. Amongst LCF provers one can find the succeeding
family of HOL (Higher Order Logic) provers [22], to which the Isabelle proof
assistant belongs.

LCF-style systems benefit from having a small trusted kernel upon which to
build more complex and sophisticated reasoning procedures (often called tactics)
which will be, so to speak, correct by construction (note that this correctness is
only meant in terms of soundness but not necessarily completeness).

Despite ITP rising in popularity, as of today it is not that often that one finds
mathematicians employing these tools, partly because of the time-cost involved
in mathematical formalisation.

2.3 Automated Theorem Proving

The first complete and correct proof for the Four Colour Theorem was in fact
possible thanks to the development of automated methods for proof search [2],
a pioneering result from the use of computer aided reasoning.

Tools for specific kinds of reasoning, such as first-order (FO) logic theorem
provers and satisfiability (SAT) solvers, along with the closely related satisfia-
bility modulo theory (SMT) solvers, have been highly developed in the efficiency
of their search algorithms. Renowned solvers include FO provers Vampire [43]
and SPASS [48], and SMT solver CVC4 [17].
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2.4 Theory exploration

ITP can highly benefit from efficient and well-developed specialised ATP tech-
niques and tools to aid the user in his/her work.

Buchberger introduced the concept of theory exploration in [6]: he argues
that the normal working of a mathematician starts by introducing some def-
initions and axioms which are the base for the theory studied, moving on to
proving simple lemmas about these and arriving at more complex theorems by
employing these or layering concepts already introduced. Theory exploration
looks to automate this by attempting to conjecture new lemmas within a the-
ory and prove them, in increasing order of complexity; a feature Buchberger has
focused on in Theorema [8], a computer system for formal mathematics. When
implemented in a proof assistant, the mathematical development becomes more
in line with the natural flow of a mathematician’s work and can also reveal
properties of interest that could otherwise not be immediately thought of. So
theory exploration hopes to enhance the mathematical development process by
imitating, to some extent, the manner in which mathematics is typically done.

As outlined by Buchberger [7], desirable features (to his judgement) of sys-
tems for theory exploration are quite challenging to achieve, ranging from re-
tention of both mathematical computational power and reasoning ability to the
appeal of syntax and appropriate knowledge structuring. As stated there, no
reasoning systems at the time met the features described and most likely still
do not. It is not the goal of this project to fit in such suggested requirements
(amongst other things, the scope of those is quite broad), but to continue in the
line towards the incorporation of theory exploration systems in the workflow
within interactive theorem provers.

There has been further work towards the incorporation of theory exploration
in mathematical development, such as the system MATHsAiD, which discovers
and proves lemmas from simple definitions and axioms [31]. Other tools have
made incursions into incorporating lemma discovery in Isabelle, like IsaCosy,
developed to synthesise inductive conjectures and lemmas from irreducible terms
[26], and IsaScheme, which implements schema-based theory formation [34]. The
Hipster relative HipSpec performs theory exploration via testing for functional
programs in Haskell [13].

2.5 Inductive Theorem Proving

Theory exploration could be performed in either a bottom-up or top-down man-
ner. Exploring a theory bottom-up looks to discover new lemmas starting from
the generation of terms based on the smaller components of a theory (defined
constant symbols), combining them and increasing the complexity of such terms
gradually in the search for properties that could hold in a theory. Following a
top-down approach would analyse new sub-goals encountered during a proof,
trying to prove them independently as separate lemmas of the theory, often
making use of failed proofs to guide the lemma discovery.

Recursion and induction’s self-reference component and explicit incremental
construction make them a pattern for which bottom-up theory exploration could
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work well in automating discovery of new lemmas. Both HipSpec’s and Hipster’s
work showed promising results for inductive theorem proving when adopting this
theory exploration approach.

Alternative approaches to inductive theorem proving are taken by CVC4,
which recently introduced inductive reasoning for SMT solvers [42], and the
recently developed Pirate, which achieves automation of induction by extending
the superposition calculus within a first-order prover [47].

Worth highlighting is work that preceded that of the previously mentioned
IsaCoSy: an approach to guiding induction via rippling with case-analysis de-
veloped for Isabelle/HOL [25]. Said work was concerned with conditional state-
ments as well, evaluating over theories based on natural numbers, lists and
binary trees. In addition to it being a good source for conditional lemmas,
the conclusions given in it also pointed towards improvements in handling the
conjecturing of conditional lemmas to be of importance for automated theo-
rem proving: from their corpus of theorems, many of those not solved by the
techniques they presented required improved reasoning about side-conditions or
conditional lemma generation.



Chapter 3

Hipster and its environment,
Isabelle/HOL

3.1 Hipster

Hipster [27] is a theory exploration system for Isabelle which aims to discover
missing lemmas in a given theory. It can automatically provide basic lemmas
about a theory which can then be used both in automated and interactive proofs,
contributing to building a corpus of lemmas within a theory gradually.

Its design is parameterised by two proving tactics, one meant for hard rea-
soning and another for easier routine reasoning, which it uses to determine which
discovered and provable lemmas could be of interest and which could be trivial,
respectively. Specifically, Hipster is currently instantiated to enable inductive
theorem proving, but the system in itself may be used for any other kind of
problem one chooses to explore.

For its induction instance, hard reasoning involves induction whilst routine
reasoning corresponds to simplification optionally accompanied by first-order
reasoning. Induction is necessary when reasoning about repetition, that is, when
reasoning about patterns that use self-reference and iteration. Properties on
recursive datatypes and functions require induction in their proofs, making it the
proof procedure of choice when reasoning about functional programs and their
correctness, being recursion an elementary component in their construction.

However, automating inductive proofs is a challenging problem: despite in-
duction being semi-decidable, there is neither a definite way of defining in ad-
vance how many separate induction steps are required, nor which induction
schemata are appropriate, nor which of the existing variables in a proposition
one should induct on. In other words, an inductive proof may rely on other
auxiliary lemmas, in turn requiring themselves inductive proofs. This poses an
added challenge: discovering and proving those helper lemmas.

Hipster aims to counter this problem with theory exploration in a bottom-up
fashion. It can be invoked in two modes: to automatically generate basic lemmas
in a new theory development or to assist in a stuck proof attempt by discovering

8



CHAPTER 3. HIPSTER AND ITS ENVIRONMENT, ISABELLE/HOL 9

new lemmas that would help in proving the current open goal. Its original scope
was that of automating equational reasoning for inductive theories.

3.1.1 Architecture

Hipster works with Isabelle/HOL theories. A theory is simply a collection of
datatypes and associated function definitions along with lemmas and theorems
about these constructs. All of Hipster’s reasoning and proving procedures take
place within Isabelle, ensuring only sound proofs are constructed.

Isabelle
theory

Haskell
programCode 

generator

Theory
exploration

Conjectures
Difficult

reasoning

Theorems

Proved

Failed

Routine
reasoning

Trivially proved?
Discard

Figure 3.1: Hipster’s architecture at a glance (reprinted from [27]).

To discover possible lemmas, Hipster first uses Isabelle/HOL’s code genera-
tor to output corresponding Haskell code to the definitions and, after processing
further the resulting Haskell module, employs QuickSpec’s [15] automatic gen-
eration of Haskell program specifications (via HipSpec). QuickSpec is based
on QuickCheck [12], a tool for random automated testing of Haskell program
properties. QuickSpec generates expressions combining defined functions and
uses QuickCheck to generate random test-cases; the evaluation on these tests
is used to separate terms into equivalence classes. Lemmas discovered during
theory exploration in Hipster hence depend on the kinds of schematic patterns
and function combinations QuickSpec constructs.

The properties generated are equations; some support for generating laws
subject to a premise (conditional propositions) exists, restricted to predicates
of up to two arguments as pre-conditions to consider.
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3.1.2 Conditional lemmas

Up till now, Hipster could discover and prove equational conjectures for Is-
abelle/HOL inductive theories. Whilst equational lemmas can give useful prop-
erties and insight into a mathematical structure, it is quite often the case that
reasoning takes place within a specific frame or context where the structure of
objects involved is restricted. For instance, the property xs 6= Nil =) head

(append xs ys) = head xs for the definitions:

datatype ’a List = Nil | Cons ’a "’a List"

fun append :: "’a List ) ’a List ) ’a List" where

"append Nil y = y"

| "append (Cons z xs) y = Cons z (append xs y)"

fun head :: "’a List ) ’a" where

"head (Cons t _) = t"

only makes sense and will be correct when the first list is constrained to not
being empty.

There are diverse scenarios and constructs which require or give rise to con-
strained propositions, such as:

• branching on specific conditions which determine cases to consider during
a proof attempt

• reasoning about algorithm correctness, where consecutive steps are to be
taken into account for the changes they perform

• programming invariants

– in datatypes, where sometimes invariant properties cannot be en-
coded in the constructors and instead depend on the arrangement of
data values building an instance, making it necessary to verify that
functions manipulating the datatype preserve the invariant

– in functions and algorithms, where steps might be broken down into
smaller functions which assume certain conditions on their input to
be able to guarantee conditions over the output result.

The use of conditional lemmas can be said to be a necessity in breaking down
reasoning into smaller units of focus. As depicted in the opening section, rea-
soning about sorting algorithms requires support for automated discovery and
proof of conditional lemmas.

Discovery in itself of arbitrary conditional lemmas is a hard, combinatorial
problem beyond the scope of this thesis. Without counting on pre-existing pred-
icates, the options in synthesis of conditions soon start growing exponentially.
And even with potential predicates existing in the theory, the choice of what
arguments to apply them to (simple variables or arbitrary expressions) and the
combinations of different predicates still complicate the task highly.

For this work, we focus on the particular case of having user specified con-
ditions instead.
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3.2 Isabelle/HOL

The proof assistant Isabelle [40] provides the environment in which Hipster con-
structs its proofs. Isabelle has a central meta-logic Isabelle/Pure [39] (a simply-
typed intuitionistic higher-order logic with equality), which can be instantiated
to an object-logic via its corresponding deduction calculus. In particular, Hip-
ster works with Isabelle/HOL, the Higher Order Logic instance in which most
Isabelle developments are carried out.

3.2.1 Practical layers

In terms of use, one can identify two main layers in Isabelle.
The top level, where notation is the closest to the usual mathematical one

and with which the regular user interacts, is that corresponding to so-called
Isabelle theories or modules. These contain proofs written in the Isar (Intelligi-
ble semi-automated reasoning) language, whose purpose is that of providing a
structured proof document format for definitions, theorems and proofs [50].

The underlying system and lower level is implemented in Isabelle/ML, in-
cluding its LCF-style kernel. It is a tactic-based proof system; tactics automate
proof search procedures. Extensions and additional tactics are also implemented
in Isabelle/ML.

Whilst Hipster is implemented in Isabelle/ML, its immediate intended use
is at the top Isabelle theory level, but its functionality could potentially be
used in the development of other proof procedures in combination with other
Isabelle/ML tools.

The meta-logic Already at the theory level, Isabelle’s meta-logic coexists
with the object-logic being used, in our case HOL. The former is seen in the
formulation of theorems whilst the latter may be employed for the construction
of HOL terms (which in turn may appear in a theorem or lemma).

Isabelle’s meta-logic has the following connectives:

• /\: universal quantification (or abstraction over some parameter)

• =): implication (dependency between proofs)

• ⌘: definitional equality

Some Isabelle/HOL syntax remarks The so-called outer syntax (see §2.1
in [37]) is the syntax employed to define a theory. Embedded in the theory
definition syntax, one encounters an inner syntax, whose terms are to be sur-
rounded by double quotes "...". HOL types, terms and formulae are written
with this inner syntax.

With respect to HOL syntax, shorter arrows ) are those denoting function
types and are not to be confused with the meta-logic implication connective
introduced above. Additionally, free or unbound variables in HOL are implicitly
universally quantified at the meta-logic.
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3.2.2 Tactics and automation

Isabelle/HOL has a series of automated tactics and tools which can assist greatly
the user in their work. On the one hand, counterexample generators such as
Nitpick [3] and Quickcheck [9] (which works in a similar manner to the Haskell
QuickCheck [12] tool) help in quick diagnosis towards identifying cases which
falsify a statement at hand. On the other hand, amongst the automated tools
which work towards the construction of proofs, Sledgehammer [41] uses machine
learning in choosing existing lemmas which are likely to be useful to prove a
given goal. These lemmas are then run through a series of very efficient external
first-order provers (such as Vampire, SPASS or E [44]) and uses their output
to reconstruct a minimised proof using an Isabelle/HOL first-order resolution
tactic based on Metis [23].

A common trend in all these tools is that of interfacing with other effi-
cient, well-established external tools such as the FOL SAT-based constraint
solver Kodkod in Nitpick [46] or the FOL automated theorem prover SPASS in
Sledgehammer [4]. Hipster follows in this trend for its conjecture generation,
but relies solely on Isabelle/HOL for its proof construction.



Chapter 4

Inductive theories and
recursion induction

4.1 Induction

To equationally reason about algebraic inductive datatypes, the main proof
method of choice is induction. Such datatype definitions give a recursion pat-
tern from which an induction principle can be derived, the structural induction
principle. The inductive definition sets the base-case initial objects (those which
do not refer back to the structure being defined) and the inductive combinations
of objects of the datatype (those which are recursive on the datatype) used in
constructing the datatype.

Structural induction, as a proof principle, states that for any one predicate P
over an inductive datatype, if P holds true for all the initial objects (base cases),
and also holds for all recursive constructions given it holds for the subparts
involved in them (induction hypothesis), then P will hold for every instance of
the datatype. Expressed as an inference rule, in the case of a datatype expressed
in terms of itself alone, we would have:
StructuralInd

P (C1) ... P (Cm)
8b1, b2, ... (P (b1) =) P (b2) =) ... =) P (Cm+1 b1 b2 ...)) ...

8x P (x)

Where Ci are constructors (for initial or recursive objects) and bi are vari-
ables of the type the induction is described over. For instance, for the datatypes

datatype Nat = Z | S Nat

datatype ’a List = Nil | Cons ’a "’a List"

datatype ’a Tree = Leaf | Node "’a Tree" ’a "’a Tree"

one obtains the induction principles
NatInd

P (Z) 8n (P (n) =) P (S n))

8x P (x)

13



CHAPTER 4. INDUCTIVE THEORIES - RECURSION INDUCTION 14

ListInd

P (Nil) 8t, ts (P (ts) =) P (Cons t ts))

8x P (x)
TreeInd

P (Leaf) 8ts, t, rs (P (ts) =) P (rs) =) P (Node ts t rs))

8x P (x)

These inference rules are in fact theorems, and as such they are implemented
in our working framework Isabelle/HOL. Hence, they are appropriate for deduc-
tive reasoning about potentially infinite structures and recursion.

4.2 Recursion induction

Functions recursing over inductive datatypes need not strictly follow the struc-
tural order of the datatype’s recursion. The recursion pattern they follow might
be more specific, or even less so, than the structure’s definition’s pattern.

For instance, take the functions on lists sorted, init and last for which we
assume the relation less-or-equal on naturals le to be defined (see Section 5.1):

fun sorted :: "Nat List ) Bool" where

"sorted Nil = True"

| "sorted (Cons _ Nil) = True"

| "sorted (Cons r (Cons t ts)) =

(if (le r t) then sorted (Cons t ts)

else False)"

fun init :: "’a List ) ’a List" where

"init Nil = Nil"

| "init (Cons _ Nil) = Nil"

| "init (Cons t ts) = Cons t (init ts)"

fun last :: "’a List ) ’a" where

"last (Cons t Nil) = t"

| "last (Cons _ ts) = last ts"

The recursion in the first two functions breaks down the cases into more
detailed ones by considering certain amounts of elements in a list to define the
action to take. From the function definition’s recursive structure we can derive
two alternative induction principles. Note how even though the recursion on
the argument list is the same for either scheme, the if constructor in sorted’s
definition leads to its guard condition to play a part in the scheme:
SortedInd

P (Nil) 8u P (Cons u Nil)
8t, r, ts ((le t r =) P (Cons r ts)) =) P (Cons t (Cons r ts)))

8x P (x)
InitInd

P (Nil)
8u P (Cons u Nil) 8r, t, ts (P (Cons r ts) =) P (Cons t (Cons r ts)))

8x P (x)
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If, alternatively, the predicate defining a list as sorted were to be expressed
as the equivalent:

fun sorted_bis :: "Nat List ) Bool" where

"sorted_bis Nil = True"

| "sorted_bis (Cons _ Nil) = True"

| "sorted_bis (Cons r (Cons t ts)) = (le r t ^ sorted_bis (Cons t ts))"

the corresponding recursion induction scheme would be the same as init’s, in
accordance with their equal recursive structure on lists:
SortedBisInd

P (Nil)
8u P (Cons u Nil) 8r, t, ts (P (Cons r ts) =) P (Cons t (Cons r ts)))

8x P (x)

Meanwhile, for last the case for an empty list is not taken into account. The
partiality of this third example does not prevent it from defining an induction
principle; however, for it to be an actual theorem which can be used as a proof
principle, completion of the inference rule with missing cases is necessary for
the universal statement over all lists to hold.

So, instead of having:
PartialLast

8u P (Cons u Nil) 8r, t, ts (P (Cons r ts) =) P (Cons t (Cons r ts)))

8x P (x)

one would take:
CompleteLast

8u P (Cons u Nil)
8r, t, ts (P (Cons r ts) =) P (Cons t (Cons r ts))) P (Nil)

8x P (x)

Hence, last’s induction scheme turns out to be equivalent to init’s too.
Whilst structural induction is appropriate to reason about cases in terms of

constructors, it fails to be specific enough for other recursion patterns. Schemata
arising from recursion patterns can isolate sub-units not represented in a datatype’s
structure as being atomic, such as lists with at least two elements in the previous
examples.

Induction following these recursion schemata, called recursion induction or
computation induction, allows for reasoning in the proof of a lemma to be driven
and shaped by an arbitrary induction scheme derived from a recursive definition.
In particular, Hipster explores the proofs one could construct by using recursion
inductions defined by operations appearing in the statement to be proven.

This new approach also responds to the aim of exploiting Isabelle/HOL’s
existing features. In this case, that of deriving induction schemata from recursive
functions, which Isabelle/HOL automatically does from the termination order
of recursive functions extracting the schemata as theorems [29].
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Recursion induction in a proof

To depict the potential difference between recursion and structural induction,
let us take the already introduced lemma sorted xs =) sorted (insert x xs).
Applying structural induction on the list xs would produce the subgoals:

1. sorted Nil =) sorted (insert x Nil)

2. ^ a y. (sorted y =) sorted (insert x y)) =) sorted (Cons a y) =)
sorted (insert x (Cons a y))

Whilst sorted’s recursion induction scheme would yield:

1. sorted Nil =) sorted (insert x [])

2. ^ u. sorted (Cons u Nil) =) sorted (insert x (Cons u Nil))

3. ^ r t ts. (sorted (Cons t ts) =) sorted (insert x (Cons t ts))) =)
sorted (Cons r (Cons t ts)) =)
sorted (insert x (Cons r (Cons t ts)))

The latter set of subgoals leads to an immediate proof of the main lemma
thanks to its steps mirroring the actual predicate definition, hence having a cor-
respondence with its simplification rules. In contrast, the former, even though
it intuitively looks immediate to prove, is not sufficiently generalised nor does it
specify any intermediate result on inserting an element on a concrete non-empty
list (in our case, the singleton list) which would enable to prove the second sub-
goal for any arbitrary list. Structural induction is in some way a weaker scheme
and additional case-splits or lemmas would be required to close the proof.

4.3 Recursion induction for conditionals

4.3.1 Considering the structure of a program through data

Side-conditions one might encounter or require to handle in order to prove in-
teresting lemmas can be of very different nature. Within the scope of inductive
theories, these will very often either:

• state an explicit condition on the constructors of (typed) parameters, e.g.
for a list, xs 6= Nil

• employ a predicate defined in the current theory (potentially recursive,
following some pattern on the datatype’s structure), e.g. the predicated
for sortedness, sorted xs

Naturally, these conditions might be applied to variables or to arbitrary ex-
pressions which could contain function applications, resulting in variables we
can induct on being nested deeper in the condition or combined with other
expressions.

Support for proving of conditional lemmas has been added by considering
the structure of types and functions closer throughout a proof via the use of
recursion induction. In such a way, the amount of known patterns and already
given information affecting a proof is increased rather seamlessly.
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In a given proof, following the induction schemata defined by functions oc-
curring in the condition makes it possible to account for its effect on the struc-
ture of its parameters in a direct way. Yet this is not guaranteed to produce
a complete proof. In consequence, recursion induction schemata derived from
elements in the conclusion are also taken into consideration. This increases the
scope of Hipster’s original approach for equational lemmas too.

4.3.2 Instantiating recursion induction schemata

Applying recursion induction requires careful instantiation of the free variables
present in a lemma on which to induct. Recursion schemata are typed in appro-
priate correspondence to the function they derive from and its type definition.
So, for instance, having the already defined list concatenation append and a
zipping function:

fun zip :: "’a list ) ’b list ) (’a, ’b) list" where

"zip Nil _ = Nil"

| "zip (Cons _ _) Nil = Nil"

| "zip (Cons z xs) (Cons t ys) = Cons (z, t) (zip xs ys)"

And the induction schemata for append and zip respectively:
AppendInd

8ts P (Nil, ts) 8z, rs, ts (P (rs, ts) =) P (Cons z rs, ts))

8xs, ys P (xs, ys)
ZipInd

8ts P (Nil, ts) 8z, rs P (Cons z rs,Nil)
8z, y, rs, ts (P (rs, ts) =) P (Cons z rs, Cons y ts))

8xs, ys P (xs, ys)

Say we happen to have the term zip (append x y) z in some lemma, with
free variables x, y and z, which without any further restriction have inferred
types x :: ’a list, y :: ’a list, z :: ’b list. We would hence only apply induction
following append’s induction scheme on variables x and y (the derived induction
principle will take predicates P :: ’a list) ’a list) bool, of the same argument
type as append). Whilst zip’s induction scheme could be applied to either the
pair (x, z) or the pair (y, z).

As seen in this very example, schemata also capture patterns combining
several constructs and variables. When performing the corresponding recursion
induction, the instantiation does not necessarily have to be complete and one
may specify fewer variables than those present in the scheme to induct on.
Whilst this might be appropriate at times, terms which are hard to prove and
might require inductions of their own can be produced. Such is the case if, for
instance, other free variables occur in terms involving the originator function
of a scheme along with the variables instantiated for an induction. Hence, by
default we consider as complete as possible instantiations first when exploring
the proof for a given lemma; these may still be partial instantiations.

Not all free inductable variables present in a lemma are necessarily instan-
tiated for the recursion induction. In such cases, the induction proof should
hold for any arbitrary values of these and therefore we generalise over them



CHAPTER 4. INDUCTIVE THEORIES - RECURSION INDUCTION 18

when setting up the recursion induction. The aim is to obtain new subgoals as
general as possible where variables not inducted on are universally quantified.
Otherwise, the inductive step of a proof may turn out to have a too specific and
strong induction hypothesis condition.

Take for instance the following definition for the maximum between two
natural numbers and its corresponding recursion induction principle:

fun max :: "Nat ) Nat ) Nat" where

"max Z y = y"

| "max (S z) Z = S z"

| "max (S z) (S x) = S (max z x)"

MaxInd

8a P (Z, a) 8z P (S z, Z) 8a, b (P (a, b) =) P (S a, S b))

8x, y P (x, y)

Consider the proposition:

max (max a b) c = max a (max b c)

When said recursion induction is instantiated to the variables a and b with-
out making c arbitrary, the inductive step of the proof results in the open
subgoal:

/\ z x. max (max z x) c = max z (max x c) =)
max (max (S z) (S x)) c = max (S z) (max (S x) c)

In contrast, if c is in fact set to be arbitrary, the inductive step translates
to:

/\ z x c. (/\ c’. max (max z x) c’ = max z (max x c’)) =)
max (max (S z) (S x)) c = max (S z) (max (S x) c)

A weaker, more general premise is favourable in finding a way to derive
the final conclusion. Particularly, after induction Hipster employs a first-order
solver (see Chapter 5); the more general the assumptions it can make the higher
the chances of finding good instantiations and combinations of those premises
to solve the open goal.

Recursion schemata due to function definitions include other non-inductive
argument types, in addition to the pattern of recursion on the inductables. In
the setting of Isabelle/HOL this means that higher-order variables could appear,
as in:

fun map :: "(’a ) ’b) => ’a List ) ’b List" where

"map _ Nil = Nil"

| "map f (Cons t ts) = Cons (f t) (map f ts)"

MapInd

8f P (f, Nil) 8f, t, ts (P (f, ts) =) P (f, Cons t ts))

8g, ys P (g, ys)

Despite not changing recursive call after recursive call with respect to its
structure, the higher-order parameter, without which map’s induction principle
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would simply correspond to structural induction, has to be treated specially. It
should be fixed throughout the rest of the proof if map’s recursion induction is
to be applied: we instantiate the inductive rule application with some variable or
constant symbol of the appropriate higher-order type present in the proposition
at hand. Otherwise, in later steps of a proof there exists the risk of entering a
higher-order unification loop, since higher-order unification is not decidable.



Chapter 5

A tactic (not only) for
conditionals

Hipster employs the Isabelle automated proof procedures simp (simplification),
metis (resolution and superposition for first-order logic with equality [23]) and
induction. From these, Hipster constructs its own generalised tactics. The
specific new tactic (and component) in Hipster implements the choice and in-
stantiation of recursion induction, followed by said simplification and first-order
reasoning.

5.1 A single induction step

Given Hipster’s intended use, it has been decided for the tactic to perform a
single induction per individual proof attempt. Since the aim is for Hipster to
enable gradual development in a theory, this is appropriate: lemmas requiring
more than a single induction shall rely on smaller lemmas about other inductive
results instead of relying on a larger proof with several induction steps.

Theory exploration is the key part to the system that makes this connection
to inductive sub-lemmas possible, by discovering them instead of descending
into a combinatorial problem of successive induction attempts.

Structural induction is also a potential induction scheme to follow. There
are cases where following other schemata derived from functions appearing in a
lemma might not set up the proof’s branches in a solvable way, whilst structural
induction will do. Say we define the relation less-or-equal for natural numbers
as:

fun le :: "Nat ) Nat ) bool" where

"le Z _ = True"

| "le _ Z = False"

| "le (S x) (S y) = le x y"

which has the associated recursion induction scheme

20
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LeInd

8n P (Z, n) 8n P (S n, Z) 8n, m (P (n, m) =) P (S n, S m))

8x, y P (x, y)

When proving reflexivity for less-or-equal le x x, applying the predicate’s
recursion induction scheme leads to opening the subgoals:

1. /\ y. le y y

2. /\ v. le Z Z

3. /\ x y. le x x =) le (S x) (S x)

Whilst a subset of these would prove the intended lemma, the new subgoal 1
restates it. Such a goal will not be discharged by first-order reasoning reasoning
and the automated proof would fail. On the other hand, structural induction
would yield subgoals easily discharged by simplification:

1. le Z Z

2. /\ x. le x x =) le (S x) (S x)

If, however, the property was expressed in an alternative way with a condi-
tional:

y = x =) le x y

Structural induction would not suffice to prove the lemma whilst recursion
induction due to the definition of le would in this case set up proof subgoals
easily discharged using simplification.

5.2 Rewriting, simplification and first-order rea-
soning

After applying recursion induction, Isabelle’s simplification tactic is applied to
the current proof state, allowing it to simplify each open goal. It is then followed
by the first-order reasoner metis which is applied as well once to each open goal.
These tactics may be supplied with additional lemmas upon application.

A notable issue is that of termination: simplification, rewriting procedures
and metis depend on the rules made available to them to terminate within a
reasonable time. To save situations where these procedures execute for unpre-
dictable amounts of time, a timeout is set to their application. Even though
this still provides an effective tactic, there is a question as to what should define
the interruption of a proof attempt: apart from execution time, the number of
steps taken in a proof or the depth of proof search could also be considered.
The magnitude of each limit would still be a question, and the feasibility of
imposing limits to the number of steps and the depth of proof search has not
been explored yet.

Rules derived from definitions (whether datatype or function definitions)
are automatically added to the simplification set of rules in Isabelle. Therefore,
by default, no additional lemmas are supplied to the simplifier (see discussion
in Section 8.5). It is not always immediate to know whether a given rule in
combination with the rules already considered in simplification will cause a
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loop. A simple example lemma with such an effect is le (S n) m =) le n m

= True, where having a larger premise expression (with respect to term size)
than conclusion could provoke simplification to not terminate (see §2.5.3 in [36]).
This specific case would probably be straight-forward to detect with a simple
algorithm to check term sizes, but the same might not hold for other conditional
expressions.

In contrast, the new tactic feeds metis lemmas found via theory exploration
and any additional ones explicitly supplied (for example, by the user during an
interactive session). Any simplifications which could have been made if these
lemmas had been given to the simplifier as well are normally identified by the
first-order solver too. The problem of non-termination or very long execution is
also present in this case, and the question of which combination of lemmas to
use beyond the scope of this work (see discussion in Section 8.5).

5.3 Tactic options

To enable a more flexible tactic for interactive use, a series of setup options have
been made available

• adjustable timeout for metis

• possibility of setting filtering functions for selection of theory explored
lemmas in:

– simplification: by default, the filter leaves out all explored lemmas
– metis: by default, the filter picks all lemmas discovered by theory

exploration and all lemmas explicitly stated in the tactic application

• metis has different options, but for the purpose of Hipster only the type
encoding of the problem to solve has thus far had an effect; particularly,
although disabled by default, it is possible to set the type encoding to
metis’ option full_types which makes the first-order proof search fully
typed; this slows down metis, so the timeout is to be adjusted accordingly

In a first theory exploration attempt for given constructs in a theory, however,
employing the default settings is recommendable since, for the most part of what
has so far been tested, making adjustments to them has only been necessary on
a few occasions.

Having the ability to control the sets of lemmas passed on to the simplifier
and metis opens up the possibility to experiment with relevance filtering. Rele-
vance filtering looks to reduce the search space for a resolution problem by using
heuristics to determine which lemmas from a given set are unlikely to contribute
in finding a proof for a theorem.



Chapter 6

Exploring a theory

During a theory exploration, an exchange between Isabelle/HOL definitions
and Haskell code takes place via Isabelle’s code exporting functionalities and
HipSpec’s output. Attempts to construct formal proofs in Isabelle/HOL for the
conjectures rendered by co-joint work of HipSpec and QuickSpec then follow.

The aforementioned Hipster tactic options may be adjusted to set up the
exploration and its proofs.

Even though the new default, complete tactic for induction performs sim-
plification followed by metis, it is possible for a user to employ different tactics
and easily construct new ones based on the now supported recursion induction
tactic. Similarly, a tactic employing structural induction but no recursion induc-
tion is also available and can as well be combined with other kinds of reasoning
posterior to the induction phase.

As introduced in Section 3.1, the same way induction tactics can be tailored,
Hipster’s exploration procedure can be adjusted via the tactics parameterising
it. The user has the possibility to easily set the pair of routine reasoning, that
which defines triviality for some setting, and hard reasoning tactics to their
convenience.

For the present study, trivial reasoning was set to be non-inductive, con-
cretely, the kind of reasoning applied after setting up the induction: simplifica-
tion and first-order proving.

6.1 Exploration

Exploration can be triggered with one of two commands: hipster or hipster_cond.
Both of them are to be provided with the names of the definitions one wishes to
theory explore and extract properties about. When given several of them, they
are explored jointly leading to possibly discovering relations between them and
not only properties of individual operations.

To discover conditional lemmas, the latter command hipster_cond is to be
used. Given the complexity of deciding or discovering useful predicates (i.e.
predicates which in fact affect the way other operations behave when applied to
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common variables), Hipster currently takes a user-supplied predicate which is
to be provided as the first argument to the conditional exploration command.

For instance, we might want to explore the functions le and equality for
naturals eqN jointly for conditional lemmas with le as the predicate to explore
with. With eqN defined as:

fun eqN :: "Nat => Nat => Nat" where

"eqN Z Z = True"

| "eqN Z _ = False"

| "eqN _ Z = False"

| "eqN (S x) (S y) = eqN x y"

Hipster would be invoked providing in first place the predicate to employ as a
condition, followed by the rest of functions to explore:

hipster_cond le eqN

This would yield a series of lemmas not present yet in the theory, from those
involving either of the functions to those involving both, and both with and
without conditionals. Some example lemmas for this exploration are:

lemma lemma_a [thy_expl]: "eqN x y = eqN y x"

by (hipster_induct_schemes le.simps eqN.simps Nat.exhaust)

lemma lemma_ac [thy_expl]: "eqN x Z = le x Z"

by (hipster_induct_schemes le.simps eqN.simps Nat.exhaust)

lemma lemma_ag [thy_expl]: "le x y =) eqN x y = le y x"

by (hipster_induct_schemes le.simps eqN.simps Nat.exhaust)

lemma lemma_ai [thy_expl]: "le z y ^ le x z =) le x y = True"

by (hipster_induct_schemes le.simps eqN.simps Nat.exhaust)

The application of hipster_induct_schemes is a call to Hipster’s new re-
cursion induction tactic. Theory exploration provides the proving tactics with
two kinds of rules: x.simps, the simplification rules for some definition x, and
T.exhaust, associated to a datatype T and given as case distinction rules.

Limitations from the underlying QuickSpec and HipSpec shape what is feasi-
ble to explore. QuickSpec currently only supports unary and binary predicates
as conditions, and having a single predicate per exploration. The number of
atomic predicate applications allowed in the premise of discovered lemmas can
be set freely in Hipster. Nonetheless, due to efficiency constraints and the open-
ness of the question of constrained data generation, as assessed in [11], allowing
either one or two atomic predicates in lemmas’ side-conditions is what we con-
sider in this work and recommend for the use of Hipster as of now.

6.2 Proof loop

Once conjectures are collected from HipSpec’s output, the next step is to prove
as many as possible and filter out trivial properties. Just as the original Hipster
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did, the order of conjectures generated by HipSpec is kept the same during this
process. One of the important properties of this order is that of placing the
most general conjectures first, listing specific instances later. For instance, for
natural numbers and addition between them, (x + y) + z = x + (y + z)

would be listed before (x + y) + y = x + (y + y), where the free variable y

substitutes for z. By doing this, when a more general proposition is provable
without considering specific instances of it, the following specific instantiations
become trivially provable avoiding bringing redundant and trivial properties into
a theory development. It also avoids performing redundant proofs for properties
easily derivable from others.

For each examined proposition appropriate simplification rules for datatypes
derived from the theory’s definitions may be needed for the first-order reasoning
we apply, or any other reasoning for that matter. But, more importantly for
theory exploration’s purpose, previously discovered theorems are made avail-
able to automated tactics applied after the induction. In Section 6.1, the label
thy_expl in the declaration of each lemma defines each corresponding lemma
as belonging to the set of theory explored lemmas, allowing Hipster’s tactics to
look them up.

Options provided for the tactic will affect the proof loop, given the existence
of timeouts and theorem filtering. Consequently, some failed proof attempts
may still succeed (with the given tactic) after some adjustment of options.



Chapter 7

Evaluation

Evaluating automated tools for interactive theorem proving necessarily has to
consider some degree of interaction. Their performance with respect to their
intended use is otherwise hard to analyse. Scope of proving capability has been
the focus, an analysis which had not been performed for Hipster to the same
extent prior to this work.

Two forms of evaluation were taken:

• Case studies on algebraic data types and operations on them. In particu-
lar, focusing on inductive theories for:

– natural numbers: with basic arithmetic operations and comparison
– lists: with basic (polymorphic) functions (len, last, take, zip, count,

etc.)
– sorting: proving insertion sort’s correctness on lists.

• Evaluation on a subset of TIP (Tons of Inductive Problems [14]), a new
set of benchmarks and challenge problems for inductive theorem provers,
recently made available.

7.1 Interactive case

As introduced already, automating the proof of correctness for insertion sort
was a motivating case. To showcase Hipster’s handling of conditional lemmas
and their necessity, we present its theory development here1.

Assuming the introduced datatype definitions for lists and natural numbers
and the less-or-equal operator le (and no prior, additional lemmas), based on
the function definitions:

fun sorted :: "Nat List ) Bool" where

"sorted Nil = True"

1Source code for Hipster and examples presented are available online: https://github.
com/moajohansson/IsaHipster
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| "sorted (Cons _ Nil) = True"

| "sorted (Cons r (Cons t ts)) = (le r t ^ sorted (Cons t ts))"

fun insert :: "Nat ) Nat List ) Nat List" where

"insert r Nil = Cons r Nil"

| "insert r (Cons t ts) =

(if (le r t) then Cons r (Cons t ts)

else Cons t (insert r ts))"

fun isort :: "Nat List ) Nat List" where

"isort Nil = Nil"

| "isort (Cons t ts) = insert t (isort ts)"

The theorem corresponding to the algorithm’s correctness is:

theorem isortSorts: "sorted (isort ts)"

Running exploration directed to solve the theorem alone will not find appro-
priate sub-lemmas that would together immediately prove it. Since we have two
different predicates used in the definition of terms appearing in the main goal
theorem, le and sorted, apart from exploring the theory for equational lemmas
we should consider running an exploration to discover conditional ones.

Starting from the components, exploration for conditional lemmas about le

would be invoked with the command:

hipster_cond le

It yields 7 lemmas, all proven by Hipster’s tactic, of which 4 are conditionals.
These four lemmas already require recursion induction in their proofs and are:

lemma lemma_ac [thy_expl]: "le x y =) le x (S y) = True"

by (hipster_induct_schemes le.simps Nat.exhaust)

lemma lemma_ad [thy_expl]: "le y x =) le (S x) y = False"

by (hipster_induct_schemes le.simps Nat.exhaust)

lemma lemma_ae [thy_expl]: "le y x ^ le x y =) x = y"

by (hipster_induct_schemes le.simps Nat.exhaust)

lemma lemma_af [thy_expl]: "le z y ^ le x z =) le x y = True"

by (hipster_induct_schemes le.simps Nat.exhaust)

Concretely, the critical lemmas for the rest of the proof are the first two. The
latter two correspond to reflexivity and transitivity for less-or-equal, lemmas
whose proofs were not automatic with Hipster before.

QuickSpec does not produce conjectures with inequalities nor negations, thus
it can be useful to explicitly explore the negation of predicates in a theory. In
the case for le we get new lemmas:

lemma lemma_ah [thy_expl]: "le (S x) y = (¬ le y x)"

by (hipster_induct_schemes le.simps Nat.exhaust)
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lemma lemma_ai [thy_expl]: "(¬ le x y) =) le x Z = False"

by (hipster_induct_schemes le.simps Nat.exhaust)

lemma lemma_aj [thy_expl]: "(¬ le y z) ^ (¬ le x y) =) le x (S Z) = False"

by (hipster_induct_schemes le.simps Nat.exhaust)

Next, one would think of running exploration on the functions isort, insert

and sorted, taking sorted as a possible side-condition:

hipster_cond sorted isort insert

However, none of the most general and interesting lemmas discovered by said
exploration, such as isort (isort x) = isort x turn out to be provable yet. On
occasions, non-fully typed searches for first-order proofs will not succeed, despite
all necessary helping lemmas being available. Adjusting the system’s options to
have metis’ search use full types gives the proof for a vital discovered lemma,
the invariant guaranteeing correctness to insertion sort:

lemma isortInvariant [thy_expl]: "sorted ys =) sorted (insert x ys) = True"

by (hipster_induct_schemes sorted.simps isort.simps insert.simps)

During this last exploration, our main theorem is in fact discovered along
with other interesting lemmas, all of which can be now proven automatically by
using the sub-lemma isortInvariant:

theorem isortSorts [thy_expl]: "sorted (isort x) = True"

by (hipster_induct_schemes sorted.simps isort.simps insert.simps)

lemma isortFixes [thy_expl]: "sorted x =) isort x = x"

by (hipster_induct_schemes sorted.simps isort.simps insert.simps)

lemma insertComm [thy_expl]: "insert x (insert y z) = insert y (insert x z)"

by (hipster_induct_schemes sorted.simps isort.simps insert.simps)

A single invocation to the recursion induction tactic manages to prove these
statements, simplifying the interaction with the proof assistant. The recursion
induction approach therefore proves to be of good aid in automating proofs. The
lemma isortInvariant is crucial in the previous proof, highlighting once again
the need for support of conditional lemmas in automated inductive proving. In
its case, it is the induction scheme arising from the recursion in sorted that
allows to complete the proof.

Lastly, the benefit of an interactive environment is being able to parameterise
the proving methods with adequate options as one works along. This supervised
automation can be of great utility to a user during a formal theory development.

As a side note, if we were to use Isabelle/HOL’s pre-defined types for natural
numbers and lists, the exploration would have been different. In such a case,
we would have been able to count on the notion of order defined for naturals,
and exploring the lemmas about less-or-equal would not have been necessary.
Conditional exploration on sorted along with isort and insert would have suf-
ficed to obtain the missing auxiliary lemma isortInvariant and complete the
theorem’s proof. Enabling full typed search for metis would not have been
necessary either.
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7.2 Tons of Inductive Problems (TIP) benchmarks

From TIP, we evaluate Hipster’s proving ability over two subsets of problems
employed in previous works on inductive theorem proving: Johansson, Dixon
and Bundy’s work on case-analysis for rippling [25] (we denote it case-analysis),
and prior work by Ireland and Bundy on employing proof failure to guide lemma
discovery and patch inductive proofs [24] (we denote it prod-failure).

7.2.1 Method

To evaluate performance on TIP problems, we consider a set up where each
problem is considered in isolation. Only the theory definitions required to ex-
press it are given and no auxiliary lemmas are provided to the prover, just those
discovered for the isolated problem.

For each problem, theory explorations were first run on individual functions
appearing in its definition, jointly with their auxiliary functions. After, if the
goal theorem had not been proven yet, exploration was run on groups of func-
tions co-occurring in the problem’s formulation. Not all problems required an
exhaustive exploration about all functions appearing in them, so more func-
tions were added to explorations as required. For instance, some problems were
immediately solvable by Hipster’s new tactic with no prior exploration, whilst
others only needed exploration for a predicate involved in a conditional.

As explained earlier, conditional lemma discovery is limited to explore a
single predicate to define the premise at a time. For the present set of problems
this has sufficed.

Additionally, to test Hipster’s capacity when working on strictly newly de-
fined theories and datatypes, no assumptions nor properties from theories in
Isabelle/HOL were considered during proof search. As an example, natural
numbers are not Isabelle/HOL’s already available ones, but redefined in cases
they are used. Hence, predefined notions of orderings and other properties do
not play a part in proofs obscuring the results of Hipster’s actual work. In this
way, we only consider as the base starting point a set of definitional statements,
aligning with the purpose of proving based on structure and construction of
programs.

Examples of theorems found in the evaluation set are:

le (count n xs) (count n (append xs ys))

filter p (append xs ys) = append (filter p xs) (filter p ys)

zip (append xs ys) zs

= append (zip xs (take (length xs) zs)) (zip ys (drop (length xs) zs))

rotate (length x) x = x
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7.2.2 Results

From the benchmarks, the following statistics, which we later compare with
other provers’ (Chapter 9), were gathered:

Case-analysis Prod-failure
EQ COND EQ COND

Total number of benchmarks 71 15 38 12
Fully automated 67 14 29 12
Partially automated 4 0 6 0
Prior exploration 33 4 34 4
Conditional exploration 6 2 2 3
Recursion induction 29 6 1 1
Recursion induction on sub-lemmas 16 1 5 0
Filter theorems for FO prover 3 0 0 0

Table 7.1: Total number of problems evaluated from the benchmarks (all prob-
lems from case-analysis and prod-failure) and Hipster’s performance on them.
Columns EQ and COND collect results for equational and conditional lemmas
respectively.

The resulting theory files to the tests are available online for both the case-
analysis and prod-failure sets2.

Fully automated Full automation refers to solving a problem entirely only
with lemmas discovered by Hipster’s theory exploration and Hipster’s auto-
mated recursion induction tactic. Overall, the rate of fully automated provabil-
ity on the benchmark set is observed to be high: 90%. For conditional lemmas
in the test set this rate is higher, 96%.

Partially automated A number of theorems (problems 52, 53, 72, 74 from
case-analysis; and 2, 4, 5, 20, 22, 23 from prod-failure) required one of the fol-
lowing two similar lemmas, not automatically proven in a first instance (neither
by structural nor recursion induction):

length (append x y) = length (append y x)

count z (append x y) = count z (append y x)

These two lemmas are discovered. In both cases, a single additional lemma
which is not discovered would allow to complete the proof. Specifically, the
respective lemmas were:

length (append xs (Cons y ys)) = S (length (append xs ys))

count z (append xs (Cons z ys)) = S (count z (append xs ys))

For efficiency reasons, lemmas are only constructed with terms up to a cer-
tain depth, 3, during theory exploration in Hipster using the underlying Hip-
Spec/QuickSpec, whilst the required lemma has term depth 4. With depth limit

2https://github.com/moajohansson/IsaHipster

https://github.com/moajohansson/IsaHipster
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4 QuickSpec can generate such a conjecture. These auxiliary lemmas are proven
by Hipster’s tactic and once they are added to the affected problem theories,
the remaining proofs are all automated by Hipster.

Examples of these partially automated theorems are:

rev (drop i xs) = take (minus (length xs) i) (rev xs)

half (length (append x y)) = half (length (append y x))

count n xs = count n (rev xs)

If we include the function for addition on natural numbers, however, enough
lemmas are automatically discovered to prove length (append x y) = length

(append y x) and count z (append x y) = count z (append y x) without
needing any other intervention (only including addition in the theory exploration
for each of these, few, theorems; see Section 8.2 for details).

Theory exploration Over half of the problems required prior lemma dis-
covery. This indicates the benefit of theory exploration since otherwise their
provability in this context would not have been feasible. Equational lemmas
were much more likely than conditionals to need exploration. Equations are
unrestricted and can be more general, potentially requiring more steps to as-
sess their different case branches. However, the number of conditional problems
in these benchmarks is low, and one cannot draw conclusions as to whether
exploration becomes less necessary, or not, when a statement to be proven is
constrained by a side-condition.

A smaller subset of problems were provable with the aid of conditional ex-
ploration, namely those involving functions defined in terms of some predicate.

Recursion induction Whereas recursion induction might not have been nec-
essary as often as theory exploration (whether for the main theorem or any
auxiliary lemmas), its impact is still notable.

Overall, there seems to be a trade-off between using weaker induction schemes
(structural induction) and reducing the number and complexity of needed aux-
iliary lemmas. Structural induction was always attempted first by the tactic,
meaning theorems solved via recursion induction (around a third of the bench-
marks) would have not been solved otherwise, at least not with the degree of
exploration carried out.

The results suggest recursion induction can save on exploration time, since
it provides appropriate induction patterns that avoid the need for sub-lemmas
about specific constructor combinations.

Tactic options In a few cases, the default tactic options were not adequate
for a proof to be constructed.

Firstly, when theories are explored not all discovered lemmas will be mean-
ingful or useful to solve the main theorem at hand. Nonetheless, in our au-
tomated setting these are also imported into the theory, forming part of the
set of theorems employed by the tactic during first-order reasoning. With an
increasing number of lemmas to consider, automated tactics such as metis slow



CHAPTER 7. EVALUATION 32

down and might not find a proof before the set timeout (our interest is to find
proofs relatively fast). In a regular session this would not be a particular issue
since one may interactively remove from the set of theory explored lemmas those
which are not relevant for a specific theorem.

This portrays the relevance of supporting lemma filtering for the different
building blocks of a general tactic, which we discuss later (Section 8.5). Such
an option in Hipster is new and still primitive: one can filter lemmas in terms of
what the proposition to prove at hand is, although a study on possible filtering
approaches was outside the aim of this work. Nonetheless, a user could freely
define such filter functions for Hipster, a useful feature we intend to develop
further.

In the 3 cases encountered (problems 22, 31 and 73 from case-analysis), an
existing fallback solution to metis’ application in which no discovered lemmas
were provided and with a higher timeout was enough. These 3 problems required
recursion induction in their proofs too.

Secondly, a couple of cases involving lemmas on sorting required to set metis
to use fully typed proof search (problems 77 and 78 from case-analysis), which
correspond to theorems related to the proof of insertion sort’s correctness (as
seen as well in the case study in Section 7.1).

Technical limitations The current underlying implementation for theory ex-
ploration has some inefficiencies in the random term generation performed by
QuickSpec. In Hipster, random datatype generators for the Haskell definitions
exported from Isabelle are derived automatically and hence are bound to be
more inefficient than a manually defined one. For values or functions with rapid
growth, their performance scales badly.

This led to three specific problems in prod-failure to not be feasible to explore
during evaluation and hence fail:

fac x = qfac x one

mult x y = mult2 x y Z

exp x y = qexp x y one

In these lemmas, fac and exp are typical definitions of the factorial and
exponentiation operators, whilst qfac and qexp are their corresponding tail-
recursive versions. Similarly with mult and mult2 for multiplication, where the
latter has a third accumulator parameter.

The commutativity and associativity of addition and multiplication are part
of what caused a very high number of terms to be generated for exhaustive
evaluation in QuickSpec, as well as combinatorial issues coming from a three
argument function. Work towards a second version of QuickSpec, however, has
increased efficiency to a great extent and future integration with the new version
will bring those benefits to Hipster too.
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Discussion and further work

Results gathered during evaluation and observed during individual theory de-
velopment show recursion induction allows for better automation in the search
for inductive proofs. They also point to new directions in which to advance
automated inductive proving.

8.1 Gains from recursion induction

Overall, recursion induction improves automation of induction by tailoring the
scheme of induction used directly to the terms appearing in a proposition. In our
benchmark testing, around a third of the studied problems required recursion
induction in their proofs.

Even though one of the original thoughts was to allow conditions on lemmas
to give structure to a proof’s induction cases, during evaluation it was observed
to be most often the case for functions in the conclusion statement to drive
the proof with their definition structure. Such is the case of (having lt as the
less-than operator on natural numbers):

lt n (length xs) =) last (drop n xs) = last xs

for which the recursion scheme of last led to a complete proof. For conditional
theorems like this one, where the outermost operator applied in the conclusion
recurses over a different structure or argument than the outermost operator of
the premise, recursion induction deriving from the conclusion’s structure was
observed to be the successful scheme to follow.

The current tactic does not employ a specific heuristic in choosing a recur-
sion induction scheme. Studying possible heuristics to employ, especially for
theorems with much larger terms, is future work and this last observation a
starting point to it. Whether an outermost function should be considered be-
fore inner ones is also a factor that the present work has not studied but could
influence speed in finding the appropriate induction scheme.

The experiments highlight the usefulness of recursion induction in general,
not just for conditional theorems. A notable gain, affecting both conditional and

33
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equational lemmas, is that of having the capability of performing simultaneous
induction, whereas previously only structural inductions on a single variable
were performed by Hipster. Simultaneous induction schemata are those induct-
ing over more than one variable at a time, whether those variables are of the
same type or not. Such is the case of the scheme derived from the definition
of the list function zip, which corresponds to the special pattern of parallel
induction on 2 lists:
ZipInd

8ts P (Nil, ts) 8z, rs P (Cons z rs,Nil)
8z, y, rs, ts (P (rs, ts) =) P (Cons z rs, Cons y ts))

8xs, ys P (xs, ys)

With that possibility, theorems like:

zip (append xs ys) zs =

append (zip xs (take (length xs) zs)) (zip ys (drop (length xs) zs))

are provable, after some initial exploration of other functions involved. And for
the following alternative related conditional theorem, the proof becomes direct
and needs no prior theory exploration:

length a = length b =)
append (zip a b) (zip c d) = zip (append a c) (append b d)

An additional gain is therefore that of more concise proofs where less logical
steps are required.

Neither of these lemmas was provable before, even having done exploration
for all the occurring functions in them. Hipster’s prior structural induction
approach could not capture in a scheme the relation between two variables. In
these two cases, zip traverses its arguments taking steps on both at the same
time, a pattern we can only capture with some form of simultaneous induction.
Instead of synthesising a series of possible simultaneous induction schemata,
recursion induction gives us an immediate choice which is also closer to the
problem at hand.

8.1.1 Other patterns

The work so far has focused on regular induction patterns, but still indicates
that more complicated kinds of inductive proving could gain from the use of
recursion induction.

Mutual induction and co-induction proofs could gain in the same way from
the use of recursion induction. Currently, Hipster does not handle datatypes
or functions with these recursion patterns in any particular way and will hence
fail at proving properties involving such definitions. Nonetheless, its current
tactic structure would allow for a straight-forward first implementation to assess
the possible benefit of using recursion induction for mutually recursive and co-
inductive patterns.
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8.1.2 Creating schemata

It would be a possibility to have Hipster generate arbitrary induction schemata,
depending on the variables it encounters in a theorem to prove and the structural
induction schemata over their types. This would make the choice for schemata
broader and increase likelihood of encountering a successful scheme. Of course,
one would face the challenge of implementing an automated proof for arbitrary,
on-demand constructed induction rules, since induction schemata ought to be
proven theorems in Isabelle in order to be applied. Alternatively, induction
schemata proven by the user could be taken by Hipster as a parameter.

It is uncertain, though, how much the automated proof could benefit from
this. Right now, by using induction patterns derived from symbols involved
in a pending goal, we both reduce the search space for schemata and employ
schemata adapted to the relations function application creates between variables
in the goal theorem.

8.2 Relating functions

For the set of problems evaluated, to complete the proof of 10 theorems one
of two specific lemmas, which were not proven automatically despite being dis-
covered, was key, as indicated in Table 7.1 and further explained in Subsection
7.2.2:

length (append x y) = length (append y x)

count z (append x y) = count z (append y x)

When, however, explored jointly with addition for natural numbers plus,
other discovered terms associating plus to append and count respectively, and
addition’s own properties, make these two lemmas provable. Concretely, the
following are crucial:

length (append x y) = plus (length x) (length y)

count z (append x y) = plus (count z x) (count z y)

plus x y = plus y x

The target benchmark problems were defined in terms of length or count,
append and other functions depending on append (such as rev), but none of
them depended on the definition for addition on natural numbers. Hence, theory
exploration does not include addition to the exploration automatically.

In an interactive setting, a user would of course be able to see a possible pat-
tern with functions portraying similar relations to each other and interactively
invoke an appropriate theory exploration.

One can observe that both append and plus cover their respective 2 argu-
ments linearly with the same pattern. For both cases, the outermost function
applied, length and count respectively, relates the two argument datatypes lin-
early too. Furthermore, these will in fact act as relating functions between
append and plus. Adding plus interactively, Hipster discovers and proves au-
tomatically the stated crucial lemmas. Recursion induction schemata and their
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comparison could be a way for automating the association of functions on differ-
ent datatypes with each other and with a relating function, potentially helping
in the decision of which independent definitions to theory explore jointly.

These examples seem to indicate that recursion induction may not suffice
when a non-commutative operation nested within another has commuting argu-
ments at each side of an equality. At least not in the absence of smaller related
lemmas corresponding to subgoals. This seems reasonable: the structure of the
terms at each side of the equality will differ upon induction.

8.3 Depth-limited discovery

An unavoidable problem for lemma discovery is that of needing to set a limita-
tion to the terms generated.

For larger discovered expressions, other seemingly more complicated (with
more symbols) but more specific expressions might be useful as sub-lemmas
towards their proof. Currently, the depth of terms’ expression trees considered
during theory exploration via HipSpec and QuickSpec is bounded for efficiency
reasons.

Taking the previous example, this leads to an expression like the following
to not be discovered:

length (append ys (Cons x xs)) = S (length (append ys xs))

This conjecture can be proven automatically by Hipster’s tactic, and can be
used as a sub-lemma to prove one of the main propositions referred to in the
previous section (Section 8.2). The depth of each of the expressions at either
side of the equality, however, is 4 whereas expression depth limit is at 3.

We already spoke then about finding relator functions being a question of
interest. For some cases, though, a different discovery process could enable the
same end results whilst being a more direct approach.

For instance, assuming a depth limit of n, a heuristic for relevant term
generation would be to allow tree expression depths of n + 1 for expressions
with a type constructor as one of its nodes. Potentially, this would yield non-
trivial variations on discovered lemmas, like the one above, that can break down
reasoning further into steps a single induction could handle.

For the most part, these issues have been handled in a newer version of the
tool behind conjecture generation: QuickSpec 2, soon to be released. Schemata
are employed in term synthesis meaning much greater depths can be reached in
less time, as they present in a recent technical report1. Hipster will undoubtedly
benefit from this once HipSpec is also fully integrated with QuickSpec 2.

1http://www.cse.chalmers.se/~nicsma/papers/quickspec2.pdf
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8.4 Chaining inductions

As presented, Hipster’s approach is to apply a single induction at a time. Hip-
ster could be extended further with the possibility of chaining inductions in
an automated way. Limits to the number of consecutive inductions to per-
form can be naturally imposed by the number of existing, distinct free variables
in a proposition allowing for a single instantiation of each variable in all the
successive recursion inductions performed. However, this still eventually leads
to a combinatorial problem, especially so when considering different recursion
induction schemata as potential induction methods.

A different approach is HipSpec’s: all inductions are structural, but it may
apply structural induction simultaneously over more than one variable. The
resulting induction schemata have a structuring effect similar to that of consec-
utive structural inductions although they differ in an important aspect: their
inductive step. This approach yields very good results on the subset of TIP
tested and presented here as well.

Being it that recursion induction can consider several variables simultane-
ously, though, Hipster’s new tactic can make up for some of the induction chain-
ing. For instance, for the theorem:

take n (drop m xs) = drop m (take (plus n m) xs)

Hipster can prove this theorem after simple theory exploration by take’s recur-
sion induction scheme, instantiating it with m and xs, whilst, comparatively,
HipSpec employs simultaneous structural induction on n, m and finally xs (form-
ing a more complex induction scheme) after a corresponding theory exploration.
It must be noted in this case, for the comparison to be meaningful, that Hip-
ster requires fewer auxiliary lemmas discovered for said problem; in fact, for
Hipster it suffices with individual exploration of the functions appearing whilst
reported HipSpec results show auxiliary lemmas combining different functions
being discovered and proven too towards the proof of the problem.

Worthy of noting is also the fact that recursion induction need not be neces-
sarily replaceable by chained inductions, as for instance, the already presented
simultaneous induction due to zip breaks down arguments in parallel not in
sequence.

Aside from these aspects, as a tool meant for an interactive system, it is
preferable for Hipster’s tactic’s work to not perform more than one unit of rea-
soning per application. Its current application involves several sub-units making
it somewhat complex, but only up to a point where it can define whether a spe-
cific recursion induction would be successful. Any further inductions required
should be solved in sub-lemmas so as to minimise complexity of automated
proofs.

8.5 Exploration theorem set

As already touched upon, which theory explored lemmas should further be em-
ployed, when applying first-order reasoning or other methods, following the
recursion induction instantiation is an important question to further study.
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Adding too many or irrelevant ones slows down the automated proof search.
This search not only depends on the goal theorem at hand in each proof, but
also on which other theorems are in the exploration theorem set.

Hipster currently leaves this mostly up to the user to define and modify
via simple options if wanted. Work on Sledgehammer’s development led to
the design of relevance filtering methods [32], attending in particular at those
generated by means of automated, mechanical procedures. These methods use
machine learning to automatically select seemingly relevant lemmas for a given
goal. Being it that Hipster generates lemmas mechanically, and with a grow-
ing set of discovered lemmas during a theory development, incorporating those
methods would not only speed up the tactic’s performance, but also lead to
a higher success rate. Additionally, the proof loop during exploration in itself
would also benefit from it.

In contrast to the previous Hipster induction tactic, which also provided
simplification procedures with the theory explored lemmas, the new tactic does
not do so. By providing the first-order prover with the function simplification
rules and theory explored lemmas, the same sub-goals can be proven. The
difference is we do not risk non-termination of the simplifier because of unsafe
discovered lemmas for rewriting.

8.6 Structured proofs

Proofs delivered by Hipster are applications of the implemented tactic.
When working with Isabelle and within its community, especially with the

introduction of the Isar language, there is an emphasis on the benefits of pro-
ducing structured proofs [51]. Unlike a tactic application style, Isar aims to
enable writing human-readable mechanised proofs, minimising the explicit use
of proof-search based methods in final proof documents. Apart from improving
readability and logic understanding from the reader’s perspective, this approach
produces easier to maintain proofs.

In Hipster’s current infrastructure, extracting the specific recursion induc-
tion and instantiation which was successful is feasible and straight-forward. A
future aim is for Hipster’s tactic not only to prove but also to translate and
export its reasoning procedure as a structured proof for the user to use in the
final proof document, following in the style for structured induction presented in
[49] and aligning with the general aim to have structured proofs as a standard,
serving as better documentation of what steps the tactic is actually taking too.
This would have the added benefit of a more streamlined replaying of already
found proofs, without requiring a new proof search.

In this line, exploiting other Isabelle tools’ possibilities would help in better
proof construction. Concretely, and again, Sledgehammer would help in min-
imising the amount of lemmas employed during first-order reasoning in these
structured proofs.
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Related work

Induction schemata and procedures vary from automated reasoning system to
system, which we briefly review and compare here.

Whilst Hipster interfaces with HipSpec for theory exploration, none of the
proving capabilities of Hipster depend on HipSpec. HipSpec instantiates induc-
tion schemata based on structural induction, with the possibility of it being si-
multaneous, and then employs first-order provers to complete the proofs, whilst
Hipster constructs a proof within Isabelle/HOL.

SMT solvers have started, as of recent, incorporating induction proving ca-
pabilities. These tools follow a top-down approach in conjecture generation,
most commonly via strengthening of the original conjecture or subgoals arising
in a proof. Such is the case for CVC4 and Pirate, already introduced in Section
2.5. Pirate’s induction application is guided by a heuristic based on superposi-
tion, and it performs conjecture strengthening via generalisation of sub-terms in
expressions. A particularity of Pirate is it employs strong structural induction.

Of relevance are also Isabelle/HOL’s other two systems for induction and in-
ductive theory lemma generation: IsaCoSy [26] and IsaScheme [34]. In contrast
to Hipster, IsaCoSy, as referenced earlier, synthesises irreducible terms as con-
jectures, filtering out by counter-example checking those which are refutable,
and then employs IsaPlanner’s induction techniques to prove remaining ones
[18]. Not only is lemma generation, and hence theory exploration, different
to Hipster’s, but also the approach in induction proving: IsaPlanner employs
proof planning critics based on rippling. IsaScheme tackles lemma generation
by means of using schemata, which are automatically instantiated but are to be
provided by the user. A comparison in terms of conjecture generation between
HipSpec/Hipster and these two systems shows the lemmas found are similar for
all three [13, 27].

In comparison to other (automated) inductive provers, the new Hipster is
the only one (to the best of my knowledge) to employ recursion induction.
Additionally, other theory exploration systems remain as automated tools whilst
Hipster aims to be an interactive tool to enable automation of certain proving
activities that is still flexible enough for tailored usage, allowing to implement
new proving tactics to apply during exploration and permitting adjustment
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of the existing ones. Other exploration systems do not support discovery of
conditional lemmas either, although Pirate, not a theory exploration system,
does have support for conditional theorems as well.

The test suites Hipster has been evaluated on serve as a good point of com-
parison with other inductive provers. The following table shows the number of
problems solved by some of the introduced provers, summarising the results pub-
lished in the already mentioned [47, 42, 13], and including those of Zeno’s per-
formance, a tool for proving equational inductive properties of Haskell programs
[45], the ACL2 Sedan prover [10], the Dafny system [30] and the proof-critics
based CLAM prover [24] (from which prod-failure benchmarks are extracted).

Case-analysis Prod-failure
Hipster 80 (84) [85] 41 (47)
CLAM - 41
HipSpec 80 44 (47)
Zeno 82 21
ACL2 Sedan 74 -
IsaPlanner 47 -
Dafny 45 -
CVC4 80 40
Pirate 85 [86] (47)

Figures in parenthesis indicate number of successful proofs after some adap-
tation of settings. Additionally, a last theorem not present in all benchmarks
was brought up in [47] (not yet published) as missed by some of the cited work:
lt x y =) elem x (ins y xs)  ! elem x xs; in square brackets we state the
results that are known when such a theorem is added. Note that the only work
including this problem is the cited Pirate and our own.

It is of interest to note that from the test suite we denote prod-failure, of a
total of 50 problems the cases where Hipster fails (problems 33-35, spoken of in
Subsection 7.2.2) are different to HipSpec’s and Pirate’s, with the exception of
33 in Pirate’s case. and due to issues in the theory exploration. It so is the case
as well that HipSpec and Pirate adapt their settings for those problems in the
cited results. Particularly, HipSpec employed adjusted settings in these three
cases, due to memory usage in QuickSpec, to be able to discover appropriate
helping lemmas. Hipster has not been evaluated with adjusted settings at the
HipSpec/QuickSpec level and hence the exploration phase was not feasible to
perform for them. With similar settings to HipSpec’s, there is a probability
problems 33-35 would be solvable in Hipster too.

With respect to HipSpec, with which exploration results are shared, the
failed problems for the first test suite (case-analysis, with a total of 85 problems
or 86 if the stated missing problem is considered) are different too, for the excep-
tion of problem 85 which so far only Pirate has shown to be able to prove. This
indicates recursion induction can play an important role in inductive proving.

Hipster performs on par to other state of the art automated inductive theo-
rem provers even if its intended use is as an interactive tool, a motivating factor
towards developing further the use of recursion induction.
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Conclusion

We had set out to add support for conditional lemma discovery and proof in
Hipster, an interactive theory exploration tool for Isabelle/HOL, with a focus
on inductive theories. The main contribution has been two-fold:

• a (novel) approach to inductive proof automation through application of
recursion induction (with automated selection of schemata), making the
most of the environment for our interactive tool, Isabelle, and producing
certified proofs

• an extension of Hipster’s equational lemma handling with support for
conditional lemma exploration and proof in Hipster, necessary in reasoning
about (recursive) programs and algorithm correctness.

In addition, we provide an evaluation of Hipster’s new capabilities on a set of
benchmarks recently presented and used in the literature of automated inductive
proving, as well as demonstrate its usefulness in an interactive setting. The
benchmark evaluation not only serves as evidence of our system’s potential and
capabilities, not shown previously to the same extent, but also sets it to be
on par with the latest and very recent work on automated inductive proving
whilst employing a kind of induction not applied by others. These benchmarks
also reflect Hipster’s gained ability to discover and prove conditional, inductive
lemmas.

Recursion induction gives Hipster a possibility it did not have before: follow-
ing simultaneous induction schemata. This has strengthened Hipster’s ability
to prove equational lemmas as well. Furthermore, after this experience with re-
cursion induction, support for other sorts of induction such as mutual induction
and co-induction stand as immediate extensions to implement for Hipster.

An important current limitation is efficiency in relation to the depth of ex-
pressions explored. However, the new QuickSpec 2 (to be released) is showing
a great improvement in this respect and with its future integration with Hip-
Spec/Hipster some of the barriers thus encountered will be overcome.

We further provide new parameters for the system that flexibilise it fur-
ther, for the user to tailor it to their needs and specific problem setting, and
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leave an open door to future work. New avenues include the development and
application of heuristics and relevance filtering (of lemmas) techniques to fur-
ther advance proof automation. Hipster could provide a good infrastructure for
experimentation in these topics.

Overall, results suggest that theory exploration and recursion induction can
be employed successfully in combination towards automated inductive proving,
not only for conditional lemmas, but in general. Most importantly, they reaffirm
Hipster’s advantage in an interactive setting.
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