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Propagation of Chaos for Kac-like Particle Models
Dawan Mustafa

Abstract

This thesis concerns various aspects of the Kac model. The Kac model is a
Markov jump process for a particle system where the total kinetic energy of the
system is conserved. This particle model is connected to a limiting equation, de-
scribing the evolution of a one-particle density, when the numbers of particles tends
to infinity. To rigourously derive the limiting equation, Kac proved that propagation
of chaos holds for his model. Vaguely speaking, here chaos or chaotic means that
the two-particle density can be written as a product of two one-particle densities
when the numbers of particles tends to infinity. Propagation of chaos means that
this property is propagated in time. The thesis contains three papers.

The thermosttated Kac model is particle model where the jumps are modeled as
in the Kac model. In additions to the jumps, the particles are accelerated between
the jumps under the presence of a uniform force with a thermostat, acting equally
on all particles. The thermostat ensures that no extra energy is supplied into the
system by the force. In paper I we show that propagation of chaos holds for the
thermosttated Kac model.

In paper II we study a modified Kac model where the expression for the kinetic
energy of a particle is replaced by an arbitrary energy function. This includes a one-
dimensional Kac model for relativistic particles. We show that uniform distribution
on the manifold defined by the conservation of total energy is chaotic. We also show
that propagation of chaos holds for these modified Kac models.

The BGK equation is an approximation to the Boltzmann equation by a re-
laxation term. In paper III we study a particle model involving jumps and ex-
changes between particles. We show that this particle model is connected to the
one-dimensional spatially homogeneous BGK equation when the numbers of parti-
cles tends to infinity.

Keywords: Master equations, chaotic densities, kinetic equations, propaga-

tion of chaos, Kac model, thermostatted master equation, Boltzmann equation,

BGK equation, quenched process, uniform distribution, spectral gap, approxi-

mation process
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Introduction

1. Overview

In many situations regarding a mathematical model of the real world,
one needs to take into account the large number of particles (elements)
the system is composed of. In a mechanical system, a gas is composed of
more than N ∼ 1019 particles (molecules) in a volume of 1 cm3, galaxies
are made of hundreds billions of stars. From the point of view in biology,
a population may consist of millions of individuals. Tracking the motion
of each particle in a gas is a very difficult task if not impossible. To begin
with, one needs to specify initial information of positions and velocities of
all the particles. This is enormously difficult due to the large number of
particles the gas is composed of. Even if initial data is specified, one has to
use a computer to solve 3N + 3N equations to determine the evolution of
the positions and velocities of the particles. There are no powerful enough
computers to handle this in a reasonable time amount.

In statistical mechanics powerful methods and tools have been devel-
oped during the years to replace the complicated description of a system
consisting of a large number of particles in terms of averages. The aim is to
explain observable and measurable quantities on the basis of the behaviour
of the particles (atoms) in the system. These averages are in some cases de-
scribed by time evolution equations called kinetic equations. In the kinetic
theory of dilute gases, one such famous equation is the Boltzmann equation,
and for the motion of galaxies , the Vlasov equation.

The original derivation of the Boltzmann equation is based of on the
physical laws of the pairwise interaction between particles in the gas. Al-
though, extensive research has been done, up until today, a satisfactory
mathematical derivation of the Boltzmann equation, valid over a macro-
scopic time interval, is an important open mathematical problem.

In 1956, Mark Kac published a paper, foundations of kinetic theory, [22],
in which a derivation of the Boltzmann equation is proposed by probabilistic

3



INTRODUCTION

methods. This thesis is devoted to the derivation of some kinetic equations
based on the probabilistic methods introduced by Kac.

2. Kinetic theory

At a macroscopic scale, a gas is described by quantities, such as macro-
scopic density, bulk velocity, pressure, temperature, heat flow, and mean
velocity. The equations of motions are given by the Navier-Stokes and Euler
equations. At a microscopic scale, the gas is described in terms of the inter-
actions of the molecules the gas is composed of, the equations of motions are
given by Newton’s equations. Kinetic theory is concerned with a description
of the gas between these two scales, a mesoscopic scale. The main idea is to
use a statistical description of the gas in terms of a distribution function f
which in mathematical literature usually is interpreted as a one particle dis-
tribution, giving the probability of finding one particle in a specified volume
of phase space. More precisely, the goal is to obtain an evolution equation
of the non-negative distribution function f (x , v , t) defined on Ω×�3×�+,
Ω ⊂ �3. The variables x , v , t represent respectively, position, velocity and
time. The function f can also be interpreted as the number density, i.e., the
expected number of particles that can be found in a given volume of phase
space: Assume that the gas consists of N particles, which in the sequel we
assume that all are identical particles, i.e, all particles have the same mass.
Then at time t,∫

A

∫
B

f (x , v , t) dx dv , A× B ⊂ �3 ×�3

gives the expected number of particles having positions and velocities (x , v) ∈
A× B. The number of particles N is assumed to be very large. The evolu-
tion equation for f (x , v , t) together with boundary conditions is enough to
a give sufficient description of the gas. The reason is that the gas is made of
such a large number of particles that it can be regarded as a continuum and
f is a good approximation to the true density on a macroscopic scale. The
macroscopic quantities are computed in terms of the moments of f .

To derive the evolution equation of f , we consider first the case where
there no collisions and external forces. Then, the particles move along a
straight line, i.e., a particle having position and velocity (x , v) at time t0
moves to (x + (t − t0)v , v) at time t. The distribution function f remains
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INTRODUCTION

constant along this line, i.e.,

f (x , v , t) = f (x − (t − t0)v , v , t0).

The time evolution equation of f is

(2.1)
∂

∂ t
f (x , v , t) + v · ∇x f (x , v , t) = 0.

This evolution is known as the equation of free transport. If an external
force G(x ) acts on the particles, then evolution equation for the distribution
reads

∂

∂ t
f (x , v , t) + v · ∇x f (x , v , t) +G(x ) · ∇v f (x , v , t) = 0.

This is the case of the Vlasov equation and here it is assumed that G is a
divergence free force field.

Taking into account the effect of collisions between the particles cor-
respond to replacing the right hand side of equation (2.1) by an operator
Q( f , f ), called the collision integral, describing the change of the distribu-
tion under the influence of binary collisions between particles. The collision
operator will be described below. The evolution equation for f becomes

(2.2)
∂

∂ t
f (x , v , t) + v · ∇x f (x , v , t) = Q( f , f )(x , v , t).

This equation is known as the Boltzmann equation. It was derived by L.
Boltzmann in 1872. In fact, the weak form of the Boltzmann equation was
derived by J.C. Maxwell in 1967. The left hand side of equation (2.2) cor-
responds to the free flow of the particles, and the right hand side counts the
influence of the binary collisions between the particles. The equation taking
into account only the effect of binary collisions but no transport is known as
the spatially homogeneous Boltzmann equation, and is given by

(2.3)
∂

∂ t
f (v , t) = Q( f , f )(v , t).

For a thorough discussion on the Boltzmann, the interested reader may con-
sult the classical references [11] and [13]. For rather recent thorough sur-
vey on the Boltzmann equation, see [32].

In the remaining part of this introduction, only the spatially homoge-
neous case is considered. The collision integral has the following structure

(2.4) Q( f , f )(v , t) =

∫
�3

∫
�2

�
f ′ f ′∗ − f f∗

�
B(|v − v∗|,σ) dσ dv∗,
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INTRODUCTION

where the notations f , f∗, f ′ and f ′∗ specify respectively, f (v , t), f (v∗, t),
f (v ′, t) and f (v ′∗, t). The pair of velocities (v , v ∗) represent the velocities
of two particles after a collision, and the pair (v ′, v

′
∗) the velocities of these

two particles before the collision. The collisions are assumed to be elastic,
i.e., collisions preserve momentum and energy:

v + v∗ = v
′+ v

′
∗ and |v |2+ |v∗|2 = |v ′|2 + |v ′∗|2.

The pair (v , v ∗) defines a sphere with center at v+v ∗
2

and diameter |v − v∗|,
with the pair (v ′, v

′
∗) being antipodes on that sphere. A parametrization by

a unit vector σ ∈ �2 leads to

v
′ =

v + v∗
2

+
|v − v∗|

2
σ and v

′
∗ =

v + v∗
2
− |v − v∗|

2
σ.

In short, the collision integral (2.4) describes the loss of particles with ve-
locity v due to collisions with particles having velocity v∗, and the gain of
particles with velocity v due to collisions of particles having velocities v

′
and v

′
∗. The fact the collision integral involves products of the distribution

f is a consequence of Boltzmann’s stosszahlansatz assumption, the assump-
tion that two particles before a collision are uncorrelated. The rate at which
pairs of velocities in a given range collide depends on the kind of interac-
tion between the particles in the gas and this is described by the function
B(|v − v∗|,σ), called the collision kernel. In some cases B can be computed
explicitly. In the case of interaction between hard sphere particles

B(|v − v∗|,σ) = b0|v − v∗|,
where b0 is a parameter related to the surface area of a hard sphere.

If the interaction is instead given by an inverse power law, then

B(|v − v∗|,σ) = |v − v∗|r b(cosθ),

where the scattering angle θ is the angle between v− v∗ and v
′ − v

′
∗, that is

cosθ =

�
v − v∗
|v − v∗|

,σ

�
,

with r = s−5
s−1

and s > 2. The function b is implicitly defined and has a
non-integrable singularity as θ → 0:

sinθ b(cosθ) ∼ θ−1−ν ,

where ν = 2
s−1

. It is common to impose a cut-off condition which means that
sinθ b(cosθ) is integrable near θ = 0. The interaction is said to be hard

6



INTRODUCTION

potential if s > 5, and soft potential if s > 5. The case s = 5 is known as
a maxwellian interaction. The maxwellian interaction is independent of the
relative velocities. In this case

B(|v − v∗|,σ) = b(cosθ),

and under the assumption that, sinθ b(cosθ) is integrable, the interaction
is called cut-off maxwellian.

The conservation laws of the spatially homogeneous Boltzmann equa-
tion are determined by the properties of the collision integral. To see which
quantities are conserved, let φ(v) be a function of v such that the indicated
integrals exist. By repeated change of variables, the collision integral satis-
fies ∫

�3

Q( f , f )(v)φ(v) dv

=
1

4

∫
�

3

∫
�

3

∫
�

2

( f ′ f ′∗ − f f∗)(φ +φ∗ −φ′ −φ′∗)B dv∗ dσ dv .

(2.5)

A function φ(v) is called a collision invariant if∫
�3

Q( f , f )(v)φ(v) dv = 0.

From expression (2.5) it follows that φ(v) = 1 is a collision invariant, and
conservation of momentum and energy imply that φ(v) = v and φ(v) =
|v |2 are also collision invariants. These collision invariants correspond to
respectively, conservation of total mass, total momentum and total energy.

In addition to the collision invariants, Boltzmann also observed that
Q( f , f )(v) = 0 if and only if∫

�3

Q( f , f )(v) log( f (v)) dv = 0.

The unique solution to this equation is f (v) = M[ f ](v), where

M[ f ](v) =
ρ f

(2πTf )
3/2

exp

�
−|v − u f |2

2Tf

�
,
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INTRODUCTION

with ρ f , u f and Tf denoting respectively the density, mean velocity and
temperature of the gas:

ρ f =

∫
�3

f (v , t)dv ,

ρ f u f =

∫
�3

v f (v , t)dv ,

3ρ f Tf =

∫
�3

|v − u f |2 f (v , t)dv .

These expressions also make sense in the spatially dependent t case; then
the quantities ρ f , u f and Tf depend on the spatial variable x . The distri-
bution M[ f ] is called the Maxwellian distribution and describes the velocity
distribution of the gas in an equilibrium state.

The H-functional is defined by

H[ f ](t) =

∫
�3

f (v , t) log( f (v , t)) dv .

Boltzmann proved the celebrated H-theorem which states that, if f is a so-
lution to the Boltzmann equation, then

d

d t
H[ f ](t) ≤ 0.

The H-theorem says that the H-functional or entropy is non-increasing with
time and that the Maxwellian distribution is the only possible stationary
solution to the spatially homogeneous Boltzmann equation. Note that in
Physics, the common definition of entropy differs from the one given here
by a minus sign.

The H-theorem raised many controversies against Boltzmann because it
contradicted the time reversibility of the Newtonian mechanics for a particle
system. If one reverses the velocities of all the particles at time t = T and
follow their evolution backward, one finds that the particles at t = 0 have
minus initial velocities. Since the Boltzmann equation is obtained as the
number of particles tend to infinity one expects the reversibility property to
hold for the Boltzmann equation. But if f (v , t) is a solution to the Boltzmann
equation, then f (−v ,−t) is not a solution to the Boltzmann equation. This is
referred to as the Loschmidt paradox and seemed to be an obstacle towards
the derivation of the Boltzmann equation from the Newton’s equations by
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letting the number of particles tend to infinity. A rigorous mathematical
derivation of this was first obtained in 1975 by Lanford [23]. However, a
drawback with Lanford’s result is that it only holds for a short time, a result
for a large time scale is still missing. Recent results in this area can found in
[18], [28] and the references therein.

A simplified model used in applications is the so called BGK model in-
troduced by Bhatnagar-Gross-Krook [1], which is obtained by replacing the
collision integral Q( f , f ) in (2.3) by the Maxwellian M[ f ]. The full BGK
equation reads

(2.6)
∂

∂ t
f + v · ∇x f = τ(M[ f ]− f ),

where f = f (x , v , t). In this case M[ f ] is called a local Maxwellian since the
quantities ρ f , u f and Tf depend on x . Since these quantities are computed
from f , equation 2.6 is a strongly nonlinear equation. The local Maxwellian
M[ f ] has the same density, mean velocity and temperature as f . The pa-
rameter τ depends on the density and temperature of the gas. The BGK
equation satisfies the same conservation laws and H-theorem as the Boltz-
mann equation. An introduction to the BGK model can be found in [12].

In this thesis we only consider the spatially homogeneous BGK equation.
This equation is given by

∂

∂ t
f (v , t) = τ(M[ f ](v)− f (v , t)).

Without giving detailed information, we mention that the study of the
spatially homogeneous Boltzmann equation has made much progress and is
well understood today. A thorough discussion is given in [32]. The complete
Boltzmann equation (2.2) is less understood and the most general existence
theory so far is due to Di Perna and Lions, [15]. Uniqueness of these solu-
tions, in the general setting of L1 solutions is still an open problem.

3. A Probabilistic Approach

In an attempt to understand the validation of the spatially homogeneous
Boltzmann equation and the rate at which the solutions converge to equi-
librium, the Maxwellian, in a seminal work, Mark Kac [22] used a proba-
bilistic approach two answer these equations. Extensive research has been
performed to extended the ideas of Kac and answer some of the questions
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which was left unsolved in his paper. We are now giving a quite rather de-
tailed description of the Kac model since it builds the basis of the contents
in the thesis.

4. The Kac Model

The original model that Kac studied is a simple jump process model.
Consider N identical particles v1, . . . , vN where, each vi ∈ � represents the
one-dimensional velocity of the i-the particle. It is assumed that the total
kinetic energy in the system is conserved. The phase space of the particle
system is defined to be the sphere in �N ,

(4.1) �
N−1(
�

N) =

	
(v1, . . . , vN ) :

N∑
i=1

v2
i = N

�
Interactions between the particles are described as random collisions

involving two particles in such way that the total energy in the system is
conserved, the collision process is defined as follows:

(1) For i �= j, choose a pair (vi, vj) uniformly among the N(N−1)
2

possi-
ble pairs.

(2) Choose an angle θ according to an even probability density b(θ)
on the circle. In the original Kac model

b(θ) =
1

2π
.

(3) The pair (vi, vj) represents a point in the plane �2, and this point
is rotated around the origin with the angle theta. The new pair of
velocities (v′i , v′j) are given by

v′i = vi cosθ − vj sinθ ,

v′j = vj sinθ + vi cosθ .

The collision process preserves energy, i.e.,

v2
i + v2

j = v′2i + v′2j .

With V = (v1, . . . , vN ) denoting the state of the system before a collision,
the state of the system after a collision involving particle i and j is given by

Ri, j(θ)V = (v1, . . . , vi−1, v′i , vi+1, . . . , vj−1, v′j, vj+1 . . . , vN ).

In other words, a collision means that the point V jumps to the new point
Ri, j(θ)V in phase space. Repeating the steps above describes a random walk

10
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on the phase space �N−1(
�

N). Note that conservation of momentum has
been dropped since the velocities are one-dimensional. Requiring both con-
servation of energy and momentum would lead to the trivial process that
either the particles keep their velocities or exchange them.

So far time has not been mentioned. To obtain a complete stochastic
process it is assumed that the waiting times T between collisions are inde-
pendent and exponentially distributed with

�(T ) =
1

N
.

Since the exponential distribution has the memoryless property, the sto-
chastic collision process defined above describes a Markov jump process on
�

N−1(
�

N). With this choice of T , it follows that as N (number of parti-
cles) increases, the number of collisions also increases in such away that
the expected number of collisions per coordinate vj remains constant. For a
nice survey and introduction to the Kac model, see [31] and the references
therein.

To study the Markov process above, Kac considered the master equation
(Kolmogorov forward equation), describing the time evolution of the proba-
bility density on phase space. Assume that the point V initially is distributed
according to the probability density FN (V, 0) with respect to σN , the uni-
form measure on �N−1(

�
N). At time t, the density FN (V, t) satisfies the

following master equation

(4.2)
∂

∂ t
FN (V, t) =
 FN (V, t),

where

(4.3) 
 = N(QN − I)

with

(4.4) QN g(V ) =
2

N(N − 1)

∑
i< j

∫ 2π

0

g(Ri, j(θ)V)
dθ

2π
.

A thorough derivation of the master equation (4.2) can be found in [3,5–7].
The master equation has the expected properties, i.e, conservation of

mass and conservation of kinetic energy is fulfilled. To verify this, note that,
since σN is rotation invariant it follows QN is invariant on �N−1(

�
N) with

respect to σN . Moreover, by a standard computation it follows that QN is

11
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self adjoint on L2
�
�

N−1(
�

N), dσN
�

. Hence, multiplying equation (4.2) by

|V|k and integrating, it follows that

(4.5)
d

d t

∫
�N−1(

�
N)

FN (V, t)|V |k dσN = 0

for all k. Choosing k = 0 and k = 2 corresponds to conservation of mass and
conservation of kinetic energy, respectively.

The assumption that all particles are identical is reflected in the fact that
the initial probability density should be symmetric with respect to permuta-
tions of the variables v1 . . . , vN .

Definition 1. A probability density F is said to be symmetric on �N−1(
�

N)
if for any bounded continuous function g on �N−1(

�
N)∫

�N−1(
�

N)

g(V)F(V)dσN =

∫
�N−1(

�
N)

g(V e)F(V)dσ
N ,

where for any permutation e of {1, . . . , N},
V e = (ve(1), . . . , ve(N)).

It is easy to see that the master equation (4.2) preserves the permutation
symmetry.

Towards finding the connection between this particle process and Boltz-
mann equation, Kac studied the marginal densities of FN .

Definition 2. For 1 ≤ k < N , the k-th marginal f N
k (v1, . . . , vk) of a symmet-

ric probability density F on �N−1(
�

N) with respect to σN is defined by the
expression ∫

�N−1(
�

N)

g(v1, . . . , vk)F(V) dσN

=

∫
�k

g(v1, . . . , vk) f
N

k (v1, . . . , vk) dv1 . . . dvk,

where g is any bounded continuous function on �k.

12
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A standard computation yields

(4.6) f N
k (v1, . . . , vk) =

�
N

N −∑k
i=1 v2

i

∫
Ωk

F(V) dσk(vk+1, . . . , vN ),

where

Ωk = �
N−1−k (r) , r =

√√√√N −
k∑

i=1

v2
i ,

and σk is the uniform measure on Ωk.
The evolution equation for the first marginal of FN , f N

1 , is obtained by
integrating the master equation (4.2) over Ω1. This leads to

(4.7)
∂

∂ t
f N
1 (v1, t) = 2

�
N−v2

1∫
−
�

N−v2
1

2π∫
0

�
f N
2 (v
′
1, v′2, t)− f N

2 (v1, v2, t)
� dθ

2π
dv2,

where
v′1 = v1 cosθ − v2 sinθ , v′2 = v1 sinθ + v2 cosθ .

Note that the evolution equation for f N
1 is not closed because it depends

on f N
2 , and in general, the evolution of f N

k depends on f N
k+1. However, if

f N
2 (v1, v2, t) could be approximated by the product f N

1 (v1, t) f N
1 (v2, t) then,

equation (4.7) would look like the spatially homogeneous Boltzmann equa-
tion in one dimension with b = 1/π. To achieve this, Kac defined the notion
of probability densities having the "Boltzmann property". In modern lan-
guage, the Boltzmann property is referred to as probability densities being
chaotic. The formal definition within the framework of the Kac model is the
following

Definition 3. Let f be a given probability density on � with respect to
Lebesgue measure. For each N ∈ �, let FN be a probability density on
�

N−1(
�

N) with respect to σN . Then the family of probability densities
{FN}N∈� is said to be f -chaotic if

(1) For N ∈ �, FN is symmetric under permutations of the variables
v1, . . . , vN .

(2) For each fixed k ∈ �, the k-th marginal f N
k (v1, . . . , vk) of FN con-

verges to
∏k

i=1 f (vi), as N →∞. The convergence is in the sense

13
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of weak convergence of measures, that is, for any bounded contin-
uous function g(v1, . . . , vk) on �k,

lim
N→∞

∫
�k

g(v1, . . . , vk) f
N

k (v1, . . . , vk) dv1 . . . dvk

=

∫
�k

g(v1, . . . , vk)

k∏
i=1

f (vi) dv1 . . . dvk.

The interpretation of probability densities being chaotic is that, the joint
density of the the first k fixed velocities becomes asymptotically independent
when the total number of particles tends to infinity.

Note that, so far time has not been mentioned in connection with chaotic
probability densities. What Kac wanted to accomplish was to show that the
solution to the master equation (4.2) is chaotic. Since the solution only
depends on initial data, assuming that initial data is chaotic, one must show
that this property is propagated in time under the evolution (4.2). This is
called propagation of chaos.

One important result in [22] by Kac is the proof of propagation of chaos
for the master equation:

Theorem 4.1. Assume that the family of probability densities {FN (V, 0)}N∈�
is f (v, 0)-chaotic. Then, for all t > 0, the family of probability densities
{FN (V , t)}N∈�, that is, the solutions to equation (4.2) is f (v, t)-chaotic and
f (v, t) satisfies the Boltzmann-Kac equation

(4.8)
∂

∂ t
f (v, t) = 2

∫
�

2π∫
0

�
f (v′, t) f (u′, t)− f (v, t) f (u, t)

� dθ

2π
du,

with initial data f (v, 0).

The proof is based on careful analysis of the self adjoint operator 

defining the right hand side of equation (4.2) and a combinatorial argu-
ment. Although, the proof by Kac is powerful it has some important limita-
tions. The fact the collisions involve only two particles being independent
of all other particles is important in the analysis of 
 . In the Kac model
the collision kernel b(θ) = 1/(2π), this could be replaced by any bounded
collision kernel without changing the proof. However, the proof by Kac fails

14
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in the case when b also depends on the relative velocities. A detailed proof
of Theorem 4.1 compared to the one given by Kac can be found in [7].

5. Chaotic probability densities

As we have seen, the rigourous connection between the master equation
(4.2) and the Boltzmann-Kac equation (4.8) is available through the notion
of chaotic probability densities. We are now going to discuss the question
about which probability densities are chaotic. We start with a classical ex-
ample, [5]:

Example 1. Let

M(v) =
e−

v2

2

�
2π

.

Then, the uniform probability density FN on �N−1(
�

N) is M(v)-chaotic.
To see why this is true, recall that the surface area of the sphere �N−1(

�
N)

in �N is given by

|�N−1(
�

N)|= 2π
N
2 N

N−1
2

Γ(N
2
)

.

This together with (4.6) imply that, the k-th marginal f N
k of FN is given by

f N
k (v1, . . . , vk) =

Γ(N
2
)

N
k
2Γ(N−k

2
)

�
1−

∑k
i=1 v2

i

N

� N−k−1
2

.

Since

lim
N→∞

Γ(N
2
)

N k/2Γ(N−k
2
)
=

1

2k/2
,

it follows that, for any bounded continuous function g on �k

lim
N→∞

∫
�k

g(v1, . . . , vk) f
N

k (v1, . . . , vk) dv1 . . . dvk

=

∫
�k

g(v1, . . . , vk)
1

(2π)
k
2

k∏
i=1

e−
v2
i
2 dv1 . . . dvk.

(5.1)
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In [22] Kac described an approach to construct chaotic probability den-
sities on �N−1(

�
N). Let

(5.2) FN (v1, . . . , vN ) =

∏N
i=1 g(vi)∫

�N−1(
�

N)

∏N
i=1 g(vi) dσN

,

where g is a non-negative function satisfying some integrability conditions.
Using the saddle point method, Kac showed that the family {FN}N∈� is f -
chaotic, where

f (v) =
e−z0v2

g(v)
∞∫
−∞

e−z0v2
g(v) dv

,

and z0 > 0 is the unique solution to the equation

∞∫
−∞

e−z0v2
g(v) dv =

∞∫
−∞

v2e−z0 v2
g(v) dv.

By using a different method compared to Kac, based on a fourth moment
condition, Carlen, et al., in [5] showed the following:

Theorem 5.1. Let g be a probability density on � such that∫
�

v4 g(v) dv <∞,

∫
�

g(v)p dv <∞

for some p > 1. Then, the the family {FN }N∈� with σN now denoting the
normalized uniform measure on �N−1(

�
N), is g-chaotic.

For an extension of this result to a geometry for physical collisions, see
[10]. More information on the study of chaotic probability densities can be
found in [16], [30].

We now state the general definition of chaotic probability densities, and
an equivalent useful definition in terms of empirical measures, see e.g., [30].
Let E be a locally compact polish (separable and metrizable) space. Let P(E)
denote the space of probability measures on E, and Ps ym(E

N ) the space of
symmetric probability measures on the N -fold product space EN .
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Definition 4. Let f ∈ P(E) and FN ∈ Ps ym(E
N ). The family of probability

measures {FN}N∈� is f -chaotic if, for any fixed k and any bounded continu-
ous functions g1, . . . , gk,

(5.3) lim
N→∞

�
FN , g1 ⊗ · · · ⊗ gk ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸

N−k

�
=

k∏
i=1

< f , gi >,

where < f , g > denotes the integral of g with respect to the probability
measure f .

Condition (5.3) is equivalent to the statement that, the k-th marginal of
the probability measure FN converges weakly to f ⊗k on P(Ek) as N goes to
infinity.

For X = (x1, . . . , xN ) ∈ EN , the empirical measure μN
X
∈ P(E) is defined

by

(5.4) μN
X
=

1

N

N∑
i=1

δxi
.

The next lemma which can be found in [30] shows the connection between
f -chaotic and the convergence of the empirical measures:

Lemma 5.2. Let f ∈ P(E) and FN ∈ Ps ym(E
N ). The family of probability

measures {FN }N∈� is f -chaotic if and only if μN
X

converges in law to f as N
goes to infinity.

We end this section by giving an example of non chaotic families of
probability densities, for another interesting example, see [7].

Example 2. Let g be a probability density on �, and define

(5.5) FN (v1, . . . , vN ) =
1

N

N∑
i=1

g(vi)
∏
j �=i

δN (vj − vi).

where

δN (v) =

�
N

π
e−N |v|2 .

Then, the family {FN }N∈� is not chaotic.
Note that FN is a probability density on �N which is symmetric under permu-
tations of the variables v1, . . . , vN . The first marginal f N

1 (v1) of FN is given
by

f N
1 (v1) =

g(v1)

N
+

N − 1

N

∫
�

g(v)δN (v− v1) dv.

17
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We see that the first marginal converges to g(v1) when N goes to infinity.
The second marginal f N

2 (v1, v2) of FN is given by

f N
2 (v1, v2)

=
(g(v1) + g(v2))δN (v2− v1)

N
+

N − 2

N

∫
�

g(v)δN (v1− v)δN (v2− v) dv

This shows that it is not possible to express the second marginal as a product
of two first marginals when N goes to infinity.

6. Convergence to equilibrium

After proving propagation of chaos for the master equation and deriving
the Boltzmann-Kac equation, Kac wanted to relate the rate of convergence
to equilibrium of solutions to later equation to the rate of convergence to
equilibrium of solutions to the master equation.

The convergence to equilibrium of solutions of the Boltzmann-Kac equa-
tion has been studied by several authors, see, e.g., [8], [19], [25]. The
equilibrium solution is given by the one-dimensional Maxwellian

M(v) =
1�
2π

e−
v2

2 .

Concerning the master equation, its equilibrium solution is given by the con-
stant function 1 on �N−1(

�
N) with respect to σN , where this measure de-

notes uniform probability measure on �N−1(
�

N) induced by σN . A detailed
proof of this fact can be found in, e.g., [3], [22]. To compute the rate of
convergence to equilibrium, Kac considered the L2 distance and the spectral
gap of −
 defined by

ΔN = inf{−�g,
 g
� | < g, 1 >= 0,< g, g >= 1},

where the infimum is over all function g ∈ L2
�
�

N−1(
�

N), dσN
�

.
If FN (V, t) is the solution to the master equation with initial data given

by FN (V, 0), a standard computation (the spectral gap theorem) yields

‖FN (·, t)− 1‖2 ≤ e−ΔN t‖FN (·, 0)− 1‖2.

Kac was unable to compute the the exact value of ΔN and conjectured in
[22] that

lim inf
N→∞ ΔN > 0.

This conjecture was first proved in 2001 by Janvresse [21]. However, her
method gives no information about a lower bound for ΔN . Soon after this,
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Carlen et al. ([4]) were able to compute the exact value of ΔN for all N ≥ 2.
They showed that

ΔN =
1

2

N + 2

N − 1
.

Later, in [9] this result was extended to a 3 dimensional model including
momentum conservation.

The question now is if the proof of Kac’s conjecture imply exponential
in time converge to equilibrium of solutions to the Boltzmann-Kac equation.
The answer is unfortunately negative. Since the last equality implies that
ΔN > 1/2 it follows that

(6.1) ‖F(·, t)− 1‖2 ≤ e−
t
2 ‖F(·, 0)− 1‖2.

While the exponent in the last inequality is uniform in N , the L2 norm of the
initial condition is in general affected by N . Recall that we are interested in
chaotic probability densities FN (V, 0) , That is F(V , 0) ≈∏N

i=1 f (vi). These
probability densities have in general very large L2 norm such that

‖F(V , 0)‖2 ≥ CN

where C > 1. This shows that the estimate (6.1) works only for a time
proportional to N . This destroys the exponential decay in time convergence
to equilibrium for the Kac-Boltzmann equation.

In the hope of better estimates, a different approach has been taken by
investigating the entropy. In what follows we shall be informal, for details,
see [5]. If FN is probability density in �N−1(

�
N) with respect to σN , its

entropy is defined as

HN (FN ) =

∫
�

N−1(
�

N)

F(V) log F(V) dσN .

If FN (V, t) is a solution to the master equation, then

d

d t
HN (FN (·, t)) =

�
log FN (·, t),
 FN (·, t)

�
.

Similarly to the definition of the spectral gap ΔN , the entropy production is
defined by

ΓN = inf
−�log g,
 g

�
HN (g)

,

where the infimum is taken over all symmetric probability densities g on
�

N−1(
�

N) with HN (g)<∞.
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A standard computation leads to

(6.2) HN (FN (·, t)) ≤ e−ΓN t HN (FN (·, 0)).
The main difference between using the entropy instead of the L2 distance
lies in the fact that the entropy is extensive, that is, since FN (V, t) is f (v, t)-
chaotic, for large N ,

(6.3) HN (FN (·, t)) ≈ N H( f (·, t)|M(·)),
where

H( f |M) =
∫
�

f (v) log

 
f (v)

M(v)

!
dv.

Applying (6.3) to both sides of (6.2), it follows that for large N

H( f (·, t)|M(·))≤ e−ΓN t H( f (·, 0)|M(·)).
Assuming that ΓN ≥ c > 0 uniformly in N , and using the Csiszár-Kullback-
Liebler-Pinsker inequality, it follows that if f (v, t) satisfies Boltzmann-Kac
equation

(6.4) ‖ f (·, t)dv−M(·)dv‖2T V ≤ 2e−ct H( f (·, 0)|M(·)),
where ”T V ” denotes the total variation norm.

What remains is to obtain the proper lower bound for ΓN . However, this
turns out to be a far more difficult problem compared to the estimate of the
spectral gap ΔN . The best result known so far is

ΓN ≥
2

N − 1
.

This was proved by Villani [33]. Moreover, he conjectured that this bound
is essentially sharp, i.e,

ΓN = � (
1

N
).

Unfortunately, this would imply that the time it takes reach equilibrium is
still proportional to N . For recent progresses in this direction, see [5], [17].

7. The master equation and propagation of chaos for physical collision

models

In [22] Kac also described the master equation approach for Markov
processes modelling physical collisions. Here, we follow the approach de-
scribed in [26]. Consider a particle system consisting of N identical particles
v1, . . . , v N , where each v i ∈ �3 represents the velocity of the i-th particle
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and each particle has mass m = 2. The dynamics between particles are mod-
eled as collisions involving two particles such that the total energy and total
momentum of the system is conserved, where, without loss of generality

N∑
i=1

|v i |2 = 3N and
N∑

i=1

v i = 0.

Let V = (v1, . . . , v N ) denote the state of the system before a collision. The
collision process is defined as follows:

(1) For i �= j, choose a pair (v i, v j) uniformly from V .
(2) Choose a unit vector σ ∈ �2 with respect to a probability density

b(cosθi j), where

cosθi j =

"
v i − v j

|v i − v j|
,σ

#
.

(3) After the collision, V is updated to

R(θi j)V = (v1, . . . , v i−1, v
′
i, v i+1 . . . , v j−1v

′
j, v j+1 . . . , v N ),

where

v
′
i =

v i + v j

2
+
|v i − v j|

2
σ,

v
′
j =

v i + v j

2
− |v i − v j|

2
σ.

(7.1)

Note that

|v i|2+ |v j|2 = |v ′i|2 + |v ′j |2 and v i + v j = v
′
i + v

′
j

The waiting time until the next collision in a given pair of particles is as-
sumed to be exponentially distributed with parameter NΨ(|vi − vj|), where
Ψ is a non-negative function. Repeating the steps above yields a Markov
process on �3N−2(

�
3N). The evolution of phase space density FN is given

by the following master equation

∂

∂ t
FN (V, t)

=
1

N

∑
i< j

Ψ(|vi − vj |)
∫
�2

�
FN (R(θi j)V)− FN (V, t).

�
b(cosθi j) dσ.

(7.2)
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This master equation is, assuming propagation of chaos, connected to the
spatially homogeneous Boltzmann equation

(7.3)
∂

∂ t
f (v , t) =

∫
�

3

∫
�

2

�
f (v ′, t) f (u′, t)− f (v , t) f (u, t)

�
B(|v−u|, cosθ) dσdu,

where

B(|v − u|, cosθ) = Γ(|v − u|)b(cosθ), cosθ =

�
v − u

|v − u| ,σ
�

,

and the velocities v ′, u
′ are given by (7.1). Kac’s method for proving propa-

gation of chaos works for the master equation (7.2) in the case when Ψ = 1
and b is bounded. This corresponds to the case of cut-off maxwellian for the
3-dimensional spatially homogeneous Boltzmann equation (7.3). A different
proof this was given by McKean [24] in 1967.

The case of hard sphere particles, i.e., Ψ = |v−u|, b = 1 was first almost
solved by Grünbaum [20] in 1971 by a different approach. Grünbaum’s
proof was incomplete since it relied on regularity and stability results for
the spatially homogeneous Boltzmann equation which was not known at
that time. A complete proof was later given by Sznitman in 1984 using
martingale techniques, see [29], [30]. Recently, the work of Grünbaum has
been made fully rigorous and extended to particle systems in which one has
jumps, drift and diffusion, [26], [27].

8. Summary of papers

Here we give brief summaries of the contents of the papers included in
the thesis.

8.1. Paper I: Propagation of chaos for the thermostatted Kac master

equation. In this paper, we establish propagation of chaos for a particle
model in the presence of an external force. Collisions between particles are
modeled as in the Kac model with the addition that, between the collisions,
the particles are accelerated by an external uniform force field with a Gauss-
ian thermostat.

The force field acts equally on each particle, and to keep the total kinetic
energy of the system constant, the Gaussian thermostat absorbs the energy
supplied into the system by the force.
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As in the Kac model the phase space of the dynamics is the sphere
�

N−1(
�

N). If V = (v1, . . . , vN ) is a random point on phase space, between
collisions, it evolves according to

(8.1)
d

d t
V = F(V) = E

 
1− J(V)

U(V)
V

!
,

where E > 0, and the quantities J(V), U(V) represent respectively, the av-
erage momentum per particle and the average energy per particle, and are
given by

J(V) =
1

N

N∑
i=1

vi,

U(V) =
1

N

N∑
i=1

v2
i .

The force F is obtained by projecting the field (E, E, . . . , E) onto tangent
plane on �N−1(

�
N) at the point V It is straightforward to verify that the

evolution (8.1) preserves U , as expected.
If the random point V is initially distributed according to a probability

density WN (V , 0), its time evolution is given by the following master equa-
tion:

(8.2)
∂

∂ t
WN (V , t) +∇V ·

�
F(V)WN (V, t)

�
=
 (WN )(V, t))

where
 is given by (4.3). This equation is known as the thermostatted Kac
master equation. The left hand side corresponds to the change of the density
in time and under the influence of the force, while the right hand side corre-
sponds to the change of the density due to the collisions. In the absence of
the force field F , equation (8.2) reduces to the original Kac master equation.
More information about equation (8.2) can be found in [34].

Assuming that propagation of chaos holds, i.e, the family of solutions
{WN (V, t)}N∈� to equation (8.2) is f (v, t)-chaotic, in [34] it is shown that
f (v, t) satisfies the following equation

(8.3)
∂

∂ t
f (v, t) + E

∂

∂ v

�
1− ξ(t) f (v, t)

�
= Q( f , f ),
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where

(8.4) ξ(t) =

∫
R

v f (v, t) dv,

and

(8.5) Q( f , f )(v) =

∫
R

2π∫
0

�
f (v′, t) f (u′, t)− f (v, t) f (u, t)

� dθ

2π
du,

with v′ = v cosθ − u sinθ and u′ = v cosθ + u sinθ .
Kac’s proof of propagation of chaos can not be adjusted to show propaga-

tion of chaos for the thermostatted Kac master equation. The main difficulty
is due to the structure of the force field. Since it depends on all the par-
ticles, mainly through J(V), during a collision all the particles are present,
while in the Kac model the collisions involves only two particles. Unfortu-
nately, the estimates that are needed to verify propagation of chaos fail for
the thermostatted Kac master equation.

To justify propagation of chaos, we follow an approach introduced in
[2]. In this paper propagation of chaos is shown for a particle model with a
master equation similar to thermostatted master equation but with a differ-
ent collision model.

Let us briefly describe the strategy to achieve propagation of chaos in
our paper. The first step is to introduce an approximation process to simplify
the correlations that are created by force field. Define the quenched current
and the quenched energy approximations as
(8.6)$JWN

(t) =
1

N

N∑
i=1

< vi >WN (V,t) and $UWN
(t) =

1

N

N∑
i=1

< v2
i >WN (V ,t),

where < · >WN
denotes the expectation with respect to WN . We now define

the modified force field $FWN
(t) by

(8.7) $FWN
(t) = E

�
1−

$JN (t)$UN (t)
V

�
.
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The master equation describing the evolution of phase space density, where
the particles collide as in the Kac model and are accelerated between colli-
sions under the influence of the modified force field reads

(8.8)
∂

∂ t
%WN (V, t) +∇ · ($F%WN

(t)%WN (V, t)) =
%WN (V, t),

where now the modified force is the one corresponding to the density %WN (V, t).
Given initial density %WN (V, 0), we obtain in Lemma 2.1 that $U%WN

(t) is

constant in time and that $J%WN
(t) satisfies the following differential equation

(8.9)
d

d t
$J%WN
(t) = E − E

$J%WN
(t)2$U%WN
(t)
− 2$J%WN

(t).

The advantage of this approximation process is that the particles evolve in-
dependently between collisions. The evolution of the particles between col-
lisions is described by

(8.10)
d

d t
$V = $F%WN

(t).

By making a careful analysis and using ideas from [7], [22], in Theorem
3.1 we obtain a quantitative propagation of chaos result for master equa-
tion (8.8). This result is an important step in the direction to adapting the
strategy developed in [2] for controlling the effects of correlations that are
created by the thermostatted force field.

The second step is to make a pathwise comparison between the stochas-
tic process V(t) corresponding to the master equation (8.2), and the sto-
chastic process $V(t) corresponding to the master equation (8.8). The main
result is in Theorem 4.6 which states that, for all ε > 0

(8.11) lim
N→∞
�

&
‖V(t)− $V(t)‖N > ε'= 0.

In the last step, we combine Theorem 3.1 and Theorem 4.6 to show propa-
gation of chaos for the thermostatted Kac master equation.

8.2. Paper II: Chaotic distributions for relativistic particles. As we have
discussed, in the Kac model the phase space of the dynamics is defined
through the conservation of total classical kinetic energy of the particles.
The phase space is given by the manifold.

(8.12) �
N−1(
�

N) =

	
(v1, . . . , vN ) :

N∑
i=1

v2
i = N

�
.
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In this paper we study a modified Kac model. The inspiration comes from
the theory of relativity, where the kinetic energy is different from classical
kinetic energy. If φ(v) denotes the kinetic energy of a particle, in a one-
dimensional relativistic Kac model where v represents the momentum rather
than the velocity of a particle with normalized mass and normalized speed
of light, φ(v) is given by

(8.13) φ(v) =
�

v2+ 1− 1.

In the paper we assume that φ is an arbitrary function energy function on �
with the natural constraints that φ is even, increasing with φ(0) = 0. The
dynamics between particles in modified Kac model are the same as in the
original Kac model, but the phase space is now given by the manifold

(8.14) ΩN−1(
�

N) =

	
(v1, . . . , vN )

(( N∑
i=1

φ(vi) = N

�
.

In [22] Kac showed that the uniform distribution on �N−1(
�

N) is 1
2π

e
v2

2 -
chaotic. The main goal of our paper is to investigate chaoticity property of
the uniform distribution on ΩN−1(

�
N). Before stating our main result, the

following definition is needed

Definition 5. Let

(8.15) H(v1, . . . , vN ) =

N∑
i=1

φ(vi).

Provided that ‖∇H‖ = 0, the microcanonical measure η(E) on ΩN−1(
�

E) is
defined by

(8.16) η(E)
σΩ

‖∇H‖ ,

where σΩ is the surface measure on ΩN−1(
�

E).

Note that, on �N−1(
�

N), the microcanonical measure is directly propor-
tional to the surface measure.

Following Kac’s approach to construct chaotic probability densities on
�

N−1(
�

N), in Theorem 2.4 we show that the uniform distribution onΩN−1(
�

N)
with respect to the microcanonical measure is Ce−z0φ(v)-chaotic, where z0 is
unique real solution to an equation and C is a normalisation constant.

We next explain that propagation of chaos holds for the modified Kac
model where the invariant measure is given by the microcanonical measure
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on ΩN−1(
�

N). This is an immediate consequence of propagation of chaos
for the Kac model.

In the last section, we give a formal description of how one can extend
Theorem 2.4 to the case v ∈ �3. This case includes conservation of total
momentum.

8.3. Paper III: From a particle model to the BGK equation. In section 2
we briefly introduced the BGK equation. This equation is an approximation
to the Boltzmann equation by a relaxation model. The nonlinear gain term,
i.e., the positive part of the collision integral in the Boltzmann equation is
replaced by a Maxwellian which has the same density, macroscopic velocity
and temperature as the solutions to the equation.

In section 4 we described the Kac model. This N -particle model is con-
nected to a Boltzmann-like equation in the limit of infinitely many particles.
Moreover, this Boltzmann equation has an equilibrium solution given by the
Maxwellian

� (v) = e
v2

2

�
2π

.

In this paper we construct a particle model which converges to the BGK
equation in the limit of infinity many particles. We consider the one-dimensional
spatially homogeneous BGK equation

(8.17)
∂

∂ t
f (v, t) = λ1

�� (v)− f (v, t)
�

,

where the parameter λ1 > 0 and f is a probability density on � such that it
has the same first and second moment as� .

The particle system consists of the one-dimensional velocities of N iden-
tical passive particles and M identical active particles, where it is assumed
that there are more passive particles than active particles. The passive and
active particles have the same mass and are uniformly distributed in space.
Let V = (v1, . . . , vN ) denote the set of velocities of the passive particles and
W = (w1, . . . , wM ) the set of velocities of the active particles. The total en-
ergy of the system is conserved and the phase space of the particle system is
the sphere on �N+M with radius N +M . Collisions between particles occur
only among the active particles with the collisions being modeled as in the
Kac model. More precisely, the interactions between particles are:

• Exchange between particles: At exponentially distributed time in-
tervals with mean 1

λ1N
, a particle vj is uniformly chosen from V
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and exchanged with a particle wk, uniformly chosen from W . This
means that the passive particle vj becomes active and the active
particle wk becomes passive.
• Collisions between active particles: At exponentially distributed

time intervals with mean 1
λ2N M

, the vector W jumps to Ri j(θ)W ,

see Section 4 for the definition of Ri j(θ)W .

This defines a Markov jump process on phase space. The parameter λ2
and the number of active particles M depend on N . To obtain the one-
dimensional spatially homogeneous BGK equation we need to specify the
exact dependence between M , N and λ2. The master equation describing
the evolution of phase space density F(V,W, t) is given by

(8.18)
∂

∂ t
F(V,W, t) = (LN Mλ2

+ UN Mλ1
)F(V,W, t),

where

(8.19)

LN Mλ2
F(V,W ) =

2Nλ2

M − 1

∑
1≤ j<k≤M

∫ 2π

0

�
F(V,Rjk(θ)W )− F(V,W )

� dθ

2π
,

and

(8.20) UN Mλ1
F(V,W ) =

λ1

M

N∑
j=1

M∑
k=1

�
F(X j,k(V,W ))− F(V,W )

�
,

with

X j,k(V,W ) = (v1, . . . , vj−1, wk, vj+1, . . . , vN , w1, . . . , wk−1, vj , wk+1, . . . , wM ).

The first term in right hand side of equation (2.1) describes the change of F
due to the collisions between active particles, and the second term the effect
of exchanges between passive and active particles.

We show that the one particle density of a passive particle satisfies the
the one-dimensional spatially homogeneous BGK equation when N → ∞.
To achieve this, we use the spectral gap formula for the Kac model proved in
[4]. By increasing the number of collisions, thats choosing λ2 large enough,
the set of active particles will be uniformly distributed on a sphere with
radius depending on the energy of the passive particles. This means that
when a particle returns to a passive state its distribution is given by the
one-particle marginal of the uniform distribution of the sphere with radius
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depending on the energy of the passive particles. Since the one particle
marginal of the uniform distribution on a sphere with radius M converges
to the Maxwellian when M → ∞, we expect to obtain the BGK equation
when N →∞. To make this precise we need to specify the exact dependence
between M ,N and λ2. We obtain that M and λ2 satisfy N/M →∞, N/M2→
0 and λ2 → ∞ when N → ∞. Our main result is summarized in Theorem
4.1.

9. Contribution of Dawan Mustafa to the joint papers

For all three papers, the initial formulation of the problem was made by
B Wennberg. The authors together contributed to making the ideas precise,
and to the mathematical proofs, and in particular in Paper I, the adaptation
of E Carlen’s ideas in a related paper was essential. In all three papers, the
calculations and estimates needed to realize these ideas were carried out by
D Mustafa, who also wrote the papers based on the joint efforts.
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